
Using OAuth 2.0 and OpenID
Connect

Version 2023.3
2024-01-08

InterSystems Corporation   1 Memorial Drive   Cambridge MA 02142   www.intersystems.com



Using OAuth 2.0 and OpenID Connect
InterSystems IRIS Data Platform   Version 2023.3    2024-01-08   
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:



Table of Contents

1 Overview of OAuth 2.0 and OpenID Connect .................................................................................. 1
1.1 Basics ......................................................................................................................................... 1
1.2 Roles ........................................................................................................................................... 1
1.3 Access Tokens ............................................................................................................................ 2

1.3.1 Forms of Access Tokens ................................................................................................... 2
1.3.2 Claims .............................................................................................................................. 2
1.3.3 JWTs and JWKSs ............................................................................................................. 2

1.4 Grant Types and Flows ............................................................................................................... 3
1.5 Scopes ......................................................................................................................................... 4
1.6 Endpoints in an Authorization Server ........................................................................................ 5

2 How InterSystems IRIS Supports OAuth 2.0 and OpenID Connect ............................................. 7
2.1 Supported Scenarios ................................................................................................................... 7
2.2 InterSystems IRIS Support for OAuth 2.0 and OpenID Connect .............................................. 7

2.2.1 Configuration Items on a Client ....................................................................................... 8
2.2.2 Configuration Items on the Server ................................................................................... 8

2.3 Standards Supported in InterSystems IRIS ................................................................................ 8

3 Using an InterSystems IRIS Web Application as an OAuth 2.0 Client ....................................... 11
3.1 Prerequisites for the InterSystems IRIS Client ........................................................................ 11
3.2 Configuration Requirements .................................................................................................... 12

3.2.1 Creating a Server Description (Using Discovery) .......................................................... 12
3.2.2 Configuring and Dynamically Registering a Client ....................................................... 13

3.3 Outline of Code Requirements ................................................................................................. 16
3.4 Obtaining Tokens ...................................................................................................................... 16

3.4.1 Method Details ............................................................................................................... 17
3.5 Examining the Token(s) ........................................................................................................... 20
3.6 Adding an Access Token to an HTTP Request ......................................................................... 21
3.7 Optionally Defining Delegated Authentication for the Web Client ......................................... 22

3.7.1 Creating and Using a ZAUTHENTICATE Routine for an OAuth 2.0 Client ................ 22
3.7.2 Creating and Using a Custom Login Page for an OAuth 2.0 Client .............................. 23
3.7.3 Notes about the OAUTH2.ZAUTHENTICATE.mac Sample ........................................ 24

3.8 Revoking Access Tokens .......................................................................................................... 25
3.8.1 Revoking a User’s Access Tokens .................................................................................. 25
3.8.2 Revoking Access Tokens Programmatically .................................................................. 25

3.9 Rotating Keys Used for JWTs .................................................................................................. 26
3.9.1 API for Key Rotation on the Client ................................................................................ 26

3.10 Getting a New Public JWKS from the Authorization Server ................................................. 26

4 OAuth 2.0 Client Variations ............................................................................................................. 29
4.1 Disabling PKCE ....................................................................................................................... 29
4.2 Implicit Grant Type .................................................................................................................. 29
4.3 Password Credentials Grant Type ............................................................................................. 31
4.4 Client Credentials Grant Type .................................................................................................. 32
4.5 Performing the Redirect within OnPreHTTP ........................................................................... 32
4.6 Passing Request Objects as JWTs ............................................................................................ 33

4.6.1 Passing a Request Object by Value ................................................................................ 33
4.6.2 Passing a Request Object by Reference ......................................................................... 34

4.7 Calling Other Endpoints of the Authorization Server .............................................................. 35

Using OAuth 2.0 and OpenID Connect                                                                                                                                  iii



5 Using an InterSystems IRIS Web Application as an OAuth 2.0 Resource Server ...................... 37
5.1 Prerequisites for the InterSystems IRIS Resource Server ........................................................ 37
5.2 Configuration Requirements .................................................................................................... 38
5.3 Code Requirements .................................................................................................................. 38
5.4 Examining the Token(s) ........................................................................................................... 39
5.5 Variations .................................................................................................................................. 41

5.5.1 Variation: Resource Server Calls Userinfo Endpoint ..................................................... 41
5.5.2 Variation: Resource Server Does Not Call Endpoints .................................................... 41

6 Using InterSystems IRIS as an OAuth 2.0 Authorization Server ................................................. 43
6.1 Configuration Requirements for the InterSystems IRIS Authorization Server ........................ 43

6.1.1 Configuring the Authorization Server ............................................................................ 43
6.2 Code Customization Options and Overall Flow ....................................................................... 46

6.2.1 How an InterSystems IRIS Authorization Server Processes Requests .......................... 47
6.2.2 Default Classes ............................................................................................................... 47

6.3 Implementing the Custom Methods for the InterSystems IRIS Authorization Server ............. 49
6.3.1 Optional Custom Processing Before Authentication ..................................................... 50
6.3.2 Identifying the User ....................................................................................................... 50
6.3.3 Validating the User and Specifying Claims .................................................................... 51
6.3.4 Displaying Permissions .................................................................................................. 52
6.3.5 Optional Custom Processing After Authentication ........................................................ 52
6.3.6 Generating the Access Token ......................................................................................... 53
6.3.7 Validating the Client ....................................................................................................... 53

6.4 Details for the %OAuth2.Server.Properties Object .................................................................. 54
6.4.1 Basic Properties .............................................................................................................. 54
6.4.2 Properties Related to Claims .......................................................................................... 55
6.4.3 Methods for Working with Claims ................................................................................. 57

6.5 Locations of the Authorization Server Endpoints .................................................................... 57
6.6 Creating Client Definitions on an InterSystems IRIS OAuth 2.0 Authorization Server .......... 58
6.7 Rotating Keys Used for JWTs .................................................................................................. 59

6.7.1 API for Key Rotation on the Authorization Server ........................................................ 60
6.8 Getting a New Public JWKS from a Client .............................................................................. 60

Appendix A: Creating Configuration Items Programmatically ...................................................... 61
A.1 Creating the Client Configuration Items Programmatically .................................................... 61

A.1.1 Creating a Server Description ....................................................................................... 61
A.1.2 Creating a Client Configuration .................................................................................... 62

A.2 Creating the Server Configuration Items Programmatically ................................................... 63
A.2.1 Creating the Authorization Server Configuration ......................................................... 63
A.2.2 Creating a Client Description ........................................................................................ 64

Appendix B: Implementing DirectLogin() ........................................................................................ 67

Appendix C: Certificates and JWTs (JSON Web Tokens) .............................................................. 69
C.1 Using Certificates for an OAuth 2.0 Client ............................................................................. 69
C.2 Using Certificates for an OAuth 2.0 Resource Server ............................................................. 70
C.3 Using Certificates for an OAuth 2.0 Authorization Server ...................................................... 71

Appendix D: Working with JWT Headers ........................................................................................ 73
D.1 Adding Header Values (Authorization Server) ........................................................................ 73
D.2 Adding Header Values (Direct JWT Generation) .................................................................... 73

D.2.1 Adding Custom Header Parameters .............................................................................. 74
D.3 Processing JWT Headers ......................................................................................................... 74

iv                                                                                                                                  Using OAuth 2.0 and OpenID Connect



1
Overview of OAuth 2.0 and OpenID
Connect

This page provides a brief overview of OAuth 2.0 authorization framework and OpenID Connect. Another page introduces
InterSystems IRIS® support for OAuth 2.0 and OpenID Connect.

1.1 Basics
The OAuth 2.0 authorization framework enables a third-party application (generally known as a client) to obtain limited
access to an HTTP service (a resource). The access is limited; the client can obtain only specific information or can use
only specific services. An authorization server either orchestrates an approval interaction or directly gives access. OpenID
Connect extends this framework and adds authentication to it.

1.2 Roles
The OAuth 2.0 framework defines four roles:

• Resource owner — Usually a user.

• Resource server — A server that hosts protected data and/or services.

• Client — An application that requests limited access to a resource server. This can be a client-server application or
can be an application that has no server (such as a JavaScript application or mobile application).

• Authorization server — A server that is responsible for issuing access tokens, with which the client can access the
resource server. This server can be the same application as the authorization server but can also be a different application.

The client, resource server, and authorization server are known to each other, by prior arrangement. An authorization server
has a registry of clients, which specifies the client servers and resource servers that can communicate with it. When it reg-
isters a client, an authorization server generates a client ID and a client secret, the latter of which must be kept secret.
Depending on how the client will communicate with the authorization server, the client server might need the client secret;
in that case, it is necessary to convey the client secret securely to the client server. In some scenarios (such as a JavaScript
application), it is impossible for the client to protect the client secret; in these scenarios, the client must communicate with
the authorization server in a way that does not require the client secret.

Using OAuth 2.0 and OpenID Connect                                                                                                                                   1



1.3 Access Tokens
An access token contains information about the identity of the user or client, as well as metadata such as an expiration date,
expected issuer name, expected audience, scope, and so on.

The general purpose of an access token is to enable a client to access specific data or services available via HTTP at a
resource server. In the overall flow, the client application requests an access token from the authorization server. After
receiving this token, the client uses the access token within HTTP requests to the resource server. The resource server
returns the requested information only when it receives requests that contain a valid access token.

An access token can also be revoked, if the authorization server supports this.

1.3.1 Forms of Access Tokens

InterSystems IRIS supports two forms of access tokens:

• JSON Web Tokens (JWTs). A JWT is a JSON object. A JWT can be digitally signed, encrypted, or both.

Note that one kind of JWT is an ID token; this is specific to OpenID Connect.

A JWT can be signed, encrypted, or both.

• Opaque access tokens (also known as reference tokens). This form of access token is just the identifier of a token that
is stored elsewhere, specifically on the authorization server. The identifier is a long, random string, intended to be very
difficult to guess.

1.3.2 Claims

An access token contains a set of claims that communicate the identity of the user or client, or that communicate metadata
such the token’s expiration date, expected issuer name, expected audience, scope, and so on. The OpenID Connect Core
specification defines a standard set of claims, and other claims may be used as well.

1.3.3 JWTs and JWKSs

As noted above, a JWT can be signed, encrypted, or both. In most cases, the participants in the OAuth 2.0 framework use
pairs of JWKSs (JSON web key sets) for this purpose. In any pair of JWKSs, one JWKS is private and contains all the
needed private keys (per algorithm) as well as the client secret for use as a symmetric key; this JWKS is never shared. The
other JWKS contains the corresponding public keys and is publicly available.

Each participant has a private JWKS and provides other participants with the corresponding public JWKS. The owner of
a private JWKS uses that JWKS for signing outbound JWTs and decrypting inbound JWTs. The other parties use the cor-
responding public JWKS to encrypt outbound JWTs and verify signatures of inbound JWTs, as shown in the following
figure:

2                                                                                                                                   Using OAuth 2.0 and OpenID Connect

Overview of OAuth 2.0 and OpenID Connect



1.4 Grant Types and Flows
In the OAuth 2.0 framework, a grant type specifies how the authorization server should process the request for authorization.
The client specifies the grant type within the initial request to the authorization server. The OAuth 2.0 specification describes
four grant types, as well as an extensibility mechanism for defining additional types. In general, each grant type corresponds
to a different overall flow.

The four grant types are as follows:

• Authorization code — This grant type can be used only with a client application that has a corresponding server. In
this grant type, the authorization server displays a login page with which the user provides a username and password;

Using OAuth 2.0 and OpenID Connect                                                                                                                                   3

Grant Types and Flows



these are never shared with the client. If the username and password correspond to a valid user (and if other elements
of the request are in order), the authorization server first issues an authorization code, which it returns to the client.
The client then uses the authorization code to obtain an access token.

The request for the authorization code is visible in the browser, as is the response. The request for the access token,
however, is a server-to-server interaction, as is that response. Thus the access token is never visible in the browser.

Proof Key for Code Exchange (PKCE) is an extension to the authorization code flow that prevents a malicious actor
from obtaining an access token with an intercepted authorization code. With PKCE, the client’s request for an autho-
rization code includes an additional secret value. The authorization server saves this secret when it issues the authorization
code. The client’s subsequent request to exchange the authorization code for an access token must include the original
secret; someone who had intercepted the authorization code would not know this secret, thereby preventing them from
obtaining an access token.

• Implicit — As with the previously listed grant type, the authorization server displays a login page, and the client never
has access to the user’s credentials. However, in the implicit grant type, the client directly requests and receives an
access token. This grant type is useful for pure client applications such as JavaScript clients or mobile applications.

• Resource owner password credentials — In this grant type, the client prompts the user for a username and password
and then uses those credentials to obtain an access token from the authorization server. This grant type is suitable only
with trusted applications.

• Client credentials grant type — In this grant type, there is no user context, and the client application is unattended.
The client uses its client ID and client secret to obtain an access token from the authorization server.

RFC 7523 describes an additional grant type, JWT authorization. This grant type uses of a JSON Web Token (JWT) Bearer
Token to request an OAuth 2.0 access token and to authenticate the client; InterSystems IRIS supports this grant type in
addition to the four in the OAuth 2.0 specification.

Selecting JWT authorization as the grant type reveals the following settings:

• Authentication signing algorithm — Offers several options for the RSA, elliptic curve, and HMAC signature algorithms.
This determines which algorithm to use during signing and validation.

• Audience — Sets the aud claim in an issued JWT header. This claim identifies who the intended recipient of the JWT
is, which is typically the authorization server’s token or issuer endpoint or a user-defined endpoint. If left undefined
for new OAuth2 configurations, then this uses the authorization server's token endpoint. If left undefined for existing
OAuth2 configurations, then it continues to use the authorization server's issuer endpoint. User input overrides these
defaults.

Note that in the OAuth 2.0 framework, in general, all HTTP requests are protected by SSL/TLS.

In addition, when a client sends a request to the authorization server, that request must be authenticated. The OAuth 2.0
specification describes the ways in which a client can authenticate the request.

1.5 Scopes
The authorization server allows the client to specify the scope of the access request using the scope request parameter. In
turn, the authorization server uses the scope response parameter to inform the client of the scope of the access token issued.

OpenID Connect is an extension to the OAuth 2.0 authorization process. To request authentication, the client includes the
openid scope value in the request to the authorization server. The authorization server returns information about the
authentication in a JWT called an ID token. An ID token contains a specific set of claims, listed in the OpenID Connect
Core specification.

4                                                                                                                                   Using OAuth 2.0 and OpenID Connect

Overview of OAuth 2.0 and OpenID Connect

https://datatracker.ietf.org/doc/rfc7523


1.6 Endpoints in an Authorization Server
An authorization server provides some or all of the following URLs or endpoints, which can process requests of varying
kinds:

PurposeEndpoint

Returns an authorization code (applies only to authorization code grant
type)

Authorization endpoint

Returns an access tokenToken endpoint

Returns a JSON object that contains claims about the authenticated user
(applies only to OpenID Connect)

Userinfo endpoint

Returns a JSON object that contains claims determined by examining an
access token

Token introspection endpoint

Revokes a tokenToken revocation endpoint

Using OAuth 2.0 and OpenID Connect                                                                                                                                   5

Endpoints in an Authorization Server





2
How InterSystems IRIS Supports OAuth
2.0 and OpenID Connect

This page introduces InterSystems IRIS® support for OAuth 2.0 and OpenID Connect.

2.1 Supported Scenarios
With InterSystems IRIS support for OAuth 2.0 and OpenID connect, you can do any or all of the following:

• Use an InterSystems IRIS web application as a client

• Use an InterSystems IRIS web application as a resource server

• Use an InterSystems IRIS instance as an authorization server

For example, you can use an InterSystems IRIS web application as a client of an authorization server that uses third-party
technology. Or you can use third-party clients with an authorization server that is built on InterSystems IRIS. The resource
server or resource servers could be implemented in InterSystems IRIS or in a different technology.

In all cases, the authorization server is the most complex element and is generally created first. You create clients later.
When you create a client, it is generally necessary to understand the capabilities and requirements of the authorization
server, such as the scopes it supports.

2.2 InterSystems IRIS Support for OAuth 2.0 and OpenID
Connect
The InterSystems IRIS support for OAuth 2.0 and OpenID Connect consists of the following elements:

• Configuration pages in the Management Portal.

If you configure a client (or a resource server), use the options at System Administration > Security > OAuth 2.0 > Client

Configuration.

If you configure an authorization server, use the options at System Administration > Security > OAuth 2.0 > Server

Configuration.

Using OAuth 2.0 and OpenID Connect                                                                                                                                   7



• Classes in the %SYS.OAuth2 package. These classes are the client API. If you define an InterSystems IRIS web
application as an OAuth 2.0 client, your client uses methods in these classes.

• Classes in the %OAuth2 package. If you use an InterSystems IRIS instance as an OAuth 2.0 authorization server, you
customize the server by subclassing one or more of the classes in the package %OAuth2.Server. Other classes in
%OAuth2 provide utility methods for your code to call.

• Classes in the OAuth2 package (in the IRISSYS database). These include persistent classes for internal use by InterSystems
IRIS, and you can ignore most of them. However, if you want to create configuration items programmatically, you
would use a subset of the classes in this package.

The following subsections provide an overview of the configuration items.

2.2.1 Configuration Items on a Client

Within an InterSystems IRIS instance that is acting as an OAuth 2.0 client, it is necessary to define two connected config-
uration items for a given client application: a server description (which describes the authorization server) and a client
configuration (which configures the client). A given instance can have any number of server descriptions. Each server
description has multiple client configurations, as shown in the following figure, which also indicates some of the information
stored in these configuration items:

This architecture is intended to simplify configuration, because it enables you to define multiple client configurations that
use the same authorization server without needing to repeat the details of the authorization server.

You can create these items via the Management Portal, as described in Using an InterSystems IRIS Web Application as an
OAuth 2.0 Client. Or you can create them programmatically, as described in Creating Configuration Items Programmatically.

2.2.2 Configuration Items on the Server

Within an InterSystems IRIS instance that is acting as an OAuth 2.0 authorization server, it is necessary to define a server
configuration (which configures the authorization server) and a number of client descriptions. The following figure indicates
some of the information stored in these configuration items.

