InterSystems-

IRIS Data Platform

InterSystems SQL Reference

Version 2023.3
2024-05-16

InterSystems SQL Reference

InterSystems IRIS Data Platform Version 2023.3 2024-05-16
Copyright © 2024 InterSystems Corporation

All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation. TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

Symbols and SYNtaxX CONVENTIONScciiiiiiririirie ettt st sb et e s e e sesbe e sbesbe e e 1
Symbols Used in INterSYStEMS SQLcoiiiiiiiiiineie ettt st s 2
SYNEAX CONVENTIONS ...ttt sttt t et sb et b et b et b et eb et eb ettt ne et e s et e saebenbebesbeneanes 7

SQL COMMANGS ...veiviiteiteiete et ste e ste e be s be et e sbe et e sbs e besaseabeaaseabesasesbeeseesbeesbesbeesbesbaenbesbsenbestsebesasenres 9
ALTER FOREIGN SERVER (SQL) 1.vettiiiieiiirisieieienesisrere s 10
ALTER FOREIGN TABLE (SQL) ..eitttttiiiiteiiirisieiet sttt 12
ALTER ML CONFIGURATION (SQL) w.tutititrteiiriririeieiesisieieiesisesieie sttt sssssssse s sesssse s 14
ALTER MODEL (SQL) otutttttttiristetee ettt sttt sttt sttt ettt sttt et 16
ALTER TABLE (SQL) rtt ettt ettt ettt sttt et ese s ebet e e ebenene e s 17
ALTER USER (SQL) ¢ttt 27
ALTER VIEW (SQL) 1ttt 29
BUILD INDEX (SQLY) tutttttteirisieteeisieie ettt sttt bbbttt 33
CALL (SQL) ettt stttk b bbbt bbbt b bttt 35
CANCEL QUERY (SQLY) «ettitittitiriieiee sttt sttt st sttt st sttt et 40
(07 NS I 51] I OSSR 42
YOCHECKPRIV (SQL) vttt 45
CLOSE (SQL) 1ttt s et n et e e r et r et n e 49
COMMIT (SQL) otttk ettt b et es 51
CREATE AGGREGATE (SQLY) .ttcttttririeteie ettt sttt sttt ettt 53
CREATE DATABASE (SQL) 1etttttiiiiteieieresiste ettt sttt sttt st bbbt 57
CREATE FOREIGN SERVER (SQL) ..tiittrieitiieeiiee sttt 59
CREATE FOREIGN TABLE (SQL) 1.ttt 61
CREATE FUNCTION (SQL) vttt s 67
CREATE INDEX (SQLY) ottt 74
CREATE METHOD (SQLY) 1uttititeitiriiieieesisieie ettt st sttt ebe bbbttt et 83
CREATE ML CONFIGURATION (SQLY) .ettiitittitirinieienirisisie ettt 89
CREATE MODEL (SQL) ettt ettt ettt sttt se st et sese e sseseneneseees 92
CREATE PROCEDURE (SQLY) .vvetiiiirreteiereresreeenisre s 96
CREATE QUERY (SQL) 1rtriiteteiirirreieieesisieieie s 105
CREATE ROLE (SQL) ettt bbbttt 111
CREATE SCHEMA (SQL) vttt sttt ettt bbbt st sttt e 113
CREATE TABLE (SQLY) 1ottt ettt sttt 114
CREATE TABLE AS SELECT (SQL) c.tttitiietirieterieie sttt et sneneas 146
CREATE TRIGGER (SQL) vttt 150
CREATE USER (SQL) vttt 161
CREATE VIEW (SQL) ottt bbbttt 163
DECLARE (SOQL) ettt sttt bbbttt bbbt bbbt st sb bbbt 171
DELETE (SQL) 1tttttittteteiteis ettt ettt stttk ettt ettt 174
DROP AGGREGATE (SQL) w.ttettiteieiieiesiet ettt sttt sttt 183
DROP DATABASE (SQL) ¢ttt 184
DROP FOREIGN SERVER (SQLY) ..ttt s 186
DROP FOREIGN TABLE (SQL) ..ttt 188
DROP FUNCTION (SQL) tttttiiteteiririeteieresisieieie st sbsie s bbb bbbt bbb s ssssese s 190
DROP INDEX (SQL) .tttttutrirteteitrteisietee sttt ettt et et sb bbbt sttt ettt seebebe s 192
DROP METHOD (SQLY) 1ettttitiieteieieeieie ettt sttt et ssenese s seetene e nees 196
DROP ML CONFIGURATION (SQL) .tvirereieererereeresrereeesrsreeesessesse e nens 198
DROP MODEL (SQLY) 1.ttt 199

InterSystems SQL Reference

DROP PROCEDURE (SQL) ..ttt 200

DROP QUERY (SQL) ttrtittiitirieiiiteisieisieses ettt ettt s b sbeneste s nsens 202
DROP ROLE (SQL) ttttittittstertertentesiesteiesteee ettt sieste st steseesbesbestessesbesaessensesseseesessessessessessessessens 204
DROP SCHEMA (SQL) oottt ettt saesae e e eneeseenesnesressesnens 206
DROP TABLE (SQL) .eeeutetietit ettt sttt a et se st st teste sttt saen e e saensenensasneanens 207
DROP TRIGGER (SQL) ttttiteitiitiieieieeteteeseetestesesteste e stestestestesses e saessessessssssssssessessessessessessens 211
DROP USER (SQL) ttitiitiitiiteieitestee ettt e s et testesteste st stestesbeste st et esae s ensesaesessesbestessestesteseesrens 214
DROP VIEW (SQL) tttettiieeiiiitisieisiesistees ettt bs e sae s sbesesbessstensssensssessns 216
EXPLAIN (SQL) ettt ettt sttt sttt ettt ettt sttt st e e e et esees e eseeneebesaesbesbeneeseens 218
o IO o I (5 I ST 221
o o I A N ST (1]) 225
LC] N AN (] I RS PRRS 227
INSERT (SQL) otitiitiitiiieitiste e sttt ettt s e st e e st e st et e st et e s e e eseeseeteeaeabeabesbesbesbesbesrensenteeensaneas 235
INSERT OR UPDATE (SQL) 1ttttetiieieiieesieesteitste st ste sttt sse s e st e ssesessesesbesessessssessssensasens 255
YOINTRANSACTION (SQL) ttiitiuietirieriestesie sttt see ettt sttt st st sb e b e e e s ese e enesbesbesnens 263
B[N 5) TSRS 264
@ AN B AN AN (1 I P 279
I 108 [5] I S 295
(@] ot N 1) TSR RSRRS 298
PURGE CACHED QUERIES (SQL) ttitititiiitiisiisieiesisiesieeseeessessiesessesssesssse s sssssssess 299
REVOKE (SQL) ettt sttt st ettt e bttt esbe b sbesbesb e beseeseebeee e eneeneas 301
ROLLBACK (SQL) 1tteteierieeetetesiese et stestesteste e stessesaeseesesseseesaesessessessessessesssssessessessensensessensenens 306
SAVEPOINT (SQL) ttititeteeesiesiesestestestesteseestesteeesaeseetessessestessessestessesaessessesaessensessesesnsesensessessens 309
RS I T 5 SRS 311
SET ML CONFIGURATION (SQL) .ttititiiitiite ettt te et ste st st ste st sresbe e snennenens 335
SET OPTION (SQL) 1eottietisieieiieesteesteie st ste sttt sttt st te st testesesaesesbesesbesesbe s stessssessasessnsessans 336
SET TRANSACTION (SQL) 1tttitiittiterieieie ettt sttt sttt se et se s besnesbeseeseeseesnas 341
START TRANSACTION (SQL) ttteierieiieieeeeteetesie st sieste e stesiesaeeesae e e esessessessesseseeseessesseseensesens 346
TRAIN MODEL (SQL) ttttetetietet i se s stes e st st se e esas e seste e srestestesaesseaesaensensesessessessessessens 351
TRUNCATE TABLE (SQL) ttttitiiiiieie it e et te sttt st sre s e e e e enesressesnesnessenes 354
IO LA AN = I 1) TR 358
UNFREEZE PLANS (SQL) 1ttteititetsieesieesteneste st ste sttt ststessete st e ssesesaesessesessessssessssessssessssensns 361
UNLOCK (SQL) 1ttt ettt sttt sttt sttt sttt st sttt e sbe st sae b e be e e e esseseeseeneebensenns 363
UPDATE (SQL) ttuttitertiieietete sttt sttt te st se et e e e s esessessestestestessesaeseensenseseeneeneesessessessessessens 365
L0 Y = 7 AN (] I P 379
VALIDATE MODEL (SQL) .ttitiitiiteiterieieeeieetesesesestestestestesaesaesseseeaeseesessessessessessessessesseseensesens 380
]] IO F- 10 -SSP 383
DISTINCT (SQL) tttettrieiesieiesieesieesteesteeste e st ettt sttt st ssetesbesesbe e sbesesbe st abe e sbe s stesensensasens 384
FROM (SQL) ettt ettt sttt sttt e et et e s be st e b e beseesb et e st e st eneebesneenesrenaesnens 389
GROUP BY (SQL) tttttittitirtisierierteieie it et ete e stesteste e ssestesaessesaesaesessessessessessessessessessesesnsensesesneasens 395
L ANV L (]] I PSSR 399
LN I I (]] USRS 407
ORDER BY (SQL) ettt sttt ettt ettt s b et st st e st e s te st et essesaeneebeeteabesbestestenrentas 412
IO L I TSSOSO 420
UNTON (SQLL) etttittitietestestes ettt ettt ettt be sttt besbe st e sbeste st e e see e eneeseeseeneeseebesnesaesbeneeseens 425
B LU ST 50) TS 431
WHERE (SQL) 1utiteiieitetei ettt sttt sttt sttt saeseetessesnestesteseesbenteseennenteneennensenens 434
WHERE CURRENT OF (SQL) 1riutiietiietisesiestes e siesteste e esae e s e seste e sreste st snesseseessensenseseenens 443
] @] I o =T [Tor (<N @] oo L1 o] o S S 445
OVEIVIEW OF PrEOICALIESvieiiieiiric ettt sttt ettt e be e st e e beesaae e sbeesaeeenbeestbeebeesare s 446

InterSystems SQL Reference

AALL (SQLY wvvevvrtrreeeeeeseeeeeesesseesssseessessseessssessssseessssssssesseeessssssssssssesssseesssssesssssssesssseesesesssssssseees 453

F N A (1] I OO URTOEPSTPPSTRRRN 455
BETWEEN (SQL) 1ottt sttt st sttt st s sttt 457
G I IS (1] I TSSO 460
QOFTND (SQL) vttt sttt et b et bbb ekttt sbe e ettt et bbb ne b 462
FOR SOME (SQL) 1ettittiiitiiitiiitisieie sttt et b ettt sttt b bbb 464
FOR SOME Y%ELEMENT (SQL) weovtiteiriririiiriiisieses ettt 467
LN (S TSSOSO 471
DBINLIST (SQL) cterteteietiiieti sttt ettt sttt a sttt a et e sa et e sa et e sb e s e sbeseebe e e be e ebe e ebeseetesanteneas 475
DDINSET (SQL) wvvrvercveeeeieeeisessssesss st ssessessssssess s ssss s s ssss s sss s ssss s es s sssn s sens 478
IS JSON (SQL) ettt b bbb bbbttt ettt e b neens 480
IS NULL (SQLY) 1ttt ettt sttt stttk b bbbttt 482
I S (] I TSSOSO 483
YOMATCHES (SQL) 1rtettietiiieiesieiesteresteeste e te e stesasbestetesaetesaetesaetesbesesbesesbe e abe e ebesasbeseetesaetesensenens 487
YOPATTERN (SQL) oorveievteereieciieeiieseessesss s ssess st ss s s st st ss s ssess s s sssasseas 490
1O 1Y (51 TR 493
QOSTARTSWITH (SQL) ettt sttt sttt sb e ettt st et et saerennas 494
] @ Ao [0 =T = (=T 0 Tod o 501
Overview of Aggregate FUNCLIONSc.civiieiecie ettt ae e te e sresnaesaeenaens 502
F I (10] I TSRS 507
(0L @ 181\ I (] I SO 511
DODLIST (SQL) wvveveecveeeereeesssseessessssses s s s sss s s ss st s s ss et een e seas 518
JSON_ARRAYAGG (SQL) wttreetiieiirieiirieiisieiesieesteeste sttt se st sse st st be b s b ssesesaenis 522
LIST (SQL) ittt b et bbbtttk st bbb bbb bt re et 526
A G (1] I OO OSSPSR 530
IMIIIN (SQLL) ottt ettt st bbbttt s b s e b e et e et e e ebe et e neebese et e saetenaerearas 533
STDDEV, STDDEV_SAMP, STDDEV_POP (SQL) .ecutiirtieriirie e 536
SUM (SQL) 1ttt ittt bttt ettt e b b et s et ese st e s st e s s et et e be s te b se st enenaens 538
VARIANCE, VAR_SAMP, VAR _POP (SQL) ...cvevuiieriereeieseiesieeistsssesesssessssssssssesssssssssssessesens 541
XIMLAGG (SQL) vttt sttt sttt ettt ettt b b bt b et s et enenbenes 543
] @] I VAT To [0 VLV U] o1 o] g S 547
Overview of WINAOW FUNCLIONSc.vcviiicieciecce ettt te et besreeste s be e e sreenneste e 548
F I (10] I TSROSO 554
COUNT (SQL) corverteereerieetsseesesseeseessesss s ssessse s ss s es s s s s s sass st ssss s essnseessensnsens 555
CUME_DIST() (SQL) tttttrteierteirieeiteesie sttt sttt sbe et ettt et seebeseetesrenens 556
DENSE_RANK() (SQLY) 11ttt sttt sttt nnes 557
FIRST _VALUE (SQL) .ttittiitiiitiisiisiesstesie ettt bbbttt sttt nsnnennns 558
I R 10] I TSRS 559
LAST VALUE (SQL) wottiueteeieeiieeieseeesessesses s sssses s sessss s ssss s st ssss s es s ssassessssssesssenes 560
LEAD (SQL) wovtveeteeeeieeseesesseesisssessessssssssesssesessssesssssssssssssessssssses s ssasssessesssassssssassessssnssnssanes 561
IMAX (SQIL) ettt ettt et ek ekt b e bbbt btk etttk et n e 562
IMIIIN (SQL) ottt ettt et bbbt bbb ettt st et et et e et e s b b e nberearas 563
NTH_VALUE (SQL) 1ttittiietrieisieit sttt sttt sttt ettt 564
NTILE (SQL) 1ttettiteiiteiitee sttt sttt s sttt ettt et et et e st es e s b e s e et e saebe s be s anennenn 565
PERCENT _RANK() (SQL) wevurrvueeieiecrieeieseesee s sssssessssssssssssssssssessssssssesssssssssassssssssssesssnnes 566
RANK() (SQL) cvrrrervereereeeeessseessessessees e ssesssssse st s sses s ssssssssssss s sssss s essnsses s sensens 567
ROW_NUMBER() (SQL) .tttittiettrieiirieirieisieeste sttt sttt st nes 568
SUM (SQL) 1ttt bbbt bbb bbbttt b bbb b b 569
] @] I U o 1 o] PRSP S 571

InterSystems SQL Reference

AABS (SQLY wvvveverrreeeeeeseeeeeesesseesssseessssseeesesseesssseessssssesesseesssesessssssesess e ees s ssssseesee e eessesessssseeees 572

AACOS (SQLY wvveeeerrrreeeeeeseeseeeessessesssesessesessessssesssssesssssssessssesssssessssssssessseesssssssssssssssssesssesssssssseees 574
AASCI (SQLY wrvvveerrreeeeeeeeseesseeeesseesseseessessssessssesssssessesssessssssessssssesssssssesssessssseesssssssesensessssssssssseees 575
AASIN (SQLY rvvveerrreeeeeeeesesseessesessesssessssssseseesssseseesseessssssessesssssssessesssesssesseesssessesssessssssesseesees 576
ATAN (SQL) ervvveveeeereeeesseeeseseeeeeseesesssseessssseeesseeess s sesesesesseeess s sseseeesseeessesesesssseeeeesesssee 577
ATANZ (SQL) ovvvvveeeeereoeesseeesseseeeeseseessssseessssseeesseeesssseeesssesssessesessssessssesseesssseessesesssssseeeeesesssee 578
CAST (SQLY errreeeeeeeeeeeesesesseesssssseessssessssesessssssseseseesssseesssssseessseesssssessssssseseeesssesesssesseeseeeen 579
CEILING (SQLY werrtrrreeeeeeeveeessssessssessessseessssessssssesssssessesssesssssssssssssessssesssssesssssssesesseesssssesssseees 590
CHAR (SQLY wrveeeerrrreeeeeeseesseeeesssesssssessesessesssssesssssessssssssesssssssssessssssesessssessssesesssssssensssesssseessseees 592
CHARACTER_LENGTH (SQL) 1rrrrvvvveerrmeeeeeeeesesseessssesesssessssessesssessssesssssessssssssssessessssessesseees 593
CHARINDEX (SQL) +etrtreeeeeeeveeeeeeseesssseessssseeeesesessssssesssssssessssesssssssssssseeesssessssssssssssseeeessssenn 595
CHAR_LENGTH (SQL) cvvvvveeeverreesreeeeeeeeeesssaessssseessssessessssesssssesssssseessssessssssessssssseesssssssssesssseees 598
COALESCE (SQLY wevvrrrrrreeereeeeeeeesessesssesssseseeesssssesssssesssssessssssssssssssssssessssseesssssessssssessssessssseeees 600
CONCAT (SQL) worrrrreeeereeeeeeeesseseeseseessessssessssessssseesssssesssssssesssssesssssssessssssssssesssssssesssssssssessssseees 603
CONVERT (SQLY wevvttrrreeeeeesesseeeesssessssessssssssessssenesssssesssssesssesssesssssessssssssesssssssssesssesssssessnesssseee 606
COS (SQLY rrrrervveeeereeeseseeseeseessssesseessesssessseseessseessesseessssssesesseseseessesseesssesseesessssseseesessesessesseeseees 614
COT (SQLY revvevveeerrreeseseeeeeeseeeeeeseesseseeesssesesessessss e sseseesseseesssesesssssseeeeeessesseessssseeesseesseesesseees 615
CURDATE (SQL) vvvvvveeeereeseseesseseeeesssmesssssessssseesessesessssesssesseesssssasssssessssssessssesssssssssssssesessssssee 616
CURRENT _DATE (SQL) rvvvvvvveeeeerreeseeessesseseeessssssssesssssssessssssssssssssssssssssssesssssesssessessessessssssees 618
CURRENT_TIME (SQLY) rrretvvvvveeeeeermessssesssseeseessmessssesssssssssesssssssseesssssssessssessssesssessssessssssssees 620
CURRENT_TIMESTAMP (SQLY wevtrrrreeeeeveeeeessnssssseesssssssessssesssseessssssssssssesssseessesssseessssssseee 622
CURTIME (SQL) wrttrrereveeeereeeseseessessesssessssessessssessesssessssessssssessssessesssesssssssssssessssessssssesessssesseeseees 626
DY Y=Y O 628
DATALENGTH (SQLY wrrvvvvveeeeerresseeeessseeessessssesssseesssessesssssessssssessssssesssessssssessssssseesssssesssssesseees 629
DATE (SQLY rvvvvveeeeerrereeeseeseseseeesseseesssesesssssssessssesssssesssssssessssseesssssessssssesssseesssssssssesseesesesssssseees 630
DATEADD (SQLY wvvveverrrreeeseesseeeeeessssesssseesssssssessssessssesssssssssssssessssesssssssssssssesssssessesssseessssssseess 633
DATEDIFF (SQLY wvvvvvvrvtrereeeeeeseeeeeessssesssseesssssssesssssessssesssssssssssssessssessssssssessssessssesssesssseesssssssseees 639
DATENAME (SQLY wvvvrrrrreereeeeeeeeeesssessssseesssssesssssssssseessssssssesssesssseesssssssessssessssseessesssseeesssssseeee 646
DATEPART (SOLY ovveevrereereeeeeeeeeesseseessssesssssseeesssssssssssssssesesssseesssessssssseeesssessssssessssseeesssssssseee 650
DATE_TRUNGC (SQLY wevovrrreeeeeeeeeeeesessesssseessssssesesssessssssssssssesssssessssseessssssseesesssesesssssseeseesoe 655
DAY (SQLY ervvvvveeeeerreeseeeeesesesesesssesssseesssessesessessssseesssssssessssseessssessssssseesseeesssesessssesesseeeeseseseees 659
DAYNAME (SQLY wvvvvvrrrreeeeeeseeeeeeessssesssseesssssssesssssessssessssssssessssssssseessssssssssssessssesssesssseessssssssees 660
DAYOFMONTH (SQLY) 11rrrerrveveeeessssesssseesssssesssssnessssessssssssesssssssssseesssssssssssesssssesssesssssessssssseess 662
DAYOFWEEK (SQLY +1rrevvvveerreeeesseeessssesssesssssssssssessssessesssesssessessssssssessesssssssessesssssssessssssssssosee 665
DYoL =7 N (o] I S 669
DECODE (SQLY rreevvveveeeersreseseeessesseeesessessssssssssseesssssesssssessssessssssesssssessssessesessssssesesssssseesesseen 671
DEGREES (SQLY vvvvvvrtreeeeeeseseeeessssesssssssesssssssssssesssssssssssesssssessssssesssssessssssesssssesssesseesssesssssseees 674
UBEXACT (SQLY weverrrrrreeeeseseeeeessssessseeesssssssesssesssssesssssssesssssessssssssssssessssessssssssssssseesessesssssseess 675
EXP (SQLY 1rtrrreeeeeeeeeeeeseseessseessesssssssssessseeessssssesssseesssseessssssssessesssssesssssssessseessesseesssssseesnesseen 677
YOEXTERNAL (SQLY +rrrreeeereeeeeeeeessessssseesesssesesssseesssseessssesssesssesssseessssesssesssessssesesssssssenesesssseee 679
SEXTRACT (SOLY wecovrrrreeeeeeeeeeeeseeseesssseessssseeessesessssssesssessessssesssssseesssssseessssesssssessssssseeesesssssne 681
SEIND (SQL) rvvvvvveeerrereeesseeesesseeeessseessssseesssssesesseeessssessssseessesseessssessssssseeesssessssesesssssseeeeessssee 684
FLOOR (SQLY vvvvvveerrrreeeeeeseeseeseesssesssseesssssssssssssssssesssssssesssssesssssessssssesssssssssssesssssssesssesesssessssenes 687
GETDATE (SQLY wervrrrereeeeeeeeeeeeesssessseeesssssssessssessssesssssssssssssesssssessssssssssssssssssessssssseesssessssesssseees 689
GETUTCDATE (SQLY ervvvvveeeeerresseeesesseesessssssssseessssssssssssesssssessssssssssssssssssessssssssessssssssesesssees 692
GREATEST (SQL) revvvveerreeeeseeeeseseessseessessesssssssessesssssssessssssssssesssssssssssesssessssssesssesssseseessessees 695
HOUR (SQLY +rtrreeeeeveeeeeaessesssseessssseeesesessssssesssssseesssessesssssessssssesasssessssssssssssesenssssssssesssssseeeens 697
IENULL (SQLY tvvvvveerrreeeeeseseeeeeesseesssssessssssessesseesssssessssssesessessesssssesssssssesssssssssesssssssesessseessssseees 699
INSTR (SQLY wevvrrrrreeeeeeseeessessesssseesssseeessssesessssesssseseessssesssseessssssessssessssssssssssesesseesssssessssssesennns 703
UBINTERNAL (SQLY werrreeeeeereeeeeesessssseseessssessessssessssessssssssssssesssssessssssssssssesssssessssssseeessesssseess 705
ISNULL (SQLY wvvvvvrrrrreeeeeesesesesessssssssssesssssssssesssessessessssssssesssssssssesssssssssesssssssssesssssssessssssesssseeees 707

vi

InterSystems SQL Reference

ISNUMERIC (SQLY covvvvveererreeeeeeseeseeesesssesssssessssssessesssssssssssssssesssssessssssesssssssesssssssssssssssssessesses 710