A given InterSystems IRIS instance can have at most one server configuration and can have many client descriptions. One
client description is necessary for each client application. A client description is also necessary for each resource server
that uses any endpoints of the authorization server. If a resource server does not use any endpoints of the authorization
server, there is no need to create a client description for it.

You can create these items via the Management Portal, as described in Using InterSystems IRIS as an OAuth 2.0 Autho-
rization Server. Or you can create them programmatically, as described in Creating Configuration Items Programmatically.

2.3 Standards Supported in InterSystems IRIS
This section lists the standards that InterSystems IRIS supports for OAuth 2.0 and Open ID Connect:

• The OAuth 2.0 Authorization Framework (RFC 6749) — See https://datatracker.ietf.org/doc/rfc6749

• The OAuth 2.0 Authorization Framework: Bearer Token Usage (RFC 6750) — See https://data-
tracker.ietf.org/doc/rfc6750

8                                                                                                                                   Using OAuth 2.0 and OpenID Connect

How InterSystems IRIS Supports OAuth 2.0 and OpenID Connect

https://datatracker.ietf.org/doc/rfc6749
https://datatracker.ietf.org/doc/rfc6750
https://datatracker.ietf.org/doc/rfc6750


• OAuth 2.0 Token Revocation (RFC 7009) — See https://datatracker.ietf.org/doc/rfc7009

• JSON Web Token (JWT) (RFC 7519) — See https://datatracker.ietf.org/doc/rfc7519

• OAuth 2.0 Token Introspection (RFC 7662) — See https://datatracker.ietf.org/doc/rfc7662

• OpenID Connect Core 1.0 — See http://openid.net/specs/openid-connect-core-1_0.html

• OAuth 2.0 Form Post Response Mode — See http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

• JSON Web Key (JWK) (RFC 7517) — See https://datatracker.ietf.org/doc/rfc7517

• OpenID Connect Discovery 1.0 — See https://openid.net/specs/openid-connect-discovery-1_0.html

• OpenID Connect Dynamic Client Registration — See http://openid.net/specs/openid-connect-registration-1_0-19.html

• JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants (RFC 7523) — See
https://tools.ietf.org/html/rfc7523

• Proof Key for Code Exchange (RFC 7636) — See https://tools.ietf.org/html/rfc7636

Using OAuth 2.0 and OpenID Connect                                                                                                                                   9

Standards Supported in InterSystems IRIS

https://datatracker.ietf.org/doc/rfc7009
https://datatracker.ietf.org/doc/rfc7519
https://datatracker.ietf.org/doc/rfc7662
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://datatracker.ietf.org/doc/rfc7517
https://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0-19.html
https://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7636




3
Using an InterSystems IRIS Web
Application as an OAuth 2.0 Client

This page describes how to use an InterSystems IRIS® web application as a client application that uses the OAuth 2.0
framework. The focus is the scenario in which an InterSystems IRIS web application is the client of a web server/client
application and uses the authorization code grant type. Also see OAuth 2.0 Client Variations.

Note: When your OAuth 2.0 client is communicating with an Active Directory Federation Service (ADFS) authorization
server, your client code must append a special key-value pair to the authorization endpoint. For more details, see
the description of GetAuthorizationCodeEndpoint() in Method Details.

3.1 Prerequisites for the InterSystems IRIS Client
Before starting the tasks described in this page, make sure the following items are available:

• An OAuth 2 authorization server. Later you will need to know specific details about this server. Some of the details
apply when you configure the client within InterSystems IRIS:

– Location of the authorization server (issuer endpoint)

– Location of the authorization endpoint

– Location of the token endpoint

– Location of the Userinfo endpoint (if supported; see OpenID Connect Core)

– Location of the token introspection endpoint (if supported; see RFC 7662)

– Location of the token revocation endpoint (if supported; see RFC 7009)

– Whether the authorization server supports dynamic registration

Other details apply when you write the client code:

– Grant types supported by this server

– Scopes supported by this server. For example, the server may or may not support openid and profile, which
are special scopes defined by OpenID Connect Core.

– Other requirements for requests made to this server

Using OAuth 2.0 and OpenID Connect                                                                                                                                 11

http://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/rfc7662
https://datatracker.ietf.org/doc/rfc7009
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest


• If the authorization server does not support dynamic client registration, the InterSystems IRIS application must be
registered as a client of the OAuth 2.0 authorization server, and you must have the client ID and client secret for this
client. The details depend upon the implementation of the authorization server. (If the server does support dynamic
registration, you can register the client while configuring it as described in this page.)

3.2 Configuration Requirements
To use an InterSystems IRIS web application as an OAuth 2.0 client, perform the following configuration tasks:

• For the web server that is serving InterSystems IRIS, configure that web server to use SSL. It is beyond the scope of
this documentation to describe how to configure a web server to use SSL.

• Create an InterSystems IRIS SSL configuration for use by the client.

This should be a client SSL configuration; no certificate is needed. The configuration is used to connect to a web server.
Via this connection, the client communicates with the authorization server to obtain access tokens, call the Userinfo
endpoint, call the introspection endpoint, and so on.

For details on creating SSL configurations, see InterSystems TLS Guide.

Each SSL configuration has a unique name. For reference, the documentation refers to this one as sslconfig, but
you can use any unique name.

• Create the OAuth 2.0 configuration items for the client. To do so, first create the server description and then create the
client configuration, as described in the subsections.

For both items, to find the needed options in the Management Portal, select System Administration > Security > OAuth

2.0 > Client Configuration. This page provides the options needed when you create an OAuth 2.0 configuration on a
client machine (that is, on any machine other than one being used as an authorization server).

On a client machine, do not use the menu System Administration > Security > OAuth 2.0 > Server Configuration.

3.2.1 Creating a Server Description (Using Discovery)

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Client Configuration.

This displays a page that lists any server descriptions that are available on this instance. In any given row, the Issuer

endpoint column indicates the issuer endpoint for the server description. The Client Count column indicates the number
of client configurations associated with the given server description. In the last column, the Client Configurations link
enables you to create, view, edit, and delete the associated client configurations.

2. Select Create Server Configuration.

The Management Portal then displays a new page where you can enter details for the server description.

3. Specify the following details:

• Issuer endpoint (required) — Enter the endpoint URL to be used to identify the authorization server.

• SSL/TLS configuration (required) — Select the SSL/TLS configuration to use when making the dynamic client
registration request.

• Registration access token — Optionally enter the initial registration access token to use as a bearer token to
authorize the dynamic client registration request.

4. Select Discover and Save.

12                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using an InterSystems IRIS Web Application as an OAuth 2.0 Client



InterSystems IRIS then communicates with the given authorization server, retrieves information needed in the server
description, and then saves that information.

The Management Portal then redisplays the list of server descriptions.

3.2.1.1 Manually Creating a Server Description (No Discovery)

To manually create a server description (rather than using discovery), first display the server description page (steps 1 and
2 above) and then select Manual. Then the page displays a larger set of options, as follows:

• Issuer endpoint (required) — Enter the endpoint URL to be used to identify the authorization server.

• Authorization endpoint (required) — Enter the endpoint URL to be used when requesting an authorization code from
the authorization server.

• Token endpoint (required) — Enter the endpoint URL to be used when requesting an access token from the authorization
server.

• Userinfo endpoint — Enter the endpoint URL to be used when making a Userinfo request using an access token from
the authorization server for authorization.

• Token introspection endpoint — Enter the endpoint URL to be used when making a token introspection request using
the client_id and client_secret for authorization. See RFC 7662.

• Token revocation endpoint— Enter the endpoint URL to be used when making a token revocation request using the
client_id and client_secret for authorization. See RFC 7009.

• JSON Web Token (JWT) Settings — Specifies the source of the public keys that the client should use for signature
verification and decryption of JWTs from the authorization server.

By default, the authorization server generates a pair of JWKSs (JSON web key sets). One JWKS is private and contains
all the needed private keys (per algorithm) as well as the client secret for use as a symmetric key; this JWKS is never
shared. The other JWKS contains the corresponding public keys and is publicly available. The process of creating the
server description also copies the public JWKS from the authorization server to the client for its use in signature veri-
fication and encryption of JWTs.

– JWKS from URL — Specify a URL that points to a public JWKS and then load the JWKS into InterSystems IRIS.

– JWKS from file — Select a file that contains a public JWKS and then load that file into InterSystems IRIS.

– X509 certificate — For details, see Using Certificates for an OAuth 2.0 Authorization Server, in Certificates and
JWTs (JSON Web Tokens).

To access any of these options, first select Source other than dynamic registration.

Specify these values and then select Save.

3.2.2 Configuring and Dynamically Registering a Client

This section describes how to create a client configuration and dynamically register the client. Note that a user that performs
these steps in the Management Portal must have the both the %Admin_Secure and the %Admin_OAuth2_Client privileges.

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Client Configuration.

The Management Portal displays the list of server descriptions.

2. Click the Client Configurations link in the row for the server description with which this client configuration should
be associated.

The Management Portal then displays the list of client configurations associated with the server description. This list
is initially empty.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 13

Configuration Requirements

https://datatracker.ietf.org/doc/rfc7662
https://datatracker.ietf.org/doc/rfc7009


3. Click Create Client Configuration.

The Management Portal then displays a new page where you can enter details.

4. On the General tab, specify the following details:

• Application name — Specify a short name for the application.

• Client name — Specify the client name to display to the end user.

• Description — Specify an optional description of the application.

• Enabled — Optionally clear this check box if you want to prevent this application from being used.

• Client Type — Select one of the following:

– Confidential — Specifies that the client is a confidential client, per RFC 6749.

This page primarily discusses the scenario in which the client uses the authorization code grant type. For this
scenario, specify Client Type as Confidential. For other grant types, see Variations.

– Public — Specifies that the client is a public client, per RFC 6749.

– Resource server — Specifies that the client is a resource server which is not also a client.

• SSL/TLS configuration — Select the SSL configuration you created for use by the client (for example, sslconfig).

• The client URL to be specified to the authorization server to receive responses — Specify the URL of the internal
destination required for an InterSystems IRIS OAuth 2.0 client. At this destination, the access token is saved and
then the browser is further redirected back to the client application.

To specify this URL, enter values for the following options:

– Host name — Specify the host name or IP address of the authorization server.

– Port — Specify this if needed to accommodate any changes in the Web Gateway configuration.

– Prefix — Specify this if needed to accommodate any changes in the Web Gateway configuration.

The URL has the following form, using the <baseURL> for your instance:

https://<baseURL>/csp/sys/oauth2/OAuth2.Response.cls

• Use TLS/SSL — Select this option, unless there is a good reason not to use TLS/SSL when opening the redirect
page.

• Front Channel Logout URL — Optionally specify the HTTP-based front channel logout URL. The server registers
this URL and uses it log users out on the client. To create a client that does not support front channel logout, leave
the URL empty. The box above this field displays the specified URL and appends 'IRISLogout=end' to it.

Note: For an InterSystems IRIS client to support front channel logout, the Session Cookie Scope of the client
application to None. For details on configuring application settings, see Create and Edit Applications.

• Required grant types — Specify the OAuth 2.0 grant types that the client will restrict itself to using.

• Authentication type — Select the type of authentication (as specified in RFC 6749 or OpenID Connect Core section
9) to be used for HTTP requests to the authorization server. Select one of the following: none, basic, form encoded

body, client secret JWT, or private key JWT.

• Require iss and sid query parameters when auth server calls logout URL — Select this option to require the iss
(issuer) and sid (session ID) query parameters when the authorization server calls the front channel logout URL.

14                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using an InterSystems IRIS Web Application as an OAuth 2.0 Client

https://datatracker.ietf.org/doc/rfc6749
https://datatracker.ietf.org/doc/rfc6749
https://datatracker.ietf.org/doc/rfc6749
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html


• Authentication signing algorithm — Select the algorithm that must be used for signing the JWTs used to authenticate
this client at the token endpoint (if the authentication type is client secret JWT or private key JWT). If you do not
select an option, any algorithm supported by the OpenID provider and the relying party may be used.

5. On the Client Information tab, specify the following details:

• Logo URL — URL of the logo for the client application.

• Client home page URL — URL of the home page for the client application.

• Policy URL — URL of the policy document for the client application.

• Terms of service URL — URL of the terms of service document for the client application.

• Default scope — Specify the default scope, as a blank separated list, for access token requests. This default should
be consistent with the scopes permitted by the authorization server.

• Contact emails — Comma-separated list of email addresses suitable for use in contacting those responsible for
the client application.

• Default max age — Specify the default maximum authentication age, in seconds. If you specify this option, the
end user must be actively re-authenticated when the maximum authentication age is reached. The max_age request
parameter overrides this default value. If you omit this option, there is no default maximum authentication age.

6. On the JWT Settings tab, specify the following details:

• Create JWT Settings from X509 credentials — Select this option if, for signing and encryption, you want to use the
private key associated with a certificate; in this case, also see Using Certificates for an OAuth 2.0 Client, in Cer-
tificates and JWTs (JSON Web Tokens).

Note: InterSystems expects that the option Create JWT Settings from X509 credentials will rarely be used, and
that instead customers use the default behavior described next.

If you leave this option clear, the system generates a pair of JWKSs (JSON web key sets). One JWKS is private
and contains all the needed private keys (per algorithm) as well as the client secret for use as a symmetric key;
this JWKS is never shared. The other JWKS contains the corresponding public keys and is publicly available. The
dynamic registration process also copies the public JWKS to the authorization server, so that the authorization
server can encrypt and verify signatures of JWTs from this client.

• Signing algorithm — Select the signing algorithm used to create signed JWTs. Or leave this blank if JWTs are not
to be signed.

• Encryption algorithm — Select the encryption algorithm used to create encrypted JWTs. Or leave this blank if
JWTs are not to be encrypted. If you select a value, you must also specify Key algorithm.

• Key algorithm — Select the key management algorithm used to create encrypted JWTs. Or leave this blank if
JWTs are not to be encrypted.

7. If the authorization server supports dynamic registration, double-check all the data you have entered and then press
Dynamic Registration and Save. InterSystems IRIS then contacts the authorization server, registers the client, and
obtains the client ID and client secret.

If the authorization server does not support dynamic registration, see the following subsection.

You can update a dynamically registered client configuration by pressing Save and Update Registration on that client’s
configuration page.

3.2.2.1 Configuring a Client (No Dynamic Registration)

If the authorization server does not support dynamic registration, then do the following instead of the last step above:

Using OAuth 2.0 and OpenID Connect                                                                                                                                 15

Configuration Requirements



1. Select the Client Credentials tab and specify the following details:

• Client ID — Enter the client ID as provided by the authorization server.

• Client secret — Enter the client secret as provided by the authorization server. This value is required if the Client

Type is Confidential.

This page primarily discusses the scenario in which the client uses the authorization code grant type. For this
scenario, specify a value for Client secret. For other grant types, see Variations.

Do not enter values for Client ID Issued At, Client Secret Expires At, and Registration Client Uri.

2. Select Save.

3.3 Outline of Code Requirements
Note: This section describes the code needed when the client uses the authorization code grant type when requesting

tokens. For other grant types, see Variations.

In order for an InterSystems IRIS web application to act as OAuth 2.0 client, this web application must use logic like the
following:

1. Obtain an access token (and if needed, an ID token). See Obtaining Tokens.

2. Examine the access token and (optionally, an ID token) to determine whether the user has the necessary permissions
to use the requested resource. See Examining the Tokens.

3. If appropriate, call the resource server as described in Adding an Access Token to an HTTP Request.

The following sections provide information on these steps.

3.4 Obtaining Tokens
Note: This section provides information on the code needed when the client uses the authorization code grant type when

requesting tokens. By default, this authorization code grant type includes the Proof Key for Code Exchange
(PKCE) extension. For other grant types and authorization code without PKCE, see Variations.

To obtain tokens, use steps like the following to obtain tokens. The subsection provides details on the methods discussed
here.

1. Call the IsAuthorized() method of the %SYS.OAuth2.AccessToken class. For this, you will need to first determine the
desired scope or scopes for the access token.

For example:

ObjectScript

 set myscopes="openid profile scope1 scope2"
 set isAuth=##class(%SYS.OAuth2.AccessToken).IsAuthorized("myclient",,myscopes,
                 .accessToken,.idtoken,.responseProperties,.error)

This method checks to see whether an access token has already been saved locally.

16                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using an InterSystems IRIS Web Application as an OAuth 2.0 Client



2. Check to see if the error argument has returned an error and then handle that error appropriately. Note that if this
argument contains an error, the function $ISOBJECT() will return 1; otherwise $ISOBJECT() will return 0.

ObjectScript

    if $isobject(error) {
   //error handling here
 }

3. If IsAuthorized() returns 1, skip to Examining the Tokens.

4. Otherwise, call the GetAuthorizationCodeEndpoint() method of the %SYS.OAuth2.Authorization class. For this, you
will need the following information:

• Complete URL that the authorization server should redirect to, after it returns an access token. This is the client’s
redirect page (which can be the same as the original page, or can be different).

• The scope or scopes of the request.

• Any parameters to be included with the request. For example, you may need to pass the claims parameter.

For example:

ObjectScript

 set scope="openid profile scope1 scope2"
 set redirect="https://localhost/csp/openid/SampleClientResult.csp"

 set url=##class(%SYS.OAuth2.Authorization).GetAuthorizationCodeEndpoint("myclient",
       scope,redirect,.properties,.isAuthorized,.sc)
 if $$$ISERR(sc) {
   //error handling here
 }

This method returns the full URL, including query parameters, of the internal destination required for an InterSystems
IRIS OAuth 2.0 client.

To modify the default Proof Key for Code Exchange (PKCE) behavior for this method, see details about the
properties argument in Method Details.

5. Provide an option (such as a button) that opens the URL returned by GetAuthorizationCodeEndpoint(), thus enabling
the user to authorize the request.

At this internal URL, which is never visible to users, InterSystems IRIS obtains an authorization code, exchanges that
for an access token, and then redirects the browser to the client’s redirect page.

3.4.1 Method Details

This subsection provides the details on the methods described in the previous subsection.

IsAuthorized()

Location: This method is in the class %SYS.OAuth2.AccessToken.

ClassMethod IsAuthorized(applicationName As %String, 
                         sessionId As %String, 
                         scope As %String = "", 
                         Output accessToken As %String, 
                         Output IDToken As %String, 
                         Output responseProperties, 
                         Output error As %OAuth2.Error) As %Boolean

Using OAuth 2.0 and OpenID Connect                                                                                                                                 17

Obtaining Tokens



This method returns 1 if there is a locally stored access token for this client and this session, and if that access
token authorizes all the scopes given by the scope argument. (Note that this method looks for the access token in
the IRISSYS database, and that tokens are removed automatically after they have expired.)

Otherwise the method returns 0.

The arguments are as follows:

• applicationName is the name of the client application.

• sessionId specifies the session ID. Specify this only if you want to override the default session
(%session.SessionId).

• scope is a space-delimited list of scopes, for example: "openid profile scope1 scope2"

Note that openid and profile are special scopes defined by OpenID Connect Core.

• accessToken, which is returned as output, is the access token, if any.

• IDToken, which is returned as output, is the ID token, if any. (This applies only if you are using OpenId
Connect, specifically if the request used the scope openid.) Note that an ID token is a JWT.

• responseProperties, which is returned as output, is a multidimensional array that contains any parameters of
the response. This array has the following structure:

Array valueArray node

Value of the given parameter.responseProperties(parametername) where parametername is
the name of a parameter (such as token_type or expires_in)

• error, which is returned as output, is either (when there is no error) an empty string or (in the case of error)
an instance of %OAuth2.Error containing error information.

%OAuth2.Error has three string properties: Error, ErrorDescription, and ErrorUri.

GetAuthorizationCodeEndpoint()

Location: This method is in the class %SYS.OAuth2.Authorization.

ClassMethod GetAuthorizationCodeEndpoint(applicationName As %String, 
                                         scope As %String, 
                                         redirectURL As %String, 
                                         ByRef properties As %String, 
                                         Output isAuthorized As %Boolean, 
                                         Output sc As %Status, 
                                         responseMode As %String
                                         sessionId As %String = "") As %String

This method returns the URL, with all needed query parameters, of the local, internal page that InterSystems IRIS
uses to request the authorization code. (Note that this page is never visible to users.)

The arguments are as follows:

• applicationName is the name of the client application.

• scope is a space-delimited list of scopes for which access is requested, for example: "scope1 scope2
scope3"

The default is determined by the client configuration for the given applicationName.

• redirectURL is the full URL of the client’s redirect page, the page to which the authorization server should
redirect the browser after returning the access token to the client.

18                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using an InterSystems IRIS Web Application as an OAuth 2.0 Client

http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html


• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added
to the request. This array must have the following structure:

Array valueArray node

Value of the given parameter. The value can be a scalar
value, an instance of a dynamic object, or the UTF-8 encoded
serialized form of a dynamic object.
Use a dynamic object if you want the request to include a
parameter whose value is a JSON object; a scenario is the
claims parameter that is defined by OpenID Connect. For
details on dynamic objects, see Using JSON.

To use the request or request_uri parameter, see the
section Passing Request Objects as JWTs.

You can use the code_verifier parameter to modify the
secret PKCE value sent to the authorization server. By
default, the PKCE secret is generated from a random 43
character string using a SHA-256 hash. To generate the
secret from a custom string (for example, if you want to use
128 characters), set the custom value to the code_verifier
parameter.

properties(parametername) where
parametername is the name of a
parameter

• isAuthorized, which is returned as output, equals 1 if there is a locally stored access token for this client and
this session (scope is not checked). This parameter equals 0 otherwise. There is no need to check this output
argument, because we have just called the IsAuthorized() method.

• sc, which is returned as output, contains the status code set by this method.

• responseMode specifies the mode of the response from the authorization server. This can be "query" (the
default), "fragment" or "form_post". The default is almost always appropriate.

• sessionId specifies the session ID. Specify this only if you want to override the default session
(%session.SessionId).

Note: An Active Directory Federation Services (AFDS) server expects the authorization endpoint URL to
include the key-value pair resource=urn:microsoft:userinfo. You can use the properties
argument of GetAuthorizationCodeEndpoint to append this key-value pair to the end of the URL
that is defined in the server description. You should avoid using the Management Portal to modify the
authorization endpoint to include this information. Rather, use the following code to modify the
properties argument before calling the GetAuthorizationCodeEndpoint method:

set properties("resource") = "urn:microsoft:userinfo"
set url = ##class(%SYS.OAuth2.Authorization).GetAuthorizationCodeEndpoint(appName, scopes, 
clientRedirectURI, .properties, .isAuthorized,.sc) 

Also see Variation: Performing the Redirect within OnPreHTTP.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 19

Obtaining Tokens



3.5 Examining the Token(s)
After the client receives an access token (and, optionally, an ID token), the client should perform additional checks to
determine whether the user has the necessary permissions to use the requested resource. To perform this examination, the
client can use the methods described here to obtain additional information.

ValidateIDToken()

Location: This method is in the class %SYS.OAuth2.Validation.

ClassMethod ValidateIDToken(applicationName As %String, 
                            IDToken As %String, 
                            accessToken As %String, 
                            scope As %String, 
                            aud As %String, 
                            Output jsonObject As %RegisteredObject, 
                            Output securityParameters As %String, 
                            Output sc As %Status) As %Boolean

This method validates the signed OpenID Connect ID token (IDToken) and creates an object (jsonObject) to contain
the properties of the ID token. To validate the ID token, the method checks the audience (if aud is specified),
endpoint (must match that specified in server description), and scope (if scope is specified), and signature. The
method also makes sure the ID token has not expired.

This method also validates the access token (accessToken) based on the at_hash property of the ID token.

This method returns 1 if the ID token is valid or returns 0 otherwise. It also returns several arguments as output.

The arguments are as follows:

• applicationName is the name of the client application.

• IDToken is the ID token.

• accessToken is the access token.

• scope is a space-delimited list of scopes, for example: "scope1 scope2 scope3"

• aud specifies the audience that is using the token. If the token has an associated aud property (usually because
the audience was specified when requesting the token), then aud is matched to the token audience. If aud is
not specified, then no audience checking takes place.

• jsonObject, which is returned as output, is a dynamic object that contains the properties of the IDToken. Note
that an ID token is a JWT. For details on dynamic objects, see Using JSON.

• securityParameters, which is returned as output, is a multidimensional array that contains security information
taken from the header, for optional additional use in verifying signatures, decrypting, or both. See the
securityParameters argument for ValidateJWT().

• sc, which is returned as output, contains the status code set by this method.

If this method returns success (1), examine jsonObject, and use the contained claims as needed to determine
whether to allow access to the requested resource. Use securityParameters if needed.

GetUserinfo()

Location: This method is in the class %SYS.OAuth2.AccessToken.

ClassMethod GetUserinfo(applicationName As %String, 
                        accessToken As %String, 
                        IDTokenObject As %RegisteredObject, 
                        Output jsonObject As %RegisteredObject, 
                        Output securityParameters As %String) As %Status

20                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using an InterSystems IRIS Web Application as an OAuth 2.0 Client



This method sends the access token to the Userinfo endpoint, receives a response that contains claims, and creates
an object (jsonObject) that contains the claims returned by that endpoint. If the response returns a JWT, then the
response is decrypted and the signature is checked before jsonObject is created. If the argument IDTokenObject
is specified, the method also verifies that the sub claim from the User info endpoint matches the sub claim in
IDTokenObject.

The request is authorized using the specified access token.

The arguments are as follows:

• applicationName is the name of the client application.

• accessToken is the access token.

• IDTokenObject (optional), is a dynamic object containing an ID token. For details on dynamic objects, see
Using JSON.

• jsonObject, which is returned as output, is a dynamic object that contains the claims returned by Userinfo
endpoint.

• securityParameters, which is returned as output, is a multidimensional array that contains security information
taken from the header, for optional additional use in verifying signatures, decrypting, or both. See the
securityParameters argument for ValidateJWT().

If this method returns success (1), examine jsonObject, and use the contained claims as needed to determine
whether to allow access to the requested resource. Use securityParameters if needed.

3.6 Adding an Access Token to an HTTP Request
After the client application has received and examined an access token, the application can make HTTP requests to the
resource server. Depending on the application, those HTTP requests may need the access token.

To add an access token to an HTTP request (as a bearer token HTTP authorization header), do the following:

1. Create an instance of %Net.HttpRequest and set properties as needed.

For details on this class, see Sending HTTP Requests.

2. Call the AddAccessToken() method of %SYS.OAuth2.AccessToken, which adds the access token to the HTTP request.
This method is as follows:

ClassMethod AddAccessToken(httpRequest As %Net.HttpRequest, 
                           type As %String = "header", 
                           sslConfiguration As %String,  
                           applicationName As %String,  
                           sessionId As %String) As %Status

This method adds the bearer access token associated with the given application and session to the resource server
request as defined by RFC 6750. The arguments are as follows:

• httpRequest is the instance of %Net.HttpRequest that you want to modify.

• type specifies how to include the access token in the HTTP request:

– "header" — Use the bearer token HTTP header.

– "body" — Use form-encoded body. In this case, the request must be a POST with a form-encoded body.

– "query" — Use a query parameter.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 21

Adding an Access Token to an HTTP Request

https://datatracker.ietf.org/doc/rfc6750


• sslConfiguration is the InterSystems IRIS SSL configuration to use for this HTTP request. If you omit this, Inter-
Systems IRIS uses the SSL configuration associated with the client configuration.

• applicationName is the name of the client application.

• sessionId specifies the session ID. Specify this only if you want to override the default session (%session.SessionId).

This method returns a status code, which your code should check.

3. Send the HTTP request (as described in Sending HTTP Requests. To do so, you call a method such as Get() or Put().

4. Check the status returned by the previous step.

5. Optionally examine the HTTP response, which is available as the HttpResponse property of the HTTP request.

See Sending HTTP Requests.

For example:

ObjectScript

 set httpRequest=##class(%Net.HttpRequest).%New()
 // AddAccessToken adds the current access token to the request.
 set sc=##class(%SYS.OAuth2.AccessToken).AddAccessToken(httpRequest,,"sslunittest",applicationName)
 if $$$ISOK(sc) {
    set sc=httpRequest.Get("https://myresourceserver/csp/openid/openid.SampleResource.cls")
 }

3.7 Optionally Defining Delegated Authentication for the
Web Client
You can optionally define delegated authentication for an InterSystems IRIS web client that is used as an OAuth 2.0 client.
InterSystems IRIS provides two ways that you can do this:

• By creating and using a ZAUTHENTICATE routine, starting from a sample that is provided for use with OAuth 2.0.
Your client code must also call %session.Login().

• By creating and using a custom login page. It is also necessary to create and use a ZAUTHENTICATE routine
(starting from the same sample that is provided for use with OAuth 2.0), but your client code does not need to call
%session.Login().

The following subsections give the details. A final subsection discusses the ZAUTHENTICATE sample.

Also see REST Applications and OAuth 2.0 in Securing REST Services.

Important: If using authentication with HealthShare®, you must use the ZAUTHENTICATE routine provided by
InterSystems and cannot write your own.

3.7.1 Creating and Using a ZAUTHENTICATE Routine for an OAuth 2.0 Client

To create and use a ZAUTHENTICATE routine for an InterSystems IRIS web client that is used as an OAuth 2.0 client,
do all of the following:

• In your client code, after you call the IsAuthorized() method of the %SYS.OAuth2.AccessToken class and successfully
obtain an access token, call the Login() method of the %session variable. For the username, specify the OAuth 2.0
application name; for the password, specify the web session ID.

22                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using an InterSystems IRIS Web Application as an OAuth 2.0 Client

https://docs.intersystems.com/hslatest/csp/docbook/DocBook.UI.Page.cls?KEY=HSSecurityUseCases_ch_info_xchange
https://docs.intersystems.com/hslatest/csp/docbook/DocBook.UI.Page.cls?KEY=HSSecurityUseCases_ch_info_xchange


• Create the ZAUTHENTICATE routine. This routine must perform basic setup for a user account, such as specifying
roles and other user properties.

InterSystems provides a sample routine, OAUTH2.ZAUTHENTICATE.mac, that you can copy and modify. This routine
is part of the Samples-Security sample on GitHub (https://github.com/intersystems/Samples-Security). You can
download the entire sample as described in Downloading Samples for Use with InterSystems IRIS, but it may be more
convenient to simply open the routine on GitHub and copy its contents.

The ZAUTHENTICATE routine, if defined, must be in the %SYS namespace (and must be named ZAUTHENTICATE).
See Notes about the OAUTH2.ZAUTHENTICATE.mac Sample. For more general information on delegated authenti-
cation, see Creating Delegated (User-Defined) Authentication Code and Delegated Authentication.

• Enable delegated authentication for the InterSystems IRIS instance on the Authentication Options page.

For information on this step and the next step, see Delegated Authentication.

• Enable delegated authentication for the relevant web application.

3.7.2 Creating and Using a Custom Login Page for an OAuth 2.0 Client

To create and use a custom login page for an InterSystems IRIS web client that is used as an OAuth 2.0 client, do all of the
following:

• Create a subclass of %OAuth2.Login. In your subclass:

– Specify the application name, scope list, and (optionally) response mode. You can specify these items in either or
both of the following ways:

• By specifying parameters of your subclass of %OAuth2.Login.

• By overriding the DefineParameters() class method. In contrast to specifying parameters, this technique
enables you to set these values at runtime.

The parameters are as follows:

• APPLICATION — This must be the application name for the application being logged in to.

• SCOPE — This specifies the scope list to be used for the access token request. This must be a blank-separated
list of strings.

• RESPONSEMODE — This specifies the mode of the response. The allowed values are "query" (the default),
"fragment" or "form_post".

The DefineParameters() class method has the following signature:

ClassMethod DefineParameters(Output application As %String, Output scope As %String, Output 
responseMode As %String)

This method returns the application name, scope list, and response mode as output arguments. The default imple-
mentation of this method returns the values of the APPLICATION, SCOPE, and RESPONSEMODE class param-
eters.

– In your subclass of %OAuth2.Login, also specify the properties list for the GetAccessTokenAuthorizationCode()
call. To do so, override the DefineProperties() class method. This method has the following signature:

ClassMethod DefineProperties(Output properties As %String)

This method returns (as output) the properties array, which is a local array specifying additional properties to be
included in a token request. The properties array has the following form:

Using OAuth 2.0 and OpenID Connect                                                                                                                                 23

Optionally Defining Delegated Authentication for the Web Client

https://github.com/intersystems/Samples-Security


ValueNode

Value of the given parameter.properties(name), where name is the name of a parameter.

To add a request parameter that is a JSON object, create a properties element which is an instance of
%DynamicObject. Or create a string that is the UTF-8 encoded serialized object.

To add the request or request_uri request parameters, use the %SYS.OAuth2.Request class to create the
JWT. Then, as appropriate, set properties("request") equal to the JWT or set properties("request_uri")
equal to the URL of the JWT.

• Configure the relevant web application to use the custom login page.

• Create and use a ZAUTHENTICATE routine as described in the previous section, except for the first bullet item. (In
this scenario, there is no need for the client code to call %session.Login().)

3.7.3 Notes about the OAUTH2.ZAUTHENTICATE.mac Sample

The OAUTH2.ZAUTHENTICATE.mac sample (from https://github.com/intersystems/Samples-Security) supports both sce-
narios described in the previous subsections. In this sample, the GetCredentials() subroutine looks like this:

GetCredentials(ServiceName,Namespace,Username,Password,Credentials) Public {
    If ServiceName="%Service_WebGateway" {
        // Supply user name and password for authentication via a subclass of %OAuth2.Login
        Set Username="OAuth2"
        Set Password=$c(1,2,3)
    }
    Quit $$$OK
}

This subroutine is called if no username and password are provided (which is the case when the custom login page is being
used). For the service %Service_WebGateway, this sample sets the username and password to specific values that are
also used in the ZAUTHENTICATE() subroutine (which is called in later processing).

The ZAUTHENTICATE() subroutine includes the following:

If Username="OAuth2",Password=$c(1,2,3) {
    // Authentication is via a subclass of %OAuth2.Login that sets the query parameter CSPOAUTH2
    // with a hash value that allows GetCurrentApplication to determine the application -- 
    // username/password is supplied by GetCredentials.
    Set sc=##class(OAuth2.Response).GetCurrentApplication(.applicationName)
    Set sessionId=%session.SessionId
} Else {
    // If authentication is based on %session.Login, then application and session id are passed in.
    Set applicationName=Username
    Set sessionId=Password
}

A later step calls the isAuthorized() method like this:

Set 
isAuthorized=##class(%SYS.OAuth2.AccessToken).IsAuthorized(applicationName,sessionId,,.accessToken,,,.error)

If isAuthorized() returns 1, then later code calls the introspection endpoint and uses the information obtained there to
define a user:

Set sc=##class(%SYS.OAuth2.AccessToken).GetIntrospection(applicationName,accessToken,.jsonObject)
...
Set Username="OAuth2"_jsonObject.sub
Set Properties("FullName")="OAuth account "_Username
Set Properties("Username")=Username
Set Properties("Password")=""    // we don't really care about oauth2 account password
// Set the roles and other Properties as appropriate.
Set Properties("Roles")=roles

24                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using an InterSystems IRIS Web Application as an OAuth 2.0 Client

https://github.com/intersystems/Samples-Security


Your code could use different logic to obtain the information needed to define the user. You could instead obtain this
information in the following ways:

• From IDToken if you are using OpenID Connect. In this case, call the ValidateIDToken() of %SYS.OAuth2.Validate.

• From Userinfo endpoint if you are OpenID Connect. In this case, call the GetUserinfo() of %SYS.OAuth2.AccessToken.

In any case, it is necessary to define a user whose username does not match a normal InterSystems IRIS username.

Your routine would also need to set roles and other parts of the Properties array as needed for your application. See Create
Delegated (User-Defined) Authentication Codeand Delegated Authentication.

3.8 Revoking Access Tokens
If the authorization server supports token revocation, you can revoke access tokens via the Management Portal or program-
matically.

3.8.1 Revoking a User’s Access Tokens

To revoke all the access tokens for a given user, do the following:

1. Select System Administration > Security > OAuth 2.0 > Administration.

2. Type the user ID into the field Revoke tokens for user.

3. Select Revoke.

To perform this task, you must be logged in as a user who has USE permission on the %Admin_Secure resource.