JSON_ARRAY (SQLY covvvveererreeseeeeesseseessmssssssesssessesessseesssssesssssssesssssssssesssssssssssssessssseessssssssennns 712
JSON_OBIECT (SQLY terrreereveveeessermessseeesssssessssssesssssesssssssessssssssssesssssesssssssssssesssssssesesssssssseeees 715
SIUSTIFY (SQLY werrrrreeeeeeeeeeeesesseessseeessssesssssssesssseeessssssssssseessseeesssssseesssessssesesssssssesssesesseeeesseees 718
LAST DAY (SOLY woveerrrreeeeereveeeeeesesessseseesssseesasssesssssessssssesssesssssssessssseessssssesssssesssssseesesesssssseees 721
LAST _IDENTITY (SQL) wertrreeeerveeeeeeeessesssseessssseeeessesssssssssssssesesassssssssssssssssessssesssssessssssseeesns 723
LCASE (SQL) errreereveeeeeeaesesssesessssssessessessssssssssssesssssesesssssesssssessssssesesssssssssssssssssesssssessssssseesss 725
LEAST (SQLY +rrtreeeeeeeeeeeeesseseessseessessessssssesssssesssssssessssesssssessssssssessssessssessssssssessssssssssesssssssessns 726
LEFT (SQLY werrrrrreeeeeeeeseeesssssesssesesssssseesssssessssssssssssesesssessssssssssssssessssesssssessssssssssssssssssessssssssesnnns 728
= N0 O 729
LENGTH (SQLY ovvvvveeerrereeeseeeseeeeeesssssesssssesssssssessseessssseesssssesessssesssseesssssseesssessssssessesseeees s 730
SLENGTH (SQL) errreeveveeeeeeressssseeessesseessessesssssseesssesseessesesssssesssssssesessssssssseesssssssesesesssssseesssseees 733
SLIST (SQL) crvvvvvveeeeerereeseeseseseeessssesssssessessssessssssesssesssssssesssssessssssesssssessssssesssssesssesseseessesesssseees 736
SLISTBUILD (SQLY) errreerveveeeesesseesseeesssseesesssesesssseesssssssessssesssssssssssssesssnesssssessssssssesssesssssesssesees 740
SLISTDATA (SQLY) 1rrrerreereeeeeeesssnesseeeesessesssssssesssseesssssssssssssesssssessssssssssseessseessssssssessssssssseessssees 743
SLISTEIND (SQLY) 1rrreevevveeeesseesesseeeeesesessesssssssseeessssssessssesssseesesssssssessessssssessssssssssssesssesssssssseees 745
SLISTFROMSTRING (SQLY) w.rrrreeveeveeeeeermesssseeeseeeeesesssseesssssessssssesessssssssseessssssessssessssesssssssseee 747
SLISTGET (SQL) wvvvverreremreeereseseeessesesssssessssseessssssesssssesssssessesssssssssesssssessssssesssssessssssessesesssssseess 748
SLISTLENGTH (SQLY rreevvveveeeesesresseeessesseeesessssesssesssssssessssssssssssssssssssssssesssssesssesseeeesssssssseees 751
SLISTSAME (SQLY ¢rrrrrreereeveeeeeerssseeeesssseessssssessssesssssssesssssesssesesssssssessssesssssessssssseessseesssesssssees 753
SLISTTOSTRING (SQLY wvvvveerrrereeeeesseesesseesssesssesssssssesssesssssssesssessssssessesssesesesssssssesssesssssssesienn 755
LOG (SQLY) wvvvveerrerereseeeeeeeesssssssessssesssssssesssssesssseeesesssssessseessssessssssesssssessssssesssssssesssessssseesssssseee 757
LOGLO (SQLY weeevrrremeeeeeeeeeeeesseeeesssesesssseesssssessssseesssssesessssessssesssssssessseseesssssesssssseessssessssssessssssenes 758
LOWER (SQLY rvvvvveeeerrereseseessseseeessesessssssssssseeesssssesssssessssseesssssessssssssssssesssssesssssesssssseesesesssssseess 759
LPAD (SQLY tvvvveeeeeereressseessseseesessseesssssssssssessssssesssssessssssessssssssssssssssessssssesssssesssssseesesesssssseees 760
LTRIM (SQLY rvvvvveeeeereressseesssesesessssesssssssssssessssssmsssesesssssssssssssesssssessssssssssssesssssesssssssesssessssseeees 762
UOMINUS (SQL) wrvvvveerrrrereeeeseseseeessesesssesessessessssssesssssesssssssesssssssssessssssessssssesssssesssssseesssessssseeees 763
T T R o I O 765
IMIOD (SQL vvevrveeereeeeeeeeeeeseseesssseeessseeeesesessssseesssssesesseeesssseesssssesesesesssseesssssseeesssesessssessessseeeens 767
IMONTH (SQL) rrerevveeeeearesessseessseseeeesssessssseesssssessssssesssssessssssesssseeessssesssssssesssesssssssssssseeeeens 769
MONTHNAME (SQLY) vvvveeevrrreeeeeeeeeseeeeesssesssssessssseesesssssssseesssssssssssssssssssssssssssssseessssssssssssesenns 771
NOW (SQLY errrrereeeeereeeeeessssssseeessessesesssssesssssessesssssesssesssssssssssssesessssesssssesssssssesssssssssesssssssssesssns 773
NULLIF (SQLY 11rrreeereveveeeesesessseesssssssesssssesssesesssssesessssesssssessssssssssssssssseessssssssssssessesessssssesssssnoen 775
AV O 777
UOOBIECT (SQL) errrereveeeeeeseresssseessesseeseesssesssseesssessesssessesssssesssssssseesssessssseesssssesesesesesesseesssseee 780
UOODBCIN (SQLY) wrrrerereeeeeeeeeessesrsesseessssseesssssesssssesssssseeesssseesssssesssssesesssesssssesssssssesessesssseesssseees 781
UOODBCOUT (SQL) rrreerveveeeseesreeseeessesseeessssssssssessssssssssssessssssssssssssesssesssssssssssssesesssesssssesssssees 782
BOID (SQL) evvvvvveeeeerrreeseeseseseeessssesssssessssssssesssssesssssssssssesessseessssssssssssssssssesssssesssesssesesesesssseees 783
PI USQLY wevvrrrrerreeeeeeeseeesseseessseessessssessssessseeessssssesssseesssseessssssssessesssseessesssseesseessssseesssssseesnesssee 784
SPIECE (SQL) «.vvrereeeveeeeeessesesssseeesssssssssssessssseesssssseseesseesssseessssssesessesssssesesssssssessssessssseesssssssenenns 785
OBPLUS (SQL) +.vveereeveeeeeeeeesessssseesssseeeeessssssssesssesseesssssesssssessssssesesssssssssesssssesesessessssssesssssseeennes 789
POSITION (SQLY wrvrvveveeeerreeseseeessesseeesessessssesssssseeessseesssssesssssssssssesssssesssssseeessesssesesssssseesesseen 791
POWER (SQLY «vvvvveveereersseeessesseeesessssssssessssssesessssesssssssssssssssssssessssesssssssessssssesssssssssssssessesssssee 793
PREDICT (SQLY rvvvvvverrtrreeseeeseessessssssesssseesssssssesssssssssessssssssesssssesssesssssssssesssnesssssesssssseesssesssssee 795
PROBABILITY (SQLY wervvvvveeeeerseeseeeeseseeessssssesssseessssssssssssssssssessssssssssssssssssessssssssesssssssseessssees 797
QUARTER (SQLY wvvveevverrmeeeeeeeeeeeessesessssseesssssssesssesssssesssssssssssssessseseessssessesssesssssesssesssseesosesssseees 799
RADIANS (SOLY cvvvveevrrreeeeeeeeseveeeesessessssseesssseeessssesssssessssssesssssssssssessssseesssssesssssesssssseeeesesssseneees 801
REPEAT (SQL) evvvvvveeeerereseseeesseseeessssesssssesssssssessssessssssssssssesesssessssesssssssssssssessssssesessseeeessssssssee 802
REPLACE (SQL) vvvvvvvvevtreseeeeseeseesssssesssseesssssssessssssssssessssssesssssesssssssssssssessssesssssesssssseessesssssee 803
REPLICATE (SQLY) ¢rvtereeveeveeeeesssessessesssssssssssssessseesssssssssssssnesssssesssssssssssssssssssessssssseessssesssesssseses 805
REVERSE (SQLY wvvvvevtrreeeeeeeseseseeesssssesssssessssssssssssnsssssessssssssssssssssssssssssssssssssssssssesssssssssssssssssseess 806

InterSystems SQL Reference vii

RIGHT (SQLY et reeeeeeeesesesseseesssesseessssesssesssssssesessseessssssssssssssessssssssesssssssesssesssssesssssseesesseen 808

ROUND (SQL) 1.ttutittiittietirietisieestees ettt st st be st e be st e e sesesbesesbesesbenesbenestensatens 809
RPAD (SQL) rttiteitiieiestetiste sttt sttt sttt se et sa et b se st e e et e e et e e ebe e e besaetena et e seetesaetesbereebe e arereas 812
RTRIM (SQL) 1evtetteeeiteeeeseesseessee st sestes s sees s s sss s ssns s ss s ss s es s ss s es s sssssees e ssnssnnes 814
SEARCH_INDEX (SQL) etitttittiiteiite sttt sttt sttt sttt et st se et et sse e ssesesneseanes 815
SECOND (SQL) 1tttttiterieteeete ettt sttt st s see e st be ettt sbe st et st sbe st e be st e be s b ebe st ebesbesesbenesbenesbens 817
] [N (5 PO SRPRRR 820
SIN (SQLL) ottt e et a et et s ettt b et Rttt R et R R R et bt e ne s 822
S AN (]] TSRS 823
YOSQLSTRING (SQL) vtietiitiiiitiistisistie ettt bbbt s bttt be s te s renrens 824
YOSQLUPPER (SQL) .ttt sttt sttt bbbt 827
SOQRT (SQL) ottt bbbt b et ettt sttt b e e bbb bbb e 830
SQUARE (SQL) 1rtittietiietirieiisteiestees ettt ettt et se st be e be b be b e besbesesbe st sbe st sbeneete s ntens 831
LI R €51 I TSRO 832
STRING (SOL) 1trtettiteiiteiitiestet sttt ettt st s bt a et e bbb et e s e s e ssesessesestes s bessase s ane s 833
STUFF (SQL) wovtrteveeeeeeeeseesesssessessesssess st s s s es e sss s sssssss s st sssssssses s sess s sssess s sens 835
SUBSTR (SQL) 11ttt ettt ettt sttt e bbb bt eb ettt e b e ebeneebeseebenretenrerens 837
SUBSTRING (SQL) 1utttiteiiiieiiteiste ettt sttt sttt ettt ettt sttt seebe e besaetesbesesbesennas 839
ST B I = (510) ORI 842
%SYSTEM_SQL.DefaultSChema()ccourerereiirienieie ettt 843
B A (51 TSR PRPRRN 844
TIMESTAMPADD (SQL) 1trteteieiieieiees e sttt se st ste e ese s e s e stestesnesnesaessessenseseesasnsesenses 845
TIMESTAMPDIFF (SQL) oeittiitiieiirieisieiesieesie sttt bbb e 848
TO_CHAR (SQL) 1ttt bbb bbbttt sttt b et ne b 851
TO _DATE (SQL) 1ttttiieiiiieisteesteese ettt be st bttt st s et st e e 860
TO_NUMBER (SQL) ttttitiiitiiitirisisiee ettt ettt tessssessesessesessens 867
TO_POSIXTIME (SQL) 1errtreitiereiecieeeie et sse s ssssss s sss st ssss et ssessans 870
TO_TIMESTAMP (SQL) w.ervteteeeeieeeeeseesessesssessessssses s ssss s ss st ss s sses s ssss s sssssnsens 876
STRANSLATE (SQL) 1ttt ettt sttt sttt ettt ettt se bbb sb e abe e 883
TRIM (SQL) 1ttt et ettt sb et s bt s b b e e b e e ek et be et e ebe st ebeneebe e 885
TRUNGCATE (SQL) 1titttittiteiesieie sttt sttt ettt ettt sttt sttt et be e bebesbesesbesesbe e sbenessens 888
YOTRUNCATE (SQL) eottiteiiiieiiieiesteiste sttt sttt st sae st et e bt et e tessetesaetesaeresansennes 891
STSQL_NEWID (SQL) wvvveevreeiieissessessessssis st sss st sssssssssssassssssssssssssssssessssssassssnssnsons 893
LU0 (510) TSP 894
UNIX_TIMESTAMP (SQL) 1ttt sttt sttt sttt nes 895
UPPER (SQL) tttttteterieterietesieie st sttt st et sttt sttt sb et st b sb s b e be e ebe e ebe e et e ebeneebennetennas 898
USER (SQL) ettt ittt ettt ettt sttt b bbb s b et et et ettt ettt r et 900
WEEK (SQL) vttt sttt sttt st sa et s a et b ettt e et et et e et e neetenaetenaerenrereas 901
XMLCONCAT (SQL) cotieitiieiesieesteie ettt sttt e st st re b se b e e be et sesbe e sbe s ete s e tessenennns 904
XMLELEMENT (SQLY) wottvtrvteeeieeeesesssesseesseesses s sssssssssesss e ssesssssssssesssssssssesssssasssessssssson 905
XMLFOREST (SQL) 1tttettrietirietirteiesieestesesie sttt sttt bbbt bbbttt sttt et 909
YEAR (SQL) ettitetiiieiite ettt ettt sttt bbb btk ettt ek et et e bbb e b e abe e 912
SQL UNAIY OPEIALOIS ..viitiiiiiieiiesiitesiee sttt e siae st siaesbeestaeasteesaeesbeesbaessbeesbaessbeesbseanbeesbeeanbeenseesnbeens 915
(A L=ToF- LAY <) IO OO SR TRUSOPRR 916
F (POSITIVE) .ttt ettt b bt bbbkt b R b bRttt bbb 917
SQL REfEreNCe MALEIIALc.voeeeeieiice et ne s ere e ene s 919
Data TYPES (SQLL) ..vvereeieeeieiesesie st e st ste e ste st e re e esestesresbesbeseeseesresbeseeseenseneeeeneenensenneanens 920
Date and Time COoNStIUCES (SQL) .veiveiviiieieieeieeree s se et et se e se e e e enesresnesrens 948
Default user name and password (SQL)eeceieeieiieeiisie e eie et sre e see e e e e aesreens 951
SQLCODE EFTOF COUES ...vveuviitieuiectieite st e st seestesae s e eaestaestesteesbesraebesssestesssessesaeestessesstesseessenssenes 952

viii InterSystems SQL Reference

[T [0 IoTo 1S U1 RS TT 953

RESErVEA WOITS (SQL) .ottt ettt b et sb e et b et e b e et e e eb e ene 954
SPECIAI VATADIES ... 956
String Manipulation (SQL)e.eoeireireiriesese bbb bbb 958

InterSystems SQL Reference

List of Tables

LI Lo [= RO S USRS 94
Table C-1: SQL Equality Comparison PrediCALESccereirieririeirieisienisesiee e 402
Table C-2: SQL Equality Comparison PrediCatESecureirieirieiriensiessesie e 438
Table C—3: SQL SUbStriNg PrediCatescoeiveeriiriesesesesesiese e seeie e seeeesee e e sse e e sresresaesresne s 439
Table D=1: LIKE WIilACArd CharaClerscccviievueireeiiireeireieeireseestesteesrestsesresssesresssesresnsesnesnnesnesnnes 483
Table G—1: SHOROLOG Date and Time FOIMALccoiiiieiriiieire ettt st 634
Table G—2: DAte FOMMAL ...cviiivie ettt ettt ste e et e sbe e s re e sbe e s beeebeesabeesbeeeabeesbeesabeebessabeenseesareens 635
LI L] (S R 10 TN o] 1 | SO 635
Table G—4: SHOROLOG Date and Time FOIrMALccecoiiiiiiiiececie ettt 640
Table G=5: DAt FOMMALceciiiiiiice ettt ettt s be e s be et e s b e e st e sbe et e sbeenbesbeenbesbeennes 641
Table G=6: TIME FOIMALciviiiiiticiiire ettt sttt st sb et sb e et eeb e e b e ebeesbesbeesbesbeesbestaesbesteesbessbesreens 642
I o] L= SRR 655
Table G-8: SHOROLOG Date and Time FOIMALccciviiieiriiieciciecre ettt st 656
Table G—9: DAtE FOIMMAL ..ccviiiiiiiiieitie ittt ettt ste et e e e e be e st e e e beesabeesbessabeesbeesaseebesssbeenseesareens 656
I o] S C O i I T g L= o 0 = 657
Table G=11: DA FOIMALScceicviirieeieiieecie it st eee sttt ettt e s be b e s beebesbeesbesbeesresaeesbesseesbeeseesbeenbeses 853
Table G=12: TIME FOIMALSceiiiiiiiieeite ettt ettt be e ebe e s be e sbe et e sbeesbesbeebesbaesbesbsesbeenseebeenns 854
Table G—13: NUMDEE FOIMMALSc.cciiiiiiieie ettt ee e be e staeebe e sbbeebeesaeessbeesaneenbeens 854

InterSystems SQL Reference

Symbols and Syntax Conventions

InterSystems SQL Reference

Symbols and Syntax Conventions

Symbols Used in InterSystems SQL

A table of characters used in InterSystems SQL as operators, etc.

Table of Symbols

The following are the literal symbols used in InterSystems SQL on InterSystems IRIS® data platform. (This list does not
include symbols indicating format conventions, which are not part of the language.) There is a separate table for symbols
used in ObjectScript.

The name of each symbol is followed by its ASCII decimal code value.

Symbol

[space] or
[tab]

$$

Name and Usage

White space (Tab (9) or Space (32)): One or more whitespace characters between keywords,
identifiers, and variables.

Exclamation mark (33): OR logical operator in between predicates in condition expressions.
Used in the WHERE clause, the HAVING clause, and elsewhere.

In SQL Shell, the ! command is used to issue an ObjectScript command line.

Exclamation mark/Equal sign: Is not equal to comparison condition.
Quotes (34): Encloses a delimited identifier name.

In Dynamic SQL used to enclose literal values for class method arguments, such as SQL
code as a string argument for the %Prepare() method, or input parameters as string argu-
ments for the %Execute() method.

In %PATTERN used to enclose a literal value within a pattern string. For example,
"3L1"L".L" (meaning 3 lowercase letters, followed by the capital letter “L”, followed by any
number of lowercase letters).

In XMLELEMENT used to enclose a tag name string literal.

Two quotes: By themselves, an invalid delimited identifier. Within a delimited identifier, an

escape sequence for a literal quote character. For example, **a'**"good"""id"".
Pound sign (35): Valid identifier name character (not first character).
With spaces before and after, modulo arithmetic operator.

For Embedded SQL, ObjectScript macro preprocessor directive prefix. For example,
#include.

In SQL Shell the # command is used to recall statements from the SQL Shell history buffer.

Dollar sign (36): Valid identifier name character (not first character).
First character of some InterSystems IRIS extension SQL functions.
Double dollar sign: used to call an ObjectScript user-defined function (also known as an

extrinsic function). For more details, see Function and Method Call Selection in the selectltem
argument of the SELECT reference page.

InterSystems SQL Reference

Symbols Used in InterSystems SQL

Symbol
%

%%

0

()

Name and Usage
Percent sign (37): Valid first character for identifier names (first character only).

First character of some InterSystems SQL extensions to the SQL standard, including string
collation functions (%SQLUPPER), aggregate functions (%DLIST), and predicate conditions
(%STARTSWITH).

First character of %ID, % TABLENAME, and %CLASSNAME keywords in SELECT.

First character of some privilege keywords (%CREATE_TABLE, %ALTER) and some role
names (%All).

First character of some Embedded SQL system variables (%0ROWCOUNT, %msg).

Data type max length indicator: CHAR(%24)

LIKE condition predicate multi-character wildcard.

Double percent sign: Prefix for the pseudo-field reference variable keywords: %%CLASS-
NAME, %%CLASSNAMEQ, %%ID, and %%TABLENAME, used in ObjectScript computed
field code and trigger code.

Ampersand (38): AND logical operator in WHERE clause and other condition expressions.
$BITLOGIC bitstring And operator.

Embedded SQL invocation prefix: &sql(SQL commands).

Single quote character (39): Encloses a string literal.
Double single quote characters: An empty string literal.

An escape sequence for a literal single quote character within a string value. For example:
“can""t"

Parentheses (40,41): Encloses comma-separated lists. Encloses argument(s) of an SQL
function. Encloses the parameter list for a procedure, method, or query. In most cases, the
parentheses must be specified, even if no arguments or parameters are supplied.

Ina SELECT DISTINCT BY clause, encloses an item or comma-separated list of items used
to select unique values.

In a SELECT statement, encloses a subquery in the FROM clause. Encloses the name of
a predefined query used in a UNION.

Encloses host variable array subscripts. For example, INTO :var(l), :var(2)
Encloses embedded SQL code: &sql(code)
Used to enforce precedence in arithmetic operations: 3+(3*5)=18. Used to group predicates:

WHERE NOT (Age<20 AND Age>12).

Double Parentheses: suppress literal substitution in cached queries. For example, SELECT
TOP ((4)) Name FROM Sample.Person WHERE Name %STARTSWITH (('A")). Optimizes
WHERE clause selection of a non-null outlier value.

InterSystems SQL Reference 3

Symbols and Syntax Conventions

Symbol Name and Usage

* Asterisk (42): A wildcard, indicating “all” in the following cases: In SELECT retrieve all
columns: SELECT * FROM table. In COUNT, count all rows (including nulls and duplicates).
In GRANT and REVOKE, all basic privileges, all tables, or all currently defined users.

In %MATCHES pattern string a multi-character wildcard.

Multiplication arithmetic operator.

/ Asterisk slash: Multi-line comment ending indicator. Comment begins with /.
+ Plus sign (43): Addition arithmetic operator. Unary positive sign operator.
, Comma (44): List separator, for example, multiple field names.

In data size definition: NUMERIC (precision,scale).

- Hyphen (minus sign) (45): Subtraction arithmetic operator. Unary negative sign operator.
SQLCODE error code prefix: —304.
Date delimiter.
In %MATCHES pattern string a range indicator specified within square brackets. For
example, [a-m].

— Double hyphen: Single-line comment indicator.

—> Hyphen, greater than (arrow): implicit join arrow syntax.

Period (46): Used to separate parts of multipart names, such as qualified table names:
schema.tablename, or column names: tablealias.fieldname

Decimal point for numeric literals in American numeric format.
Date delimiter for Russian, Ukrainian, and Czech locales: DD.MM.YYYY
Prefixed to a variable or array name, specifies passing by reference: .name

%PATTERN pattern string multi-character wildcard.

/ Slash (47): Division arithmetic operator.

Date delimiter.

/* Slash asterisk: Multi-line comment begins indicator. Comment ends with */.
Colon (58): Host variable indicator prefix: :var

A time delimiter for hours, minutes, and seconds. In CAST and CONVERT functions, an
optional thousandth-of-a-second delimiter.

In trigger code a prefix indicating an ObjectScript label line.
In CREATE PROCEDURE ObjectScript code body, a macro preprocessor directive prefix.

For example, :#include.

Double colon: In trigger code this doubled prefix indicates that the identifier (::name) beginning
that line is a host variable, not a label line.

4 InterSystems SQL Reference

Symbols Used in InterSystems SQL

Symbol

[]

{}

Name and Usage

Semicolon (59): SQL end of statement delimiter in procedures, methods, queries, and trigger
code. Accepted as an optional end of statement delimiter by ImportDDL() or wherever
specifying SQL code using a TSQL dialect. Otherwise, InterSystems SQL does not use or
allow a semicolon at the end of an SQL statement.

Less than (60): Less than comparison condition.

Less than or equal to: Less than or equal to comparison condition.
Less than/Greater than: Is not equal to comparison condition.
Equal sign (61): Equal to comparison condition.

In WHERE clause, an Inner Join.

Greater than (62): Greater than comparison condition.
Greater than or equal to: Greater than or equal to comparison condition.

Question mark (63): In Dynamic SQL, an input parameter variable supplied by the Execute
method.

In %MATCHES pattern string a single-character wildcard.
In SQL Shell the ? command displays help text for SQL Shell commands.

At sign (64): Valid identifier name character (not first character).

The letter “E” (69, 101): Exponent indicator.

%PATTERN code specifying any printable character.

Open square bracket (91): Contains predicate. Used in the WHERE clause, the HAVING
clause, and elsewhere.

Open and close square brackets: In %MATCHES pattern string, encloses a list or range of
match characters. For example, [abc] or [a-m].

Backslash (92): Integer division arithmetic operator.

In %MATCHES pattern string an escape character.

Close square bracket (93): Follows predicate. Used in the WHERE clause, the HAVING
clause, and elsewhere.

Caret (94): In %MATCHES pattern string a NOT character. For example, [*abc].

Underscore (95): Valid first (or subsequent) character for identifier names. Valid first character
for certain user names (but not passwords).

Used in column names to represent embedded serial class data: SELECT Home_ State,
where Home is a field that references a serial class and State is a property defined in that
serial class.

LIKE condition predicate single-character wildcard.
Curly braces (123,125): Enclose ODBC scalar functions: {fn nane(...)}. Enclose time
and date construct functions: {d "string"}, {t "string"}, {ts “string"}.

Enclose ObjectScript code in procedures, methods, queries, and trigger code.

InterSystems SQL Reference 5

Symbols and Syntax Conventions

Symbol Name and Usage
Il Double vertical bar (124): Concatenation operator.

Compound ID indicator. Used by InterSystems IRIS as a delimiter between multiple properties
in a generated compound object ID (a concatenated ID). This can be either an IDKey index
defined on multiple properties (propl] |prop2), or an ID for a parent/child relationship
(parent]] child). Cannot be used in IDKEY field data.

6 InterSystems SQL Reference

Syntax Conventions

Syntax Conventions

Specifies conventions used in the InterSystems SQL Reference.

Description

The following are the format conventions used in this reference. These format characters explain usage; they are not spec-
ified when coding an SQL program. For a table of the symbols that are used in SQL coding, refer to the SQL Symbols
table.

Symbol Meaning
[nnnn] An argument enclosed in square brackets is optional. Specify none or one.
{nnnn} An argument enclosed in curly braces is optional, and may be repeated multiple times.

Specify none, one, or more than one.

Curly braces are also used as literal characters, for example in ODBC scalar functions
with the form: {fn FUNCTION(arg)}

mmmm | nnnn A vertical bar means OR. Specify either one or the other.

An ellipsis indicates an unspecified portion of a complete SQL statement. It can also
be used to specify repetition: varl,var2,...

= Is equivalent to.

If an argument appears as an "item-list", then the argument can consist of one or more of the particular items delimited by
a particular character. A cross-reference from an item-list points to the page for item itself.

If an argument appears as an "item-commalist”, then the argument can consist of one or more of the particular items
delimited by a comma. A cross-reference from an item-commalist points to the page for item itself.

When an item is listed in bracketed parentheses, such as [(] i dentifi er [)] then the pair of parentheses (as a unit)
is optional.

InterSystems SQL Reference 7

SQL Commands

InterSystems SQL Reference

SQL Commands

ALTER FOREIGN SERVER (SQL)

Alters a foreign server definition.

Synopsis
Change Connection

ALTER [FOREIGN] SERVER server-nane
ALTER CONNECTION j dbc-connecti on

ALTER [FOREIGN] SERVER server-nane
ALTER HOST file-path
Change Delimited Identifiers
ALTER [FOREIGN] SERVER server-nane ALTER id-option

Change Connection and Delimited Identifiers

ALTER [FOREIGN] SERVER server-nane
MODIFY [CONNECTION jdbc-connection | HOST file-path],

i d-option
Arguments
Arguments Description
server-name The name for the foreign server definition being altered. A valid identifier.

CONNECTION cxn-name | The name of the new JDBC connection that will connect InterSystems IRIS with
an external data source. A valid identifier. Must be the name of a JDBC
connection that has already been defined. Must be delimited.

HOST file-path The new file path that you want to use to access files that will be projected into
InterSystems IRIS.

id-option Either DELIMITEDIDS or NODELIMITEDIDS. Sets behavior based on whether
the external data source accepts delimited identifiers or not.

Description

The ALTER FOREIGN SERVER command allows you to change how a foreign server connects with an external data
source. You may use the ALTER variant of the command to change a single parameter or the MODIFY variant to change
multiple parameters. In particular, you may change the file path, JDBC connection, or delimited identifier option that the
foreign server uses when connecting with an external source.

Before you change the connection parameters of a foreign server with either the CONNECTION or HOST property, you
should be sure that your changes will not affect your ability to access the foreign tables you have defined on the foreign
server. For example, if you change the HOST file path and still want to access the tables you have already defined, you
should move any .csv files associated with foreign tables into the new file path. You will be unable to access data in these
tables until you have made the proper changes. There are no concerns when you use ALTER FOREIGN SERVER to change
these connection parameters on a foreign server that does not have a foreign table defined on it.

Examples

The following example alters a foreign server’s file path to read data from a different directory.

ALTER FOREIGN SERVER Sample.Test ALTER HOST "/second/filepath*

10 InterSystems SQL Reference

ALTER FOREIGN SERVER (SQL)

The following example alters a foreign server’s JDBC connection to read data from a different database source and indicates
that the external data source permits delimited identifiers.

ALTER FOREIGN SERVER Sample.Test MODIFY CONNECTION “anotherConnection®, DELIMITEDIDS

See Also

e CREATE FOREIGN SERVER
« DROP FOREIGN SERVER

e CREATE FOREIGN TABLE

InterSystems SQL Reference 11

SQL Commands

ALTER FOREIGNTABLE (SQL)

Alters a foreign table definition.

Synopsis
Change Column Name

ALTER FOREIGN TABLE t abl e-name ALTER [COLUMN] ol d- nane
RENAME new nane

ALTER FOREIGN TABLE t abl e- nanme MODIFY ol d- nane
RENAME new nane, ol d-nane2 RENAME new nane2, ...

ALTER FOREIGN TABLE t abl e-nane ALTER [COLUMN] ol d- nane
RENAME new nanme VALUES (external - nane)

ALTER FOREIGN TABLE t abl e-nane MODIFY ol d- nane
RENAME new nane, ol d-nane2 RENAME new nane2, ...
VALUES (newext ernal - nane, newexternal -nane2, ...)

Change Datatypes

ALTER FOREIGN TABLE tabl e-nane ALTER col - nane dat at ype
ALTER FOREIGN TABLE t abl e- name MODIFY col - name dat at ype

{, col-nane datatype ...}
Arguments
Arguments Description
table-name The name for the foreign table that will be altered. A valid identifier. Must be the
name of a foreign table that exists on a foreign server before this command is
issued.
old-name The name of the column within InterSystems IRIS that will be changed. A valid

identifier. Must correspond with the name of a column that exists in the foreign
table before this command is issued.

new-name The new name of the column within InterSystems IRIS. A valid identifier.

external-name The new name of the column in the external data source that projects data into
the corresponding column in the RENAME clause.

col-name The name of the column that will be converted to a new data type. A valid
identifier. Must correspond with the name of a column that exists in the foreign
table before this command is issued.

dataype The new datatype of the column. Must be a valid SQL data type.