3.8.2 Revoking Access Tokens Programmatically

If it is necessary for the client to revoke an access token, use the RevokeToken() method of %SYS.OAuth2.AccessToken.
Note that when the session holding a given token is deleted, the system automatically calls this method (if a revocation
endpoint is specified).

ClassMethod RevokeToken(applicationName As %String, accessToken As %String) As %Status

The arguments are as follows:

• applicationName is the name of the client application.

• accessToken is the access token.

The request is authorized using the basic authorization HTTP header with the client_id and client_secret associated
with applicationName.

For example:

set sc=##class(%SYS.OAuth2.AccessToken).RevokeToken("myclient",accessToken)
if $$$ISERR(sc) {
    //error handling here
}

Note that you cannot use this method if the server does not specify a revocation endpoint or if Client secret is not specified.

%SYS.OAuth2.AccessToken also provides the method RemoveAccessToken(), which removes the access token from the
client but does not remove the token from the server.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 25

Revoking Access Tokens



3.9 Rotating Keys Used for JWTs
In most cases, you can cause the client to generate new public/private key pairs; this applies only to the RSA keys used for
the asymmetric RS256, RS384, and RS512 algorithms. (The exception is if you specify Source other than dynamic regis-

tration as X509 certificate. In this case, it is not possible to generate new keys.)

Generating new public/private key pairs is known as key rotation; this process adds new private RSA keys and associated
public RSA keys to the private and public JWKSs.

When you perform key rotation on the client, the client uses the new private RSA keys to sign JWTs to be sent to the
authorization server. Similarly, the client uses the new public RSA keys to encrypt JWTs to be sent to the authorization
server. To decrypt JWTs received from the authorization server, the client uses the new RSA keys, and if that fails, uses
the old RSA keys; thus the client can decrypt a JWT that was created using its old public RSA keys. Last, if the client
cannot verify a signed JWT received from the authorization server, then if the client has the URL for the authorization
server public JWKS, the client obtains a new public JWKS and tries again to verify the signature. (Note that the client has
a URL for the authorization server public JWKS if the client was registered dynamically or if the configuration specified
the JWKS from URL option; otherwise, the client does not have this URL.)

To rotate keys for a given client configuration:

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Client Configuration.

2. Select the server description with which the client configuration is associated.

The system then displays all client configurations associated with that server description.

3. Select the configuration of the client whose keys you want to rotate.

4. Select the Rotate Keys button.

Note: The symmetric HS256, HS384, and HS512 algorithms always use the client secret as the symmetric key.

3.9.1 API for Key Rotation on the Client

To rotate keys programmatically on the client, call the RotateKeys() method of OAuth2.Client.

To obtain a new authorization server public JWKS, call the UpdateJWKS() method of OAuth2.ServerDefinition.

For details on these methods, see the class reference.

3.10 Getting a New Public JWKS from the Authorization
Server
In most cases, the authorization server generates a public/private pair of JWKSs. There are different ways in which the
client can receive the public JWKS. One way is for the authorization server to provide the public JWKS at a URL; see the
JWKS from URL option in Manually Creating a Server Description (No Discovery).

If the authorization server was defined with JWKS from URL and if the authorization server generates a new pair of JWKSs,
you can cause the client to obtain the new public JWKS from the same URL. To do so:

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Client Configuration.

2. Select the server description with which the client configuration is associated.

26                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using an InterSystems IRIS Web Application as an OAuth 2.0 Client



The system then displays all client configurations associated with that server description.

3. Select the configuration of the client.

4. Select the Update JWKS button.

If the authorization server was not defined with JWKS from URL and if the authorization server generates a new pair of
JWKSs, it is necessary to obtain the public JWKS, send it to the client, and load it from a file.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 27

Getting a New Public JWKS from the Authorization Server





4
OAuth 2.0 Client Variations

The instructions on using an InterSystems IRIS® web application as an OAuth 2.0 client focus on the authorization code
grant type.

In the basic scenario, the client receives an access token from the authorization server and then optionally calls additional
endpoints in the authorization server: the introspection endpoint, the Userinfo endpoint, or both. After that, the client calls
the resource server. Notice that it is also possible for the resource server to independently call these endpoints.

This topic discusses some variations.

4.1 Disabling PKCE
By default, clients that use the authorization code grant type leverage the Proof Key for Code Exchange (PKCE) extension.
In almost all cases, your client should not modify this default behavior because PKCE is an important and widely accepted
security feature. However, in rare cases, you might want to disable PKCE.

To disable PKCE, modify the properties argument of GetAuthorizationCodeEndpoint() before calling the
method. Your code should include the line:

Set properties("code_verifier")=""

For more information about the properties argument of GetAuthorizationCodeEndpoint(), see Method Details.

4.2 Implicit Grant Type
In this variation, the client uses the implicit grant type when requesting tokens.

Configuration requirements: See the instructions in Configuring a Client, but specify Client Type as appropriate for your
use case.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 29



Code requirements: The overall flow is similar to the one for the authorization code grant type, but do not call
GetAuthorizationCodeEndpoint(). Instead call the GetImplicitEndpoint() method of the %SYS.OAuth2.Authorization

class:

ClassMethod GetImplicitEndpoint(applicationName As %String, 
                                scope As %String, 
                                redirectURL As %String, 
                                idtokenOnly As %Boolean = 0, 
                                responseMode As %String, 
                                ByRef properties As %String, 
                                Output isAuthorized As %Boolean, 
                                Output sc As %Status
                                sessionId as %String="") As %String

The arguments are as follows:

• applicationName is the name of the client application.

• scope is a space-delimited list of scopes for which access is requested, for example: "openid profile scope3
scope4"

The default is determined by the client configuration for the given applicationName.

• redirectURL is the URL of the page to which the authorization server should redirect the browser after returning the
access token to the client server.

• idtokenOnly enables you to obtain only an ID token. If this argument is 0, the method obtains both an access token
and (if the request includes the appropriate scope) an ID token. If this argument is 1, the method does not obtain an
access token.

• responseMode specifies the mode of the response from the authorization server. This can be "query" (the default),
"fragment" or "form_post".

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added to the
request. This array must have the following structure:

Array valueArray node

Value of the given parameter. The value can be a scalar value,
an instance of a dynamic object, or the UTF-8 encoded serialized
form of a dynamic object.
Use a dynamic object if you want the request to include a
parameter whose value is a JSON object; a scenario is the
claims parameter that is defined by OpenID Connect. For
details on dynamic objects, see Using JSON.

To use the request or request_uri parameter, see the section
Passing Request Objects as JWTs.

properties(parametername) where
parametername is the name of a
parameter

• isAuthorized, which is returned as output, equals 1 if there is a locally stored access token for this client and this session,
and if that access token authorizes all the scopes given by the scope argument. This parameter equals 0 otherwise.

• sc, which is returned as output, contains the status code set by this method.

• sessionId specifies the session ID. Specify this only if you want to override the default session (%session.SessionId).

Also see Variation: Performing the Redirect within OnPreHTTP.

30                                                                                                                                 Using OAuth 2.0 and OpenID Connect

OAuth 2.0 Client Variations



4.3 Password Credentials Grant Type
In this variation, the client uses the password credentials grant type when requesting tokens. You can use this grant type
when the client has the password belonging to the resource owner. The client application can simply perform an HTTP
POST operation to the token endpoint, without any page redirection; InterSystems IRIS provides a method to do this.

Configuration requirements: See the instructions in Configuring a Client, but note that you do not need to specify Client

Secret. (In general, you should use the client secret only when the client secret is needed and it is possible to protect the
client secret.)

Code requirements: Your application should do the following:

1. Call the IsAuthorized() method of %SYS.OAuth2.AccessToken and check the returned value (and possible error), as
described in Obtaining Tokens.

2. If IsAuthorized() returned 0, call the GetAccessTokenPassword() method of %SYS.OAuth2.Authorization.

ClassMethod GetAccessTokenPassword(applicationName As %String, 
                                   username As %String, 
                                   password As %String, 
                                   scope As %String, 
                                   ByRef properties As %String,
                                   Output error As %OAuth2.Error) As %Status

The arguments are as follows:

• applicationName is the name of the client application.

• username is a username.

• password is the corresponding password.

• scope is a space-delimited list of scopes for which access is requested, for example: "scope1 scope2 scope3"

The default is determined by the client configuration for the given applicationName.

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added to
the request. This array must have the following structure:

Array valueArray node

Value of the given parameter. The value can be a scalar
value, an instance of a dynamic object, or the UTF-8 encoded
serialized form of a dynamic object.
Use a dynamic object if you want the request to include a
parameter whose value is a JSON object; a scenario is the
claims parameter that is defined by OpenID Connect. For
details on dynamic objects, see Using JSON.

properties(parametername) where
parametername is the name of a
parameter

• error, which is returned as output, is either null or is an instance of OAuth2.Error that contains error information.

This method performs an HTTP POST operation to the token endpoint, and then receives and saves the access token
(if any).

3. Check the error argument and proceed accordingly.

4. Continue as described in Examining the Token(s) and Adding an Access Token to an HTTP Request.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 31

Password Credentials Grant Type



4.4 Client Credentials Grant Type
In this variation, the client uses the client credentials grant type when requesting tokens. This grant type enables the client
application to communicate with the resource server independently from any user. There is no user context. The client
application can simply perform an HTTP POST operation to the token endpoint, without any page redirection; InterSystems
IRIS provides a method to do this.

Configuration requirements: See the instructions in Configuring a Client. Make sure to specify the Client Type as Private

and specify Client Secret.

Code requirements: Your application should do the following:

1. Call the IsAuthorized() method of %SYS.OAuth2.AccessToken and check the returned value (and possible error), as
described in Obtaining Tokens.

2. If IsAuthorized() returned 0, call the GetAccessTokenClient() method of %SYS.OAuth2.Authorization.

ClassMethod GetAccessTokenClient(applicationName As %String, 
                                 scope As %String, 
                                 ByRef properties As %String, 
                                 Output error As %OAuth2.Error) As %Status

The arguments are as follows:

• applicationName is the name of the client application.

• scope is a space-delimited list of scopes for which access is requested, for example: "scope1 scope2 scope3"

The default is determined by the client configuration for the given applicationName.

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added to
the request. See the properties argument for GetAccessTokenPassword(), in the previous subsection.

• error, which is returned as output, is either null or is an instance of OAuth2.Error that contains error information.

This method performs an HTTP POST operation to the token endpoint, and then receives and saves the access token
(if any).

3. Check the error argument and proceed accordingly.

4. Continue as described in Examining the Token(s) and Adding an Access Token to an HTTP Request.

4.5 Performing the Redirect within OnPreHTTP
For the authorization code and implicit grant types, the basic instructions use the following steps:

1. Call the IsAuthorized() method of %SYS.OAuth2.AccessToken.

2. Call the GetAuthorizationCodeEndpoint() method (for the authorization code grant type) or call the
GetImplicitEndpoint() method (for the implicit grant type).

3. Provide an option (such as a button) that opens the URL returned by the previous step, thus enabling the user to
authorize the request

An alternative is to modify the OnPreHttp() method of the page class (in your application), so that it calls either the
GetAccessTokenAuthorizationCode() method (for the authorization code grant type) or call the GetAccessTokenImplicit()

32                                                                                                                                 Using OAuth 2.0 and OpenID Connect

OAuth 2.0 Client Variations



method (for the implicit grant type). These methods cause the browser to navigate directly (if needed) to the authentication
form of the authorization server, without first displaying any content of your page.

4.6 Passing Request Objects as JWTs
InterSystems IRIS also supports passing the request object as a JWT, as specified in section 6 of the OpenID Connect Core
specification. You can pass the request object by value or by reference.

In both cases, you use methods of the %SYS.OAuth2.Request class. See the class reference for additional methods not
described in this section.

4.6.1 Passing a Request Object by Value

To use the request parameter to pass the request object as a JWT:

1. Call the MakeRequestJWT() method of the %SYS.OAuth2.Request class:

ClassMethod MakeRequestJWT(applicationName As %String, 
                           ByRef properties As %String, 
                           Output sc As %Status) As %String

Where:

• applicationName is the name of the client application.

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added to
the request. This array must have the following structure:

Array valueArray node

Value of the given parameter. The value can be a scalar
value, an instance of a dynamic object, or the UTF-8 encoded
serialized form of a dynamic object.

properties(parametername) where
parametername is the name of a
parameter

• sc, which is returned as output, contains the status code set by this method.

This method returns a string, which is the JWT. For example:

ObjectScript

 // create jwt 
 set jwt=##class(%SYS.OAuth2.Request).MakeRequestJWT("myapp",.properties,.sc)

2. Modify the properties array that you will use as the argument for GetAuthorizationCodeEndpoint() or
GetImplicitEndpoint(). Set the node properties("request") equal to the JWT that you created in the previous
step. For example:

ObjectScript

 set properties("request")=jwt

3. When you call GetAuthorizationCodeEndpoint() or GetImplicitEndpoint(), include the properties array. For
example:

Using OAuth 2.0 and OpenID Connect                                                                                                                                 33

Passing Request Objects as JWTs

http://openid.net/specs/openid-connect-core-1_0.html#JWTRequests


ObjectScript

 set url=##class(%SYS.OAuth2.Authorization).GetAuthorizationCodeEndpoint("myapp",
       scope,redirect,.properties,.isAuthorized,.sc, responseMode)

4.6.2 Passing a Request Object by Reference

To use the request_uri parameter to pass the request object as a JWT:

1. Call the UpdateRequestObject() method of the %SYS.OAuth2.Request class:

ClassMethod UpdateRequestObject(applicationName As %String, 
                                requestName As %String, 
                                ByRef properties As %String, 
                                Output sc As %Status) As %SYS.OAuth2.Request

Where:

• applicationName is the name of the client application.

• requestName is the name of the request.

• properties, which is passed by reference, is a multidimensional array that contains any parameters to be added to
the request. This array must have the following structure:

Array valueArray node

Value of the given parameter. The value can be a scalar
value, an instance of a dynamic object, or the UTF-8 encoded
serialized form of a dynamic object.

properties(parametername) where
parametername is the name of a
parameter

• sc, which is returned as output, contains the status code set by this method.

This method creates, saves, and returns an instance of %SYS.OAuth2.Request.

ObjectScript

 // create requestobject 
 set 
requestobject=##class(%SYS.OAuth2.Request).UpdateRequestObject("myapp","myrequest",.properties,.sc)

2. Get the URL of the saved request object. To do so, call the GetURL() method of the instance. Note that GetURL()
returns a status code as output in the first argument; your code should check that.

ObjectScript

 Set requesturl=requestobject.GetURL()

3. Modify the properties array that you will use as the argument for GetAuthorizationCodeEndpoint() or
GetImplicitEndpoint(). Set the node properties("request_uri") equal to the URL obtained in the previous step.
For example:

set properties("request_uri")=requesturl

4. When you call GetAuthorizationCodeEndpoint() or GetImplicitEndpoint(), include the properties array. For
example:

 set url=##class(%SYS.OAuth2.Authorization).GetAuthorizationCodeEndpoint("myapp",
       scope,redirect,.properties,.isAuthorized,.sc, responseMode)

34                                                                                                                                 Using OAuth 2.0 and OpenID Connect

OAuth 2.0 Client Variations



4.7 Calling Other Endpoints of the Authorization Server
The methods in %SYS.OAuth2.Authorization enable you to call a specific set of endpoints in the authorization server. If the
authorization server has other endpoints, use the following general process to call them:

1. Create an instance of %Net.HttpRequest, set its properties as needed, and call methods as needed, in order to define
the request.

Set httpRequest=##class(%Net.HttpRequest).%New()
Set httpRequest.ContentType="application/x-www-form-urlencoded"
...

For details on this class, see Sending HTTP Requests.

2. To add authentication to the request, call the AddAuthentication() method of %SYS.OAuth2.AccessToken.

ClassMethod AddAuthentication(applicationName As %String, httpRequest As %Net.HttpRequest) As 
%Status

Where:

• applicationName is the name of the OAuth 2.0 client.

• httpRequest is the instance of %Net.HttpRequest

InterSystems IRIS looks up the given client and uses its Authentication type, SSL configuration, and other information
to add the appropriate authentication to the request.

3. Optionally open the client configuration so that you can use properties contained in it. To do so, switch to the %SYS

namespace and call the Open() method of OAuth2.Client, passing the client name as the argument. Note that the user
that performs this operation will need the %Admin_OAuth2_Client privilege.

ObjectScript

 New $NAMESPACE
 set $NAMESPACE="%SYS"
 Set client=##class(OAuth2.Client).Open(applicationName,.sc)
 If client="" Quit

4. Call the Post(), Get(), or Put() method (as appropriate) of the HTTP request object, providing the authorization server’s
token endpoint as the argument. For example:

ObjectScript

 set sc=httpRequest.Post(client.ServerDefinition.TokenEndpoint)

5. Perform additional processing as needed.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 35

Calling Other Endpoints of the Authorization Server





5
Using an InterSystems IRIS Web
Application as an OAuth 2.0 Resource
Server

This page describes how to use an InterSystems IRIS® web application as a resource server that uses the OAuth 2.0
framework.

This page primarily discusses the scenario in which the resource server uses the introspection endpoint of the authorization
server. See the last section for details on variations.

The process of rotating keys used for signing, encryption, signature verification, and decryption of JWTs is discussed
elsewhere.

5.1 Prerequisites for the InterSystems IRIS Resource
Server
Before starting the tasks described in this page, make sure the following items are available:

• An OAuth 2 authorization server.

• If the resource server uses any endpoint of the authorization server, the resource server may be registered as a client
of the OAuth 2.0 authorization server. The details depend upon the implementation of the authorization server.

In this case, you will also later need to know specific details about this server:

– Location of the authorization server (issuer endpoint)

– Location of the token endpoint

– Location of the Userinfo endpoint (if supported; see OpenID Connect Core)

– Location of the token introspection endpoint (if supported; see RFC 7662)

– Location of the token revocation endpoint (if supported; see RFC 7009)

– Whether the authorization server supports dynamic registration

Using OAuth 2.0 and OpenID Connect                                                                                                                                 37

http://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/rfc7662
https://datatracker.ietf.org/doc/rfc7009


• If the authorization server does not support dynamic registration, you will need the client ID and client secret for the
resource server. The authorization server generates these two pieces of information (on a one-time basis) and you need
to get them securely to the resource server machine.