Description

The ALTER FOREIGN TABLE command modifies a foreign table definition. There are two types of alterations you may
apply to a given table:

» Change the column name(s) of a column or list of columns.

» Change the data type(s) of a column or list of columns.

Change Column Names

You may use the ALTER FOREIGN TABLE command to change the column names of a single column or a list of columns
in a foreign table.

12 InterSystems SQL Reference

ALTER FOREIGN TABLE (SQL)

There are two variations:

* ALTER FOREIGN TABLE table-name ALTER [COLUMN] old-name RENAME new-name renames a column
of the foreign table from old-name to new-name.

» ALTER FOREIGN TABLE table-name MODIFY old-name RENAME new-name renames one or more columns
of the foreign table from their old-name to their corresponding new-name.

e ALTER FOREIGN TABLE table-name ALTER [COLUMN] old-name RENAME new-name VALUES (
external-name) renames a column of the foreign table from old-name to new-name. This variation also changes the
name of the column in the external data source that projects data into the specified column.

e ALTER FOREIGN TABLE table-name MODIFY old-name RENAME new-name, old-name2 RENAME
new-name2 VALUES (external-name, external-name2) renames a series of columns of the foreign table from the
old-name to the corresponding new-name. This variation also changes the names of the columns in the external data
source that projects data into the specified columns.

Note: InterSystems does not recommend changing the name of a column or set of columns with the ALTER FOREIGN
TABLE command. Instead, because a foreign table is merely a projection of data from another source, if you
intend to make significant changes to the external data source, you should drop the foreign table, edit the database
or .csv file, and then recreate the foreign table.

Change Column Data Types

You may use the ALTER FOREIGN TABLE command to convert the data types of a column or a list of columns in a
foreign table. The new data type(s) must be valid InterSystems SQL data type(s).

You may not change the data type of a column if the change would result in stream data being typed as non-stream data or
non-stream data being typed as stream data. Attempting to do so results in a SQLCODE -374 error.

There are two variations:
e ALTER FOREIGN TABLE table-name ALTER col-name datatype changes the data type of a single column.

e ALTER FOREIGN TABLE table-name MODIFY col-name datatype {, col-name datatype ...} changes the data
type(s) of one or more columns. You may specify a different data type for each column.

Examples

The following example change the names of the LastName column on a foreign table called Sample.Person. The example
shows both the ALTER and MODIFY forms of the command.

ALTER FOREIGN TABLE Sample.Person ALTER COLUMN LastName RENAME Surname
ALTER FOREIGN TABLE Sample.Person MODIFY LastName RENAME FamilyName, FirstName RENAME GivenName

The following example changes the data type of the Amount column on a foreign table called Sample.Account. The
example shows both the ALTER and MODIFY forms of the commands.

ALTER FOREIGN TABLE Sample.Person ALTER Amount INTEGER
ALTER FOREIGN TABLE Sample.Person MODIFY Amount INTEGER

See Also

» CREATE FOREIGN TABLE
 DROP FOREIGN TABLE

InterSystems SQL Reference 13

SQL Commands

ALTER ML CONFIGURATION (SQL)

Modifies an ML configuration.

Synopsis

ALTER ML CONFIGURATION mi - confi gurati on-nanme
[PROVIDER provi der-nanme] [%DESCRIPTION descri ption]
[USING j son-object-string] [provider-connection-settings]

Arguments

ml-configuration-name The name for the ML configuration being altered.
PROVIDER provider-name | A string specifying the name of a machine learning provider, where values are:
* AutoML
« H20
» DataRobot
 PMML

%DESCRIPTION Optional — String. A text description for the ML configuration. See details below.
description

USING json-object-string Optional — A JSON string specifying one or more key-value pairs; see details
below.

provider-connection-settings | Any additional settings, required for connection, that vary by the machine learning
provider. See details below.

Description

The ALTER ML CONFIGURATION statement alters one, or several, parameters within an ML configuration definition.
You can alter:

* The provider
» The description
* The USING clause

» Provider connection settings

ML Configuration Description

%DESCRIPTION accepts a text string enclosed in single quotes, which you can use to provide a description for documenting
your configuration. This text can be of any length, and can contain any characters, including blank spaces.

USING

You can specify a default USING clause for your configuration. This clause accepts a JSON string with one or more key-
value pairs. When TRAIN MODEL is executed, by default the USING clause of the configuration is used.

ALTER ML CONFIGURATION MyConfiguration USING {"seed": 3}

14 InterSystems SQL Reference

ALTER ML CONFIGURATION (SQL)

You must make sure that the parameters you specify are recognized by the provider you select. Failing to do so may result
in an error when training.

Provider Connection Settings

Depending on the provider specified by your configuration, there may be additional fields you must enter to establish a
successful connection.

DataRobot
You must specify the following values to successfully connect to DataRobot:
e URL [=17 url-string—whereurl -stringisthe URL of a DataRobot endpoint.

e APITOKEN [=] token-string— wheretoken-stringisyour client API token to access the DataRobot
AutoML server.

Altering an ML configuration for DataRobot could be performed with a query as follows:
ALTER ML CONFIGURATION datarobot-configuration URL url-string APITOKEN token-string
With proper values for url-string and token-string

Required Security Privileges

Calling ALTER ML CONFIGURATION requires %ALTER_ML_CONFIGURATION privileges; otherwise, there is a
SQLCODE -99 error (Privilege Violation). To assign %ALTER_ML_CONFIGURATION privileges, use the GRANT
command.

Examples

The following SQL query edits an existing configuration named TestH20 to add a USING clause that the user wants used
for every model being trained:

ALTER ML CONFIGURATION TestH20 USING {''seed": 2}

See Also

» CREATE ML CONFIGURATION, DROP ML CONFIGURATION

InterSystems SQL Reference 15

SQL Commands

ALTER MODEL (SQL)

Modifies a model

Synopsis

ALTER MODEL nodel -nane PURGE [ALL] [integer DAYS]

ALTER MODEL nodel - nane DEFAULT [TRAINED MODEL] trai ned- nodel - nane

Arguments
model-name The name of the machine learning model to alter.
DEFAULT A trained machine learning model.
trained-model-name
integer DAYS An integer.

Description

An ALTER MODEL statement modifies a machine learning model. You can perform only one type of operation in each
ALTER MODEL statement.

» A PURGE deletes all training runs and validation runs for the associated model based on the given scope:
— If no scope is given, all records are deleted except for those associated with the default trained model.
— If integer DAYS isgiven, all records older than integer days are deleted.

— If ALL is given, all records are deleted regardless of when they occurred.

* A DEFAULT (or DEFAULT TRAINED MODEL) sets the default trained model to be the model specified. This is
useful when you have made several TRAIN MODEL statements using the same model definition, saving each trained
model to a different name, and you wish to switch which model the default name points to. Specifying a nonexistent
model results in an error.

Required Security Privileges

Calling ALTER MODEL requires % MANAGE_MODEL privileges; otherwise, there is a SQLCODE —99 error (Privilege
Violation). To assign %MANAGE_MODEL privileges, use the GRANT command.

Examples

The following query uses a PURGE clause to delete all training and validation run data for the SpamFi I'ter model:
ALTER MODEL SpamFilter PURGE ALL

The following query uses a DEFAULT clause to change the default trained model of SpamFi I ter to SpamFi lter3

ALTER MODEL SpamFilter DEFAULT SpamFilter3

See Also

» CREATE MODEL, DROP MODEL

16 InterSystems SQL Reference

ALTER TABLE (SQL)

ALTER TABLE (SQL)

Modifies a table.
Synopsis

ALTER TABLE table alter-action

where alter-action is one of the following:
ADD [(Q add-action {,add-action} D] |
DROP [COLUMN 7] drop-col um-action {,drop-col um-action} |
DROP drop-action |
DELETE drop-action
ALTER [COLUMN] field alter-colum-action |
MODIFY nodi fication-spec {,nodification-spec}
RENAME t abl e

add-action ::=
[CONSTRAINT identifier]
[(Q FOREIGN KEY (field-conmmalist)
REFERENCES table (fiel d-commalist)
[ON DELETE ref-action] [ON UPDATE ref-action]
[NOCHECK] D]

{(] UNIQUE (field-commlist) DI
[@A PRIMARY KEY (field-commalist) D]
DEFAULT [(] default-spec [)] FOR field

[COLUMN] [field datatype [sqlcollation]
[%DESCRIPTION string]
[DEFAULT [(] default-spec D1 1
[ON UPDATE updat e-spec]
[UNIQUE] [NOT NULL]
[REFERENCES tabl e (field-commalist)
[ON DELETE ref-action] [ON UPDATE ref-action]
[NOCHECK] 1

D1

drop-col um-action ::=
[COLUMN] field [RESTRICT | CASCADE] [%DELDATA | %NODELDATA]

drop-action ::=
FOREIGN KEY identifier |
PRIMARY KEY |
CONSTRAINT identifier |

alter-colum-action ::=
RENAME newf i el dnane |
dat at ype
[SET] DEFAULT [(] default-spec [)] | DROP DEFAULT |
NULL | NOT NULL |
COLLATE sql col | ati on

nodi fication-spec ::=
ol df i el dname RENAME newfi el dnanme |
field [datatype]
[DEFAULT [(] default-spec [D]1]
[CONSTRAINT i dentifier] [NULL] [NOT NULL]

sqgl col lation ::=
{ %EXACT | %MINUS | %MVR | %PLUS | %SPACE |
%SQLSTRING [(maxl en)] | %SQLUPPER [(maxlen)] |
%TRUNCATE[(maxl en)] }

InterSystems SQL Reference

17

SQL Commands

Arguments

Argument Description

table The name of the table to be altered. The table name can be qualified (schema.table),
or unqualified (table). An unqualified table name takes the default schema name.
Schema search path values are not used.

identifier A unique name assigned to a constraint. Must be a valid identifier.

field The name of the column to be altered (added, modified, deleted). Must be a valid
identifier.

field-commalist The name of a column or a comma-separated list of columns. An field-commalist must
be enclosed in parentheses, even when only a single column is specified. See SQL
Identifiers.

datatype A valid InterSystems SQL data type. See Data Types.

default-spec A default data value automatically supplied for this field, if not overridden by a
user-supplied data value. Allowed values are: a literal value; one of the following keyword
options (NULL, USER, CURRENT_USER, SESSION_USER, SYSTEM_USER,
CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP); or an
OBJECTSCRIPT expression. Do not use the SQL zero-length string as a default value.
For further details, see CREATE TABLE.

update-spec See ON UPDATE in CREATE TABLE.

COLLATE Optional — Specify one of the following SQL collation types: %EXACT, %MINUS,

sqlcollation %PLUS, %SPACE, %SQLSTRING, %SQLUPPER, %TRUNCATE, or %MVR. The
default is the namespace default collation (%SQLUPPER, unless changed).
%SQLSTRING, %SQLUPPER, and %TRUNCATE may be specified with an optional
maximum length truncation argument, an integer enclosed in parentheses. The percent
sign (%) prefix to these collation parameter keywords is optional. The COLLATE keyword
is optional. For further details refer to Table Field/Property Definition Collation.

Description

An ALTER TABLE statement modifies a table definition; it can add elements, remove elements, or modify existing elements.
You can only perform one type of operation in each ALTER TABLE statement.

« RENAME can rename a table, or can rename an existing column in a table with either ALTER COLUMN or MODIFY
syntax.

» ADD can add multiple columns and/or constraints to a table. You specify the ADD keyword once, followed by a
comma-separated list. You can use a comma-separated list to add multiple new columns to a table, add a list of constraints
to existing columns, or both add new columns and add constraints to existing columns.

e DROP COLUMN can delete multiple columns from a table. You specify the DROP keyword once, followed by a
comma-separated list of columns each with their optional cascade and/or data-delete option.

* ALTER COLUMN can change the definition of a single column. It cannot alter multiple columns.

* MODIFY can change the definition of a single column or a comma-separated list of columns. It does not support all
of the options provided by ALTER COLUMN.

» DROP can drop a constraint from a field or group of fields. DROP can only operate on a single constraint.

The ALTER TABLE DROP keyword and the ALTER TABLE DELETE keyword are synonyms.

18 InterSystems SQL Reference

ALTER TABLE (SQL)

To determine if a specified table exists in the current namespace, use the $SYSTEM.SQL.Schema.TableExists() method.

Privileges and Locking

The ALTER TABLE command is a privileged operation. The user must have %ALTER_TABLE administrative privilege
to execute ALTER TABLE. Failing to do so results in an SQLCODE -99 error with the %msg User “"name® does
not have %ALTER_TABLE privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE —99 error with the %msg User "name” does not have required
%ALTER privilege needed to change the table definition for “Schema.TableName®.

To determine if the current user has %ALTER privilege, invoke the %CHECKPRIV command. To determine if a specified
user has %ALTER privilege, invoke the $SYSTEM.SQL.Security.CheckPrivilege() method.

To assign the required administrative privilege, use the GRANT command with %ALTER_TABLE privilege; this requires
the appropriate granting privileges. To assign the %ALTER object privilege, you can use:

* The GRANT command with the %ALTER privilege. This requires the appropriate granting privileges.
» The ALTER check box for the table on the SQL Tables tab in the Management Portal on the page for editing a role or
user. This requires the appropriate granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login("*_SYSTEM","SYS")
&sql()

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

« ALTER TABLE cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class "Schema.tablename®.

« ALTER TABLE cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
“classname”.

ALTER TABLE acquires a table-level lock on table. This prevents other processes from modifying the table’s data. This
lock is automatically released at the conclusion of the ALTER TABLE operation. When ALTER TABLE locks the cor-
responding class definition, it uses the SQL Lock Timeout setting for the current process.

To alter a table, the table cannot be locked by another process in either EXCLUSIVE MODE or SHARE MODE.
Attempting to alter a locked table results in an SQLCODE -110 error, with a %msg such as the following: Unable to
acquire exclusive table lock for table "Sample.MyTest".

RENAME Table

You can rename an existing table using the following syntax:
ALTER TABLE schema.TableName RENAME NewTableName

This operation renames the existing table in its existing schema. You can only change the table name, not the table schema.
Specifying a schema name in the NewTableName results in an SQLCODE -1 error. Specifying the same table name for
both old and new tables generates an SQLCODE -201 error.

InterSystems SQL Reference 19

SQL Commands

Renaming a table changes the SQL table name. It does not change the corresponding persistent class name.
Renaming a table does not change references to the old table name in triggers.

If a view references the existing table name, attempting to rename the table will fail. This is because attempting to rename
the table is an atomic operation that causes a recompile of the view, which generates an SQLCODE -30 error “Table
"schema.oldname® not found”.

ADD COLUMN Restrictions

ADD COLUMN can add a single column, or can add a comma-separated list of columns.

If you attempt to add a field to a table through an ALTER TABLE tablename ADD COLUMN statement:
» Ifacolumn of that name already exists, the statement fails with an SQLCODE -306 error.

» If the statement specifies a NOT NULL constraint on the column and there is no default value for the column, then
the statement fails if data already exists in the table. This is because, after the completion of the DDL statement, the
NOT NULL constraint is not satisfied for all the pre-existing rows. This generates the error code SQLCODE -304
(Attempt to add a NOT NULL field with no default value to a table which contains data).

» If the statement specifies a NOT NULL constraint on the column and there is a default value for the column, the
statement updates any existing rows in the table and assigns the default value for the column to the field. This includes
default values such as CURRENT_TIMESTAMP.

e Ifthe statement DOES NOT specify a NOT NULL constraint on the column and there is a default value for the column,
then there are no updates of the column in any existing rows. The column value is NULL for those rows.

To change this default NOT NULL constraint behaviors, refer to the COMPILEMODE=NOCHECK option of the SET
OPTION command.

If you specify an ordinary data field named “ID” and the RowID field is already named “ID” (the default), the ADD
COLUMN operation succeeds. ALTER TABLE adds the ID data column, and renames the Rowld column as “ID1” to
avoid duplicate names.

Adding an Integer Counter
If you attempt to add an integer counter field to a table through an ALTER TABLE tablename ADD COLUMN statement:

* Youcanadd an IDENTITY field to a table if the table does not have an IDENTITY field. If the table already has an
IDENTITY field, the ALTER TABLE operation fails with an SQLCODE -400 error with a %msg such as the following:
ERROR #5281: Class has multiple identity properties: "Sample.MyTest::Myldent2®. When
you use ADD COLUMN to define this field, InterSystems IRIS populates existing data rows for this field using the
corresponding RowID integer values.

If CREATE TABLE defined a bitmap extent index and later you add an IDENTITY field to the table, and the
IDENTITY field is not of type %Bigint, %Integer, %Smallint, or %TinyInt with a MINVAL of 1 or higher, and there
is no data in the table, the system automatically drops the bitmap extent index.

* You can add one or more SERIAL (%Library.Counter) fields to a table. When you use ADD COLUMN to define this
field, existing data rows are NULL for this field. You can use UPDATE to supply values to existing data rows that
are NULL for this field; you cannot use UPDATE to change non-NULL values.

* You can add a ROWVERSION field to a table if the table does not have a ROWVERSION field. If the table already
has a ROWVERSION field, the ALTER TABLE operation fails with an SQLCODE -400 error with a %msg such as
the following: ERROR #5320: Class "Sample.MyTest® has more than one property of type
%Library.RowVersion. Only one is allowed. Properties: MyVer,MyVer2. When you use ADD
COLUMN to define this field, existing data rows are NULL for this field; you cannot update ROWVERSION values
that are NULL.

20 InterSystems SQL Reference

ALTER TABLE (SQL)

ALTER COLUMN Restrictions
ALTER COLUMN can modify the definition of a single column:

» Rename the column using the syntax ALTER TABLE tablename ALTER COLUMN oldname RENAME newname.
Renaming a column changes the SQL field name. It does not change the corresponding persistent class property name.
ALTER COLUMN oldname RENAME newname replaces oldfield name references in trigger code and ComputeCode.

» Change the column characteristics: data type, default value, NULL/NOT NULL, and collation type.

If the table contains data, you cannot change the data type of a column that contains data if this change would result in
stream data being typed as non-stream data or non-stream data being typed as stream data. Attempting to do so results in
an SQLCODE -374 error. If there is no existing data, this type of datatype change is permitted.

You can use ALTER COLUMN to add, change, or drop a field default value.

If the table contains data, you cannot specify NOT NULL for a column if that column contains null values; this results in
an SQLCODE -305 error.

If you change the collation type for a column that contains data, you must rebuild all indexes for that column.

MODIFY column Restrictions
MODIFY can modify the definitions of a single column or a comma-separated list of columns.

* Rename the column using the syntax ALTER TABLE tablename MODIFY oldname RENAME newname.
Renaming a column changes the SQL field name. It does not change the corresponding persistent class property name.
MODIFY oldname RENAME newname replaces oldfield name references in trigger code and ComputeCode.

» Change the column characteristics: data type, default value, and other characteristics.

If the table contains data, you cannot change the data type of a column that contains data to an incompatible data type:

e A data type with a lower (less inclusive) data type precedence if this conflicts with existing data values. Attempting
to do so results in an SQLCODE -104 error, with the %msg specifying which field and which data value caused the
error.

* A data type with a smaller MAXLEN or a MAXVAL/MINVAL if this conflicts with existing data values. Attempting
to do so results in an SQLCODE -104 error, with the %msg specifying which field and which data value caused the
error.

e A data type change from a stream data type to a non-stream data type or a non-stream data type to a stream data type.
Attempting to do so results in an SQLCODE -374 error. If there is no existing data, this type of datatype change is
permitted.

You can use MODIFY to add or change a field default value. You cannot use MODIFY to drop a field default value.

If the table contains data, you cannot specify NOT NULL for a column if that column contains null values; this results in
an SQLCODE -305 error. The syntax forms ALTER TABLE mytable MODIFY fieldl NOT NULLand ALTER TABLE
mytable MODIFY fieldl CONSTRAINT nevernull NOT NULL perform the same operation. The optional CON-
STRAINT identifier clause is a no-op provided for compatibility. InterSystems IRIS does not retain or use this field constraint
name. Attempting to drop this field constraint by specifying this field constraint name results in an SQLCODE -315 error.

DROP COLUMN Restrictions

DROP COLUMN can delete multiple column definitions, specified as a comma-separated list. Each listed column name
must be followed by its RESTRICT or CASCADE (if unspecified, the default is RESTRICT) and %DELDATA or
%NODELDATE (if unspecified, the default is %NODELDATA) options.

By default, deleting a column definition does not delete any data that has been stored in that column from the data map.
To delete both the column definition and the data, specify the %DELDATA option.

InterSystems SQL Reference 21

SQL Commands

Deleting a column definition does not delete the corresponding column-level privileges. For example, the privilege granted
to a user to insert, update, or delete data on that column. This has the following consequences:

e Ifacolumn is deleted, and then another column with the same name is added, users and roles will have the same
privileges on the new column that they had on the old column.

e Once a column is deleted, it is not possible to revoke object privileges for that column.
For these reasons, it is generally recommended that you use the REVOKE command to revoke column-level privileges
from a column before deleting the column definition.

RESTRICT keyword (or no keyword): You cannot drop a column if that column appears in an index, or is defined in a
foreign key constraint or other unique constraint. Attempting a DROP COLUMN for that column fails with an SQLCODE
-322 error. RESTRICT is the default. See DROP INDEX.

CASCADE keyword: If the column appears in an index, the index will be deleted. There may be multiple indexes. If the
column appears in a foreign key, the foreign key will be deleted. There may be multiple foreign keys.

You cannot drop a column if that column is used in COMPUTECODE or ina COMPUTEONCHANGE clause. Attempting
to do so results in an SQLCODE -400 error.

ADD CONSTRAINT Restrictions

You can add a constraint to a comma-separated list of fields. For example, you can add the UNIQUE (FName,SurName)
constraint, which establishes a UNIQUE constraint on the combined values of the two fields FName and Surname. Similarly,
you can add a primary key constraint or a foreign key constraint on a comma-separated list of fields.

A constraint can be named or unnamed. If unnamed, InterSystems SQL generates a constraint name using the table name.
For example, MYTABLE_Uniquel or MYTABLE_PKEY1.

The following example creates two unnamed constraints, adding both the unique constraint and the primary key constraint
to comma-separated lists of fields:
SQL

ALTER TABLE SQLUser .MyStudents
ADD UNIQUE (FName,SurName),PRIMARY KEY (Fname,Surname)

» Afield must exist to be used in a constraint. Specifying a non-existent field generates an SQLCODE -31 error.
» The Rowld field cannot be used in a constraint. Specifying the Rowld (ID) field generates SQLCODE -31 error.

» Astream field cannot be used in a constraint. Specifying a stream field generates an SQLCODE -400 error: “invalid
index attribute”

e Aconstraint can only be applied once to a field. Specifying the same constraint twice to a field generates an SQLCODE
-400 error: “index name conflict”.

By using the optional CONSTRAINT identifier keyword clause, you can create a named constraint. A named constraint
must be a valid identifier; constraint names are not case-sensitive. This provides a name for the constraint for future use.
This is shown in the following example:

SQL

ALTER TABLE SQLUser .MyStudents
ADD CONSTRAINT UngFullName UNIQUE (FName,SurName)

You can specify multiple constraints as a comma-separated list; the constraint name is applied to the first constraint, the
other constraints receive default names.

22 InterSystems SQL Reference

ALTER TABLE (SQL)

A constraint name must be unique for the table. Specifying the same constraint name twice to a field generates an SQLCODE
-400 error: “index name conflict”.

ADD PRIMARY KEY Restrictions

A primary key value is required and unique. Therefore, adding a primary key constraint to an existing field or combination
of fields makes each of these fields a required field. If you add a primary key constraint to a list of existing fields, the
combined values of these fields must be unique. You cannot add a primary key constraint to an existing field if that field
permits NULL values. You cannot add a primary key constraint to a field (or list of fields) if that field (or list of fields)
contain non-unique values.

If you add a primary key constraint to an existing field, the field may also be automatically defined as an IDKey index.
This depends on whether data is present and upon a configuration setting established in one of the following ways:

e The SQL SET OPTION PKEY_IS_IDKEY statement.

* Thesystem-wide $SYSTEM.SQL.Util.SetOption() method configuration option DDLPKeyNot 1DKey. To determine
the current setting, call $SYSTEM.SQL.CurrentSettings() which displays Are primary keys created through
DDL not ID keys; the defaultis 1.

» Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View the
current setting of Define primary key as ID key for tables created via DDL.

— If the check box is not selected (the default), the Primary Key does not becomes the IDKey index in the class
definition. Access to records using a primary key that is not the IDKEY is significantly less efficient; however,
this type of primary key value can be modified.

— If the check box is selected, when a Primary Key constraint is specified through DDL, and the field does not
contain data, the primary key index is also defined as the IDKey index. If the field does contain data, the IDKey
index is not defined. If the primary key is defined as the IDKey index, data access is more efficient, but a primary
key value, once set, can never be madified.

If CREATE TABLE defined a bitmap extent index and later you use ALTER TABLE to add a primary key that is also
the IDKey, the system automatically drops the bitmap extent index.

ADD PRIMARY KEY When Already Exists

You can only define one primary key. By default, InterSystems IRIS rejects an attempt to define a primary key when one
already exists, or to define the same primary key twice, and issues an SQLCODE -307 error. The SQLCODE -307 error is
issued even if the second definition of the primary key is identical to the first definition. To determine the current configu-
ration, call $SYSTEM.SQL.CurrentSettings(), which displays a Allow create primary key through DDL
when key exists setting. The default is 0 (No), which is the recommended configuration setting. If this option is set
to 1 (Yes), an ALTER TABLE ADD PRIMARY KEY causes InterSystems IRIS to remove the primary key index from
the class definition, and then recreates this index using the specified primary key field(s).

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL You can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

However, even if this option is set to allow the creation of a primary key when one already exists, you cannot recreate a
primary key index if it is also the IDKEY index and the table contains data. Attempting to do so generates an SQLCODE
-307 error.

ADD FOREIGN KEY Restrictions

For information on foreign keys, refer to Defining Foreign Keys and Foreign Key Referential Action Clause in the CREATE
TABLE command, and to Using Foreign Keys.

InterSystems SQL Reference 23

SQL Commands

By default, you cannot have two foreign keys with the same name. Attempting to do so generates an SQLCODE -311 error.
To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Allow DDL ADD foreign
key constraint when foreign key exists setting. The default is 0 (No), which is the recommended setting for
this option. When 1 (Yes), you can add a foreign key through DDL even if one with the same name already exists.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

Your table definition should not have two foreign keys with different names that reference the same field-commalist field(s)
and perform contradictory referential actions. In accordance with the ANSI standard, InterSystems SQL does not issue an
error if you define two foreign keys that perform contradictory referential actions on the same field (for example, ON
DELETE CASCADE and ON DELETE SET NULL). Instead, InterSystems SQL issues an error when a DELETE or
UPDATE operation encounters these contradictory foreign key definitions.

An ADD FOREIGN KEY that specifies a non-existent foreign key field generates an SQLCODE -31 error.

An ADD FOREIGN KEY that references a non-existent parent key table generates an SQLCODE -310 error. An ADD
FOREIGN KEY that references a non-existent field in an existing parent key table generates an SQLCODE -316 error. If
you do not specify a parent key field, it defaults to the ID field.