5.2 Configuration Requirements
See Configuration Requirements, with the following changes when you create the client configuration:

• For Application name, specify the application name of the resource server.

• For Client Type, specify Resource Server.

Note that when you specify Resource Server as the type, the configuration page displays only the options that are
applicable to a resource server.

• For clientID, use the client ID of the resource server.

• For clientSecret, use the client secret of the resource server.

5.3 Code Requirements
An OAuth 2.0 resource server receives a request, examines the access token that it contains, and (depending on the access
token) returns the requested information.

To create an InterSystems IRIS resource server, create a subclass of %CSP.REST, in the namespace used by the resource
server’s web application. In this class, create a URL map and the corresponding methods. In the methods, do the following:

1. Call the method GetAccessTokenFromRequest() of %SYS.OAuth2.AccessToken. This method is as follows:

ClassMethod GetAccessTokenFromRequest(Output sc As %Status) As %String

The method returns the access token, if any, found in the HTTP request received by this page. It uses one of the three
RFC 6750 formats. The parameter sc, returned as output, is a status code that indicates whether an error was detected.
If the request did not use SSL/TLS, that is an error condition. Also, if the request did not include a valid bearer header,
that is an error condition.

2. Check to see whether the status code is an error.

If the status is an error, the method should return a suitable error (and not return the requested information).

3. If the status code is not an error, validate the access token. To do so, use ValidateJWT() or your own custom method.
See Method Details.

4. Optionally call the GetIntrospection() method for additional information. This method calls the introspection endpoint
of the authorization server and obtains claims about the access token. This method is as follows:

ClassMethod GetIntrospection(applicationName As %String, 
                             accessToken As %String, 
                             Output jsonObject As %RegisteredObject) As %Status

The arguments are as follows:

• applicationName is the name of the client application.

• accessToken is the access token previously returned.

38                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using an InterSystems IRIS Web Application as an OAuth 2.0 Resource Server

https://datatracker.ietf.org/doc/rfc6750


• jsonObject, which is returned as output, is a JSON object that contains the claims that the authorization server
makes about this access token.

5. If the preceding steps indicate that the user’s request for information should be granted, perform the requested processing
and return the requested information.

For example:

    // This is a dummy resource server which just gets the access token from the request
    // and uses the introspection endpoint to ensure that the access token is valid.
    // Normally the response would not be security related, but would ocntain some interesting
    // data based on the request parameters.
    set accessToken=##class(%SYS.OAuth2.AccessToken).GetAccessTokenFromRequest(.sc)
    if $$$ISOK(sc) {
        set sc=##class(%SYS.OAuth2.AccessToken).GetIntrospection("demo resource",accessToken,.jsonObject)

        if $$$ISOK(sc) {
            write "OAuth 2.0 access token used to authorize resource server (RFC 6749)<br>"
            write "Access token validated using introspection endpoint (RFC 7662)<br>"
            write "   scope='"_jsonObject.scope_"'<br>"
            write "   user='"_jsonObject.username_"'",!
        } else {
            write "Introspection Error="_..EscapeHTML($system.Status.GetErrorText(sc)),!
        }
    } else {
        write "Error Getting Access Token="_$system.Status.GetErrorText(sc),!
    }

    Quit $$$OK

5.4 Examining the Token(s)
After the resource server receives an access token, it should perform additional checks to determine whether the user has
the necessary permissions to use the requested resource. To perform this examination, the client can use the methods
described here to obtain additional information.

ValidateJWT()

Location: This method is in the class %SYS.OAuth2.Validation.

ClassMethod ValidateJWT(applicationName As %String, 
                        accessToken As %String,
                        scope As %String, 
                        aud As %String, 
                        Output jsonObject As %RegisteredObject, 
                        Output securityParameters As %String, 
                        Output sc As %Status) As %Boolean

Use this method only if the access token is a JWT (rather than an opaque token).

This method decrypts the JWT if necessary, validates the JWT, and creates an object (jsonObject) to contain the
JWT properties. To validate the JWT, the method checks the audience (if aud is specified), issuer endpoint (must
match that specified in server description), and scope (if scope is specified). The method also makes sure the access
token has not expired. Both signed and unsigned JWTs are accepted. If the JWT is signed, the method checks the
signature.

This method returns 1 if the JWT is valid or returns 0 otherwise. It also returns several arguments as output.

The arguments are as follows:

• applicationName is the name of the client application.

• accessToken is the JWT to be validated.

• scope is a space-delimited list of scopes, for example: "scope1 scope2 scope3"

Using OAuth 2.0 and OpenID Connect                                                                                                                                 39

Examining the Token(s)



If scope is specified, the JWT must contain a scope claim that includes this scope.

• aud specifies the audience that is using the token. If the token has an associated aud property (usually because
the audience was specified when requesting the token), then aud is matched to the token audience. If aud is
not specified, then no audience checking takes place.

• jsonObject, which is returned as output, is a dynamic object that contains the claims in the JWT. This dynamic
object contains properties such as aud, exp, iss, and so on. For details on dynamic objects, see Using JSON.

• securityParameters, which is returned as output, is a multidimensional array that contains security information
taken from the header, for optional additional use in verifying signatures, decrypting, or both.

This array contains the following nodes:

ValueNode

The signature or MAC algorithm. Set only if
the JWT is signed

securityParameters("sigalg")

The key management algorithmsecurityParameters("keyalg")

The content encryption algorithmsecurityParameters("encalg")

The keyalg and encalg nodes are either both specified or both null.

• sc, which is returned as output, contains the status code set by this method.

If this method returns success (1), examine jsonObject, and use the contained claims as needed to determine
whether to allow access to the requested resource. Use securityParameters if needed.

Because the Oauth specification allows an application to accept both signed and unsigned JWTs, the ValidateJWT
method does not reject an unsigned JWT. However, in many cases it is strongly recommended that your application
implement stricter security by rejecting an unsigned JWT. You can determine whether the token passed into
ValidateJWT was unsigned by inspecting the securityParameters array that is returned by the method. If
securityParameters("sigalg") was not set, the token was unsigned. For example, the following code determines
whether the token was unsigned and rejects it if it was:

Set tInitialValidationPassed = ##class(%SYS.OAuth2.Validation).ValidateJWT(tClientName, 
tAccessToken, "", "", .tJsonObj,.tSecurityParams, .tValidateStatus)
// the “sigalg” subscript is set only if the JWT was signed
Set tIsTokenSigned = $Data(tSecurityParams("sigalg"))#2 
If 'tIsTokenSigned {
   $$$ThrowStatus($System.Status.Error($$$AccessDenied))
}

GetIntrospection()

Location: This method is in the class %SYS.OAuth2.AccessToken.

ClassMethod GetIntrospection(applicationName As %String, 
                             accessToken As %String, 
                             Output jsonObject As %RegisteredObject) As %Status

This method sends the access token to the introspection endpoint, receives a response that contains claims, and
creates an object (jsonObject) that contains the claims returned by that endpoint.

The request is authorized using the basic authorization HTTP header with the client_id and client_secret
associated with applicationName.

The arguments are as follows:

• applicationName is the name of the client application.

• accessToken is the access token.

40                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using an InterSystems IRIS Web Application as an OAuth 2.0 Resource Server



• jsonObject, which is returned as output, is a dynamic object that contains the claims returned by introspection
endpoint. For details on dynamic objects, see Using JSON.

Note that you cannot use this method if the server does not specify an introspection endpoint or if Client secret is
not specified.

If this method returns success (1), examine jsonObject, and use the contained claims as needed to determine
whether to allow access to the requested resource.

5.5 Variations
This page primarily discusses the scenario in which the InterSystems IRIS resource server uses the introspection endpoint
of the authorization server. This section discusses some possible variations.

5.5.1 Variation: Resource Server Calls Userinfo Endpoint

The resource server can also call the Userinfo endpoint. To do so, the resource server code must use the GetUserinfo()
method as you do for an OAuth client.

5.5.2 Variation: Resource Server Does Not Call Endpoints

If the InterSystems IRIS resource server does not use any endpoints of the authorization server, it is not necessary to create
an OAuth 2.0 configuration on this machine.

Also, the resource server does not need to use GetAccessTokenFromRequest(). Instead, it can get the access token directly
from the HTTP authorization header and use it as needed.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 41

Variations





6
Using InterSystems IRIS as an OAuth 2.0
Authorization Server

This page describes how to use an InterSystems IRIS® instance as an OAuth 2.0 authorization server.

It is likely that the person who creates client definitions will not be the same person who set up the server. Moreover, it
may be necessary to create client definitions on an ongoing basis. For this reason, the task of creating client definitions is
included as a stand-alone section, at the end of the article.

6.1 Configuration Requirements for the InterSystems IRIS
Authorization Server
To use an InterSystems IRIS instance as an OAuth 2.0 authorization server, perform the following configuration tasks:

• For the web server that is serving InterSystems IRIS, configure that web server to use SSL. It is beyond the scope of
this documentation to describe how to configure a web server to use SSL.

• Create an InterSystems IRIS SSL configuration for use by the server.

This should be a client SSL configuration; no certificate is needed. The configuration is used to connect to a web server.
Via this connection, the authorization server accesses the request object specified by the request_uri parameter.
Via this connection, the authorization server also accesses the jwks_uri when updating a client JWKS. If the client
does not send requests using the request_uri parameter and if the authorization server does not update the client
JWKSs via the jwks_uri parameter, then the authorization server does not need an SSL configuration.

For details on creating SSL configurations, see InterSystems TLS Guide.

Each SSL configuration has a unique name. For reference, the documentation refers to this one as sslconfig, but
you can use any unique name.

• Create the server configuration as described in the following subsection.

• Later, create client definitions as needed; see the last section.

6.1.1 Configuring the Authorization Server

In order to perform this task, you must be logged in as a user who has USE permission on the %Admin_Secure resource.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 43



1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Server Configuration.

2. On the General tab, specify the following details:

• Description — Enter an optional description.

• Issuer endpoint — Specify the endpoint URL of the authorization server. To specify this URL, enter values for
the following options:

– Host name — Specify the host name or IP address of the authorization server.

– Port — Specify this if needed to accommodate any changes in the Web Gateway configuration.

– Prefix — Specify this if needed to accommodate any changes in the Web Gateway configuration.

The resulting issuer endpoint has the following form, using the <baseURL> for your instance:

https://<baseURL>/oauth2

If you omit Port, the colon is omitted. Similarly, if you omit Prefix, there is only one slash between hostname:port
and oauth2.

• Audience required — Specify whether the authorization server requires the aud parameter in authorization code
and implicit requests. If this check box is clear, aud is not required.

• Support user session — Specify whether the authorization server supports user sessions. an InterSystems IRIS
authorization server can support user sessions (note that these are not web sessions). To do this, InterSystems IRIS
uses a session maintenance class (Session maintenance class); a default is provided. See Code Customization
Options, later in this chapter. If this check box is clear, sessions are not supported.

• Allow public client refresh — Specify whether to allow the server to process client refresh tokens. When you select
this check box, the server does not require a client secret to process refresh tokens.

• Enforce Proof Key for Code Exchange (PKCE) for public clients — If your authorization server supports the autho-
rization code grant type, selecting this check box will require public clients to provide a PKCE secret value when
requesting the authorization code and exchanging the code for an access token.

• Enforce Proof Key for Code Exchange (PKCE) for confidential clients — If your authorization server supports the
authorization code grant type, selecting this check box will require confidential clients to provide a PKCE secret
value when requesting the authorization code and exchanging the code for an access token.

• Support HTTP-based front channel logout — Specify whether to enable or disable front channel logout. By default,
front channel logout is enabled. If you clear this check box, then when users log out on the server, the server does
also log users out of the clients that are registered with the server.

Note: For an InterSystems IRIS authorization server to support front channel logout, the User Cookie Scope

for the /oauth2 web application must be set to Lax. For details on configuring application settings,
see Create and Edit Applications.

• Support sending sid (session ID) claim with front channel logout URL — Specify whether to enable or disable
sending the session ID claim along with the front channel logout URL. By default, sending the session ID is
enabled. If you clear this check box, then when the server calls the front channel logout URL, it does not append
the query parameters iss (issuer) and sid (session ID) to the URL.

• Return refresh token — Specify the conditions under which a refresh token is returned along with the access token.
Select the option appropriate for your business case.

• Supported grant types — Specify the grant types that this authorization server allows to be used to create an access
token. Select at least one.

• OpenID provider documentation — Specify URLs provided by the OpenID provider as follows:

44                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using InterSystems IRIS as an OAuth 2.0 Authorization Server



– Service Documentation URL — URL of a web page that provides human-readable information that developers
might want or need to know when using the OpenID provider.

– Policy URL — URL of a web page that describes the OpenID provider’s policy on how a relying party can
use the data provided by the provider.

– Terms of Service URL — URL of a web page that describes the OpenID provider’s terms of service.

• SSL/TLS configuration — Select the SSL/TLS configuration you created for use by the authorization server (for
example, sslconfig).

3. On the Scopes tab, specify the following details:

• Table with Scope and Description columns — Specify all scopes supported by this authorization server.

• Allow unsupported scope — Specify whether the authorization server ignores scope values that it does not support.
If this check box is clear, the authorization server returns an error when a request contains an unsupported scope
value; in this case the request is not processed. If this check box is selected, the authorization server ignores the
scope and processes the request.

• Default scope — Specify the default for access token scope if scope is not specified in the access token request or
in the client configuration.

4. On the Intervals tab, specify the following details:

• Access token interval — Specify the number of seconds after which an access token issued by this server will
expire. The default is 3600 seconds.

• Authorization code interval — Specify the number of seconds after which an authorization code issued by this
server will expire. The default is 60 seconds.

• Refresh token interval — Specify the number of seconds after which a refresh token issued by this server will
expire. The default is 24 hours (86400 seconds).

• Session termination interval — Specify the number of seconds after which a user session will be automatically
terminated. The value 0 means the session will not be automatically terminated. The default is 24 hours (86400
seconds).

• Client secret expiration interval — Specify the number of seconds after which a client secret issued by this server
will expire. The default value (0) means that the client secrets do not expire.

5. For the JWT Settings tab, specify the following details:

• Create JWT Settings from X509 credentials — Select this option if, for signing and encryption, you want to use the
private key associated with a certificate; in this case, also see Using Certificates for an OAuth 2.0 Authorization
Server, in Certificates and JWTs (JSON Web Tokens).

Note: InterSystems expects that the option Create JWT Settings from X509 credentials will rarely be used, and
that instead customers use the default behavior described next.

If you leave this option clear, the system generates a pair of JWKSs (JSON web key sets). One JWKS is private
and contains all the needed private keys (per algorithm) as well as the client secret for use as a symmetric key;
this JWKS is never shared. The other JWKS contains the corresponding public keys and is publicly available.
InterSystems IRIS also copies the public JWKS to the client, so that the client can encrypt and verify signatures
of JWTs from the authorization server.

• Signing algorithm — Select the algorithm to use when signing JWTs. Or leave this blank if JWTs are not to be
signed.

• Key management algorithm — Select the algorithm to use for key management when encrypting JWTs.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 45

Configuration Requirements for the InterSystems IRIS Authorization Server



Do this only if you select a content encryption algorithm.

• Content encryption algorithm — Select the algorithm to use when encrypting JWTs. Or leave this blank if JWTs
are not to be encrypted. If you select an algorithm, you must also select an algorithm for key management.

6. On the Customization tab, specify details as described in Code Customization Options.

7. Select Save.

When you save this configuration, the system creates a web application (/oauth2) for use by the authorization server. Do
not modify this web application.

6.2 Code Customization Options and Overall Flow
This section describes the items in the Customization Options section of the configuration options of the authorization
server. Subsections describe the overall flow and the default classes.

• Authenticate class — Use %OAuth2.Server.Authenticate (the default) or a custom subclass of that class.

If you define a custom subclass, implement some or all of the following methods, depending on your needs:

– BeforeAuthenticate() — Optionally implement this method to perform custom processing before authentication.

– DisplayLogin() or Display2FA() — Optionally implement this method to display a login page to identify the user
either through basic authentication or two-factor authentication, respectively. (For a less common alternative, see
Implementing DirectLogin().)

– DisplayPermissions() — Optionally implement this method to display the requested permissions to the user.

– AfterAuthenticate() — Optionally implement this method to perform custom processing after authentication.

• Validate user class — Use %OAuth2.Server.Validate (the default) or a custom class that defines the following methods:

– ValidateUser() (used by all grant types other than client credentials)

– ValidateClient() (used by the client credentials grant type)

– Validate2FA() (used for two-factor authentication to validate the security code)

InterSystems highly recommends that you define and use a custom class. The %OAuth2.Server.Validate class is provided
for demonstration purposes and is very unlikely to be suitable for production use.

• Session maintenance class — The default session maintenance class, OAuth2.Server.Session, maintains user sessions
via an HTTP-only cookie. This default class cannot be extended to implement custom logic. Rather, you can extend
%OAuth2.Server.CookieSession or %OAuth2.Server.AbstractSession, depending on your requirements.
The majority of the logic of the default class comes from %OAuth2.Server.CookieSession, so if you want to
implement a custom session maintenance class that takes advantage of existing code, including the use of an opaque
browser cookie, extend %OAuth2.Server.CookieSession for your custom class. Alternatively, you have the option of
implementing an entirely custom session maintenance class that does not rely on default logic from InterSystems. To
take this customization approach, extend %OAuth2.Server.AbstractSession and implement the abstract methods.

• Generate token class — Use %OAuth2.Server.Generate (the default), %OAuth2.Server.JWT, or a custom class that
defines the method GenerateAccessToken(). If you create a custom class, you might find it useful to subclass one of
the classes listed here, because they provide methods you may want to use.

• Customization namespace — Specify the namespace in which the customization code should run.

• Customization roles — Specify the role or roles to use when running the customization code.

46                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using InterSystems IRIS as an OAuth 2.0 Authorization Server



If you use any custom subclasses, see Implementing the Custom Methods.

6.2.1 How an InterSystems IRIS Authorization Server Processes Requests

This section describes what an InterSystems IRIS authorization server does when it receives an authorization code request
or an implicit request for a token.

1. Calls the BeforeAuthenticate() method of the class specified via the Authenticate class option. The purpose of this
method is to make any modifications to the request before user identification starts.

In the default class, this method is a stub.

2. Next, if the grant type is authorization code or implicit grant, InterSystems IRIS does the following:

a. Calls the DisplayLogin() of the class specified via the Authenticate class option. (But also see Implementing
DirectLogin().)

In the default class, DisplayLogin() displays a simple HTML login page.

b. If the username is not null, calls the ValidateUser() method of the class specified via the Validate user class option.
The purpose of this method is to validate the user and (by modifying the properties array) to prepare any claims
to be returned by the token, Userinfo, and token introspection endpoints.

In the default class, this method is only a sample and is very unlikely to be suitable for production use.

c. If the user is validated, calls the DisplayPermissions() method of the class specified via the Authenticate class

option. The purpose of this method is to display a page to the user that lists the requested permissions.

In the default class, this method displays a simple HTML page with the permissions.

Or if the grant type is password credentials, InterSystems IRIS just calls the ValidateUser() method of the class
specified via the Validate user class option.

Or if the grant type is client credentials, InterSystems IRIS just calls the ValidateClient() method of the class specified
via the Validate user class option.

3. If the user accepts the permissions, calls the AfterAuthenticate() method of the class specified via the Authenticate

class option. The purpose of this method is to perform any custom processing before generating an access token.

In the default class, this method is a stub.

4. Calls the GenerateAccessToken() method of the class specified via the Generate token class option. The purpose of
this method is to generate an access token to return to the user.

In the default class (%OAuth2.Server.Generate), this method generates an access token that is an opaque string. Inter-
Systems IRIS also provides an alternative class (%OAuth2.Server.JWT), in which GenerateAccessToken() generates
an access token that is a JWT.

6.2.2 Default Classes

This section describes the default classes in an InterSystems IRIS authorization server, as well as the class
%OAuth2.Server.JWT, which is provided as another option for the Generate token class.

6.2.2.1 %OAuth2.Server.Authenticate (Default for Authenticate Class)

The class %OAuth2.Server.Authenticate defines the following methods. The first four are listed in the order in which they
are called:

• BeforeAuthenticate() is a stub. It simply quits with an OK status.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 47

Code Customization Options and Overall Flow



• DisplayLogin() writes the HTML that creates a simple login page with Login and Cancel buttons.

• DisplayPermissions() writes the HTML that creates a simple page that displays the requested permissions. This page
includes the buttons Accept and Cancel.

• AfterAuthenticate() is a stub. It simply quits with an OK status.

• DelegatedAuthentication() is a stub. It simply quits with the OK status. Users should implement this method in a
custom class to redirect the flow of the authorization process to another authentication system.

• DirectLogin() is a stub. It simply quits with the OK status. Users should implement this method in a custom class to
perform authentication by some means other than displaying a user login form. See Implementing DirectLogin() for
more information.

• Display2FA() writes the HTML to display an HTML form that allows a user to perform two-factor authentication.

•

6.2.2.2 %OAuth2.Server.Validate (Default for Validate User Class)

The %OAuth2.Server.Validate class is the default class for the Validate user class option.

Note: This class is provided for sample purposes and is very unlikely to be suitable for production use. That is, InterSys-
tems expects that customers will replace or subclass this class for their own needs.

This class defines the following sample methods:

• ValidateUser() does the following:

1. Looks for the given user in the IRISSYS database.

2. Verifies the password for the user.

3. Gets a multidimensional array that contains information about the user.

4. Uses this array to add additional claims to the properties object.

• SupportedClaims() returns a $LIST of claims that are supported by this authorization server. By default, this method
specifically returns the list of claims defined by OpenID Connect Core.

• ValidateClient() (used by the client credentials grant type) accepts all clients and adds no properties.

• ValidateDelegatedAuthentication() returns true if and only if the delegated authentication event initiated by the
DelegatedAuthentication method in the %OAuth2.Server.Authenticate() class is valid.

• Validate2FA() returns true if and only if the security code entered by the user is validated to complete authentication.

You can override all these methods in your subclass.

6.2.2.3 OAuth2.Server.Session (Default for Session Class)

The %OAuth2.Server.Session class is the default class for the Session maintenance class option. This class maintains sessions
via an HTTP-only cookie.

In this class, the GetUser() method tries to access the current session. If there is a session, the method obtains the username
from that session and returns that. If there is no session, the method returns the username as an empty string and also returns
an error status as output.

For additional information on this class, see the class reference.

48                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using InterSystems IRIS as an OAuth 2.0 Authorization Server

http://openid.net/specs/openid-connect-core-1_0.html


6.2.2.4 %OAuth2.Server.Generate (Default for Generate Token Class)

The %OAuth2.Server.Generate class is the default class for the Generate token class option. This class defines the following
methods:

• GenerateAccessToken() generates a random string as the opaque access token.

• IsJWT() returns 0.

6.2.2.5 %OAuth2.Server.JWT (Another Option for Generate Access Token Class)

The %OAuth2.Server.JWT class is another class you can use (or subclass) for the Generate token class option. This class
defines the following methods:

• GenerateAccessToken() returns a JWT. Before returning the JWT, InterSystems IRIS signs it, encrypts it, or both,
according to the JSON Web Token (JWT) Settings in the authorization server configuration.

• IsJWT() returns 1.

• CreateJWT() creates a JWT based on a JSON object containing the claims; signs and encrypts the JWT as specified
in the authorization server configuration. This method follows the specifications for OAuth 2.0 and OpenID Connect
usage and should not be overridden in a subclass.

• AddClaims() — Adds the requested claims to the JWT. This method is as follows:

ClassMethod AddClaims(claims As %ArrayOfObjects, 
                      properties As %OAuth2.Server.Properties, 
                      json As %DynamicObject)

Where:

– claims is an array of %OAuth2.Server.Claim instances.

– properties is an instance of %OAuth2.Server.Properties that contains properties and claims that are used by the
authorization server.

– json is a dynamic object that represents the JWT. The method modifies this object.

6.3 Implementing the Custom Methods for the
InterSystems IRIS Authorization Server
To customize the behavior of the authorization server, define classes as described in Code Customization Options. Then
use this section for information on defining methods in those classes, depending on the processing steps that you want to
customize.

1. Optional custom processing before authentication

2. Identifying the user

3. Validating the user and specifying claims

4. Optionally displaying permissions to the user

5. Optional custom processing after authentication

6. Generating the access token

Using OAuth 2.0 and OpenID Connect                                                                                                                                 49

Implementing the Custom Methods for the InterSystems IRIS Authorization Server



After these subsections, a final subsection describes how to validate the client, in the case when this server must support
the client credentials grant type. The client credentials grant type does not use steps 2 – 4 of the preceding list.

6.3.1 Optional Custom Processing Before Authentication

The information here applies to all grant types.

To perform custom processing before authenticating the user, implement the BeforeAuthenticate() method of the
Authenticate class. This method has the following signature:

ClassMethod BeforeAuthenticate(scope As %ArrayOfDataTypes, 
                               properties As %OAuth2.Server.Properties) As %Status

Where:

• scope is an instance of %ArrayOfDataTypes that contains the scopes contained in the original client request. The array
keys are the scope values and the array values are the corresponding display forms of those values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims that are used by the autho-
rization server. See Details for the %OAuth2.Server.Properties Object.

In your method, optionally modify either or both of these arguments, both of which are later passed to the methods used
to identify the user. The method must return a %Status.

Normally, there is no need to implement this method. However, one use case is to implement the launch and

launch/patient scopes used by FHIR®, where the scope needs to be adjusted to include a specific patient.

6.3.2 Identifying the User

The information here applies only to the authorization code and implicit grant types.

To identify the user, implement the DisplayLogin() method of the Authenticate class. The DisplayLogin() method has the
following signature:

ClassMethod DisplayLogin(authorizationCode As %String, 
                         scope As %ArrayOfDataTypes, 
                         properties As %OAuth2.Server.Properties, 
                         loginCount As %Integer = 1) As %Status

Where:

• authorizationCode

• scope is an instance of %ArrayOfDataTypes that contains the scopes contained in the original client request, possibly
modified by the BeforeAuthenticate() method. The array keys are the scope values and the array values are the corre-
sponding display forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

• loginCount is the integer count of which login attempt is taking place.

This method is responsible for writing the HTML to display the user login form. The login form must contain a Username
field, a Password field, and an AuthorizationCode field (which should be hidden). The default DisplayLogin() method
uses of the InsertHiddenField() method of %CSP.Page to add the AuthorizationCode hidden field.

Typically, the form also has buttons with the values Login and Cancel. These buttons should submit the form. If the user
submits the form with the Login button, the method will accept the username and password. If the user submits the form
with the Cancel button, the authorization process will terminate with an error return of access_denied.

50                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using InterSystems IRIS as an OAuth 2.0 Authorization Server



In your implementation, you might choose to display permissions on the same page. In that case, your method would display
the scopes and would use a button named Accept to submit the page.

The method must return a %Status.

6.3.2.1 Updating properties.CustomProperties

If the form contains elements with names that start p_, such elements receive special handling. After the DisplayLogin()
method returns, InterSystems IRIS adds values of those elements to the properties.CustomProperties array, first removing
the p_ prefix from the names. For example, if the form contains an element named p_addme, then InterSystems IRIS adds
addme (and the value of the p_addme element) to the properties.CustomProperties array.

Your method can also directly set other properties of properties as needed.

6.3.3 Validating the User and Specifying Claims

The information here applies to all grant types other than the client credentials grant type. (For that grant type, see Validating
the Client.)

To validate the user and specify any claims to be returned by the token, Userinfo, and token introspection endpoints, define
the ValidateUser() method of the Validate user class. This method has the following signature:

ClassMethod ValidateUser(username As %String, 
                         password As %String, 
                         scope As %ArrayOfDataTypes, 
                         properties As %OAuth2.Server.Properties, 
                         Output sc As %Status) As %Boolean

Where:

• username is the username provided by the user.

• password is the password provided by the user. Note that if the user has already logged in, InterSystems IRIS calls
this method with password as an empty string. This means that your method should detect when password is an empty
string and not attempt to check the password in that case.

• scope is an instance of %ArrayOfDataTypes that contains the scopes contained in the original client request, possibly
modified by the BeforeAuthenticate() method. The array keys are the scope values and the array values are the corre-
sponding display forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

• sc is the status code set by this method. Use this to communicate details of any errors.

Your method should do the following:

• Make sure that the password applies to the given username.

• Use the scope and properties arguments as needed for your business needs.

• Modify the properties object to specify any claim values, as needed, or to add new claims. For example:

// Setup claims for profile and email OpenID Connect scopes.
Do properties.SetClaimValue("sub",username)
Do properties.SetClaimValue("preferred_username",username)
Do properties.SetClaimValue("email",email)
Do properties.SetClaimValue("email_verified",0,"boolean")
Do properties.SetClaimValue("name",fullname)

• In the case of any errors, set the sc variable.

• Return 1 if the user is considered valid; return 0 in all other cases.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 51

Implementing the Custom Methods for the InterSystems IRIS Authorization Server



Note that after the return from ValidateUser(), the authorization server automatically sets the following values in the
properties object, if these values are missing:

• In properties.ClaimValues:

– iss — URL of authorization server

– sub — client_id

– exp — expiration time in seconds since December 31, 1840

• In properties.CustomProperties:

– client_id — client_id of the requesting client

6.3.4 Displaying Permissions

The information here applies only to the authorization code and implicit grant types.

To display permissions after validating the user, implement the DisplayPermissions() method of the Authenticate class.
This method has the following signature:

ClassMethod DisplayPermissions(authorizationCode As %String, 
                               scopeArray As %ArrayOfDataTypes, 
                               currentScopeArray As %ArrayOfDataTypes, 
                               properties As %OAuth2.Server.Properties) As %Status

Where:

• authorizationCode is the authorization code.

• scopeArray represents the newly requested scopes, for which the user has not yet granted permission. This argument
is an instance of %ArrayOfDataTypes.

The array keys are the scope values and the array values are the corresponding display forms of the scope values.

• currentScopeArray represents the scopes for which the user has previously granted permission. This argument is an
instance of %ArrayOfDataTypes.

The array keys are the scope values and the array values are the corresponding display forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

This form must have buttons with the values Accept and Cancel. These buttons should submit the form. If the user
submits the form with the Accept button, the method should continue with authorization. If the user submits the form
with the Cancel button, the authorization process should terminate.

6.3.5 Optional Custom Processing After Authentication

The information here applies to all grant types.

To perform custom processing after authentication, implement the AfterAuthenticate() method of the Authenticate class.
This method has the following signature:

ClassMethod AfterAuthenticate(scope As %ArrayOfDataTypes, properties As %OAuth2.Server.Properties) As
 %Status

Where:

52                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using InterSystems IRIS as an OAuth 2.0 Authorization Server



• scope is an instance of %ArrayOfDataTypes that contains the scopes as set by the authorization request and all processing
before this method was called. The array keys are the scope values and the array values are the corresponding display
forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims as set by the authorization
request and all processing before this method was called. See Details for the %OAuth2.Server.Properties Object.

In your method, optionally modify either or both of these arguments. In particular, you may want to may add properties to
the authentication HTTP response; to do so add properties to properties.ResponseProperties.

Normally, there is no need to implement this method. However, one use case is to implement the launch and launch/patient

scopes used by FHIR®, where it is necessary to adjust the scope to include a specific patient.

6.3.6 Generating the Access Token

The information here applies to all grant types.

To generate access tokens, implement the GenerateAccessToken() method of the Generate token class. This method has
the following signature:

ClassMethod GenerateAccessToken(properties As %OAuth2.Server.Properties, Output sc As %Status) As 
%String

Where:

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

• sc, which is returned as output, is the status code set by this method. Set this variable to communicate details of any
errors.

The method should return the access token. The access token may be based on the properties argument. In your method,
you might also want to add claims to the JSON response object. To do so, set the ResponseProperties array property of the
properties object.

6.3.7 Validating the Client

The information here applies only to the client credentials type.

To validate the client credentials and specify any claims to be returned by the token, Userinfo, and token introspection
endpoints, define the ValidateClient() method of the Validate user class. This method has the following signature:

ClassMethod ValidateClient(clientId As %String, 
                           clientSecret As %String, 
                           scope As %ArrayOfDataTypes, 
                           Output properties As %OAuth2.Server.Properties, 
                           Output sc As %Status) As %Boolean

Where:

• clientId is the client ID.

• clientSecret is the client secret.

• scope is an instance of %ArrayOfDataTypes that contains the scopes contained in the original client request, possibly
modified by the BeforeAuthenticate() method. The array keys are the scope values and the array values are the corre-
sponding display forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 53

Implementing the Custom Methods for the InterSystems IRIS Authorization Server



• sc is the status code set by this method. Use this to communicate details of any errors.

Your method should do the following:

• Make sure that the client secret applies to the given client ID.

• Use the scope and properties arguments as needed for your business needs.

• Modify the properties object to specify any claim values, as needed. For example:

// Setup claims for profile and email OpenID Connect scopes.
Do properties.SetClaimValue("sub",username)
Do properties.SetClaimValue("preferred_username",username)
Do properties.SetClaimValue("email",email)
Do properties.SetClaimValue("email_verified",0,"boolean")
Do properties.SetClaimValue("name",fullname)

• In the case of any errors, set the sc variable.

• Return 1 if the user is considered valid; return 0 in all other cases.

Note that after the return from ValidateClient(), the authorization server automatically sets the following values in the
properties object, if these values are missing:

• In properties.ClaimValues:

– iss — URL of authorization server

– sub — client_id

– exp — expiration time in seconds since December 31, 1840

• In properties.CustomProperties:

– client_id — client_id of the requesting client

6.4 Details for the %OAuth2.Server.Properties Object
The methods described in the previous section use the argument properties, which is an instance of %OAuth2.Server.Properties.
The %OAuth2.Server.Properties class is intended to hold information that needs to be passed from method to method within
the authorization server code. This section describes the basic properties in this class, as well as the properties related to
claims. The class also has methods for working with claims; the last subsection describes them.

6.4.1 Basic Properties

The %OAuth2.Server.Properties class has the following basic properties, used to convey information for any internal pro-
cessing of your custom code:

RequestProperties

Property RequestProperties as array of %String (MAXLEN=16384);

Contains the query parameters from the authorization request.

Because this property is an array, use the usual array interface to work with it. (The same comment applies to the
other properties of this class.) For example, to get the value of a query parameter, use
RequestProperties.GetAt(parmname), where parmname is the name of the query parameter.

54                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using InterSystems IRIS as an OAuth 2.0 Authorization Server



ResponseProperties

Property ResponseProperties as array of %String (MAXLEN=1024);

Contains any properties to be added to the JSON response object to a token request. Set this property as needed.

CustomProperties

Property CustomProperties as array of %String (MAXLEN=1024);

Contains any custom properties to be used to communicate between various pieces of customization code. See
Updating properties.CustomProperties.

ServerProperties

Property ServerProperties as array of %String (MAXLEN=1024);

Contains any properties that the authorization server chooses to share with the customization code. The logo_uri,
client_uri, policy_uri and tos_uri client properties are shared in this way for use by the Authentication
Class.

6.4.2 Properties Related to Claims

The %OAuth2.Server.Properties class contains the IntrospectionClaims, IDTokenClaims, UserinfoClaims, and JWTClaims

properties, which carry information about required claims, specifically custom claims.

The class also contains the ClaimValues property, which carries the actual claim values. Your customization code should
set the values of the claims (typically in the ValidateUser class).

The following list describes these properties:

IntrospectionClaims

Property IntrospectionClaims as array of %OAuth2.Server.Claim;

Specifies the claims to be returned by the Introspection endpoint (beyond the base required claims). The authorization
server will return the scope, client_id, username, token_type, exp, iat, nbf, sub, aud, iss, and jti
claims even if they are not in this property.

In most cases, the value of this property can be an empty string; this property is included to support the claims
request parameter (see OpenID Connect Core section 5.5 for details).