Before issuing an ADD FOREIGN KEY, the user must have REFERENCES privilege on the table being referenced or on
the columns of the table being referenced. REFERENCES privilege is required if the ALTER TABLE is executed via
Dynamic SQL or over a SQL driver connection.

An ADD FOREIGN KEY that references a field (or combination of fields) that can take non-unique values generates an
SQLCODE -314 error, with additional details available through %msg.

NO ACTION is the only referential action supported for sharded tables.

An ADD FOREIGN KEY is constrained when data already exists in the table. To change this default constraint behavior,
refer to the COMPILEMODE=NOCHECK option of the SET OPTION command.

When you define an ADD FOREIGN KEY constraint for a single field and the foreign key references the idkey of the
referenced table, InterSystems IRIS converts the property in the foreign key into a reference property. This conversion is
subject to the following restrictions:

» The table must contain no data.
e The property on the foreign key cannot be of a persistent class (that is, it cannot already be a reference property).
e The data types and data type parameters of the foreign key field and the referenced idkey field must be the same.

e The foreign key field cannot be an IDENTITY field.

DROP CONSTRAINT Restrictions

By default, you cannot drop a unique or primary key constraint if it is referenced by a foreign key constraint. Attempting
to do so results in an SQLCODE -317 error. To change this default foreign key constraint behavior, refer to the COMPILE-
MODE=NOCHECK option of the SET OPTION command.

The effects of dropping a primary key constraint depend on the setting of the Are Primary Keys also ID Keys setting (as
described above):

» If the PrimaryKey index is not also the IDKey index, dropping the primary key constraint drops the index definition.

» Ifthe PrimaryKey index is also the IDKey index, and there is no data in the table, dropping the primary key constraint
drops the entire index definition.

« If the PrimaryKey index is also the IDKey index, and there isdata in the table, dropping the primary key constraint
just drops the PRIMARYKEY qualifier from the IDKey index definition.

24 InterSystems SQL Reference

ALTER TABLE (SQL)

DROP CONSTRAINT When Non-Existent

By default, InterSystems IRIS rejects an attempt to drop a field constraint on a field that does not have that constraint and
issues an SQLCODE -315 error. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays
aAllow DDL DROP of non-existent constraintsetting. The defaultis 0 (No), which is the recommended setting.
If this option is setto 1 (Yes), an ALTER TABLE DROP CONSTRAINT causes InterSystems IRIS to perform no operation
and issue no error message.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

Examples

The following examples uses Embedded SQL programs to create a table, populate two rows, and then alter the table defi-
nition.

To demonstrate this, please run the first two Embedded SQL programs in the order shown. (It is necessary to use two
embedded SQL programs here because embedded SQL cannot compile an INSERT statement unless the referenced table
already exists.)

ObjectScript

DO $SYSTEM.Security.Login("_SYSTEM","SYS™)
&sql (DROP TABLE SQLUser.MyStudents)
IF SQLCODE=0 { WRITE !,"Deleted table" }
ELSE { WRITE "DROP TABLE error SQLCODE=",SQLCODE }
&sql (CREATE TABLE SQLUser .MyStudents (
FirstName VARCHAR(35) NOT NULL,
LastName VARCHAR(35) NOT NULL)

)
IF SQLCODE=0 { WRITE !,"Created table" }
ELSE { WRITE "CREATE TABLE error SQLCODE=",SQLCODE }

ObjectScript

DO $SYSTEM.Security.Login(*"_SYSTEM","SYS"™)
NEW SQLCODE, %msg
&sql (INSERT INTO SQLUser.MyStudents (FirstName, LastName)
VALUES ("David", "Vanderbilt®))
IF SQLCODE=0 { WRITE !,"Inserted data in table"}
ELSE { WRITE !,"SQLCODE=",SQLCODE,": ",%msg }
&sql (INSERT INTO SQLUser_MyStudents (FirstName, LastName)
VALUES ("Mary"®,"Smith"))
IF SQLCODE=0 { WRITE !,"Inserted data in table"}
ELSE { WRITE !,"SQLCODE=",SQLCODE,": ",%msg }

The following example uses ALTER TABLE to add the ColorPreference column. Because the column definition specifies
a default, the system populates ColorPreference with the value 'Blue’ for the two existing rows of the table:

ObjectScript

NEW SQLCODE, %msg
&sql (ALTER TABLE SQLUser .MyStudents
ADD COLUMN ColorPreference VARCHAR(16) NOT NULL DEFAULT “Blue*®)
IF SQLCODE=0 {
WRITE !,"Added a column™,! }
ELSEIF SQLCODE=-306 {
WRITE 1,"'SQLCODE=",SQLCODE,": ",%msg }
ELSE { WRITE *"SQLCODE error=",SQLCODE }

The following example uses ALTER TABLE to add two computed columns: FLName and LFName. For existing rows
these columns have no value. For any subsequently inserted row a value is computed for each of these columns:

InterSystems SQL Reference 25

SQL Commands

ObjectScript

NEW SQLCODE, %msg
&sql (ALTER TABLE SQLUser .MyStudents

ADD COLUMN FLName VARCHAR(71) COMPUTECODE { SET {FLName}={FirstName} " " {LastName}}
COMPUTEONCHANGE (FirstName,LastName),
COLUMN LFName VARCHAR(71) COMPUTECODE { SET {LFName}={LastName}_*," _{FirstName}}

COMPUTEONCHANGE (FirstName,LastName))
IF SQLCODE=0 {
WRITE !,"Added two computed columns",! }
ELSE { WRITE *SQLCODE error=",SQLCODE }

See Also

e CREATE TABLE, DROP TABLE
e JOIN

e SELECT

e INSERT, UPDATE, INSERT OR UPDATE, DELETE
o Defining Tables

* SQL and Object Settings Pages

e SQLCODE error messages

26 InterSystems SQL Reference

ALTER USER (SQL)

ALTER USER (SQL)

Changes a user’s password.

Synopsis

ALTER USER user-nane IDENTIFY BY password
ALTER USER user-nane IDENTIFIED BY password
ALTER USER user-name [WITH] PASSWORD password

Description

The ALTER USER command allows you to change a user's password. You can always change your own password. To
change another user's password, you must be logged in as a user with one of the following:

e The %Admin_Secure administrative resource with USE permission.
* The %Admin_UserEdit administrative resource with USE permission.

» Full security privileges on the system.

The IDENTIFY BY, IDENTIFIED BY, and WITH PASSWORD keywords are synonyms.

The user-name must be an existing user. Specifying a non-existent user generates an SQLCODE -400 error with a %msg
such as the following: ERROR #838: User badname does not exist. You can determine if a user exists by
invoking the $SYSTEM.SQL.Security.UserExists() method.

A user-name specified as a delimited identifier can be an SQL reserved word and can contain a comma (,), period (.), caret
(™), and the two-character arrow sequence (->). It may begin with any valid character except the asterisk (*).

A password can be a string literal, a numeric, or an identifier. A string literal must be enclosed in quotes, and can contain
any combination of characters, including blank spaces. A numeric or an identifier does not have to be enclosed in quotes.
A numeric must consist of only the characters 0 through 9. An identifier must start with a letter (uppercase or lowercase)

or a % (percent symbol); this can be followed by any combination of letters, numbers, or any of the following symbols: _
(underscore), & (ampersand), $ (dollar sign), or @ (at sign).

ALTER USER does not issue an error code if the new password is identical to the existing password. It sets SQLCODE
= 0 (Successful Completion).

You can also change a user password using the $SYSTEM.Security.ChangePassword() method:

$SYSTEM.Security.ChangePassword(args)
Privileges

The ALTER USER command is a privileged operation. Prior to using ALTER USER in embedded SQL, you must be
logged in as a user with either the %Admin_Secure administrative resource with USE permission, or the %Admin_UserEdit
administrative resource with USE permission, or full security privileges on the system. Failing to do so results in an SQL-
CODE -99 error (Privilege Violation). Use the $SYSTEM.Security.Login() method to assign a user with appropriate
privileges:

ObjectScript

DO $SYSTEM.Security.Login(*'_SYSTEM","SYS™)
&sql (

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

InterSystems SQL Reference 27

SQL Commands

Arguments

user-name

The name of an existing user whose password is to be changed. User names are not case-sensitive.

password

The new password for the user. A password must be at least 3 characters and cannot exceed 32 characters. Passwords are

case-sensitive. Passwords can contain Unicode characters.

Examples

The following embedded SQL example changes the password of user Bill from “temp_pw” to “pw4AUser”:

ObjectScript

Main
DO $SYSTEM.Security.Login("_SYSTEM","SYS"™)
&sql (CREATE USER Bill IDENTIFY BY temp_pw)
IF SQLCODE=0 { WRITE !,"Created user" }
ELSE { WRITE "CREATE USER error SQLCODE=",SQLCODE,! }
&sgl (ALTER USER BILL IDENTIFY BY pw4AUser)
IF SQLCODE=0 { WRITE !,"Altered user password" }
ELSE { WRITE "ALTER USER error SQLCODE=",SQLCODE,! }

Cleanup
SET toggle=$RANDOM(2)
IF toggle=0 {

&sql (DROP USER Bill)
IF SQLCODE=0 { WRITE !,"Dropped user" }
ELSE { WRITE "DROP USER error SQLCODE=",SQLCODE }
ELSE {
WRITE I,"No drop this time"
QUIT
}

See Also

* SQL statements: CREATE USER, DROP USER, GRANT, REVOKE
* SQL Users, Roles, and Privileges

» ObjectScript: SROLES and $USERNAME special variables

e SQLCODE error messages

28

InterSystems SQL Reference

ALTER VIEW (SQL)

ALTER VIEW (SQL)

Modifies a view.

Synopsis

ALTER VIEW vi ewName AS query

ALTER VIEW vi ewNane (col umm, colum2, ...) AS query
ALTER VIEW vi ewNanme ... AS query WITH READ ONLY

ALTER VIEW vi ewNanme ... AS query WITH
[LOCAL | CASCADED] CHECK OPTION

Description

The ALTER VIEW command modifies views created using the CREATE VIEW command or a view projected from a
persistent class. The altered view replaces the existing view, so you cannot modify specific columns in a view.

Aview s a virtual table based on the result set of a SELECT query or a UNION of such queries. For more details on views,
see Defining and Using Views.

 ALTERVIEW viewNameAS query replaces the existing columns in a view with the columns returned by the SELECT
query. The view column names are derived from the column names returned by the result set of the query, which can
be:

— The column names or aliases of the table or view being queried

— The column name of a class query defined as a table-valued function

This statement modifies the NewEmp loyees view so that it includes only employees hired within the last 12 months.
The view column names, Name, OfFfice, and StartDate, match the column names of the source table.

SQL

ALTER VIEW NewEmployees AS
SELECT Name,Office,StartDate
FROM Sample.Employees
WHERE DATEDIFF("month®,StartDate,CURRENT_DATE) <= 12

* ALTERVIEW viewName (column, column2, ...) AS query specifies the names of the columns to include in the view.
The column names must correspond in number and sequence with the table columns returned by the SELECT query.
Alternatively, you can specify these view column names as column name aliases in the SELECT statement query.
These ALTER VIEW statements are equivalent:

SQL

ALTER VIEW MyView (MyViewColl,MyViewCol2,MyViewCol3) AS
SELECT TableColl, TableCol2, TableCol3 FROM MyTable

SQL

ALTER VIEW MyView AS SELECT TableColl AS ViewCol1l,
TableCol2 AS ViewCol2,
TableCol3 AS ViewCol3
FROM MyTable

The column specification replaces any existing columns specified for the view.

Example: Create and Alter a View

InterSystems SQL Reference 29

SQL Commands

« ALTERVIEW viewName... AS query WITH READ ONLY specifies that no insert, update, or delete operations
can be performed through this view upon the table on which the view is based. The default is to permit these operations
through a view, subject to any specified WITH CHECK OPTION constraints.

Example: Set Read-Only View

e ALTERVIEW viewName... AS query WITH [LOCAL | CASCADED] CHECK OPTION checks that any row
being updated or inserted into this view satisfies the WHERE constraints of the view. If the row does not meet these
constrains, that row is not updated or inserted. You can specify these check options:

— WITH LOCAL CHECK OPTION — Check only the WHERE clause of the view specified in the INSERT or
UPDATE statement.

— WITH CASCADED CHECK OPTION or WITH CHECK OPTION — Check the WHERE clause of the view
specified in the INSERT or UPDATE statement and all underlying views on which that view is based. This option
overrides any WITH LOCAL CHECK OPTION clauses in these underlying views and is recommended for all
updateable views.

For more details on these options, see The WITH CHECK Option.

Example: Validate Table Modifications Made Through a View

Arguments

viewName

The view being modified, which has the same naming rules as a table name. A view name can be qualified (schema.view-
name), or unqualified (viewname). An unqualified view name takes the default schema name.

To determine if a specified view exists in the current namespace, use the $SYSTEM.SQL.Schema.ViewEXxists() method.

If the view is projected from a persistent class, you can run ALTER VIEW only if the view has the Classtype="view"
and DDLAI lowed keywords specified. You cannot alter views that are projected from a class query.

query

The result set from a query that serves as a the basis for the view. You can specify the query as a SELECT statement or a
UNION of two or more SELECT statements. For an example that uses a UNION command, see Alter View Using Combined
SELECT Queries.

A view query cannot contain host variables or include the INTO keyword. If you attempt to reference a host variable in
guery, the system generates an SQLCODE -148 error.

column

The name of a column included in the modified view. Specify multiple column names in a comma-separated list. You can
specify column names after the viewName argument or in the query argument.

Examples

Create and Alter aView
This example shows how to create a view and then alter it. The example also shows how to query and delete the view.

Create a view the contains the names of people who live in Massachusetts. This example assumes that a Sample . Person
table already exists and contains a Home_State column.

SQL

CREATE VIEW MassFolks (vFullName) AS
SELECT Name FROM Sample.Person WHERE Home_State="MA*

30 InterSystems SQL Reference

ALTER VIEW (SQL)

You can then query the view as you would a regular table.

SQL

SELECT * FROM MassFolks

Modify the view to include new columns. Altering a view replaces the column list with a new column list but does not
preserve the prior column list. Therefore, this modified view contains only the vMassAbbrev and vCity columns, not
the vFul IName column.

SQL

ALTER VIEW MassFolks (vMassAbbrev,vCity) AS
SELECT Home_State,Home_City FROM Sample.Person WHERE Home_State="MA*

Delete the view. You can delete a view similar to how you would delete a regular table.

SQL

DROP VIEW MassFolks

Alter View Using Combined SELECT Queries

Alter a view to include the combined results of two SELECT queries. To combine the results, you use a UNION command.

SQL

ALTER VIEW MyView (vname,vstate) AS
SELECT tl.name,tl._home_state
FROM Sample.Person AS tl
UNION
SELECT t2.name,t2._office_state
FROM Sample.Employee AS t2

Set Read-Only View

Modify a view to prevent modifying the underlying table through this view.

SQL
ALTER VIEW YoungPeople AS
SELECT Name,DOB

FROM Sample.Person

WHERE DATEDIFF(year ,DOB,CURRENT_DATE) <= 18
WITH READ ONLY

If you update any row through this view, the WITH READ ONLY prevents the update.

SQL

UPDATE YoungPeople (DOB)
VALUES (02/17/2022)
WHERE Name="Page,Laura O."

Validate Table Modifications Made Through a View

Modify this view of honor students to prevent the insertion of students that do not meet the GPA criteria. This examples
assumes that a Sample . Student table already exists.

InterSystems SQL Reference 31

SQL Commands

SQL

ALTER VIEW HonorsStudent AS
SELECT Name, GPA
FROM Sample.Student
WHERE GPA > 3.0

WITH CHECK OPTION

If you try to insert a student with too low a GPA for this view, the VIEW CHECK OPTION prevents the insertion.

SQL

INSERT INTO HonorsStudent (Name, GPA)
VALUES ("Waal ,Edgar P.",2.9)

Security and Privileges

The ALTER VIEW command is a privileged operation. The user must have %ALTER_VIEW administrative privilege to
execute ALTER VIEW. Failing to do so results in an SQLCODE —-99 error with the %msg User "name® does not
have %ALTER_VIEW privileges.

The user must have %ALTER privilege on the specified view. If the user is the Owner (creator) of the view, the user is
automatically granted %ALTER privilege for that view. Otherwise, the user must be granted %ALTER privilege for the
view. Failing to do so results in an SQLCODE -99 error with the %msg User "name® does not have privilege
to ALTER the view "Schema.ViewName®.

If you hold appropriate granting privileges, you can assign % ALTER_VIEW and %ALTER privileges by using the GRANT
command.

To determine if the current user has %ALTER privileges, call the %CHECKPRIV command. To determine if a specified
user has %ALTER privilege, call the $SYSTEM.SQL.Security.CheckPrivilege() method.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

DO $SYSTEM.Security.Login("'myUserName", " 'myPassword™)
&sql(.--)

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

ALTER VIEW cannot be used on a view based on a table projected from a deployed persistent class. This operation fails
with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
"classname”.

See Also

« CREATE VIEW, DROP VIEW, GRANT

» Defining Views

* SQLCODE error messages

32 InterSystems SQL Reference

BUILD INDEX (SQL)

BUILD INDEX (SQL)

Populates one or more indexes with data.

Synopsis

BUILD INDEX [%NOLOCK] [%NOJOURN] FOR TABLE t abl e- nanme
[INDEX i ndex- nane [,i ndex-nane]]
BUILD INDEX [%NOLOCK] [%NOJOURN] FOR SCHEMA schema- nane

BUILD INDEX [%NOLOCK] [%NOJOURN] FOR ALL

Description
BUILD INDEX provides three syntax forms for building/re-building all defined indexes:

e Table: BUILD INDEX FOR TABLE table-name. The optional INDEX clause allows you to build/re-build only the
specified indexes.

» All tables in a schema: BUILD INDEX FOR SCHEMA schema-name
» All tables in the current namespace: BUILD INDEX FOR ALL

You may wish to build indexes for any of the following reasons:
* You have used CREATE INDEX to add one or more indexes to a table that already contains data.

* You have performed INSERT, UPDATE, or DELETE operations on a table using the %NOINDEX option, rather
than accepting the performance overhead of having each of these operations write to the index.

In either case, use BUILD INDEX to populate these indexes with data.
BUILD INDEX returns the number of tables modified as the number of Rows Affected.

If you used CREATE INDEX with the DEFER BUILD option to create an index, you must manually build the index.
Note that the BUILD INDEX command builds the index’s data, but does not make the index selectable, or usable, in
queries. In order to make an index selectable, use the SetMapSelectability() method. You can view whether a map is
selectable or not in the Management Portal by navigating to System Explorer > SQL > Catalog Details and selecting the
Maps/Indices button.

Classes that were defined through ObjectScript may inherit indexes that need to be built from a superclass. To build these
“inherited” indexes, you must call BUILD INDEX on the superclass that defines the index, not on the subclass that uses
it.

If a table uses %Storage.SQL, then indexes explicitly defined within the class will not be built.

Privileges

The BUILD INDEX command is a privileged operation. The user must have %BUILD_INDEX administrative privilege
to execute BUILD INDEX. Failing to do so results in an SQLCODE -99 error with the %msg User "name® does
not have %BUILD_INDEX privileges. You can use the GRANT command to assign %BUILD_INDEX privileges
to a user or role, if you hold appropriate granting privileges. Administrative privileges are namespace-specific. For further
details, refer to Privileges.

The user must have SELECT privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted SELECT privilege for that table. Otherwise, the user must be granted SELECT privilege for the
table.

e Issuing BUILD INDEX FOR TABLE without SELECT privilege on the specified table results in an SQLCODE -30
error with the %msg Table "name® not found.

InterSystems SQL Reference 33

SQL Commands

» Issuing BUILD INDEX FOR SCHEMA only builds indexes for those table for which the user has SELECT privilege.
If the user does not have SELECT privilege for any tables in the schema, the command completes without error, with
0 rows affected.

You can determine if the current user has SELECT privilege by invoking the %CHECKPRIV command. You can use the
GRANT command to assign SELECT privilege to a specified table. For further details, refer to Privileges.

Locking and Journaling

By default, the BUILD INDEX statement acquires an extent lock on each table prior to building its indexes. This prevents
other processes from modifying the table’s data. This lock is automatically released at the conclusion of the BUILD INDEX
operation. You can specify %NOLOCK to prevent table locking.

By default, the BUILD INDEX statement uses the journaling setting for the current process. You can specify %NOJOURN
to prevent journaling.

To use %NOLOCK or %NOJOURN, you must have the corresponding SQL administrative privilege, which you can set
by using the GRANT command.

Error Codes

» If the specified table-name does not exist, InterSystems IRIS issues an SQLCODE -30 error and sets %msg to Table
"sample.tname™ does not exist. This error message is returned if you specify a view rather than a table, or
if you specify a table for which you do not have SELECT privilege.

» Ifthe specified index-name does not exist, InterSystems IRIS issues an SQLCODE -400 error and sets %msg to ERROR
#5066: Index name "sample.tname::badindex”™ is invalid.

» If the specified schema-name does not exist, InterSystems IRIS issues an SQLCODE -473 error and sets %msg to
Schema “sample® not found.

Arguments
FOR TABLE table-name

The name of an existing table. A table-name can be qualified (schema.table), or unqualified (table). An unqualified table
name takes the default schema name.

INDEX index-name

An optional index name or a comma-separated list of index names. If specified, only these indexes are built. If not specified,
all indexes defined for the table are built.

FOR SCHEMA schema-name

The name of an existing schema. This command builds all indexes for all tables in the specified schema.

See Also
. CREATE INDEX

» Defining and Building Indices

e SQLCODE error messages

34 InterSystems SQL Reference

CALL (SQL)

CALL (SQL)

Invokes a stored procedure.

Synopsis

CALL procnane(arg_list) [USING contextvar]

retval =CALL procnane(arg_list) [USING contextvar]

Description

A CALL statement invokes a query exposed as an SQL stored procedure. The procname must be an existing stored procedure
in the current namespace. If InterSystems IRIS cannot locate procname, it generates an SQLCODE -428 error. The procname
must be a Stored Procedure with SqlProc=True. Refer to SqlProc.

For further details on stored procedures, refer to the CREATE PROCEDURE command.

Arguments

procnhame

The name of an existing stored procedure. The procname must be followed by parentheses, even if no arguments are
specified. A procedure name can take any of of the following forms:

» Ungqualified: Takes the default schema name. For example, MedianAgeProc().
e Qualified: Supplies a schema name. For example, Patient.MedianAgeProc().

e Multilevel: Qualified with one or more schema levels to paralell corresponding class package members. In this case,
the procname may contain only one period character; the other periods in the corresponding class method name are
replaced with underline characters. The period is specified before the lowest level class package member. For example,
%SYSTEM.SQL_GetROWID(), or %SYS_PTools.StatsSQL_Export().

InterSystems IRIS locates the match for an unqualified procname in a schema, using either the default schema name, or
(if provided) a schema name from the schema search path. If InterSystems IRIS cannot locate the specified procedure using
either the schema search path or the system-wide schema default, it generates an SQLCODE -428 error. You can use the
$SYSTEM.SQL.Schema.Default() method to determine the current system-wide default schema name. The initial system-
wide default schema name is SQLUser, which corresponds to the class package name User.

To determine if a procname exists in the current namespace, use the $SYSTEM.SQL.Schema.ProcedureExists() method.
The procname is not case-sensitive.

You must append the argument parentheses to the procname, even if you are not specifying any arguments. Failing to do
so results in an SQLCODE -1 error.

arg_list

A list of arguments used to pass values to the stored procedure. The arg_list is enclosed in parentheses and arguments in
the list are separated by commas. The parentheses are mandatory, even if you specify no arguments.

The arg_list arguments are optional. This comma-separated list is known as the actual argument list, which must match in
number and in sequence the formal argument list in the procedure definition. You may specify fewer actual argument values
than the formal arguments defined in the stored procedure. If you specify more actual argument values than the formal
arguments defined in the stored procedure, the system generates an SQLCODE -370 error. This error message specifies
the name of the stored procedure, the number of arguments specified, and the number of arguments defined in the stored
procedure.

InterSystems SQL Reference 35

SQL Commands

You can omit trailing arguments; any missing trailing arguments are undefined and take default values. You can specify
an undefined argument within the argument list by specifying a placeholder comma. For example, (argl,,arg3) passes three
arguments, the second of which is undefined. Commonly, undefined arguments take a default value that was specified when
defining the stored procedure. If no default is defined, an undefined argument takes NULL. For further details refer to
NULL and the Empty String.

If you specify an argument value that does not match the data type defined in the stored procedure that argument takes
NULL, even if a default value is defined. For example, a stored procedure defines an argument as IN numarg INT
DEFAULT 99. If CALL specifies a numeric argument, that arg value is used. If CALL omits the argument, the defined
default is used. However, if CALL specifies a non-numeric argument, NULL is used, not the defined default.

An arg_list argument can be a user-defined function (a method stored procedure that returns a value).

USING contextvar

An optional argument. contextvar specifies a descriptor area variable that receives the procedure context object generated
by the procedure call. If omitted, the default is %sqlcontext.

retval

An optional variable specified to receive the procedure return value. Can contain a single value, not a result set. Can be
specified as a local variable, a host variable, or a question mark (?) argument.

From Embedded SQL

ObjectScript embedded SQL can either issue a CALL statement, or use the DO command to invoke the underlying routine
or method.

Using Embedded SQL, you can supply argument values to CALL as literals or by using any combination of :name host
variables or question mark (?) input parameters, as follows:
ObjectScript

SET a=7,b="A",c=99
&sql (CALL MyProc(:a,:b,:c))

ObjectScript

&sql (CALL MyProc(?,:b,?))
The initial invocation of a CALL statement in Embedded SQL creates an %sqlcontext variable, by default. Subsequent
iterations use this existing %sqlcontext variable, meaning multiple iterations accumulate results in %sglcontext that could
potentially result in a <STORE> error. If a CALL statement is to be iterated repeatedly, you can explicitly specify the

%sqlcontext variable in the USING clause. When a procedure context is specified in the USING clause InterSystems IRIS
issues a NEW on that procedure context each time it is invoked.

A host variable used for an output arg can be a single value, an array reference, an oref.property reference, or a multidimen-
sional oref.property reference.

You can return a value from a CALL statement by using either a host variable or a question mark (?):
ObjectScript
&sql (:rtnval=CALL MyProc())

ObjectScript

&sql (?=CALL MyProc(Q))

The CALL return value must be a single value. You cannot return a result set from a CALL statement in Embedded SQL.
Attempting to use retval=CALL syntax for a procedure that does not return a value generates an SQLCODE -371 error.

36 InterSystems SQL Reference

CALL (SQL)

For further details, refer to Embedded SQL.

From Dynamic SQL

The following Dynamic SQL example calls the Stored Procedure Sample . PersonSets, which performs two queries on
the Sample.Person table. The Stored Procedure arguments specify the WHERE clause values for these two queries. The
first argument specifies to return all records in the first query where Name starts with argl (in this case, the letter “M”).
The second argument specifies to return all records in the second query where Home_State = arg2 (in this case, “MA”):

ObjectScript

SET mycall = "CALL Sample.PersonSets(?, "MA")"
SET tStatement = ##class(%SQL.Statement) .%New()
SET gStatus = tStatement._%Prepare(mycall)
IF gStatus®=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}
SET rset = tStatement.%Execute(''M'")
IF rset_%SQLCODE "= 0 {WRITE "SQL error=",rset.%SQLCODE QUIT}
DO rset.%Display()

The following Dynamic SQL example also calls the Stored Procedure Sample.PersonSets, returning the result sets
for each query separately. The %Next() method iterates through the first query result set. The %oMoreResults() method
accesses the result set for the second query. If there were more than two queries, %oMoreResults() would access each result
set in turn.