Formally, this property is an array in which the array key is the claim name (which matches the name in the
ClaimValues property) and the array value is an instance of %OAuth2.Server.Claim. The %OAuth2.Server.Claim

class has the following properties:

• Essential

property Essential as %Boolean [ InitialExpression = 0 ];

Specifies whether the claim is essential or voluntary. The value 1 means essential and the value 0 means
voluntary.

• Values

property Values as list of %String(MAXLEN=2048);

Specifies the list of permissible values for this claim.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 55

Details for the %OAuth2.Server.Properties Object

http://openid.net/specs/openid-connect-core-1_0.html


The value of the claims will usually be set by the ValidateUser class.

IDTokenClaims

Property IDTokenClaims as array of %OAuth2.Server.Claim;

Specifies the claims that the authorization server requires in the IDToken (beyond the base set of required claims).
The authorization server requires the iss, sub, exp, aud, and azp claims even if these claims are not in this
property.

This property is an array of objects; for details, see the entry for the IntrospectionClaims property.

In most cases, the value of this property can be an empty string; this property is included to support the claims
request parameter (see OpenID Connect Core section 5.5 for details).

UserinfoClaims

Property UserinfoClaims as array of %OAuth2.Server.Claim;

Specifies the claims to be returned by the Userinfo endpoint (beyond the base required claims). The authorization
server will return the sub claim even if that claim is not in this property.

In most cases, the value of this property can be an empty string; this property is provided to support section 5.5
of OpenID Connect Core.

This property is an array of objects; for details, see the entry for the IntrospectionClaims property.

The claims are defined based on the scope and request claims parameter. The value to be returned for the claim
will have the same key in the ClaimValues property. The value of the claims will usually be set by the ValidateUser
class.

JWTClaims

Property JWTClaims as array of %OAuth2.Server.Claim;

Specifies the claims that are needed for the JWT access token that is returned by the default JWT-based access
token class (%OAuth2.Server.JWT) beyond the base set of required claims. The authorization server will return
the iss, sub, exp, aud, and jti claims even if they are not in this property.

This property is an array of objects; for details, see the entry for the IntrospectionClaims property.

The claims are defined by the customization code. The value of the claims will usually be set by the ValidateUser
class.

ClaimValues

property ClaimValues as array of %String(MAXLEN=1024);

Specifies the actual claim values and their types. To work with this property, use the methods in the next section.

If you need to work with this property directly, note that this property is an array in which:

• The array key is the claim name.

• The array value has the form $LISTBUILD(type,value), where type holds the type of the value, and value
holds the actual value. The type can be "string", "boolean", "number", or "object". If type is
"object", then value is a JSON object serialized as a string.

Note that value can be a $LIST structure. In this case, when the claim value is serialized, it is serialized as a
JSON array, in which each array item has the given type.

56                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using InterSystems IRIS as an OAuth 2.0 Authorization Server

http://openid.net/specs/openid-connect-core-1_0.html


6.4.3 Methods for Working with Claims

The %OAuth2.Server.Properties class also provides instance methods that you can use to work with that simplify working
with the ClaimValues property.

SetClaimValue()

Method SetClaimValue(name As %String, value As %String, type As %String = "string")

Updates the ClaimValues property by setting the value of the claim named by the name argument. The type argument
indicates the type of the claim: "string" (the default) , "boolean", "number", or "object". If type is
"object", then value must be a JSON object serialized as a string.

Note that value can be a $LIST structure. In this case, when the claim value is serialized, it is serialized as a JSON
array, in which each array item has the given type.

RemoveClaimValue()

Method RemoveClaimValue(name As %String)

Updates the ClaimValues property by removing the claim named by the name argument.

GetClaimValue()

Method GetClaimValue(name As %String, output type) As %String

Examines the ClaimValues property and returns the value of the claim named by the name argument. The type
argument, which is returned as output, indicates the type of the claim; see SetClaimValue().

NextClaimValue()

Method NextClaimValue(name As %String) As %String

Returns the name of the next claim (in the ClaimValues property) after the given claim.

6.5 Locations of the Authorization Server Endpoints
When you use an InterSystems IRIS instance as an OAuth 2.0 authorization server, the URLs for the authorization endpoints
are as follows:

URLEndpoint

https://serveraddress/oauth2Issuer endpoint

https://serveraddress/oauth2/authorizeAuthorization endpoint

https://serveraddress/oauth2/tokenToken endpoint

https://serveraddress/oauth2/userinfoUserinfo endpoint

https://serveraddress/oauth2/introspectionToken introspection endpoint

https://serveraddress/oauth2/revocationToken revocation endpoint

In all cases, serveraddress is the IP address or host name of the server on which the InterSystems IRIS instance is running.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 57

Locations of the Authorization Server Endpoints



6.6 Creating Client Definitions on an InterSystems IRIS
OAuth 2.0 Authorization Server
This section describes how to create a client definition on an InterSystems IRIS OAuth 2.0 authorization server, if you have
not registered the client dynamically. First, set up the InterSystems IRIS OAuth 2.0 authorization server as described earlier
in this page. Then use the Management Portal to do the following:

1. Select System Administration > Security > OAuth 2.0 > Server Configuration.

2. Click the Client Configurations button to view the client descriptions. This table is initially empty.

3. On the General tab, specify the following details:

• Name — Specify the unique name of this client.

• Description — Specify an optional description.

• Client type — Specify the type of this client. The choices are public (a public client, per RFC 6749), confidential

(a confidential client, per RFC 6749), and resource (a resource server which is not also a client).

• Redirect URLs — One or more expected redirect URLs for this client.

• Supported grant types — Specify the grant types that this client can use to create an access token. Select at least
one.

• Supported response types — Select the OAuth 2.0 response_type values that the Client will restrict itself to using.

• Authentication type — Select the type of authentication (as specified in RFC 6749 or OpenID Connect Core section
9) to be used for HTTP requests to the authorization server. Select one of the following:

– none

– basic

– form encoded body

– client secret JWT

– private key JWT

• Authentication signing algorithm — Select the algorithm that must be used for signing the JWTs used to authenticate
this client at the token endpoint (if the authentication type is client secret JWT or private key JWT). If you do not
select an option, any algorithm supported by the OpenID provider and the relying party may be used.

4. If needed, select the Client Credentials tab and view the following details:

• Client ID — Client ID as specified in RFC 6749. InterSystems IRIS generates this string.

• Client secret — Client secret as specified in RFC 6749. InterSystems IRIS generates this string.

5. On the Client Information tab, specify the following details:

• Launch URL — Specify the URL used to launch this client. In some circumstances, this value can be used to
identify the client and can be used as the value of the aud claim.

• Authorization display section:

– Client name — Specify the name of the client to be presented to the end user.

58                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using InterSystems IRIS as an OAuth 2.0 Authorization Server

https://datatracker.ietf.org/doc/rfc6749
https://datatracker.ietf.org/doc/rfc6749
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html


– Logo URL — Specify a URL that references a logo for the client application. If you specify this option, the
authorization server displays this image to the end user during approval. The value of this field must point to
a valid image file.

– Client home page — Specify the URL of the home page of the client. The value of this field must point to a
valid web page. If you specify this option, the authorization server displays this URL to the end user in a
followable fashion.

– Policy URL — Specify the URL that the Relying Party Client provides to the end user to read about the how
the profile data will be used. The value of this field must point to a valid web page.

– Terms of service URL — Specify the URL that the Relying Party Client provides to the end user to read about
the Relying Party's terms of service. The value of this field must point to a valid web page.

• Contact emails — Comma-separated list of email addresses suitable for use in contacting those responsible for
the client application.

• Default max age — Specify the default maximum authentication age, in seconds. If you specify this option, the
end user must be actively re-authenticated when the maximum authentication age is reached. The max_age request
parameter overrides this default value. If you omit this option, there is no default maximum authentication age.

• Default scope — Specify the default scope, as a blank separated list, for access token requests.

6. On the JWT Settings tab, specify the following details:

• JSON Web Token (JWT) Settings — Specifies the source of the public keys that the client uses to verify signatures
of JWTs from the authorization server and to encrypt JWTs sent to the authorization server.

By default, the dynamic registration process generates a pair of JWKSs (JSON web key sets). One JWKS is private
and contains all the needed private keys (per algorithm) as well as the client secret for use as a symmetric key;
this JWKS is never shared. The other JWKS contains the corresponding public keys and is publicly available. The
dynamic registration process also copies the public JWKS to the client.

The other options are as follows:

– JWKS from URL — Specify a URL that points to a public JWKS and then load the JWKS into InterSystems
IRIS.

– JWKS from file — Select a file that contains a public JWKS and then load that file into InterSystems IRIS.

– X509 certificate — For details, see Using Certificates for an OAuth 2.0 Authorization Server, in Certificates
and JWTs (JSON Web Tokens).

To access any of these options, first select Source other than dynamic registration.

7. Select Save.

6.7 Rotating Keys Used for JWTs
In most cases, you can cause the authorization server to generate new public/private key pairs; this applies only to the RSA
keys used for the asymmetric RS256, RS384, and RS512 algorithms. (The exception is if you specify Source other than

dynamic registration as X509 certificate. In this case, it is not possible to generate new keys.)

Generating new public/private key pairs is known as key rotation; this process adds new private RSA keys and associated
public RSA keys to the private and public JWKSs.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 59

Rotating Keys Used for JWTs



When you perform key rotation on the authorization server, the authorization server uses the new private RSA keys to sign
JWTs to be sent to the clients. Similarly, the authorization server uses the new public RSA keys to encrypt JWTs to be sent
to the clients. To decrypt JWTs received from the clients, the authorization server uses the new RSA keys, and if that fails,
uses the old RSA keys; thus the server can decrypt a JWT that was created using its old public RSA keys.

Last, if the authorization server cannot verify a signed JWT received from a client, then if the authorization server has the
URL for the client public JWKS, the authorization server obtains a new public JWKS and tries again to verify the signature.
(Note that the authorization server has a URL for the client public JWKS if you used dynamic discovery or if the configu-
ration specified the JWKS from URL option; otherwise, the authorization server does not have this URL.)

To rotate keys for the authorization server:

1. Select System Administration > Security > OAuth 2.0 > Server Configuration.

The system displays the configuration for the authorization server.

2. Select the Rotate Keys button.

Note: The symmetric HS256, HS384, and HS512 algorithms always use the client secret as the symmetric key.

6.7.1 API for Key Rotation on the Authorization Server

To rotate keys programmatically on the authorization server, call the RotateKeys() method of OAuth2.Server.Configuration.

To obtain a new client JWKS, call the UpdateJWKS() method of OAuth2.Server.Client.

For details on these methods, see the class reference.

6.8 Getting a New Public JWKS from a Client
In most cases, a client generates a public/private pair of JWKSs. There are different ways in which the authorization server
can receive the public JWKS. One way is for the client to provide the public JWKS at a URL; see the JWKS from URL

option in Creating Client Definitions on an InterSystems IRIS OAuth 2.0 Authorization Server.

If the client was defined with JWKS from URL and if the client generates a new pair of JWKSs, you can cause the authorization
server to obtain the new public JWKS from the same URL. To do so:

1. In the Management Portal, select System Administration > Security > OAuth 2.0 > Server Configuration.

The system displays the configuration for the authorization server.

2. Select the Update JWKS button.

If the client was not defined with JWKS from URL and if the client generates a new pair of JWKSs, it is necessary to obtain
the public JWKS, send it to the authorization server, and load it from a file.

60                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Using InterSystems IRIS as an OAuth 2.0 Authorization Server



A
Creating Configuration Items
Programmatically

Other articles describe how to use the Management Portal to configure OAuth 2.0 clients, resource servers, and authorization
servers. You can also create these configuration items programmatically. The following subsections provide the details for
clients (including resource servers) and for the authorization server.

A.1 Creating the Client Configuration Items
Programmatically
To programmatically create the configuration items for an OAuth 2.0 client or an OAuth 2.0 resource server:

1. Create a server description.

2. Create an associated client configuration.

A.1.1 Creating a Server Description

A server description is an instance of OAuth2.ServerDefinition. To create a server description:

1. Switch to the %SYS namespace.

2. If the authorization server supports discovery, call the Discover() method of %SYS.OAuth2.Registration. This method
is as follows:

ClassMethod Discover(issuerEndpoint As %String,
                     sslConfiguration As %String,
                     Output server As OAuth2.ServerDefinition) As %Status

Where:

• issuerEndpoint specifies the endpoint URL to be used to identify the authorization server.

• sslConfiguration specifies the alias of the InterSystems IRIS SSL/TLS configuration to use calling the Discover()
method.

• server, which is returned as output, is an instance of OAuth2.ServerDefinition,

Using OAuth 2.0 and OpenID Connect                                                                                                                                 61



3. Then save the returned instance of OAuth2.ServerDefinition.

Or, if the authorization server does not support discovery:

1. Switch to the %SYS namespace.

2. Create an instance of OAuth2.ServerDefinition.

3. Set its properties. In most cases, the names of the properties match the labels shown in the Management Portal (apart
from spaces and capitalization). For reference, see Manually Creating a Server Description. The properties are as follows:

• IssuerEndpoint

• SSLConfiguration

• InitialAccessToken, which corresponds to the Registration access token field.

• Metadata, which is an instance of OAuth2.Server.Metadata, and which includes many properties. See OpenID
Provider Metadata in https://openid.net/specs/openid-connect-discovery-1_0.html.

For information on ServerCredentials, see Using Certificates for an OAuth 2.0 Authorization Server, in Certificates
and JWTs (JSON Web Tokens).

4. Save the instance.

A.1.2 Creating a Client Configuration

A client configuration is an instance of OAuth2.Client. The user that performs these steps must have the
%Admin_OAuth2_Client permission. To create a client configuration:

1. Switch to the %SYS namespace.

2. Create an instance of OAuth2.Client.

3. Set its properties. In most cases, the names of the properties match the labels shown in the Management Portal (apart
from spaces and capitalization). For reference, see Configuring and Dynamically Registering a Client. The properties
are as follows:

• ApplicationName

• ClientId, which you do not need to set manually if you will register the client dynamically.

• ClientSecret, which you do not need to set manually if you will register the client dynamically.

• DefaultScope

• Description

• Enabled

• JWTInterval

• Metadata, which is an instance of OAuth2.Client.Metadata, and which includes many properties. For information,
see Client Metadata in http://openid.net/specs/openid-connect-registration-1_0-19.html.

• RedirectionEndpoint, which corresponds to the option The client URL to be specified to the authorization server to

receive responses. This property is of type %OAuth2.Endpoint. The class OAuth2.Endpoint is a serial class with
the properties UseSSL, Host, Port, and Prefix.

• SSLConfiguration

• ServerDefinition, which must be an instance of OAuth2.ServerDefinition that you created previously.

62                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Creating Configuration Items Programmatically

https://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0-19.html


For information on ClientCredentials, see Using Certificates for an OAuth 2.0 Client, in Certificates and JWTs (JSON
Web Tokens).

4. If the authorization server supports dynamic client registration, call the RegisterClient() method of
%SYS.OAuth2.Registration. This method is as follows:

ClassMethod RegisterClient(applicationName As %String) As %Status

Where applicationName is the name of the client application.

This method registers the client, retrieves client metadata (including the client ID and client secret), and then updates
the instance of OAuth2.Client.

A.2 Creating the Server Configuration Items
Programmatically
To programmatically create the configuration items for an OAuth 2.0 authorization server:

1. Create an authorization server configuration.

Note that you cannot define more than one authorization server configuration on any given InterSystems IRIS instance.
Also, to create this configuration, you must be logged in as a user who has USE permission on the %Admin_Secure
resource.

2. Create the associated client descriptions.

A.2.1 Creating the Authorization Server Configuration

An authorization server configuration is an instance of OAuth2.Server.Configuration. To create an authorization server
configuration:

1. Switch to the %SYS namespace.

2. Create an instance of OAuth2.Server.Configuration

3. Set its properties. In most cases, the names of the properties match the labels shown in the Management Portal (apart
from spaces and capitalization). For reference, see Configuring the Authorization Server. The properties are as follows:

• AccessTokenInterval

• AllowUnsupportedScope

• AudRequired, which corresponds to the Audience required option

• AuthenticateClass

• AuthorizationCodeInterval

• ClientSecretInterval

• CustomizationNamespace

• CustomizationRoles

• DefaultScope

• Description

Using OAuth 2.0 and OpenID Connect                                                                                                                                 63

Creating the Server Configuration Items Programmatically



• EncryptionAlgorithm

• GenerateTokenClass

• IssuerEndpoint, which corresponds to the Issuer endpoint option, is of type OAuth2.Endpoint. The class
OAuth2.Endpoint is a serial class with the properties UseSSL, Host, Port, and Prefix.

• JWKSFromCredentials

• KeyAlgorithm

• Metadata, which is an instance of OAuth2.Server.Metadata, and which includes many properties. See OpenID
Provider Metadata in https://openid.net/specs/openid-connect-discovery-1_0.html.

• RefreshTokenInterval

• ReturnRefreshToken

• SSLConfiguration

• SessionClass

• SessionInterval, which corresponds to the Session termination interval option

• SigningAlgorithm

• SupportSession, which corresponds to the Support user session option

• SupportedScopes, which corresponds to the table with Scope and Description columns. This property is an array
of strings, and thus uses the usual array interface: SetAt(), GetAt(), and so on.

• ValidateUserClass

For allowed values for algorithms for signing, key management, and encryption, the class reference for %OAuth2.JWT.

For information on ServerCredentials and ServerPassword, see Using Certificates for an OAuth 2.0 Authorization
Server, in Certificates and JWTs (JSON Web Tokens).

4. Save the instance using the OAuth2.Server.Configuration.Save() method. The Save() method should be
used instead of the %Save() method because it provides additional functionality like creating a web application.

Note that InterSystems IRIS does not support having more than one instance of this class.

Also note that in order to save this instance, you must be logged in as a user who has USE permission on the %Admin_Secure
resource.