ObjectScript

#include %occStatus

set mycall = "CALL Sample.PersonSets(?,"MA")"

set tStatement = ##class(%SQL.Statement) .%New()

set gStatus = tStatement.%Prepare(mycall)

ifT $$$ISERR(gStatus) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(gStatus) quit}

set rset = tStatement.%Execute(*'M'™)
if (rset_%SQLCODE "= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ', rset.%Message

quit}

FirstResultSet
while rset.%Next()

write "Name: ",rset._%Get(''Name')
it rset.%Get("'Spouse') {write " Spouse: ",rset.%Get(''Spouse'),!}
else {write " unmarried",!}

by
ifT (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

write !,"1st row count=",rset.%ROWCOUNT,!!

SecondResultSet
while rset.%MoreResults()

do rset.%CurrentResult._%Display()

Note that it is important to check the %SQLCODE value set by the CALL execution before invoking %6Next(). Invoking
the %Next() method sets %SQLCODE, overwriting the prior CALL %SQLCODE value. If %Next() receives no result
set data, it sets %SQLCODE=100. It does not distinguish between an empty result set (no rows selected) and a nonexistent
result set due to an error in CALL processing.

For further details on %SQL.Statement and on how to display a list of formal parameters and other metadata for a stored
procedure, refer to Using Dynamic SQL. Also, Returning the Full Result Set provides further information and examples
of the %Display() method. Returning Specific Values from the Result Set provides further information and examples of
the %Next() and %Get() methods.

InterSystems SQL Reference 37

SQL Commands

From ObjectScript

Rather than calling stored procedures directly from embedded SQL, you can invoke stored procedures through ObjectScript
calls to the class methods that contain them. In this case, you have to manage the parameters, and with query-based stored
procedures, the separate methods have to be called and the fetch loop managed.

For example, to call a method exposed as a stored procedure called UpdateAllAvgScores that has no arguments, the code
is:

ObjectScript

NEW phnd

SET phnd=##class(%SQLProcContext) .%New()

DO ##class(students) .UpdateAllAvgScores(phnd)
IF phnd.%SQLCODE {QUIT phnd.%SQLCODE}

USE O

WRITE !,phnd.%ROWCOUNT," Rows Affected"

When specifying a procedure’s arguments in the call statement, you must not specify the %L ibrary.SQLProcContext
parameter if the procedure has an explicitly defined %Library.SQLProcContext parameter. The handling of this parameter
is done automatically.

In the following example, the stored procedure takes two arguments. It has an explicitly defined procedure context.

ObjectScript

NEW phnd

SET phnd=##class(%SQLProcContext) .%New()

SET rtn=##class(Sample.ResultSets).PersonSets('D"," "NY'")
IF phnd.%SQLCODE {QUIT phnd.%SQLCODE}

DO %sglcontext.%Display()

WRITE I,"All Done"

To call a stored procedure that has been implemented as a query, you must call all three methods:

ObjectScript

NEW ghnd

DO ##class(students).GetAvgScoreExecute(.ghnd,x1)

NEW avgrow,AtEnd

SET avgrow=$1b("""")

SET AtEnd=0

DO ##class(students).GetAvgScoreFetch(.ghnd, .avgrow, .AtEnd)
SET x5=%$lg(avgrow,1)

DO ##class(students) .GetAvgScoreClose(ghnd)

If a query-based stored procedure is to be nested within a number of other stored procedures, it is useful to write a wrapper
method to hide all of this.

From ODBC or JDBC

InterSystems IRIS fully supports CALL syntax as defined by the ODBC 2.x and JDBC 1.0 standards. In JDBC, you can
invoke CALL through the methods of the CallableStatement class. In ODBC, there are APIs. The CALL syntax and
semantics are exactly the same for JDBC and ODBC. Further, they are processed in the same way: both drivers parse the
statement text and, if the statement is CALL, they directly invoke the special methods on the server side, bypassing the
SQL engine.

If class PERSON has a stored procedure called SP1, you can call this from an ODBC or JDBC client (such as Microsoft
Query) as follows:

retcode = SQLExecDirect(hstmt, "{?=call PERSON_SP1(?,?)}", SQL_NTS);

InterSystems IRIS conforms to the ODBC standard in its structure for calling stored procedures. See the relevant documen-
tation for more information on that standard.

38 InterSystems SQL Reference

CALL (SQL)

With ODBC only, InterSystems IRIS allows relaxed syntax for calls, so there does not need to be curly braces around
CALL or parentheses around parameters. (Since this is good programming form, the above example uses them.)

Again, with ODBC only, InterSystems IRIS allows modified syntax for using default parameters, so that CALL SP is dif-
ferent from CALL SP(). The second form implies passing of a default parameter — as does CALL SP (,,) or SP(,?,)
or other such syntax. In that sense, the parenthesized form of CALL is different from non-parenthesized.

See Also

e SQL statements: CREATE PROCEDURE, CREATE QUERY, CREATE METHOD
e ObjectScript: DO command

» Defining and Using Stored Procedures

e SQLCODE error messages

InterSystems SQL Reference 39

SQL Commands

CANCEL QUERY (SQL)

Cancels a query that is currently running on the system.

Synopsis

CANCEL QUERY pid [IDENTIFIED BY sql-id]
[TIMEOUT timeout]

Description

If a query is consuming too many system resources, you may cancel its execution. The CANCEL QUERY command
cancels the execution of a query. Queries are canceled by specifying the process ID the query is running in and, optionally,
the SQL Statement ID of the query. A canceled query is still prepared, so canceling a query that is running for the first time
will still produce a cached query.

A SQL Statement ID, stored in the Statement Index, is assigned the first time the statement is run and never changes. It
can also be found by querying INFORMATION_SCHEMA.STATEMENTS, or, for statements that are currently running
on your instance, by querying INFORMATION_SCHEMA.CURRENT_STATEMENTS.

Queries may also be canceled by using the $SYSTEM.SQL.CancelQuery() method.

The CANCEL QUERY command will fail with SQLCODE -400 if the provided process ID is not running a query.
Privileges

Any user that attempts to cancel a query, either with CANCEL QUERY or with $SYSTEM.SQL.CancelQuery() executed
issued by a different user must have the %CANCEL_QUERY privilege.

Arguments
pid
A process ID that identifies a process in which a SQL query is running. Use $JOB to determine a process ID.

If the sgl-id argument is not specified, then the system cancels the first query found running within the process; to cancel
a specific query, you must provide the sqgl-id argument.

sql-id

An optional argument that specifies the ID of the SQL query stored within the SQL Statement Index. If this argument is
omitted, the system will cancel the first query found running within the specified process; to cancel a specific query, you
must provide the sgl-id argument.

timeout

An optional argument that specifies how many seconds to wait before canceling the specified query. If omitted, the default
is to immediately cancel the query.

Examples

The following example cancels a query running in process 8044.
SQL
CANCEL QUERY 8044

The following example cancels a query running in process 12889 that has a SQL Statement ID of 68.

40 InterSystems SQL Reference

CANCEL QUERY (SQL)

SQL

CANCEL QUERY 12889 IDENTIFIED BY 68

The following example cancels a query running in process 10455 that has a SQL Statement 1D of 104 with a timeout of 30
seconds.

SQL

CANCEL QUERY 10455 IDENTIFIED BY 104 TIMEOUT 30

See Also

» CALL and $SYSTEM.SQL.CancelQuery()

* INFORMATION_SCHEMA.STATEMENTS and INFORMATION_SCHEMA.CURRENT_STATEMENTS
+ $JOB

InterSystems SQL Reference 41

SQL Commands

CASE (SQL)

Chooses one of a specified set of values depending on some condition.

Synopsis
CASE WHEN search_condi ti on THEN val ue_expressi on
[WHEN search_conditi on THEN val ue_expression ...]
[ELSE val ue_expression]
END
CASE val ue_expressi on WHEN val ue_expressi on THEN val ue_expressi on
[WHEN val ue_expressi on THEN val ue_expression ...]
[ELSE val ue_expression]
END
Arguments
Argument Description
search_condition An SQL boolean expression.
value_expression An SQL expression (such as a literal value or field name.)
Description

The CASE expression allows you to make comparison tests on series of values, returning when it encounters the first match.
The CASE expression comes in two forms: Simple and Searched.

The Simple CASE expression tests a series of value expressions (specified by a WHEN clause) to see if they are equal to
a given value expression:

SQL

SELECT

CASE Fieldl
WHEN 1 THEN "ONE"
WHEN 2 THEN *Two*
ELSE NULL

END

FROM MyTable

The value associated with the first matching expression is returned as the value of the CASE expression.

Numeric value_expression values may have different data types. The data type returned is the type most compatible with
all of the possible result values, the data type with the highest data type precedence. For numeric value_expression values
CASE returns the largest length, precision, and scale from all of the possible result values. A result value of NULL has the
lowest data type precedence; however, if all result values are NULL, the data type returned is VARCHAR.

The Searched CASE expression tests a series of search conditions (specified by a WHEN clause), finds the first WHEN
condition that evaluates to true, and returns the value associated with it:

SQL

SELECT
CASE
WHEN Field1l
WHEN Fieldl
ELSE NULL
END
FROM MyTable

1 THEN "ONE"
2 THEN "TwO*®

42 InterSystems SQL Reference

CASE (SQL)

With either form of CASE expression, you can use an ELSE clause to specify what value to return if none of the WHEN
clause conditions are true. If you omit the ELSE clause and none of the WHEN clause conditions are true, CASE returns
NULL.

A CASE comparison that tests for NULL must use the IS NULL or IS NOT NULL keyword phrase. NULL is not a data
value (it represents the absence of a value). For this reason, any equality or arithmetic test for NULL always returns false.
A CASE expression that compares NULL and any data value always returns false. For example, NULL < 1 and NULL >
1 both return false. A CASE expression that equates NULL with NULL also returns false.

The end of a CASE expression is marked by an END token.

Examples

The following query is an example of a Simple CASE expression, where specified field values are replaced by supplied
values. Note the use of the RetireAge column alias after the END keyword; the optional AS keyword is omitted in this
example:

SQL

SELECT Name,

CASE Age
WHEN 65 THEN "Retire this year”
WHEN 64 THEN "Retire next year”
ELSE "Past retirement age "|| Age

END RetireAge

FROM Sample.Person

WHERE Age > 63

ORDER BY Age

The following query is another example of a Simple CASE expression. This query labels rows with certain Home_State
values as either “Northern NE” or “Southern NE”, and sets all other Home_State values in this column to NULL. It uses
the As clause to label this column as “NewEnglanders”, and also displays Names and the original Home_State values. The
resulting rows are ordered first by the NewEnglanders column (in descending order), and within this alphabetically by
Home_State, and then by Name.

SQL

SELECT Name,

CASE Home_State
WHEN "VT" THEN "Northern NE-®
WHEN "NH" THEN "Northern NE®
WHEN “"ME®" THEN "Northern NE-®
WHEN "MA®" THEN "Southern NE-®
WHEN "CT" THEN "Southern NE-®
WHEN "RI® THEN "Southern NE-®
ELSE NULL

END AS NewEnglanders, Home_State

FROM Sample.Person

ORDER BY NewEnglanders DESC,Home_State,Name

The following query is an example of a Searched CASE expression. It uses logical operators (greater than (>), logical AND
(&), logical OR (1)) to specify a boolean statement for each WHEN clause. The first WHEN clause that tests True sets the
value expression that follows the THEN keyword. In this example, the Age and Home_State field values are used to
identify three types of Yankees: Old Yankees, Yankees (residents of the six New England states), and likely fans of the
New York Yankees baseball team:

InterSystems SQL Reference 43

SQL Commands

SQL

SELECT Name,

CASE

WHEN Age > 55 & Home_State = "VT~
! Home_State="ME" ! Home_State="NH"
! Home_State="MA" I Home_State="CT"
! Home_State="RI"

THEN "Old Yankee*®

WHEN Home_State = "VT*"
! Home_State="ME" ! Home_State="NH"
! Home_State="MA" ! Home_State="CT"
! Home_State="RI"

THEN "Yankee*

WHEN Home_State="NY" THEN "Yankees Fan®
ELSE Home_State

END AS Yankees

FROM Sample.Person

The following example shows that any comparison with NULL always returns false:

SQL

SELECT TOP 5 Name,

CASE NULL
WHEN NULL THEN “Null = Null*
WHEN O THEN “Null = O*
WHEN *® THEN “Null = empty string”
WHEN CHAR(O) THEN “Null = CHAR(O)"
ELSE “"Null Arithmetic Invalid”

END

FROM Sample.Person

The following example shows how to use CASE with a field that has NULLSs:

SQL

SELECT TOP 20 Name,

CASE
WHEN FavoriteColors IS NULL THEN "No Colors*®
ELSE $LISTTOSTRING(FavoriteColors,": ")

END

FROM Sample.Person

CASE is not limited to use in queries, as shown in the following example:

SQL

INSERT INTO SQLUser.MyStudents (Name, PxTs) VALUES (
CASE ?

WHEN "a® THEN "Alice”

WHEN "b" THEN "Barney”

ELSE "Unknown®™ END,
CURRENT_TIMESTAMP)

See Also

e SQL functions: DECODE, GREATEST, LEAST, NULLIF, COALESCE
« ObijectScript function: $CASE

44

InterSystems SQL Reference

%CHECKPRIV (SQL)

9%CHECKPRIV (SQL)

Checks whether the user holds a specified privilege.

Synopsis

%CHECKPRIV [GRANT OPTION FOR | ADMIN OPTION FOR] syspriv [,syspriv]
%CHECKPRIV [GRANT OPTION FOR] obj priv

ON obj ect
%CHECKPRIV col um-privil ege (colum-1list)

ON table

Description
%CHECKPRIV can be used in two ways:

» To determine if the current user holds a specified system privilege, or holds all of the system privileges specified in a
comma-separated list.

» To determine if the current user holds a user privilege of a specified type on a specified object. These objects can
include table-level privileges on tables or views, column-level privileges on specified columns, and privileges on stored
procedures.

If the user holds the specified privilege, %o CHECKPRIV sets SQLCODE=0. If the user does not hold the specified privilege,
%CHECKPRIV sets SQLCODE=100.
%CHECKPRIV enables you to check whether a privilege is held. It does not enforce privileges:

e Embedded SQL does not enforce privileges. %oCHECKPRIV is primarily used for Embedded SQL. See Embedded
SQL and Privileges.

» Dynamic SQL enforces privileges at runtime. For example, if you do not have the %CREATE_TABLE system privilege,
%CHECKPRIV %CREATE_TABLE sets SQLCODE=100, showing that you don’t have this privilege. Dynamic
SQL enforces this privilege; a CREATE TABLE operation fails with an SQLCODE -99 error.

At runtime, Dynamic SQL and ODBC/JDBC enforce privileges and generate appropriate errors. The Management
Portal Execute Query SQL interface and the SQL Shell both execute as Dynamic SQL.

Because %6CHECKPRIV requires access to the SQLCODE 100 value (an SQLCODE status value, not an SQLCODE
error value) to determine its result, Y%oCHECKPRIV cannot be directly used by JDBC and other clients that can only dis-
tinguish error or no error status.

Because %CHECKPRIV prepares and executes quickly, and is generally run only once, InterSystems IRIS does not create
a cached query for %6CHECKPRIV.

The CheckPrivilege() Method

The $SYSTEM.SQL.Security.CheckPrivilege() method provides greater functionality for checking user privileges on a
table, view, or stored procedure:

* CheckPrivilege() checks privileges for a specified user. %oCHECKPRIV only checks privileges for the current user.

» CheckPrivilege() allows you to check multiple privileges. Each invocation of %CHECKPRIV can only check one
objpriv privilege.

* CheckPrivilege() allows you to check privileges on a table, view, or procedure defined in another namespace.
%CHECKPRIV only checks privileges for objects in the current namespace.

InterSystems SQL Reference 45

SQL Commands

Embedded SQL and Privileges

Privileges are not automatically checked or enforced for Embedded SQL. Therefore, an Embedded SQL program should
(in most cases) call Y%oCHECKPRIV before attempting a privileged operation, such as an update:

ObjectScript

SET name="Fred",age=25
SET SQLCODE="""
&sql (%CHECKPRIV UPDATE ON Sample.Person)
IF SQLCODE=100 {
WRITE !,"No UPDATE privilege”
QUIT }
ELSEIF SQLCODE < 0 {
WRITE I,"Unexpected SQL error: " ,SQLCODE," " ,%msg

WRITE I,"Proceeding with UPDATE"™ }
&sql (UPDATE Sample.Person SET Name=:name,Age=:age WHERE Address="123 Bedrock")
IF SQLCODE=0 { WRITE !,"UPDATE successful" }
ELSE { WRITE "UPDATE error SQLCODE=",SQLCODE }

Arguments

GRANT OPTION FOR

This optional keyword phrase specifies checking whether the current user holds the WITH GRANT OPTION privilege on
the specified privilege(s). A %CHECKPRIV with this option does not check whether the user holds the specified privilege(s)
itself.

ADMIN OPTION FOR

This optional keyword phrase specifies checking whether the current user can grant the specified system privilege(s) to
other users or roles. A %CHECKPRIV with this option does not check whether the user holds the specified privilege(s)
itself.

Syspriv

A system privilege, or a comma-separated list of system privileges. The available syspriv options include sixteen object
definition privileges and four data modification privileges.

The object definition privileges are: %CREATE_FUNCTION, %DROP_FUNCTION, %CREATE_METHOD,
%DROP_METHOD, %CREATE_PROCEDURE, %DROP_PROCEDURE, %CREATE_QUERY, %DROP_QUERY,
%CREATE_TABLE, %ALTER_TABLE, %DROP_TABLE, %CREATE_VIEW, %ALTER_VIEW, %DROP_VIEW,
%CREATE_TRIGGER, %DROP_TRIGGER. Alternatively, you can specify %DB_OBJECT_DEFINITION, which tests
all 16 object definition privileges.

The data modification privileges are the %NOCHECK, %NOINDEX, %NOLOCK, %NOTRIGGER privileges for INSERT,
UPDATE, and DELETE operations.

objpriv

An object privilege associated with a specified object. The available options are: %ALTER, DELETE, SELECT, INSERT,
UPDATE, EXECUTE, and REFERENCES.

object
The name of the object for which the objpriv is being checked.
column-privilege

A column-level privilege associated with one or more listed columns. Available options are SELECT, INSERT, UPDATE,
and REFERENCES.

46 InterSystems SQL Reference

%CHECKPRIV (SQL)

column-list

A list of one or more column names for which privilege assignment is being checked, separated by commas and enclosed
in parentheses. A space may be included or omitted between the column-privilege name and the opening parenthesis.

table

The name of the table or view that contains the column-list columns. A table name or view name can be qualified
(schema.tablename), or unqualified (tablename). An unqualified name takes the default schema name; a schema search
path is ignored.

Examples

The following Embedded SQL example checks whether the current user holds a specific object privilege for a specific
table:

ObjectScript

&sql (WCHECKPRIV UPDATE ON Sample.Person)

IF SQLCODE=0 {WRITE "‘Have update privilege"}

ELSEIF SQLCODE=100 {WRITE "Do not have update privilege" QUIT}

ELSE {WRITE "Unexpected %CHECKPRIV error: ' ,SQLCODE,"™ " ,%msg QUIT}

The following Embedded SQL example checks whether the current user holds system privileges on the three table operations.
If it has privileges, it creates a table:

ObjectScript

&sql (WCHECKPRIV %CREATE_TABLE ,%ALTER_TABLE ,%DROP_TABLE)

IF SQLCODE=0 {WRITE "Have table privileges",!}

ELSEIF SQLCODE=100 {WRITE *"Do not have one or more table privileges" QUIT}
ELSE {WRITE "Unexpected %CHECKPRIV error: ",SQLCODE,"™ *",%msg QUIT}

&sql (CREATE TABLE Sample_MyTable (Name VARCHAR(40),Age INTEGER))

WRITE "Created table"

The following Embedded SQL example checks whether the current user holds all 16 object definition privileges. The
SQLCODE value is set to either 0 (holds all 16 privileges) or 100 (does not hold one or more of the 16 privileges):

ObjectScript

&sql (WCHECKPRIV %DB_OBJECT_DEFINITION)

IF SQLCODE=0 {WRITE "Have all system privileges"}

ELSEIF SQLCODE=100 {WRITE *"Do not have one or more system privileges"}
ELSE {WRITE "Unexpected SQLCODE error: ',SQLCODE," ', %msg}

The following Embedded SQL example checks whether the current user can grant the %CREATE_TABLE privilege to
other users or roles:

ObjectScript

&sqgl (WCHECKPRIV ADMIN OPTION FOR %CREATE_TABLE)

IF SQLCODE=0 {WRITE "Have admin option on privilege"}

ELSEIF SQLCODE=100 {WRITE *"Do not have admin option on privilege"}
ELSE {WRITE "Unexpected SQLCODE error: ' ,SQLCODE,"™ ", %msg}

The following Embedded SQL example checks whether the current user holds the specified column-level privileges. Fol-
lowing the name of the privilege, specify the name of a column (or a comma-separated list of columns) in parentheses:

ObjectScript

&sql (WCHECKPRIV UPDATE(Name,Age) ON Sample.Person)

IF SQLCODE=0 {WRITE "Have privilege on all specified columns"}

ELSEIF SQLCODE=100 {WRITE "Do not have privilege on one or more specified columns"}
ELSE {WRITE "Unexpected SQLCODE error: *,SQLCODE,"™ ", %msg}

InterSystems SQL Reference 47

SQL Commands

See Also

e SQL statements: GRANT, REVOKE
* SQL Users, Roles, and Privileges
» ObjectScript: SROLES and $USERNAME special variables

48 InterSystems SQL Reference

CLOSE (SQL)

CLOSE (SQL)

Closes a cursor.

Synopsis

CLOSE cur sor - nane

Description

A CLOSE statement shuts down an open cursor. It releases the current result set and frees any cursor locks held on the
rows on which the cursor is positioned. However, CLOSE does not delete the cursor; it leaves the data structures accessible
for reopening, but fetches and positioned updates are not allowed until the cursor is reopened. This behavior is demonstrated
by the following command sequences:

« DECLARECc], OPEN c1, FETCH cl, CLOSE cl is the standard sequence.
e DECLARE], OPEN c1, CLOSE c1, OPEN c1 reopens the declared cursor c1.

e DECLARECcL, OPENc1, CLOSE cl, DECLARE c1, OPEN cl reopens the cursor specified in the first DECLARE,
the second DECLARE is ignored.

» DECLARECc1, OPENc1, FETCH c1, CLOSE c1, OPEN c1, FETCH cl cause both fetch operations to retrieve the
same record.

CLOSE must be issued on an open cursor. Issuing a CLOSE on a cursor that has only been declared (but not opened), or
on a cursor that has already been closed results in an SQLCODE -102 error. Issuing a CLOSE on a non-existent cursor —
for example, a cursor that differs from the defined cursor in letter case — results in an SQLCODE -52 error.

The cursor-name is not namespace-specific. Changing the current namespace has no effect on use of a declared cursor.
The only namespace consideration is that FETCH must occur in the namespace that contains the table(s) being queried.

Note that, as an SQL statement, CLOSE is only supported from Embedded SQL. Equivalent operations are supported
through ODBC using the ODBC API.

Arguments

cursor-name

The name of the cursor to be closed. The cursor name was specified in the DECLARE statement. Cursor names are case-
sensitive.

Examples

The following Embedded SQL example shows a cursor (named EmpCursor) being opened and closed:

InterSystems SQL Reference 49

SQL Commands

ObjectScript

SET name="LastName,FirstName", state=""##"
&sql (DECLARE EmpCursor CURSOR FOR
SELECT Name, Home_State
INTO :name,:state FROM Sample.Employee
WHERE Home_State %STARTSWITH “A%)
WRITE !,"BEFORE: Name="",6name,' State=",state
&sql (OPEN EmpCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:",SQLCODE,"™ ",%msg QUIT}
NEW %ROWCOUNT , %ROWID
FOR { &sql (FETCH EmpCursor)
QUIT:SQLCODE
WRITE I,"DURING: Name=",name,' State=",6state }
WRITE 1,"After FETCH SQLCODE: ",SQLCODE
WRITE I,"After FETCH row count: " ,%ROWCOUNT
&sql (CLOSE EmpCursor)
IF SQLCODE<O {WRITE "SQL Close Cursor Error:'",SQLCODE," ",%msg QUIT}
WRITE I,"After CLOSE SQLCODE: ",SQLCODE
WRITE !,"After CLOSE row count: *,%ROWCOUNT
WRITE I,"AFTER: Name=",6name," State=",state

Note that after closing the cursor, the host variables remain set to the last fetched data values, and %ROWCOUNT remains
set to the number of rows retrieved. However, the SQLCODE value at the end of the fetch (SQLCODE=100) is overwritten
by the SQLCODE value for the CLOSE (SQLCODE=0).

The following Embedded SQL example shows that a cursor persists across namespaces. This cursor is declared in %SYS,
opened and fetched in USER, and closed in SAMPLES. Note that the OPEN must be executed in the namespace that contains
the table(s) being queried, and the FETCH must able to access the output host variables, which are namespace-specific:

&sql (USE DATABASE %SYS)
WRITE $ZNSPACE, !
&sql (DECLARE NSCursor CURSOR FOR SELECT Name INTO :name FROM Sample.Employee)
&sql (USE DATABASE '"'USER')
WRITE $ZNSPACE, !
&sql (OPEN NSCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:",SQLCODE,"™ ",%msg QUIT}
NEW SQLCODE, %ROWCOUNT ,%ROWID
FOR { &sql (FETCH NSCursor)
QUIT:SQLCODE
WRITE "Name=",name,! }
&sql (USE DATABASE SAMPLES)
WRITE $ZNSPACE, !
&sql (CLOSE NSCursor)
IF SQLCODE<O {WRITE "'SQL Close Cursor Error:",SQLCODE,"™ ",%msg QUIT}

See Also

DECLARE, FETCH, OPEN
SQL Cursors

50 InterSystems SQL Reference

COMMIT (SQL)

COMMIT (SQL)

Commits work performed during a transaction.

Synopsis

COMMIT [WORK]

Description

A COMMIT statement commits all work completed during the current transaction, resets the transaction level counter,
and releases all locks established. This completes the transaction. Work committed cannot be rolled back.

COMMIT and COMMIT WORK are equivalent statements; both versions are supported for compatibility.

A transaction is defined as the operations that have occurred since and including the START TRANSACTION statement.
A COMMIT restores the transaction level counter ($TLEVEL) to its state immediately prior to the START TRANSACTION
statement that initialized the transaction. (Because InterSystems SQL does not support nested transactions, issuing additional
START TRANSACTION statements within a transaction has no effect on the transaction initialization point.)

A single COMMIT causes all savepoints within the transaction to be committed.

A START TRANSACTION statement is used to explicitly begin a new transaction. However, use of START
TRANSACTION is optional. If transaction processing is activated, the first database operation following a COMMIT
implicitly begins a new transaction. A COMMIT statement is not meaningful if either transaction processing is not in
effect, or transaction processing is in effect with automatic commits. If no transaction is in progress, a COMMIT completes
successfully (SQLCODE 0), but performs no operation.