A.2.2 Creating a Client Description

A client description is an instance of OAuth2.Server.Client. To create a client description:

1. Switch to the %SYS namespace.

2. Create an instance of OAuth2.Server.Client.

3. Set its properties. In most cases, the names of the properties match the labels shown in the Management Portal (apart
from spaces and capitalization). For reference, see Creating a Client Description. The properties are as follows:

• ClientCredentials

• ClientType

• DefaultScope

• Description

64                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Creating Configuration Items Programmatically

https://openid.net/specs/openid-connect-discovery-1_0.html


• LaunchURL

• Metadata, which is an instance of OAuth2.Client.Metadata, and which includes many properties. For information,
see Client Metadata in http://openid.net/specs/openid-connect-registration-1_0-19.html.

• Name

• RedirectURL, which corresponds to the Redirect URLs option. This property is an array of strings, and thus uses
the usual array interface: SetAt(), GetAt(), and so on.

4. Save the instance.

The system generates values for the ClientId and ClientSecret properties.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 65

Creating the Server Configuration Items Programmatically

http://openid.net/specs/openid-connect-registration-1_0-19.html




B
Implementing DirectLogin()

When you use InterSystems IRIS® as an OAuth 2.0 authorization server, normally you implement the DisplayLogin()
method of the Authenticate class, which displays a page where the user enters a username and password and logs in. If you
instead want the server to authenticate without displaying a login form and without using the current session, then implement
the DirectLogin() method of the Authenticate class. The following flowchart shows how an InterSystems IRIS authorization
server identifies the user, when processing a request for an access token:

By default, the GetUser() method gets the username that was entered in the previous login.

Note that DisplayPermissions() is not called if you implement DirectLogin(), because DirectLogin() takes responsibility
for displaying permissions.

The DirectLogin() method has the following signature:

ClassMethod DirectLogin(scope As %ArrayOfDataTypes, 
                        properties As %OAuth2.Server.Properties, 
                        Output username As %String, 
                        Output password As %String) As %Status

Where:

• scope is an instance of %ArrayOfDataTypes that contains the scopes contained in the original client request, possibly
modified by the BeforeAuthenticate() method. The array keys are the scope values and the array values are the corre-
sponding display forms of the scope values.

• properties is an instance of %OAuth2.Server.Properties that contains properties and claims received by the authorization
server and modified by methods earlier in the processing. See Details for the %OAuth2.Server.Properties Object.

• username, returned as output, is a username.

• password, returned as output, is the corresponding password.

In your implementation, use your own logic to set the username and password arguments. To do so, use the scope and
properties arguments as needed. To deny access, your method can set the username argument to $char(0). In this case, the
authorization server will return the access_denied error.

The method can also set properties of properties; this object is available in later processing.

The method must return a %Status.

Using OAuth 2.0 and OpenID Connect                                                                                                                                 67





C
Certificates and JWTs (JSON Web Tokens)

Each party in OAuth 2.0 requires public/private key pairs. For these pairs, you can use certificates and their private keys,
although this is not the typical technique. This page provides the details for each of the following scenarios.

• OAuth 2.0 client

• OAuth 2.0 resource server

• OAuth 2.0 authorization server

In each case, to generate the private keys and corresponding certificates, you can use the InterSystems public key infrastruc-
ture.

Note: InterSystems IRIS can generate a pair of JWKSs (JSON web key sets). One JWKS is private and contains all the
needed private keys (per algorithm) as well as the client secret for use as a symmetric key; this JWKS is never
shared. The other JWKS contains the corresponding public keys and is publicly available. If you want to use the
option of generating JWKSs, ignore this page.

C.1 Using Certificates for an OAuth 2.0 Client
An OAuth 2.0 client can receive JWTs (which might be encrypted, signed, or both) from the authorization server. Similarly,
the client can send JWTs (which might be encrypted, signed, or both) to the authorization server. If you would like to use
certificate/private key pairs for these purposes, consult the table below to determine which certificates you need:

Using OAuth 2.0 and OpenID Connect                                                                                                                                 69



Requirement for Client ConfigurationScenario

Obtain a certificate owned by the authorization server, as
well as the CA (certificate authority) certificate that signs
the server certificate. The public key in this certificate is
used for signature verification and encryption.

Either:

• Client needs to verify signatures of JWTs
sent by authorization server

• Client needs to encrypt JWTs sent to
authorization server

Obtain a private key for the client, as well as the
corresponding certificate and the CA certificate that signs
the certificate. The private key is used for signing and
decryption.

Either:

• Client needs to sign JWTs before sending
to authorization server

• Client needs to decrypt JWTs sent by
authorization server

In each case, it is also necessary to do the following on the same instance that contains the client web application:

• Provide trusted certificates for InterSystems IRIS to use. The trusted certificates must include the certificates that sign
the client’s certificate and the authorization server’s certificate (either or both, depending on which certificates you
need).

• Create an InterSystems IRIS credential set that enables InterSystems IRIS to use the certificate.

For the client certificate, when you create the credential set, be sure to load the private key and provide the password
for the private key.

• When you configure the client, select the option Create JWT Settings from X509 credentials. Also specify the following:

– X509 credentials — Select the credential set that uses the client’s certificate and that contains the corresponding
private key (for example, ClientConfig).

– Private key password — Enter the password for the private key for this certificate.

C.2 Using Certificates for an OAuth 2.0 Resource Server
An OAuth 2.0 resource server can receive JWTs (which might be encrypted, signed, or both) from the authorization server.
Similarly, the resource server can send JWTs (which might be encrypted, signed, or both) to the authorization server. If
you would like to use certificate/private key pairs for these purposes, consult the table below to determine which certificates
you need:

70                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Certificates and JWTs (JSON Web Tokens)



Requirement for Resource Server ConfigurationScenario

Obtain a certificate owned by the authorization server, as
well as the CA certificate that signs the server certificate.
The public key in this certificate is used for signature
verification and encryption.

Resource server needs to verify signatures of
JWTs sent by authorization server

Resource server needs to encrypt JWTs sent
to authorization server

Obtain a private key for the resource server, as well as the
corresponding certificate and the CA certificate that signs
the certificate. The private key is used for signing and
decryption.

Resource server needs to sign JWTs before
sending to authorization server

Resource server needs to decrypt JWTs sent
by authorization server

In each case, it is also necessary to do the following on the same instance that contains the resource server web application:

• Provide trusted certificates for InterSystems IRIS to use. The trusted certificates must include the certificates that sign
the resource server’s certificate and the authorization server’s certificate (either or both, depending on which certificates
you need).

• Create an InterSystems IRIS credential set that enables InterSystems IRIS to use the certificate.

For the resource server’s certificate, when you create the credential set, be sure to load the private key and provide the
password for the private key.

• When you configure the resource server, select the option Create JWT Settings from X509 credentials. Also specify the
following:

– X509 credentials — Select the credential set that uses the resource server’s certificate and that contains the corre-
sponding private key (for example, ResourceConfig).

– Private key password — Enter the password for the private key for this certificate.

C.3 Using Certificates for an OAuth 2.0 Authorization
Server
An OAuth 2.0 authorization server can receive JWTs (which might be encrypted, signed, or both) from its clients. Similarly,
it can send JWTs (which might be encrypted, signed, or both) to its clients. If you would like to use certificate/private key
pairs for these purposes, consult the table below to determine which certificates you need:

Requirement for Authorization Server ConfigurationScenario

Obtain a certificate owned by that client, as well as the CA
certificate that signs the certificate. The public key in this
certificate is used for signature verification and encryption.

Authorization server needs to verify signatures
of JWTs sent by a client

Authorization server needs to encrypt JWTs sent
to a client

Obtain a private key for the authorization server, as well
as the corresponding certificate and the CA certificate that
signs the certificate. The private key is used for signing
and decryption.

Authorization server needs to sign JWTs before
sending to its clients

Authorization server needs to decrypt JWTs sent
by its clients

Using OAuth 2.0 and OpenID Connect                                                                                                                                 71

Using Certificates for an OAuth 2.0 Authorization Server



In each case, it is also necessary to do the following on the same instance that contains the authorization server:

• Provide trusted certificates for InterSystems IRIS to use. The trusted certificates must include the certificates that sign
the clients’ certificates and the authorization server’s certificate (either or both, depending on which certificates you
need).

• Create an InterSystems IRIS credential set that enables InterSystems IRIS to use the certificate.

For the authorization server certificate, when you create the credential set, be sure to load the private key and provide
the password for the private key.

• When you configure the server, select the JWT Settings tab. On that tab, select the option Create JWT Settings from

X509 credentials. Also specify the following:

– X509 credentials — Select the credential set that uses the authorization server’s certificate and that contains the
corresponding private key (for example, AuthConfig).

– Private key password — Enter the password for the private key for this certificate.

• When you create client definitions on the server, select the JWT Settings tab. On that tab, for Source other than dynamic

registration, select X509 certificate. Also, for Client credentials — Select the credential set that uses the client’s certificate
(for example, ClientConfig).

72                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Certificates and JWTs (JSON Web Tokens)



D
Working with JWT Headers

This topic discusses how to customize the header of a JWT and how to process custom values in a JWT header. Keep in
mind that a JWT can be generated by the authorization server or by custom code outside of the OAuth 2.0 framework.

D.1 Adding Header Values (Authorization Server)
When the authorization server generates a JWT token, the alg, enc, kid, typ and cty headers are set automatically
based on the signature and encryption algorithms used and cannot be directly manipulated with custom code. However,
other header values can be added to the JWT header using the JWTHeaderClaims array. For example, JWTHeaderClaims
can be used to add jku and jwk header parameters to the token. Note that not all header parameters defined by RFC 7515
are supported. The JWTHeaderClaims array can also be used to add arbitrary custom values to the JWT header.

For example, the following code could be added to a subclass of %OAuth2.Server.Validate to add two standard headers
and one custom header value to the JWT header:

ClassMethod ValidateUser(username As %String, password As %String, scope As %ArrayOfDataTypes, properties
 As %OAuth2.Server.Properties, Output sc As %Status) As %Boolean
{
  ...
  Do properties.SetClaimValue("co","intersystems")

  Do properties.JWTHeaderClaims.SetAt("","jku")
  Do properties.JWTHeaderClaims.SetAt("","co")
  Do properties.JWTHeaderClaims.SetAt("","iss")        
  ...
}

D.2 Adding Header Values (Direct JWT Generation)
It is possible to use custom code to generate a JWT outside of the OAuth 2.0 framework using the ObjectToJWT() method.
This method accepts an array of strings representing the JOSE header as its first parameter. To add values to the JWT
header, simply add values to the JOSE array before calling the ObjectToJWT method.

When adding a jku or jwk header, more than one node in the JOSE header is sometimes required. The jku and jwk nodes
indicate that these headers should be included, but do not provide the values of these header parameters. For jku, you must
also provide the URI to the local, public key using the jku_local node (if signing) and/or the URI to the remote, public
key using the jku_remote node (if encrypting).

Using OAuth 2.0 and OpenID Connect                                                                                                                                 73



The jwk node indicates that the JWKS should be included in the header if the JWT is signed or encrypted with an asym-
metric algorithm. If the token is signed, the issuer's public JWKS must be included in the JOSE("jwks_local") field.
However, the recipient's public JWKS does not need to be specified when encrypting because it is already provided by the
RemotePublic argument passed to ObjectToJWT.

For example, to add the jku header parameter to the JOSE header:

Set JOSE("jku")=""
Set JOSE("jku_local")="https://myserver/oauth2/jwks"
Set JOSE("jku_remote")="https://yourserver/oauth2/jwks"
// set JOSE("sigalg") and/or JOSE("encalg") and JOSE("keyalg")
Set sc=##class(%OAuth2.JWT).ObjectToJWT(.JOSE,json,PrivateJWKS,RemotePublicJWKS,.JWT)

For a description of JOSE array nodes that correspond to standard header parameters, see the class reference.

D.2.1 Adding Custom Header Parameters

The JOSE array passed to the ObjectToJWT method can include custom header parameters that are inserted into the JWT
header. To include custom header parameters, first define them as key-value pairs in a dynamic object, where the key is
the name of the custom parameter and the value is the parameter's value. Once the dynamic object is defined, add it to a
node of the JOSE array using the custom subscript. For example, the following code inserts two custom parameters, co
and prod, into the JWT header:

Set newParams={"co":"intersystems","prod":"bazbar"}
Set JOSE("custom")=newParams
// set JOSE("sigalg") and/or JOSE("encalg") and JOSE("keyalg")
Set sc=##class(%OAuth2.JWT).ObjectToJWT(.JOSE,json,%server.PrivateJWKS,%client.RemotePublicJWKS,.JWT)

The custom node of the JOSE array cannot be used to override the header values defined by RFC 7515. If doing nested
signing and encryption, the custom headers will only be included in the "inner" (signed) token.

D.3 Processing JWT Headers
The JWTToObject method allows you to process a JWT to return its headers. These headers can be accessed in two ways.
Standard JOSE header parameters containing the algorithms used for Signature and/or Encryption operations performed
on the JWT are returned by the method in an array of strings. In addition, the "raw" header of the JWT is returned as a
dynamic object in the 6th parameter. By parsing the key-value pairs of this dynamic object, you can process custom and
standard header parameters that are present in the JWT header. If the token was created using nested signing and encryption,
the raw header returned by the method is from the "inner" (signed) token.

Note that the jku and jwk header parameters are not processed by InterSystems IRIS to validate a token that it has received.
That is, when calling JWTToObject(), the code needs to supply the local, private JWKS and/or remote, public JWKS
using the appropriate arguments.

74                                                                                                                                 Using OAuth 2.0 and OpenID Connect

Working with JWT Headers

https://datatracker.ietf.org/doc/html/rfc7515

	Table of Contents
	1 Overview of OAuth 2.0 and OpenID Connect
	1.1 Basics
	1.2 Roles
	1.3 Access Tokens
	1.3.1 Forms of Access Tokens
	1.3.2 Claims
	1.3.3 JWTs and JWKSs

	1.4 Grant Types and Flows
	1.5 Scopes
	1.6 Endpoints in an Authorization Server

	2 How InterSystems IRIS Supports OAuth 2.0 and OpenID Connect
	2.1 Supported Scenarios
	2.2 InterSystems IRIS Support for OAuth 2.0 and OpenID Connect
	2.2.1 Configuration Items on a Client
	2.2.2 Configuration Items on the Server

	2.3 Standards Supported in InterSystems IRIS

	3 Using an InterSystems IRIS Web Application as an OAuth 2.0 Client
	3.1 Prerequisites for the InterSystems IRIS Client
	3.2 Configuration Requirements
	3.2.1 Creating a Server Description (Using Discovery)
	3.2.2 Configuring and Dynamically Registering a Client

	3.3 Outline of Code Requirements
	3.4 Obtaining Tokens
	3.4.1 Method Details

	3.5 Examining the Token(s)
	3.6 Adding an Access Token to an HTTP Request
	3.7 Optionally Defining Delegated Authentication for the Web Client
	3.7.1 Creating and Using a ZAUTHENTICATE Routine for an OAuth 2.0 Client
	3.7.2 Creating and Using a Custom Login Page for an OAuth 2.0 Client
	3.7.3 Notes about the OAUTH2.ZAUTHENTICATE.mac Sample

	3.8 Revoking Access Tokens
	3.8.1 Revoking a User’s Access Tokens
	3.8.2 Revoking Access Tokens Programmatically

	3.9 Rotating Keys Used for JWTs
	3.9.1 API for Key Rotation on the Client

	3.10 Getting a New Public JWKS from the Authorization Server

	4 OAuth 2.0 Client Variations
	4.1 Disabling PKCE
	4.2 Implicit Grant Type
	4.3 Password Credentials Grant Type
	4.4 Client Credentials Grant Type
	4.5 Performing the Redirect within OnPreHTTP
	4.6 Passing Request Objects as JWTs
	4.6.1 Passing a Request Object by Value
	4.6.2 Passing a Request Object by Reference

	4.7 Calling Other Endpoints of the Authorization Server

	5 Using an InterSystems IRIS Web Application as an OAuth 2.0 Resource Server
	5.1 Prerequisites for the InterSystems IRIS Resource Server
	5.2 Configuration Requirements
	5.3 Code Requirements
	5.4 Examining the Token(s)
	5.5 Variations
	5.5.1 Variation: Resource Server Calls Userinfo Endpoint
	5.5.2 Variation: Resource Server Does Not Call Endpoints


	6 Using InterSystems IRIS as an OAuth 2.0 Authorization Server
	6.1 Configuration Requirements for the InterSystems IRIS Authorization Server
	6.1.1 Configuring the Authorization Server

	6.2 Code Customization Options and Overall Flow
	6.2.1 How an InterSystems IRIS Authorization Server Processes Requests
	6.2.2 Default Classes

	6.3 Implementing the Custom Methods for the InterSystems IRIS Authorization Server
	6.3.1 Optional Custom Processing Before Authentication
	6.3.2 Identifying the User
	6.3.3 Validating the User and Specifying Claims
	6.3.4 Displaying Permissions
	6.3.5 Optional Custom Processing After Authentication
	6.3.6 Generating the Access Token
	6.3.7 Validating the Client

	6.4 Details for the %OAuth2.Server.Properties Object
	6.4.1 Basic Properties
	6.4.2 Properties Related to Claims
	6.4.3 Methods for Working with Claims

	6.5 Locations of the Authorization Server Endpoints
	6.6 Creating Client Definitions on an InterSystems IRIS OAuth 2.0 Authorization Server
	6.7 Rotating Keys Used for JWTs
	6.7.1 API for Key Rotation on the Authorization Server

	6.8 Getting a New Public JWKS from a Client

	Appendix A: Creating Configuration Items Programmatically
	A.1 Creating the Client Configuration Items Programmatically
	A.1.1 Creating a Server Description
	A.1.2 Creating a Client Configuration

	A.2 Creating the Server Configuration Items Programmatically
	A.2.1 Creating the Authorization Server Configuration
	A.2.2 Creating a Client Description


	Appendix B: Implementing DirectLogin()
	Appendix C: Certificates and JWTs (JSON Web Tokens)
	C.1 Using Certificates for an OAuth 2.0 Client
	C.2 Using Certificates for an OAuth 2.0 Resource Server
	C.3 Using Certificates for an OAuth 2.0 Authorization Server

	Appendix D: Working with JWT Headers
	D.1 Adding Header Values (Authorization Server)
	D.2 Adding Header Values (Direct JWT Generation)
	D.2.1 Adding Custom Header Parameters

	D.3 Processing JWT Headers

	Index