The effects of a COMMIT on queries are determined by the current isolation level. These transaction parameters can be
set using either the SET TRANSACTION or START TRANSACTION command.

An SQLCODE -400 is issued if a transaction operation fails to complete successfully.

ObjectScript and SQL Transactions
ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObijectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

If a transaction involves SQL update statements, the transaction should be started by the SQL START TRANSACTION
statement and committed with the SQL COMMIT statement. Methods that use TSTART/TCOMMIT nesting can be
included in the transaction, as long as they don't initiate the transaction. Methods and stored procedures should not normally
use SQL transaction control statements, unless, by design, they are the main controller of the transaction. Stored procedures
should not normally use SQL transaction control statements, because these stored procedures are normally called from
ODBC/JDBC, which has its own model of transaction control.

Examples

The following Embedded SQL example demonstrates how a COMMIT restores the transaction level counter ($TLEVEL)
to the level immediately prior to the START TRANSACTION, regardless of how many SAVEPOINTS have been
established within the transaction. Note that the second START TRANSACTION in this program is a no-op which has
no effect on $TLEVEL:

InterSystems SQL Reference 51

SQL Commands

ObjectScript

&sql (SET TRANSACTION %COMMITMODE EXPLICIT)
WRITE !,"Set transaction mode, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (START TRANSACTION)
WRITE !,"Start transaction, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (SAVEPOINT a)
WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (SAVEPOINT b)
WRITE !,"Set Savepoint b, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (START TRANSACTION) /* Performs no operation */
WRITE !,"Start transaction, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (SAVEPOINT c)
WRITE !,"Set Savepoint c, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (COMMIT)
WRITE !,"Commit transaction, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

The following Embedded SQL example demonstrates that the first COMMIT statement commits the entire transaction
and that extra COMMIT statements have no effect and do not result in an error;

ObjectScript

&sql (SET TRANSACTION %COMMITMODE EXPLICIT)
WRITE !,"Set transaction mode, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (START TRANSACTION)
WRITE !,"Start transaction, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (SAVEPOINT a)
WRITE !,"Set Savepoint a, SQLCODE=",bSQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (COMMIT)
WRITE !,"Commit transaction, SQLCODE=",bSQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (COMMIT) /* Performs no operation */
WRITE !,"Commit again, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

&sql (COMMIT) /* Performs no operation */
WRITE !,"Commit again, SQLCODE=",SQLCODE
WRITE !,"Transaction level="",$TLEVEL

See Also

* SQL commands: ROLLBACK SAVEPOINT SET TRANSACTION START TRANSACTION $TLEVEL
e Transaction Processing

» ObjectScript command: TCOMMIT

52 InterSystems SQL Reference

CREATE AGGREGATE (SQL)

CREATE AGGREGATE (SQL)

Creates a user-defined aggregate function.

Synopsis

CREATE [OR REPLACE] AGGREGATE name(paraneter |ist) [RETURNS datatype]
[INITIALIZE WITH function-nanme]
ITERATE WITH functi on-name
[MERGE WITH function-nane]
[FINALIZE WITH function-nane]

Description

The CREATE AGGREGATE command creates a user-defined aggregate function (UDAF). When invoked, this user-
defined aggregate function iterates through the row values and invokes one or more user-defined functions to compute an
aggregate value. You can use CREATE AGGREGATE to provide aggregate operations not provided by the standard
InterSystems IRIS SQL aggregate functions.

If you invoke CREATE AGGREGATE to create a UDAF that already exists, SQL issues an SQLCODE -428 error, with
a%msg such as: User Defined Aggregate Function SQLUser . MyUDAF already exists. Ifyou specify the
optional OR REPLACE keyword clause (CREATE OR REPLACE AGGREGATE), specifying the name of an existing
UDAF does not generate an error. Instead, the existing UDAF is updated with the specified definition.

To delete a user-defined aggregate function, use the DROP AGGREGATE command.
Privileges

The CREATE AGGREGATE command is a privileged operation. Before using CREATE AGGREGATE you must
have Execute privilege for the UDAF and all referenced user-defined functions. Failing to do so results in an SQLCODE
-99 error (Privilege Violation).

Aggregate Function Name
The UDAF name must be a valid identifier. Aggregate function names are not case-sensitive.

The UDAF name can be qualified (schema.aggname), or unqualified (aggname). An unqualified name takes the default
schema name.

The UDAF name cannot be the same as the name of an existing stored procedure. Attempted to create a UDAF name that
duplicates a stored procedure name generates an SQLCODE -428 error, with a %msg such as User Defined Aggregate
Function SQLUser.MyFunction conflicts with existing stored procedure name.

INITIALIZE WITH Clause

The optional INITIALIZE WITH clause invokes the specified user-defined function or class method to compose the initial
state object. The state object value is used to pass interim aggregate values or other variables required to perform the end
calculation. If this clause is not specified, a null object is passed as the initial state object to the function specified in the
ITERATE WITH clause.

The specified user-defined function-name must exist when CREATE AGGREGATE is invoked; otherwise an SQLCODE
-428 error is generated and %msg specifies the UDAF function, the clause, and the non-existent function name.

The following is a user-defined function that defines an initial state object:

SQL

CREATE FUNCTION MyAggregatelnit() returns varchar language ObjectScript { RETURN "~ }

InterSystems SQL Reference 53

SQL Commands

ITERATE WITH Clause

The ITERATE WITH clause invokes the specified user-defined function or class method once for each row being aggregated.
It take a state object representing the interim result and the current row's column value(s) as input parameters and performs
its operation on that state object, which accumulates the aggregate value. When all rows have been processed it returns the
new state value.

The specified user-defined function-name must exist when CREATE AGGREGATE is invoked; otherwise an SQLCODE
-428 error is generated and %msg specifies the UDAF function, the clause, and the non-existent function name.

MERGE WITH Clause

The optional MERGE WITH clause can be specified to enable parallel processing of the user-defined aggregate function.
If not specified, the query invoking the UDAF uses single-thread processing. For further details, see Parallel Processing.

FINALIZE WITH Clause

The optional FINALIZE WITH clause invokes the specified user-defined function or class method once, at the end of
processing, to perform any final calculations based on the state value returned from the last call to the ITERATE WITH
clause function. If the invoking query specifies a GROUP BY clause, this user-defined function is invoked once for each
GROUP BY grouped value.

The specified user-defined function-name must exist when CREATE AGGREGATE is invoked; otherwise an SQLCODE
-428 error is generated and %msg specifies the UDAF function, the clause, and the non-existent function name.

Arguments

name

The name of the user-defined aggregate function to be created. The name must be a valid identifier. The name can be
qualified (schema.aggname), or unqualified (aggname). An unqualified name takes the default schema name. Aggregate
function names are not case-sensitive. The name must be followed by parentheses containing one or more parameters.

parameter_list

A list of parameters used to pass values to the aggregate function. The parameter list is enclosed in parentheses. You can
specify a single parameter, or a list of parameters separated by commas. Each parameter in the list consists of a parameter
name and a data type. For example: (paraml INTEGER,param2 NUMERIC).

RETURNS datatype

An optional argument that specifies the data type to return the aggregate function value. If omitted, the data type defaults
to the data type of the first parameter in the parameter_list.

function-name

The name of an existing user-defined function created using the CREATE FUNCTION command, or a class method that
returns a value and is projected as an SQL procedure. A user-defined function is stored as a method in a stored procedure
class. For example, the user-defined function MyFunction takes the default schema name: SQLUser.MyFunction, which

corresponds to the class User.funcMyFunction which contains the classmethod MyFunction().

Invoking a User-defined Aggregate Function
User-defined aggregate functions follow the same usage rules as standard aggregate functions.

A UDAF is invoked in a SELECT list, either as a listed select-item or in a subquery select-item. It can specify a column
alias; if a column alias is not specified, it defaults to Aggregate_n. For example,

54 InterSystems SQL Reference

CREATE AGGREGATE (SQL)

SQL

SELECT Home_State,AVG(Age) AS AvgAge,MAX(Age) AS MaxAge,SecondHighest(Age) AS SecondMaxAge
FROM Sample.Person GROUP BY Home_State

A UDAF cannot be used directly inan ORDER BY clause. Attempting to do so generates an SQLCODE -73 error. However,
you can use a user-defined aggregate function in an ORDER BY clause by specifying the corresponding column alias or
select-item sequence number.

A UDAF can be used directly in a HAVING clause. However, a HAVING clause must explicitly specify the user-defined
aggregate function; it cannot specify a UDAF using the corresponding select-item column alias or select-item sequence
number.

An aggregate function cannot be used directly in:

* aWHERE clause. Attempting to do so generates an SQLCODE -19 error.

» aGROUP BY clause. Attempting to do so generates an SQLCODE -19 error.

e aTOP clause. Attempting to do so generates an SQLCODE -1 error.

» aJOIN. Attempting to specify an aggregate in an ON clause generates an SQLCODE -19 error. Attempting to specify
an aggregate in a USING clause generates an SQLCODE -1 error.

Unlike a standard aggregate function, a user-defined aggregate function cannot specify a DISTINCT, %FOREACH, or
%AFTERHAVING clause.

Parallel Processing

If the optional MERGE WITH clause is specified, the MERGE WITH function merges the supplied state objects coming

from the ITERATE WITH functions of two or more parallel subqueries, returning a single merged values that represents

the aggregated state. The MERGE WITH function is automatically invoked as many times as the number of parallel processes.
The result of these merges is supplied to the FINALIZE WITH clause.

When declaring a MERGE WITH function, it is assumed the state object supports implicit serialization. For example, by
implementing the %SerialObject interface in ObjectScript.

If a MERGE WITH function is not provided, the user-defined aggregate function is not processed by parallel threads when
%PARALLEL or sharding is specified. It is porcessed as a single thread.

Listing User-defined Aggregate Functions

The INFORMATION.SCHEMA.USERDEFINEDAGGREGATES persistent class displays information about all user-defined
aggregate functions in the current namespace. It provides a number of properties including the names of the user-defined
functions specified in its clauses.

The following example returns the schema name, user-defined aggregate name, ITERATE clause function name, and
returned data type for all user-defined aggregate functions in the current namespace:
SQL

SELECT AGGREGATE_SCHEMA ,AGGREGATE_NAME, ITERATE_FUNCTION,RETURN_TYPE
FROM INFORMAT ION_SCHEMA .USER_DEF INED_AGGREGATES

If no RETURNS clause is specified, the RETURN_TYPE value is NULL.

Example

The following example creates a user-defined aggregate function that sums values by adding all high (>=5) values and
subtracting 5 for all low (<5) values. All values are data type NUMERIC(4,1). The first step is to create the iterate function,
specifying a state variable (tot) and an input variable (num):

InterSystems SQL Reference 55

SQL Commands

SQL

CREATE FUNCTION Sample.AddSub(tot NUMERIC(4,1),IN num NUMERIC(4,1)) RETURNS NUMERIC(4,1)
LANGUAGE OBJECTSCRIPT {IF num>=5 {SET tot=tot+num} ELSE {SET tot=tot-5} QUIT tot}

You can then define the user-defined aggregate function:

CREATE AGGREGATE Sample.SumAddSub(arg NUMERIC(4,1))
ITERATE WITH Sample.AddSub

You can then invoke this user-defined aggregate function for the Score field as follows:
SELECT TestSubject,Score,SUM(Score) AS ScoreSum,Sample.SumAddSub(Score) AS ScoreAddHighSubtractLow
To avoid negative values, add a FINALIZE WITH function:

CREATE FUNCTION Sample.NoNeg(tot NUMERIC(4,1)) RETURNS NUMERIC(4,1)
LANGUAGE OBJECTSCRIPT {IF num>0 {QUIT tot} ELSE {SET tot=0 QUIT tot}}

CREATE OR REPLACE AGGREGATE Sample.SumAddSub(arg NUMERIC(4,1))
ITERATE WITH Sample.AddSub
FINALIZE WITH Sample.NoNeg

See Also

 CREATE FUNCTION command
+ DROP AGGREGATE command
» Overview of Aggregate Functions

* SQLCODE error messages

56 InterSystems SQL Reference

CREATE DATABASE (SQL)

CREATE DATABASE (SQL)

Creates a database (namespace).

Synopsis

CREATE DATABASE dbnanme [ON DIRECTORY pat hnane]
[WITH [ENCRYPTED_DB] [GLOBAL_JOURNAL_STATE [=] {YES | NO}] 1]
Description

The CREATE DATABASE command creates a namespace and two associated databases. This allows you to create a
namespace within SQL.

The specified doname is the name of the created namespace and the directory that contains the corresponding database
files. Namespace names are not case-sensitive. A dbname follows the naming conventions for an SQL identifier, with the
following additional restrictions:

* Anunderscore (_) character is not permitted as the first character of dbname (but may be used elsewhere within the
name). The @, #, and $ characters are not permitted in dbname. Attempting to include these invalid characters in
dbname generates an SQLCODE -343 error.

* A hyphen (-) character is not permitted in dbname (hyphen is not a valid SQL identifier character). However, a
namespace nhame created by other means can include a hyphen character.

e A dbname cannot be longer than 63 characters; specifying a longer dbname generates an SQLCODE -400 fatal error
with the appropriate %msg.
If the specified dbname namespace already exists, InterSystems IRIS issues an SQLCODE -341 error.

You can specify neither, either, or both WITH options: ENCRYPTED_DB and/or GLOBAL_JOURNAL_STATE. If you
specify both, they are separated by a space, as follows: WITH ENCRYPTED_DB GLOBAL_JOURNAL_STATE=NO.

By default, CREATE DATABASE creates two databases in the mgr directory with the dbname name subdirectory con-
taining two subdirectories, C (code) and D (data). Each of these subdirectories contains a IRIS.DAT file, a iris.Ick file, and
an empty stream folder. For example, on a Windows system, CREATE DATABASE Barney would create the namespace
BARNEY and the following database files:

c:\InterSystems\IRIS\mgr\Barney\C containing IRIS_DAT, iris.lck, stream folder
c:\InterSystems\IRIS\mgr\Barney\D containing IRIS.DAT, iris.lIck, stream folder

The C (code) directory is used for the namespace routines database. The D (data) directory is used for the namespace
globals database. To return the location of the mgr directory, use the %SY STEM.Util.ManagerDirectory() method.

The optional ON DIRECTORY pathname clause allows you to specify a different location for the database files, rather
than a directory with the same name as the namespace. For example:
SQL

CREATE DATABASE Flintstone ON DIRECTORY "c:\InterSystems\IRIS\mgr\Fred"

If you specify a pathname that already exists, InterSystems IRIS issues an SQLCODE -341 error.

The CREATE DATABASE command is a privileged operation. Prior to using CREATE DATABASE, it is necessary
to be logged in as a user with the %Admin_Manage resource. Failing to do so results in an SQLCODE -99 error (Privilege
Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

InterSystems SQL Reference 57

SQL Commands

ObjectScript

DO $SYSTEM.Security.Login("*_SYSTEM","SYS")
&sql()

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

You can also create a namespace from the Management Portal. Select System Administration, Configuration, System Con-
figuration, Namespaces to list the existing namespaces. At the top of this table of existing namespaces you can click Create
New Namespace.

The maximum number of namespaces on a single InterSystems IRIS instance is 2048.

Arguments

dbname
The name of the database (namespace) to be created.
pathname

An optional argument that denotes the root pathname location for the databases, specified as a quoted string. The C and D
directories are created as subdirectories of this root path. The default is to create the database in the mgr directory.

WITH ENCRYPTED_ DB
An optional argument that specifies whether or not the database is encrypted. The default is not encrypted.
WITH GLOBAL_JOURNAL_STATE

An optional argument that specifies whether or not the database is journaled. YES specifies that the database is journaled
(which is recommended). NO specifies that the database is not journaled. The equal sign (=) is optional. The default is
journaled.

See Also

« DROP DATABASE command
e USE DATABASE command

58 InterSystems SQL Reference

CREATE FOREIGN SERVER (SQL)

CREATE FOREIGN SERVER (SQL)

Creates a foreign server.

Synopsis
CREATE [FOREIGN] SERVER server-nane [TYPE server-type]
FOREIGN DATA WRAPPER CSV HOST host - nane

CREATE [FOREIGN] SERVER server-nane [TYPE server-type]
FOREIGN DATA WRAPPER JDBC CONNECTION connecti on-nane id-options

Arguments

Arguments Description

server-name The name for the foreign server definition being created. A valid identifier, subject
to the same additional naming restrictions as a table name. A foreign server
name is a qualified name.

TYPE server-type The type of the foreign server. Foreign servers can be of two types: 'DB' or
'FILE'. Note that the delimiters are required.

FOREIGN DATA Describes the protocol that will be used to access external data. The foreign

WRAPPER [CSV | JDBC | data wrapper can be one of two options: CSV or JDBC.
]

HOST host-name The source that stores the data. This name is a folder in a file system. The
host-name must be delimited by single quotation marks.

CONNECTION The name of the JDBC connection that connects InterSystems IRIS to the
connection-name external system. Must be delimited. For details on establishing a JDBC
connection, see Connecting the SQL Gateway via JDBC.

id-options Optional — Either DELIMITEDIDS or NODELIMITEDIDS. Specifies whether
the external data source accepts delimited identifiers or not.

Description

The CREATE FOREIGN SERVER command defines a remote location that InterSystems SQL can use to access an
external data source, called a foreign server. This command stores metadata that the system can use to project data from
an external data source into foreign tables that can be queried alongside native tables. In addition, it defines the foreign
data wrapper, which determines the protocol that the foreign server uses to access data from an external source.

InterSystems SQL currently supports two types of foreign servers (optionally specified with the TYPE keyword), 'FILE'
and 'DB', that retrieve external data from either a .csv file or database, respectively. Foreign servers of type 'FILE' access
files in file systems, while foreign servers of type 'DB' use pre-defined JDBC connections to access external databases. The
type of a foreign server is implicitly set by the foreign data wrapper.

Create a Foreign Server for .csv Files

When defining a foreign server that will create foreign tables by reading data stored in .csv files, you will use the CSV
foreign data wrapper. Foreign servers defined in this manner must define, at minimum, a local file path that stores any .csv
files that you may project into InterSystems IRIS. This file path is specified by using the HOST keyword.

The following example creates a foreign server that accesses .csv files:

CREATE FOREIGN SERVER Sample.DumpDir FOREIGN DATA WRAPPER CSV HOST */data/dumps®

InterSystems SQL Reference 59

SQL Commands

Create a Foreign Server with a JDBC Connection

When defining a foreign server that will create foreign tables by reading data stored in an external database, you will use
the JDBC foreign data wrapper. Foreign servers defined in this manner must specify a JDBC connection that will connect
the instance of InterSystems IRIS with the external data source. This connection’s name is specified by using the CONNEC-
TION keyword.

The following example creates a foreign server for JDBC connections:

CREATE FOREIGN SERVER Sample.Postgres FOREIGN DATA WRAPPER JDBC CONNECTION "PostgresSQLConnection*

Using Delimited Identifiers

When connecting to an external data source, you may need to specify whether or not the foreign server should accept
delimited identifiers. By default, InterSystems IRIS may send delimited identifiers to an external database management
system when creating a projection, but not all database management systems allow delimited identifiers. If you are using
an external database management system that does not accept delimited identifiers, you should specify the NODELIMITE-
DIDS at the end of your CREATE FOREIGN SERVER command. The default setting allows delimited identifiers.

See Also

e DROP FOREIGN SERVER
e ALTER FOREIGN SERVER
e CREATE FOREIGN TABLE

60 InterSystems SQL Reference

CREATE FOREIGN TABLE (SQL)

CREATE FOREIGN TABLE (SQL)

Creates a foreign table.

Synopsis
Foreign Table from File

CREATE FOREIGN TABLE [IF NOT EXISTS] tabl e-nane
(colum type, colum2 type2, ...)
SERVER server-nane FILE file-nane
[USING j son-options]

CREATE FOREIGN TABLE [IF NOT EXISTS] tabl e-name
(colum type, colum2 type2, ...)
SERVER server-nanme FILE file-nanme
COLUMNS (col -nane, col -nanme2, ...)
[USING j son-options]

CREATE FOREIGN TABLE [IF NOT EXISTS] tabl e-name
(colum type, colum2 type2, ...)
SERVER server-nanme FILE file-nanme
COLUMNS (col -nane, col -nanme2, ...)
VALUES (header , header2, ...)
[USING json-options]

CREATE FOREIGN TABLE [IF NOT EXISTS] tabl e-nane
(colum type, colum2 type2, ...)
SERVER server-nanme FILE file-nane
VALUES (header, header2, ...)
[USING json-options]

Foreign Table from Database

CREATE FOREIGN TABLE [IF NOT EXISTS] tabl e-nane
[(colum type, colum2 type2, ...)]
SERVER ser ver - nane

CREATE FOREIGN TABLE [IF NOT EXISTS] tabl e-name

[(colum type, colum2 type2, ...)]
SERVER server-nanme TABLE external -table
[VALUES (header, header2, ...)]

CREATE FOREIGN TABLE [IF NOT EXISTS] tabl e-nane
[(colum type, colum2 type2, ...)]
SERVER server - name QUERY query

CREATE FOREIGN TABLE [IF NOT EXISTS] tabl e-name

[(colum type, colum2 type2, ...)]
SERVER server-nanme VALUES (header, header2, ...)

Description

The CREATE FOREIGN TABLE command creates a foreign table definition in the specified structure. CREATE
FOREIGN TABLE creates a projection of data from an external data source than can be queried alongside data native to
InterSystems IRIS.

If you do not specify the IF NOT EXISTS option and attempt to create a foreign table with the same name as a pre-existing
foreign table, the system returns an SQLCODE -201 error. The IF NOT EXISTS option suppresses the error, but InterSystems
IRIS does not recreate the foreign table.

Suppresses the error that arises if a schema with name already exists. The schema is not re-created.

If you create a foreign table from a .csv file, you may specify projection options by using a JSON object or a string containing
a JSON object in a USING clause, just as you might with a LOAD DATA command.

InterSystems SQL Reference 61

SQL Commands

Foreign Table from File

You can create a foreign table that projects data from a file external to your instance of InterSystems IRIS. In these cases,
the foreign server on which you create the table must use CSV as its foreign data wrapper. Note that there is a slight difference
in behavior between usage when the file does and does not.

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name FILE file-name [USING json-options] creates a foreign table that projects data stored in the specified
file name.

— If the file does not have a header, the columns in the new foreign table contain data from the first n columns in
the file, where n is the length of the primary column list. Within InterSystems SQL, you can query this foreign
table by referring to the column names in the primary column list.

CREATE FOREIGN TABLE (
FfirstName VARCHAR(15),
lastName VARCHAR(15),
DOB DATE
) Sample.Person SERVER Sample._HospitalDir FILE “person.csv”

— If the file does have a header, The column names in the primary column list must correspond with header names
of columns in the file. Only the column names in the file that correspond to column names in the primary column
list appear in the projected table.

CREATE FOREIGN TABLE (

FfirstName VARCHAR(15),

lastName VARCHAR(15),

DOB DATE
) Sample._Person SERVER Sample.HospitalDir FILE "person.csv® USING { "from": { "file": { "header':
true } } }

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name FILE file-name COLUMNS (col-name type, col-name2 type2, ...) [USING json-options] creates a
foreign table that projects data stored from the specified file with a column order specified by the COLUMNS clause.
Names in the primary column list specify the names of the columns in the table and positionally correlate with the
columns of the file. The names in the COLUMNS clause must be identical to the names in the primary column list and
each name must appear in both lists. The COLUMNS clause can be used to reorder the columns from the file; the order
of columns in the COLUMNS clause does not need to match the order of the columns in the primary column list. The
order of the columns in the foreign table is determined by the position of the column names in the COLUMNS clause.

If the file has a header, this command behaves identically, as the file’s header is disregarded. In this case, you should
specify the from. file.header JSON option as true in the USING clause.

CREATE FOREIGN TABLE Sample.Person (

FileColumnOne VARCHAR(10),

FileColumnTwo VARCHAR(20)
) SERVER Sample.HospitalDir FILE person.csv COLUMNS (FileColumnTwo VARCHAR(20), FileColumnOne
VARCHAR(10))

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name FILE file-name COLUMNS (col-name type, col-name2 type2, ...) VALUES (header, header2, ...)
USING json-options] creates a foreign table that projects data stored from the specified file with a column order
specified by the VALUES clause, possibly omitting certain columns from the .csv file. The primary column list defines
the column names and types that appear in the foreign table. The COLUMNS clause lists the columns in the file and
their type; the length of this list can be longer than the length of the primary column list and the names need be similar.
The VALUES clause reorders the column names in the COLUMNS clause, but is the length of the primary columns
list.

You may use the VALUES clause to omit certain columns from the file (specified in the COLUMNS clause) from the
foreign table. The order of names in the VALUES clause is mapped onto the order of column names in the primary

62

InterSystems SQL Reference

CREATE FOREIGN TABLE (SQL)

column list. Within InterSystems SQL, you can query this foreign table by referring to the column names in the primary
column list.

If the file has a header, this command behaves identically, as the file’s header is disregarded. In this case, you should
specify the from.file._header JSON option as true in the USING clause.

In the following example, the FieldOne column projects data from the second element of the COLUMNS clause, the
FieldTwo column projects data from the first element of the COLUMNS clause, and the FieldThree column projects
data from the fourth element of the COLUMNS clause.

CREATE FOREIGN TABLE Sample.Person (

FieldOne VARCHAR(10),

FieldTwo VARCHAR(20),

FieldThree INTEGER
) SERVER Sample.HospitalDB FILE person.csv COLUMNS (FirstName VARCHAR(10), LastName(20), DOB DATE,
Age INTEGER) VALUES (LastName, FirstName, Age)

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name FILE file-name VALUES (header, header2, ...) [USING json-options] creates a foreign table that
projects a subset of data stored from the specified file into the table. The column names in the VALUES clause must
correspond to column names in the .csv file, which may be different from the names in the primary column list. The
order of columns in the foreign table is determined by the order of the columns in the primary column list, with the
data in those columns coming from the positionally related element of the VALUES clause.

If the file does not have a header, the VALUES clause is ignored and meaningless.

CREATE FOREIGN TABLE Sample.Person (

FirstName VARCHAR(10),

LastName VARCHAR(20)
) SERVER Sample._HospitalDB FILE person.csv VALUES (FirstNamelnFile, LastNamelnFile) USING { "from":
{ "file": { "header": 1 } } }

Foreign Table from Database

You can create a foreign table that projects data from a database external to your instance of InterSystems IRIS. In these
cases, the foreign server on which you create the table must use JDBC as its foreign data wrapper.

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name [TABLE external-table] creates a foreign table that projects data from a table that exists in specified
table. The created table has the same columns as the table in the external database. If you omit the TABLE clause,
InterSystems IRIS attempts to access a table on the foreign server using table-name, rather than external-table.

CREATE FOREIGN TABLE Sample.Person (
FirstName VARCHAR(10),
LastName VARCHAR(20)
) SERVER Sample.ExternalDB TABLE “hospital.people”

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name QUERY query creates a foreign table that projects data returned from executing a query, specified by
guery, against a table that exists in an external database. InterSystems SQL does not validate the query before
attempting to execute it against the external database.

CREATE FOREIGN TABLE Sample.Team (
FirstName VARCHAR(10),
LastName VARCHAR(20)
) SERVER Sample.ExternalDB QUERY "SELECT FirstName,LastName FROM Hospital .Patients”

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name [TABLE external-table] VALUES (header, header2, ...) creates a foreign table that projects data
stored in the specified table with column names that differ from those in the external data source. If you omit the
TABLE clause, InterSystems IRIS attempts to access a table on the foreign server using table-name, rather than
external-table. The headers named in the VALUES clause identify the column names from the external data source,

InterSystems SQL Reference 63

SQL Commands

but may differ from the names that you have specified in the column list. Consequently, the VALUES clause must
have the same number of columns as the column list.

CREATE FOREIGN TABLE Sample.Team (
TeamlD BIGINT,
Name VARCHAR(100)
) SERVER Sample.ExternalDB TABLE “hospital.teams® VALUES (team_id, name)

Arguments

table-name

Ina CREATE FOREIGN TABLE command, this argument specifies the name of the foreign table that you want to create
as a valid identifier. A table name can be qualified or unqualified.

« Anunqualified foreign table name has the following syntax: tablename; it omits schema (and the period (.) character).
An unqualified table name takes the default schema name. The initial system-wide default schema name is SQLUser,
which corresponds to the default class package name User. Schema search path values are ignored.

If you have created a foreign table using a JDBC connection and omitted the TABLE clause, then the unqualified table
name is leveraged against the external data source to create the project, but the table is accessible through InterSystems
SQL under the default schema qualified name.

If you have specified an unqualified foreign table name with a JDBC connection and do not specify a TABLE clause,
then the

The system-wide default schema name can be configured.
To determine the current system-wide default schema name, use the $SYSTEM.SQL.Schema.Default() method.

» Aqualified foreign table name has the following syntax: schema.tablename. It can specify either an existing schema
name or a new schema name. Specifying an existing schema name places the foreign table within that schema. Speci-
fying a new schema name creates a new schema and associated class package, and places the table within that schema.

column

In a CREATE FOREIGN TABLE command, specify the column name or a comma-separated list of column names, used
to define the columns of the table you are creating, in the primary column list. You can specify the column names in any
order, with a space separating the column name from its associate data type. By convention, each column definition is
usually presented on a separate line and indentation is used. This convention is recommended for readability, but is not
required.

Enclose primary column lists in parentheses.

type

The InterSystems SQL data type class of the column name specified by column. A specified data type limits a column’s
allowed data values to the values appropriate for that data type. InterSystems SQL supports most standard SQL data types.

Data from the external data source is coerced into the specified type as part of the project. If the field cannot be coerced,
such as an invalid date format, a runtime error is raised.

server-name

Ina CREATE FOREIGN TABLE command, this argument specifies the foreign server configuration that accesses the
external data source.

You may specify a qualified or unqualified foreign server name. If you specify an unqualified foreign server name, the
system attempts to locate the foreign server within the default schema, which is SQLUser by default. If you specify a
qualified foreign server name, the system attempts to locate the foreign server within the provided schema.

64 InterSystems SQL Reference

CREATE FOREIGN TABLE (SQL)

If the foreign server cannot be located within the determined schema, the system raises an SQLCODE -360 error.

file-name

Ina CREATE FOREIGN TABLE command, this argument specifies the location of a .csv file containing the data to
project into InterSystems IRIS, defined as a complete file path enclosed in quotes. This argument should only be used when
the foreign server specified in the command uses the CSV option for its foreign data wrapper.

» Each line in afile specifies a separate row to be projected into the foreign table. Newline (“\n”) is the default line
separator. Blank lines are ignored.

» Datavalues in arow are separated by a column separator character. A comma is the default column separator character.
All data fields must be indicated by column separators, including unspecified data indicated by placeholder column
separators. You can define a different column separator character by specifying the columnseparator option in the
USING json-options clause.

» By default, no escape character is defined. To include the column separator character as a literal in a data value, enclose
the data value in quotation marks. To include a quotation mark in a quoted data value, double the quote character. You
can define an escape character specifying the escapechar option in the USING json-options clause.

« By default, data values are specified in the order of the fields in the foreign table. You can use the COLUMNS and
VALUES clauses to specify the data in a different order.

» Alldataina.csvfile is validated against the table’s data criteria, including the number of data fields in the record, and
the data type and data length for each field. If a certain record in the file cannot be validated, an error message is issued.
Note that date and time constructs in .csv files must be in ODBC format, as other formats may produce errors or
incorrect query results.

col-name

In a CREATE FOREIGN TABLE command, this argument appears in a COLUMNS clause. When the file has no header,
the COLUMNS clause provides a name for the columns in the file. When the file has a header, the COLUMNS clause can
often be omitted.

header

In a CREATE FOREIGN TABLE command, this argument appears in a VALUES clause. A VALUES clause may be used
in a variety of scenarios

external-table

Ina CREATE FOREIGN TABLE command that connects to an eternal data source through a JDBC connections, this
argument supplies the name of the external table to project into InterSystems IRIS. If you omitted a column list, a foreign
table created in this manner copies the column definitions, including column names and data types (where supported), from
the data source.

query

In a CREATE FOREIGN TABLE command that connects to an external data source through a JDBC connection, this
argument supplies the column definitions and column data for a foreign table by querying a table in the external data source.
Itis a SELECT query that is executed against the external data source.

Foreign tables created in this way copy column definitions from the external data source, including column names and data
types (when supported). A foreign table can copy column definitions from multiple tables if the query specifies joined
tables from the external data source.

json-options

This argument specifies loading options as a JSON object or a string containing a JSON object in the USING clause. Its
usage is nearly identical to the corresponding argument in the LOAD DATA command. For a complete overview on the

InterSystems SQL Reference 65

SQL Commands

syntax and options, refer to the LOAD DATA documentation. Note that the CREATE FOREIGN TABLE command supports
only the options in the from. file tree.

See Also

» CREATE FOREIGN SERVER
» ALTER FOREIGN TABLE

» DROP FOREIGN TABLE

*» DROP FOREIGN SERVER
 LOAD DATA

66 InterSystems SQL Reference

CREATE FUNCTION (SQL)

CREATE FUNCTION (SQL)

Creates a function as a method in a class.

Synopsis

CREATE FUNCTION nane(paraneter _list) [characteristics]
[LANGUAGE SQL]
BEGIN code_body ;
END

CREATE FUNCTION nane(paraneter_list) [characteristics]
LANGUAGE OBJECTSCRIPT
{ code_body }

CREATE FUNCTION nane(paraneter _list) [characteristics]
LANGUAGE { JAVA | PYTHON | DOTNET }
EXTERNAL NAME ext ernal - st or ed- procedur e

Description

The CREATE FUNCTION statement creates a function as a method in a class. This class method is projected as an SQL
Stored Procedure. You can also use the CREATE PROCEDURE statement to create a method which is projected as an
SQL Stored Procedure. CREATE FUNCTION should be used when the method is to return a value, but it can be used to
create a method that does not return a value.

The optional keyword OR REPLACE allows you to modify or replace an existing function. CREATE OR REPLACE
FUNCTION has the same effect as invoking DROP FUNCTION to delete the old version of the function and then
invoking CREATE TRIGGER.

In order to create a function, you must have %CREATE_FUNCTION administrative privilege, as specified by the GRANT
command.

You cannot create a function in a class if the class definition is a deployed class. This operation fails with an SQLCODE
-400 error alongside the %msg Unable to execute DDL that modifies a deployed class: "classname”.

For information on calling SQL functions from within SQL statements, refer to User-defined Functions. For calling SQL
stored procedures in a variety of contexts, refer to the CALL statement.

Arguments

name

The name of the function to be created in a stored procedure class. The name must be a valid identifier and must be followed
by parentheses, even if no parameters are specified. This name may be unqualified (StoreName) and take the default schema
name, or qualified by specifying the schema name (Patient.StoreName). You can use the $SYSTEM.SQL.Schema.Default()
method to determine the current system-wide default schema name. The initial system-wide default schema name is
SQLUser, which corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in name. If a function with this name
already exists, the operation fails with an SQLCODE -361 error.

The name of the generated class is the package name corresponding to the schema name, followed by a dot, “func”, and
then the specified name. For example, if the unqualified function name RandomLetter takes the initial default schema
SQLUser, the resulting class name would be: User . funcRandomLetter. For further details, see SQL to Class Name
Transformations.

InterSystems SQL does not allow you to specify a duplicate function name that differs only in letter case. Specifying a
function name that differs only in letter case from an existing function name results in an SQLCODE -400 error.

InterSystems SQL Reference 67

SQL Commands

parameter-list

An optional list of parameters used to pass values to the function. The parameter list is enclosed in parentheses, which are
mandatory even when no parameters are specified, and parameter declarations in the list are separated by commas. Each
parameter declaration in the list consists of (in order):

« Anoptional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

e The parameter name. Parameter names are case-sensitive.

* The data type of the parameter.

» Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The following example specifies two input parameters, both of which have default values. The optional DEFAULT keyword
is specified for the first parameter, omitted for the second parameter:

SQL

CREATE FUNCTION RandomLetter(IN firstlet CHAR DEFAULT "A",IN lastlet CHAR "Z%)
BEGIN

-- SQL program code

END

User-defined functions are supplied to the clauses of a user-defined aggregate function. When defining a function for use
in a user-defined aggregate function, you define a state parameter which is used to aggregate and pass the output value.

A function is “correlated” if it takes at least one parameter that is dependent on a value from a row of data, for example the
%ID field. Correlated functions are evaluated per row; uncorrelated functions (that is, functions that either take no param-
eters or take arguments that remain consistent across all rows) are evaluated a single time.

characteristics

An optional argument that consists of one or more keywords specifying the characteristics of the function. Multiple char-
acteristics are separated by whitespace (a space or line break), and characteristics can be specified in any order. The available
keywords are as follows:

68 InterSystems SQL Reference

CREATE FUNCTION (SQL)

FOR className Specifies the name of the class in which to create the function. If the class
does not exist, it will be created. You can also specify a class name by
qualifying the function name. The class name specified in the FOR clause
overrides a class name specified by qualifying the function name.

FINAL Specifies that subclasses cannot override the function. By default, functions
are not final. The FINAL keyword is inherited by subclasses.

PRIVATE Specifies that the function can only be invoked by other function of its own
class or subclasses. By default, a function is public, and can be invoked
without restriction. This restriction is inherited by subclasses.

PROCEDURE Specifies that the function is projected as an SQL stored procedure. Stored
procedures are inherited by subclasses. Because CREATE FUNCTION
always projects an SQL stored procedure, this keyword is optional. This
keyword can be abbreviated as PROC.

RETURNS datatype Specifies the data type of the value returned by a call to the function. If
RETURNS is omitted, the function cannot return a value. This specification
is inherited by subclasses, and can be modified by subclasses. This datatype
can specify type parameters such as MINVAL, MAXVAL, and SCALE. For
example RETURNS DECIMAL(19,4). Note that when returning a value,
InterSystems IRIS ignores the length of datatype; for example, RETURNS
VARCHAR(32) can receive a string of any length that is returned by a call
to the function.

SELECTMODE mode Only used when LANGUAGE is SQL (the default). When specified,
InterSystems IRIS adds an #SQLCOMPILE SELECT=mode statement to
the corresponding class method, thus generating the SQL statements defined
in the method with the specified SELECTMODE. The possible mode values
are LOGICAL, ODBC, RUNTIME, and DISPLAY. The default is LOGICAL.

The SELECTMODE clause is used for SELECT query operations and for INSERT and UPDATE operations. It specifies
the compile-time select mode. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #sqlcompile select=mode. For further details, see #sqlcompile select.

e InaSELECT query, the SELECTMODE specifies the mode in which data is returned. If the modevalue is LOGICAL,
then logical (internal storage) values are returned. For example, dates are returned in SHOROLOG format. If the mode
value is ODBC, logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is
DISPLAY, logical-to-display conversion is applied, and display format values are returned. If the mode value is
RUNTIME, the display mode can be set (to LOGICAL, ODBC, or DISPLAY) at execution time.

e Inan INSERT or UPDATE operation, the SELECTMODE RUNTIME option supports automatic conversion of input
data values from a display format (DISPLAY or ODBC) to logical storage format. This compiled display-to-logical
data conversion code is applied only if the select mode setting when the SQL code is executed is LOGICAL (which
is the default for all InterSystems SQL execution interfaces).

When the SQL code is executed, the %SQL.Statement class %SelectMode property specifies the execution-time select
mode, as described in Using Dynamic SQL. For further details on SelectMode options, refer to Data Display Options.

LANGUAGE
An optional keyword clause specifying the procedure code language. Available options are:

* LANGUAGE OBJECTSCRIPT (for ObjectScript) or LANGUAGE SQL. The procedure code is specified in the
code_body.

InterSystems SQL Reference 69

SQL Commands

* LANGUAGE JAVA, LANGUAGE PYTHON, or LANGUAGE DOTNET for an SQL procedure that invokes an
external stored procedure in one of these languages. The syntax for an external stored procedure is as follows:

LANGUAGE | angnane EXTERNAL NAME external -routi ne- nane

Where langname is JAVA, PYTHON, or DOTNET and exter nal-routine-name is a quoted string containing the name
of an external routine in the specified language. The SQL procedure invokes an existing routine; you cannot write code
in these languages within the CREATE FUNCTION statement. Stored procedure libraries in these languages are
stored external to IRIS, and therefore do not have to be packaged, imported, or compiled within IRIS. The following
is an example of a CREATE FUNCTION that invokes an existing JAVA external stored procedure that returns a
value:

CREATE FUNCTION getPrice (item_name VARCHAR)
RETURNS INTEGER

LANGUAGE JAVA

EXTERNAL NAME "Orders.getPrice”

If the LANGUAGE clause is omitted, SQL is the default.

code_body

The program code for the method to be created. You specify this code in either SQL or ObjectScript. SQL program code
is prefaced with a BEGIN keyword and concludes with an END keyword. Each complete SQL statement within code_body
end with a semicolon (;). ObjectScript program code is enclosed in curly braces, and code lines must be indented. The
language used must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL.

InterSystems IRIS uses the code you supply to generate the actual code of the method. If the code you specify is SQL,
InterSystems IRIS provides additional lines of code when generating the method that embed the SQL in an ObjectScript
“wrapper,” provide a procedure context handler (if necessary), and handle return values. The following is an example of
this InterSystems IRIS-generated wrapper code:

ObjectScript

NEW SQLCODE ,%ROWID ,%ROWCOUNT, title
&sql (SELECT col FROM tbl)
QUIT S$GET(title)

If the code you specify is OBJECTSCRIPT, the ObjectScript code must be enclosed in curly braces. All code lines must
be indented from column 1, except for labels and macro preprocessor directives. A label or macro directive must be prefaced
by a colon (:) in column 1.

For ObjectScript code, you must explicitly define the “wrapper” (which NEWSs variables, and uses QUIT to exit and
(optionally) to return a value upon completion).

When a stored procedure is called, an object of the class %Library.SQLProcContext is instantiated in the %sglcontext variable.
This procedure context handler is used to pass the procedure context back and forth between the procedure and its caller
(for example, the ODBC server).

%sglcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

SET %sqlcontext.%SQLCODE=SQLCODE
SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
SET %sqglcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sglcontext
object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SY STEM.Error object and setting it as %sglcontext.Error.

70 InterSystems SQL Reference

CREATE FUNCTION (SQL)

An SQLCODE -361 error is generated if the specified function already exists. To avoid this error, use the optional OR

REPLACE keyword, or drop the old function first with DROP FUNCTION.

Executing a User-defined Function

You can execute a function in a SELECT statement, such as the following:

SQL

SELECT StudentName,StudentAge,SQLUser _HalfAge() AS HalfTheAge

FROM SQLUser .MyStudents

An SQLCODE -359 error is generated if the function does not exist.

An SQLCODE -149 error is generated if the execution of the function results in a error. The type of error is described in

%msg.

Examples

The following example creates the RandomLetter() function (method) stored as a procedure that generates a random capital
letter. You can then invoke this function in a SELECT statement. A DROP FUNCTION is provided to delete the Ran-

domLetter() function. Note that this example is of an uncorrelated function, so the result set of the SELECT statement will
contain Names that all start with the same, randomly chosen letter and will contain the number of names that start with the

randomly chosen letter. An example result set is provided.

SQL

CREATE FUNCTION RandomLetter()
RETURNS INTEGER
PROCEDURE
LANGUAGE OBJECTSCRIPT
{
Top
SET x=$RANDOM(90)
IF x<65 {GOTO Top}
ELSE {QUIT $CHAR(X)}

SQL

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH RandomLetter()

Abbott, Amelia P.
Adams,John J.
Alton,Lionel N.
Amblin,Stephen O.
Amory,Jennifer E.
Andrews,Olivia G
Arias,Rowan K.
Avery,Marvin N.

DROP FUNCTION RandomLetter

The following example creates the RandomLetter() function (method) stored as a procedure that generates a random capital
letter as a correlated function that depends on the changing value of %I1D, though the argument itself is not used within the

InterSystems SQL Reference

71

SQL Commands

body of RandomLetter(). The result set of the SELECT statement will contain Names that start with different, randomly
chosen letters and its length will contain a variable number of elements. An example result set is provided.

CREATE FUNCTION RandomLetter(IN id INTEGER)
RETURNS INTEGER
PROCEDURE
LANGUAGE OBJECTSCRIPT
{
Top
SET x=$RANDOM(90)
IF x<65 {GOTO Top}
ELSE {QUIT $CHAR(X)}
3

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH RandomLetter(%ID)

Alton,Lionel N.
Cooper,Peter H.
Hertz,Lana C.

Jones,Alyssa D.

The following example creates a function that invokes ObjectScript code, which in turn contains embedded SQL.:

ObjectScript

&sql (CREATE FUNCTION TraineeName(
SSN VARCHAR(11),
OUT Name VARCHAR(50))
PROCEDURE
RETURNS VARCHAR(30)
FOR SQLUser .MyStudents
LANGUAGE OBJECTSCRIPT
{
NEW SQLCODE , %ROWCOUNT
SET Name=""
&sql (SELECT Name INTO :Name FROM Sample.Employee
WHERE SSN = :SSN)
IF $CGET(%sglcontext) ™= """ {
SET %sqlcontext.%SQLCODE=SQLCODE
SET %sqlcontext.%ROWCOUNT=%ROWCOUNT %}
QUIT Name

b

IF SQLCODE=0 { WRITE !,"Created a function" QUIT}

ELSE { WRITE !,""CREATE FUNCTION error: " ,SQLCODE,"™ ',6%msg,!
&sql (DROP FUNCTION TraineeName FROM SQLUser._MyStudents) }

IF SQLCODE=0 { WRITE !,"Dropped a function"™ QUIT}
ELSE { WRITE !,"Drop error: ",SQLCODE }

It uses the %sglcontext object, and sets its %SQLCODE and %ROWCOUNT properties using the corresponding SQL
variables. Note the curly braces enclosing the ObjectScript code following the function’s LANGUAGE OBJECTSCRIPT
keyword. Within the ObjectScript code there is Embedded SQL code, marked by &sql and enclosed in parentheses.

Security and Privileges

The CREATE FUNCT ION command is a privileged operation that requires the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a CREATE FUNCTION command without
these privileges will result in an SQLCODE -99 error and the command will fail.

Users without proper permissions can still execute this command under one of two conditions:
* The command is executed via Embedded SQL, which does not perform privilege checks.

» The user explicitly specifies no privilege checking by, for example, calling either %Prepare() with the checkPriv
argument set to 0 or %6ExecDirectNoPriv() on a %SQL.Statement.

See Also
e DROP FUNCTION command

72 InterSystems SQL Reference

CREATE FUNCTION (SQL)

» CREATE AGGREGATE command

» Defining and Using Stored Procedures

InterSystems SQL Reference 73

SQL Commands

CREATE INDEX (SQL)

Creates an index for a table.

Synopsis

CREATE i ndex-type INDEX i ndex- name
ON [TABLE] tabl e-nanme (field-name, ...)
[AS i ndex-cl ass-nane [(paraneter-nane = parameter_value, ...)] 1
[WITH DATA (datafield-name, ...)]
[[IMMEDIATE | DEFER] [BUILD] 1]

Arguments
index-type
An optional argument that specifies the type of index to be created. The following are the options for the index type:

* UNIQUE: A constraint that ensures there will not be two rows in the table with identical values in all the fields in the
index. You cannot specify this keyword for a bitmap or bitslice index.

The UNIQUE keyword can be followed by (or replaced by) the CLUSTERED or NONCLUSTERED keywords. These
keywords are no-ops; they are provided for compatibility with other vendors.

« BITMAP: Indicates that a bitmap index should be created. A bitmap index enables rapid queries on fields with a small
number of distinct values.

» BITMAPEXTENT: Indicates that a bitmapextent index should be created. At most one bitmapextent index can be
created for a table. No field-name is specified with BITMAPEXTENT.

» BITSLICE: Indicates that a bitslice index should be created. A bitslice index enables very fast evaluation of certain
expressions, such as sums and range conditions. This is a specialized index type, which should only be used to solve
very specific problems.

e COLUMNAR: Indicates that a columnar index should be created. A columnar index enables very fast queries, especially
ones involving filtering and aggregation operations, on columns whose underlying data is stored across rows. Columnar
indexes are an experimental feature for 2022.2.

index-name

The index being defined. The name is an identifier.

table-name

The name of an existing table for which the index is being defined. You cannot create an index for a view. A table-name
can be qualified (schema.table), or unqualified (table). An unqualified table name takes the default schema name.

field-name

One or more field names that serve as the basis for the index. Field names must be enclosed in parentheses. Multiple field
names are separated by commas.

Each field name can be followed by an ASC or DESC keyword. These keywords are no-ops; they are provided for compat-
ibility with other vendors.

AS index-class-name

An optional argument specifying a class that defines an index, optionally followed by parentheses enclosing one or more
comma-separated pairs of parameter names and associated values.

74 InterSystems SQL Reference

CREATE INDEX (SQL)

WITH DATA (datafield-name)

An optional argument that specifies one or more field names to be defined as Data properties for the index. Field names
must be enclosed in parentheses. Multiple field names are separated by commas. You cannot specify a WITH DATA clause
when specifying a BITMAP or BITSLICE index.

IMMEDIATE BUILD

An optional argument that specifies to build the index as soon as you create it. Indexes build immediately by default, so
this clause can be omitted. The BUILD keyword is optional.

DEFER BUILD

An optional argument that specifies to disable building the index upon creation. This option also marks the index as not
selectable, making it unavailable for use in queries. To later use the index, you must build it using BUILD INDEX and

then make it selectable by using the SetMapSelectability() method; you can view whether a map is selectable or not in

the Management Portal by navigating to System Explorer > SQL > Catalog Details and selecting the Maps/Indices button.
The BUILD keyword is optional.

See additional compatibility syntax below.

Description

CREATE INDEX creates a sorted index on the specified field (or fields) of the named table. InterSystems IRIS uses
indexes to improve performance of query operations. InterSystems IRIS automatically maintains indexes during INSERT,
UPDATE, and DELETE operations, and this index maintenance may negatively affect performance of these data modifi-
cation operations.

You can create an index using the CREATE INDEX command or by adding an index definition to a class definition, as
described in Defining and Building Indexes. You can delete an index by using the DROP INDEX command.

For information about properties on which you can and cannot create indexes, see Properties That Can Be Indexed.
CREATE INDEX can be used to create any of the following types of index:

» Avregular index (Type=index): Specify either CREATE INDEX (for non-unique values) or CREATE UNIQUE
INDEX (for unique values).

e A bitmap index (Type=bitmap): Specify CREATE BITMAP INDEX.
» Anbitslice index (Type=bitslice): Specify CREATE BITSLICE INDEX.
* Acolumnar index (Type=columnar): Specify CREATE COLUMNAR INDEX.

You can also define an index using the %Dictionary.IndexDefinition class.
You can use CREATE INDEX to add an index to a sharded table.

For information about indexes at the class level, see %L.ibrary.FunctionalIndex.

Privileges and Locking

The CREATE INDEX command is a privileged operation. The user must have %ALTER_TABLE administrative privilege
to execute CREATE INDEX. Failing to do so results in an SQLCODE -99 error with the %msg User “name” does
not have %ALTER_TABLE privileges. You can use the GRANT command to assign %ALTER_TABLE privileges
to a user or role, if you hold appropriate granting privileges. Administrative privileges are namespace-specific. For further
details, refer to Privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE -99 error with the %msg User "name” does not have required

InterSystems SQL Reference 75

SQL Commands

%ALTER privilege needed to change the table definition for "Schema.TableName®.You can
determine if the current user has %ALTER privilege by invoking the %CHECKPRIV command. You can use the GRANT
command to assign %ALTER privilege to a specified table. For further details, refer to Privileges.

» CREATE INDEX cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdIAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class "Schema.tablename®.

» CREATE INDEX cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
"classname”.

The CREATE INDEX statement acquires a table-level lock on table-name. This prevents other processes from modifying
the table’s data. This lock is automatically released at the conclusion of the CREATE INDEX operation. CREATE INDEX
maintains a lock on the corresponding class definition until the completion of the create index operation, including the
population of the index data.

To create an index, the table cannot be locked by another process in either EXCLUSIVE MODE or SHARE MODE.
Attempting a CREATE INDEX operation on a locked table results in an SQLCODE -110 error, with a %msg such as the
following: Unable to acquire exclusive table lock for table "Sample.MyTest".

Options Supported for Compatibility Only

InterSystems SQL accepts the following CREATE INDEX options for parsing purposes only, to aid in the conversion of
existing SQL code to InterSystems SQL. These options do not provide any actual functionality.

CLUSTERED | NONCLUSTERED owner.catalog. ASC | DESC
The following is an example showing the placement of these no-op keywords:

CREATE UNIQUE CLUSTERED INDEX index-name ON TABLE owner.catalog.schema.table (fieldl ASC, field2
DESC)

Index Name

The name of an index must be unigque within a given table. Index names follow identifier conventions, subject to the
restrictions below. By default, index names are simple identifiers; an index name can be a delimited identifier. An index
name should not exceed 128 characters. Index names are not case-sensitive.

InterSystems IRIS uses the name you supply (which it refers to as the “SglName”) to generate a corresponding index
property name in the class and the global. This index property name contains only alphanumeric characters (letters and
numbers) and is a maximum of 96 characters in length. To generate an index property name, InterSystems IRIS first strips
punctuation characters from the SqlName you supply, and then generates a unique identifier of 96 (or less) characters to
create a unique index property name.

» Anindex name can be the same as a field, table, or view name, but such name duplication is not advised.

» Anindex property name (after punctuation stripping) must be unique. If you specify a duplicate SQL index name, the
system generates an SQLCODE -324 error. If you specify an SQL index name that differs only in punctuation characters
from an existing SQL index name, InterSystems IRIS substitutes a capital letter (beginning with “A”) for the final
character to create a unique index property name. Therefore it is possible (though not advisable) to create SQL index
names that differ only in their punctuation characters.

* Anindex property name must begin with a letter. Therefore, either the first character of the index name or the first
character after initial punctuation characters are stripped must be a letter. A valid letter is a character that passes the
$ZNAME test. If the first character of the SQL index name is a punctuation character (% or _) and the second character
is a number, InterSystems IRIS appends a lowercase “n” as the first character of the stripped index property name.

76 InterSystems SQL Reference

CREATE INDEX (SQL)

* Anindex name may be much longer than 31 characters, but index names that differ in their first 31 alphanumeric
characters are much easier to work with.

The Management Portal SQL interface Catalog Details displays the SQL index name (SQL Map Name) and the corresponding
index property name (Index Name) for each index.

What happens when you try to create an index with the same name as an existing index is described below.

Existing Index

By default, InterSystems IRIS rejects an attempt to create an index that has the same name as an existing index for that
table and issues an SQLCODE -324 error. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which
displaysa Allow DDL CREATE INDEX for existing index setting. The deault is 0, which is the recommended
setting for this option. If this option is set to 1, InterSystems IRIS deletes the existing index from the class definition and
then recreates it by performing the CREATE INDEX. It deletes the named index from the table specified in CREATE
INDEX. This option permits the delete/recreate of a UNIQUE constraint index (which cannot be done using a DROP
INDEX command). To delete/recreate a primary key index, refer to the ALTER TABLE command.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

However, even if this option is set to allow the recreating of an existing index, you cannot recreate a Primary Key IDKEY
index if the table contains data. Attempting to do so generates an SQLCODE -324 error.

Table Name
You must specify the name of an existing table.

e Iftable-nameis a nonexistent table, CREATE INDEX fails with an SQLCODE -30 error, and sets %msg to Table
"SQLUSER.MYTABLE" does not exist.

» Iftable-nameis a view, CREATE INDEX fails with an SQLCODE -30 error, and sets %msg to Attempt to
CREATE INDEX "My Index" on view SQLUSER.MYVIEW failed. Indices only supported for
tables, not views..

Creating an index modifies the table’s definition; if you do not have permission to change the table definition, CREATE
INDEX fails with an SQLCODE -300 error, and sets %msg to DDL not enabled for class "schema.tablename®.

Field Names

You must specify at least one field name to index on. Specify a field name or a comma-separated list of field names enclosed
in parentheses. Duplicate field names are permitted and preserved in the index definition. Specifying more than one field
may improve performance of GROUP BY operations, for example, group by state and then by city within each state.
Generally, you should avoid indexing on a field or fields that have large amounts of duplicate data. For example, in a
database of people, indexing on a Name field would be appropriate because most names are unique. Indexing on a State
field would (in most cases) not be appropriate because of the large number of duplicate data values. The fields you specify
must either be defined in the table or in the superclass of the table’s persistent class. (all classes must, of course, have been
compiled.) Specifying a nonexistent field generates an SQLCODE -31 error.

In addition to ordinary data fields, you can use CREATE INDEX to create an index:
e OnaSERIAL field (a %Counter field).

* Onan IDENTITY field.

e Onthe ELEMENTS or KEYS value for a collection.

You cannot create an index on a stream value field.

InterSystems SQL Reference 77

SQL Commands

You cannot create an index with multiple IDKEY fields if one of the IDKEY fields (properties) is SQL Computed. This
limitation does not apply to a single field IDKEY index. Because multiple IDKEY fields in an index are delimited using
the “||” (double vertical bar) characters, you cannot include this character string in IDKEY field data.

Field in an Embedded Object (%SerialObject)

To index a field in an embedded object, you create an index in the table (%Persistent class) referencing that embedded
object. In CREATE INDEX the field-name specifies the name of the referencing field in the table (%Persistent object)
joined by an underbar to the field name in the embedded object (%SerialObject), as shown in the following example:
SQL

CREATE INDEX Stateldx ON TABLE Sample.Person (Home_State)

Here Homeis a field in Sample.Person that references the embedded object Sample.Address, which contains the Statefield.

Only those embedded object records associated with the persistent class referencing property are indexed. You cannot index
a %SerialObject property directly.

For further details on defining embedded objects (also known as serial objects) refer to Embedded Object (%SerialObject);
for further details on indexing a property (field) defined in an embedded object, refer to Indexing an Embedded Object
(%SerialObject) Property.

Index Class Name
This optional syntax allow users to specify a class and parameters for a functional index using SQL.

An SQL example is:

CREATE INDEX Histldx ON TABLE Sample.Person (MedicalHistory) AS %iFind.Index.Basic (LANGUAGE="en",
LOWER=1)

For further details, refer to Indexing Sources for SQL Search.

WITH DATA Clause

Specifying this clause may allow a query to be resolved by only reading the index, which greatly reduces the amount of
disk 1/0, improving performance.

You should specify the same field in the field-name and the WITH DATA datafiel d-name if field-name uses string collation;
this allows retrieval of the uncollated value without having to go to the Master Map. If the value in field-name does not use
string collation there is no advantage to specifying this field in the WITH DATA datafiel d-name.

You can specify fields in WITH DATA datafield-name that are not indexed. This allows more queries to be satisfied from
the index without going to the Master Map. The tradeoff is how many indexes you want to maintain; and that adding data
to an index makes it quite a bit larger, which will slow down operations that don't need the data.

You can specify fields in WITH DATA datafield-name that are defined in the superclass for the table’s persistent class.
The UNIQUE Keyword

Using the UNIQUE keyword, you can specify that each record in the index has a unique value. More specifically, this
ensures that no two records within the index (and hence in the table that contains the index) can have the same collated
value. By default, most indexes use uppercase string collation (to make searches not case-sensitive). In this case, the values
“Smith” and “SMITH” are considered to be equal and not unique. CREATE INDEX cannot specify non-default index
string collation. You can specify a different string collation for individual indexes by defining the index in the class definition.

You can change the namespace default collation to make fields/properties case-sensitive by default. Changing this option
requires recompiling all classes and rebuilding all indexes in the namespace. Go to the Management Portal, select the

78 InterSystems SQL Reference

CREATE INDEX (SQL)

Classes option, select the namespace for your stored queries and use the Compile option to recompile the corresponding
classes. Then rebuild all indexes. They will be case-sensitive.

CAUTION: Do not rebuild indexes while the table’s data is being accessed by other users. Doing so may result in
inaccurate query results.

The BITMAP Keyword

Using the BITMAP keyword, you can specify that this index will be a bitmap index. A bitmap index consists of one or
more bit strings in which the bit position represents the row id, and each bit value represents the presence (1) or absence
(0) of a specific value for the field in that row (or the value for the combined field-namefields). InterSystems SQL maintains
these positional bits (as compressed bit strings) when inserting, updating, or deleting data; there is no significant difference
in the performance of INSERT, UPDATE, or DELETE operations between using a bitmap index and a regular index. A
bitmap index is highly efficient for many types of query operations. They have the following characteristics:

» You can only define bitmap indexes in tables (classes) that either use system-assigned RowID with positive integer
values, or use a primary key IDKEY to define custom ID values when the IDKEY is based on a single property with
type %Integer and MINVAL > 0, or type %Numeric with SCALE = 0 and MINVAL > 0.

You can use the $SYSTEM.SQL.Util.SetOption() method SET
status=$SYSTEM.SQL.Util.SetOption(*'BitmapFriendlyCheck',1, .oldval) to set a system-wide
configuration parameter to check at compile time for this restriction, determining whether a defined bitmap index is
allowed in a %Storage.SQL class. This check only applies to classes that use %Storage.SQL. The default is 0. You
can use $SYSTEM.SQL.Util.GetOption(*'BitmapFriendlyCheck') to determine the current configuration of this
option.

You can only define a bitmap index for tables that use default (%Storage.Persistent) structure. Tables with compound
keys, such as a child table, cannot use a bitmap index. If you use DDL (as opposed to using class definitions) to create
a table, it meets this requirement and you can make use of bitmap indexes.

* A bitmap index should only be used when the number of possible distinct field values is limited and relatively small.
For example, a bitmap index is a good choice for a field for gender, or nationality, or timezone. A bitmap should not
be used on a field with the UNIQUE constraint. A bitmap should not be used if a field can have more than 10,000
distinct values, or if multiple indexed fields can have more than 10,000 distinct values.

« Bitmap indexes are very efficient when used in combination with logical AND and OR operations in a WHERE clause.
If two or more fields are commonly queried in combination, it may be advantageous to define bitmap indexes for those
fields.

For more details, see Bitmap Indexes.

The BITMAPEXTENT Keyword

A bitmap extent index is a bitmap index for the table itself. InterSystems SQL uses this index to improve performance of
COUNT(*), which returns the number of records (rows) in the table. A table can have, at most, one bitmap extent index.
Attempting to create more than one bitmap extent index results in an SQLCODE -400 error with the %msg ERROR #5445:
Multiple Extent indexes defined: DDLBEIndex.

All tables defined using CREATE TABLE automatically define a bitmap extent index. This automatically generated index
is assigned the Index Name DDLBEIndex and the SQL MapName %%DDLBEIndex. A table defined as a class may have
a bitmap extent index defined with an Index Name and SQL MapName of $ClassName.

You can use CREATE BITMAPEXTENT INDEX to add a bitmap extent index to a table, or to rename an automatically-
generated bitmap extent index. The index-name you specify should be the class name corresponding to the table-name of
the table. This becomes the SQL MapName for the index. No field-name or WITH DATA clause can be specified.

InterSystems SQL Reference 79

SQL Commands

The following example creates a bitmap extent index with Index Name DDLBEIndex and the SQL MapName Patient. If
Sample.Patient already had a %%DDLBEIndex bitmap extent index, this example renames that index to SQL MapName
Patient:

SQL

CREATE BITMAPEXTENT INDEX Patient ON TABLE Sample.Patient

For more details, see Bitmap Extent Index.

The BITSLICE Keyword

Using the BITSLICE keyword, you can specify that this index will be a bitslice index. A bitslice index is used exclusively
for numeric data which is used in calculations. A bitslice index represents each numeric data value as a binary bit string.
Rather than indexing a numeric data value using a boolean flag (as in a bitmap index), a bitslice index creates a bit string
for each numeric value, a separate bit string for each record. This is a highly specialized type of index that should only be
used for fast aggregate calculations. For example, the following would be a candidate for a bitslice index:

SQL

SELECT SUM(Salary) FROM Sample.Employee

You can create a bitslice index for a string data field, but the bitslice index will represent these data values as canonical
numbers. In other words, any non-numeric string, such as “abc” will be indexed as 0. This type of bitslice index could be
used to rapidly count records that have a value for a string field and not count those that are NULL.

A bitslice index should not be used in a WHERE clause, because they are not used by the SQL query optimizer.

Populating and maintaining a bitslice index using INSERT, UPDATE, or DELETE operations is significantly slower than
using a bitmap index or a regular index. Using several bitslice indexes, and/or using a bitslice index on a field that is frequently
updated may have a significant performance cost.

A bitslice index can only be used for records that have system-assigned row Ids with positive integer values. A bitslice
index can only be used on a single field-name. You cannot specify a WITH DATA clause.

For more details, see Bitslice Indexes.

The COLUMNAR Keyword

Using the COLUMNAR keyword, you can specify that this index will be a columnar index. A columnar index is used for
a column that is frequently queried but whose table has an underlying row storage structure. By default, each row of a table
is stored as a $LIST in a separate global subscript. For more details, see Columnar Indexes and Choose an SQL Table
Storage Layout.

Rebuilding an Index

Creating an index using the CREATE INDEX statement automatically builds the index. However, there are cases when
you may wish to explicitly rebuild an index.

CAUTION: You must take additional steps when rebuilding an index if the table’s data is being accessed by other
users. Failing to do so may result in inaccurate query results. For more details, refer to Building Indexes
on an Active System.

You can build/re-build indexes as follows:

e Using the BUILD INDEX SQL command.

e Using the Management Portal to rebuild all of the indexes for a specified class (table).

e Using the %Buildindices() method.

80 InterSystems SQL Reference

CREATE INDEX (SQL)

To rebuild all indexes for an inactive table, execute the following:

ObjectScript

SET status = ##class(myschema.mytable).%BuildIndices()

By default, this command purges the indexes prior to rebuilding them. You can override this purge default and use the
%Purgelndices() method to explicitly purge specified indexes. If you call %BuildIndices() for a range of ID values,
InterSystems IRIS does not purge indexes by default.

You can also purge/rebuild specified indexes:

ObjectScript

SET status = ##class(myschema.mytable).%BuildIndices($ListBuild("'NamelDX", " SpouselDX"))

You may want to purge/rebuild an index if the index is corrupt or to change the case sensitivity of the index, as described
above. To recompress a bitmap index, use the %SYS.Maint.Bitmap methods, rather than purge/rebuild.

For more details, see Building Indexes.

Examples

The following example creates a table named Fred, and then creates an index named "Fredindex" (by stripping out the
punctuation from the supplied name “Fred_Index”) on the Lastword and Firstword fields of the Fred table.
SQL

CREATE TABLE Fred (
TESTNUM INT NOT NULL,
FIRSTWORD CHAR (30) NOT NULL,
LASTWORD CHAR (30) NOT NULL,
CONSTRAINT FredPK PRIMARY KEY (TESTNUM))

CREATE INDEX Fred_Index
ON TABLE Fred (LASTWORD,FIRSTWORD)

The following example creates an index, named “Citylndex” on the City field of the Staff table:
SQL
CREATE INDEX Citylndex ON Staff (City)

The following example creates an index, named “EmpIndex” on the EmpName field of the Staff table. The UNIQUE constraint
is used to avoid having rows with identical values in the fields:

SQL
CREATE UNIQUE INDEX Emplndex ON TABLE Staff (EmpName)

The following example creates a bitmap index, named “SKUIndex” on the SKU field of the Purchases table. The BITMAP
keyword indicates that this is a bitmap index:

SQL

CREATE BITMAP INDEX SKUIndex ON TABLE Purchases (SKU)

See Also

e BUILD INDEX command
« DROP INDEX command

InterSystems SQL Reference 81

SQL Commands

SEARCH_INDEX function

» Defining Tables

» Defining and Building Indexes
» Using Indexes

* SQL and Object Settings Pages
e SQLCODE error messages

* %Library.Functionallndex

82

InterSystems SQL Reference

CREATE METHOD (SQL)

CREATE METHOD (SQL)

Creates a method in a class.

Synopsis

CREATE [STATIC] METHOD nane (paraneter_list)
[characteristics]
[LANGUAGE SQL]
BEGIN code_body ;
END

CREATE [STATIC] METHOD nane (paraneter_list)
[characteristics]
LANGUAGE OBJECTSCRIPT
{ code_body }

Description

The CREATE METHOD statement creates a class method. This class method may or may not be a stored procedure. To
create a method in a class that is exposed as an SQL stored procedure, you must specify the PROCEDURE keyword. By
default, CREATE METHOD does not create a method which is also a stored procedure; the CREATE PROCEDURE
statement always creates a method which is also a stored procedure.

The optional STATIC keyword is provided to clarify that the method created is a static (class) method, not an instance
method. This keyword provides no actual functionality.

In order to create a method, you must have %CREATE_METHOD administrative privilege, as specified by the GRANT
command. If you are attempting to create a method for an existing class with a defined owner, you must be logged in as
the owner of the class. Otherwise, the operation fails with an SQLCODE -99 error.

You cannot create a method in a class if the class definition is a deployed class. This operation fails with an SQLCODE -
400 error with the %msg Unable to execute DDL that modifies a deployed class: "classname”.

The following two examples both show the creation of the same class method. The first example uses CREATE METHOD,
the second defines the class method in the class User.Letters:

SQL

CREATE METHOD RandCaselLetter(IN caps CHAR)
RETURNS INTEGER
PROCEDURE

LANGUAGE OBJECTSCRIPT

{
:Top
IF caps="U" {SET x=$RANDOM(91) IF x>64 {QUIT $CHAR(X)}
ELSE {GOTO Top}}
ELSEIF caps="L" {SET x=$RANDOM(123) IF x>97 {QUIT $CHAR(X)}
ELSE {GOTO Top}}
ELSE {QUIT *case must be "U" or "L""}

Class User.Letters Extends %Persistent [DdlIAllowed]

{

ClassMethod RandCaselLetter(caps) As %String [SqlName = RandomLetter, SqlProc]
{

Top
IF caps="U" {SET x=$RANDOM(91) IF x>64 {QUIT $CHAR(x)}
ELSE {GOTO Top}}
ELSEIF caps="L" { SET x=$RANDOM(123) IF x>97 {QUIT $CHAR(X)}
ELSE {GOTO Top}}
ELSE {QUIT "case must be "U" or "L""}

}

For information on calling methods from within SQL statements, refer to User-defined Functions. For calling SQL stored
procedures in a variety of contexts, refer to the CALL statement.

InterSystems SQL Reference 83

SQL Commands

Arguments

name

The name of the method to be created. This name may be unqualified (StoreName) and take the system-wide default schema
name, or qualified by specifying the schema name (Patient.StoreName). You can use the $SYSTEM.SQL.Schema.Default()
method to determine the current system-wide default schema name. The initial system-wide default schema name is
SQLUser which corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in name. If a method with this name
already exists, the operation fails with an SQLCODE -361 error. To avoid this error, use the optional keyword OR REPLACE
to modify or replace the existing method. CREATE OR REPLACE METHOD has the same effect as invoking DROP
METHOD to delete the old version of the method and then invoking CREATE METHOD.

The name of the generated class is the package name corresponding to the schema name, followed by a dot, followed by
“meth”, followed by the specified name. For example, if the unqualified method name RandomLetter takes the initial
default schema SQLUser, the resulting class name would be: User .methRandomLetter. For further details, see SQL
to Class Name Transformations.

InterSystems SQL does not allow you to specify a duplicate method name that differs only in letter case. Specifying a
method name that differs only in letter case from an existing method name results in an SQLCODE -400 error.

parameter-list

A list of parameters used to pass values to the method. The parameter list is enclosed in parentheses, and parameter decla-
rations in the list are separated by commas. The parentheses are mandatory, even when specifying no parameters. Each
parameter declaration in the list consists of (in order):

» An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

» The parameter name. Parameter names are case-sensitive.

» The data type of the parameter.

e Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The output value from a method is automatically converted from Logical format to Display/ODBC format.

An input value to a method is, by default, not converted from Display/ODBC format to Logical format. However, input
display-to-logical conversion can be configured systemwide using the
$SYSTEM.SQL..Util.SetOption(**'SQLFunctionArgConversion') method. You can use
$SYSTEM.SQL.Util.GetOption(**'SQLFunctionArgConversion') to determine the current configuration of this option.

characteristics

The available keywords are as follows:

84 InterSystems SQL Reference

CREATE METHOD (SQL)

FOR className

FINAL

PRIVATE

PROCEDURE

RESULT SETS
DYNAMIC RESULT SETS [n]

RETURNS datatype

SELECTMODE mode

Specifies the name of the class in which to create the method. If the class
does not exist, it will be created. You can also specify a class name by
qualifying the method name. The class name specified in the FOR clause
overrides a class name specified by qualifying the method name.

Specifies that subclasses cannot override the method. By default, methods
are not final. The FINAL keyword is inherited by subclasses.

Specifies that the method can only be invoked by other methods of its
own class or subclasses. By default, a method is public, and can be
invoked without restriction. This restriction is inherited by subclasses.

Specifies that the method is an SQL stored procedure. Stored procedures
are inherited by subclasses. (This keyword can be abbreviated as PROC.)

Specifies that the method created will contain the ReturnResultsets
keyword. All forms of this characteristics phrase are synonyms.

Specifies the data type of the value returned by a call to the method. If
RETURNS is omitted, the method cannot return a value. This specification
is inherited by subclasses, and can be modified by subclasses. This
datatype can specify type parameters such as MINVAL, MAXVAL, and
SCALE. For example RETURNS DECIMAL(19,4). Note that when returning
a value, InterSystems IRIS ignores the length of datatype; for example,
RETURNS VARCHAR(32) can receive a string of any length that is returned
by a call to the method.

Only used when LANGUAGE is SQL (the default). When specified,
InterSystems IRIS adds an #SQLCOMPILE SELECT=mode statement to
the corresponding class method, thus generating the SQL statements
defined in the method with the specified SELECTMODE. The possible
mode values are LOGICAL, ODBC, RUNTIME, and DISPLAY. The default
is LOGICAL.

If you specify a query keyword (such as CONTAINSID or RESULTS) that is not valid for a method, the system generates
an SQLCODE -47 error. If you specify a duplicate query keyword (such as FINAL FINAL), the system generates an

SQLCODE -44 error.

The SELECTMODE clause is used for SELECT query operations and for INSERT and UPDATE operations. It specifies
the compile-time select mode. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #sqlcompile select=mode. For further details, see #sqlcompile select.

* InaSELECT query, the SELECTMODE specifies the mode in which data is returned. If the modevalue is LOGICAL,
then logical (internal storage) values are returned. For example, dates are returned in $SHOROLOG format. If the mode
value is ODBC, logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is
DISPLAY, logical-to-display conversion is applied, and display format values are returned. If the mode value is
RUNTIME, the display mode can be set (to LOGICAL, ODBC, or DISPLAY) at execution time.

* Inan INSERT or UPDATE operation, the SELECTMODE RUNTIME option supports automatic conversion of input
data values from a display format (DISPLAY or ODBC) to logical storage format. This compiled display-to-logical
data conversion code is applied only if the select mode setting when the SQL code is executed is LOGICAL (which
is the default for all InterSystems SQL execution interfaces).

When the SQL code is executed, the %SQL.Statement class %SelectMode property specifies the execution-time select
mode, as described in Using Dynamic SQL. For further details on SelectMode options, refer to Data Display Options.

InterSystems SQL Reference

85

SQL Commands

LANGUAGE

A keyword clause specifying the language you are using for code_body. Permitted clauses are LANGUAGE OBJECTSCRIPT
(for ObjectScript) or LANGUAGE SQL. If the LANGUAGE clause is omitted, SQL is the default.

code_body

The program code for the method to be created. You specify this code in either SQL or ObjectScript. The language used
must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL.

InterSystems IRIS uses the code you supply to generate the actual code of the method.

If the code you specify is SQL, InterSystems IRIS provides additional lines of code when generating the method that embed
the SQL in an ObjectScript “wrapper,” provide a procedure context handler (if necessary), and handle return values. The
following is an example of this InterSystems IRIS-generated wrapper code:

ObjectScript

NEW SQLCODE,%ROWID,%ROWCOUNT , title
&sql (SELECT col FROM tbl)
QUIT $GET(title)

If the code you specify is OBJECTSCRIPT, the ObjectScript code must be enclosed in curly braces. All code lines must
be indented from column 1, except for labels and macro preprocessor directives. A label or macro directive must be prefaced
by a colon (:) in column 1.

For ObjectScript code, you must explicitly define the “wrapper” (which NEWSs variable and uses QUIT exit and (optionally)
to return a value upon completion).

The method can be exposed as a stored procedure by specifying the PROCEDURE keyword. When a stored procedure is
called, an object of the class %Library.SQLProcContext is instantiated in the %sqlcontext variable. This procedure context
handler is used to pass the procedure context back and forth between the procedure and its caller (for example, the ODBC
server).

%sqlcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

SET %sqglcontext.%SQLCODE=SQLCODE
SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
SET %sqlcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sglcontext
object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SY STEM.Error object and setting it as %sglcontext.Error.

Examples

The following two examples both show the creation of the same class method. The first example uses CREATE METHOD,
the second defines the class method in the class User.Letters:

86 InterSystems SQL Reference

CREATE METHOD (SQL)

SQL

CREATE METHOD RandCaselLetter(IN caps CHAR)
RETURNS INTEGER
PROCEDURE
LANGUAGE OBJECTSCRIPT
{
:Top
IF caps="U" {SET x=$RANDOM(91) IF x>64 {QUIT $CHAR(X)}
ELSE {GOTO Top}}
ELSEIF caps="L" {SET x=$RANDOM(123) IF x>97 {QUIT $CHAR(X)}
ELSE {GOTO Top}}
ELSE {QUIT *case must be "U" or "L""}

Class User.Letters Extends %Persistent [DdlIAllowed]
ClassMethod RandCaselLetter(caps) As %String [SqlName = RandomLetter, SqlProc]
{

Top
IF caps="U" {SET x=$RANDOM(91) IF x>64 {QUIT $CHAR(X)}
ELSE {GOTO Top}}
ELSEIF caps="L" { SET x=$RANDOM(123) IF x>97 {QUIT $CHAR(xX)}
ELSE {GOTO Top}}
ELSE {QUIT "case must be "U" or "L""}

}

The following example specifies two input parameters, both of which have default values. The optional DEFAULT keyword
is specified for the first parameter, omitted for the second parameter:

SQL

CREATE METHOD RandomLetter(IN firstlet CHAR DEFAULT "A",IN lastlet CHAR "Z%)
BEGIN

-- SQL program code

END

The following example uses CREATE METHOD with SQL code to generate the method UpdateSalary in the class
Sample.Employee:

The following example uses CREATE METHOD with SQL code to generate the method UpdateSalary in the class
Sample.Employee:

SQL

CREATE METHOD UpdateSalary (IN SSN VARCHAR(11), IN Salary INTEGER)
FOR Sample.Employee
BEGIN
UPDATE Sample.Employee SET Salary = :Salary WHERE SSN = :SSN;
END

The following example creates the RandomLetter() method stored as a procedure that generates a random capital letter.
You can then invoke this method as a function in a SELECT statement. A DROP METHOD is provided to delete the
RandomLetter() method.

SQL

CREATE METHOD RandomLetter()
RETURNS INTEGER
PROCEDURE
LANGUAGE OBJECTSCRIPT
{

Top

SET x=$RANDOM(91)

IF x<65 {GOTO Top}

ELSE {QUIT $CHAR(X)}

InterSystems SQL Reference 87

SQL Commands

SQL
SELECT Name FROM Sample.Person

WHERE Name %STARTSWITH RandomLetter()
SQL

DROP METHOD RandomLetter

The following Embedded SQL example uses CREATE METHOD with ObjectScript code to generate the method
TraineeTitle in the class SQLUser.MyStudents and returns a Title value:

ObjectScript

&sql (CREATE METHOD TraineeTitle(
IN SSN VARCHAR(11),
INOUT Title VARCHAR(50))
RETURNS VARCHAR(30)
FOR SQLUser .MyStudents
LANGUAGE OBJECTSCRIPT

NEW SQLCODE,%ROWCOUNT
&sql (SELECT Title INTO :Title FROM Sample.Employee
WHERE SSN = :SSN)
{
SET %sqlcontext.%SQLCODE=SQLCODE
SET %sqglcontext.%ROWCOUNT=%ROWCOUNT }
QUIT
b
IF SQLCODE=0 { WRITE !,"Created a method" QUIT}
ELSEIF SQLCODE=-361 { WRITE !,"Method already exists SQLCODE: *',SQLCODE
&sql (DROP METHOD TraineeTitle FROM SQLUser.MyStudents)

IF SQLCODE=0 { WRITE 1I,"Dropped a method" QUIT}}
ELSE { WRITE I,"SQL error: ",SQLCODE }

It uses the %sglcontext object, and sets its %SQLCODE and %ROWCOUNT properties using the corresponding SQL
variables. Note the curly braces enclosing the ObjectScript code following the method’s LANGUAGE OBJECTSCRIPT
keyword. Within the ObjectScript code there is Embedded SQL code, marked by &sql and enclosed in parentheses.

Security and Privileges

The CREATE METHOD command is a privileged operation that requires the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a CREATE METHOD command without these
privileges will result in an SQLCODE -99 error and the command will fail.

Users without proper permissions can still execute this command under one of two conditions:
e The command is executed via Embedded SQL, which does not perform privilege checks.

e The user explicitly specifies no privilege checking by, for example, calling either %Prepare() with the checkPriv
argument set to 0 or %oExecDirectNoPriv() on a %SQL.Statement.

See Also

« CALL

« CREATE PROCEDURE
e DROP METHOD

e Defining and Using Stored Procedures

88 InterSystems SQL Reference

CREATE ML CONFIGURATION (SQL)

CREATE ML CONFIGURATION (SQL)

Creates an ML configuration.

Synopsis

CREATE [OR REPLACE] ML CONFIGURATION m - confi gurati on-name PROVIDER provi der - name
[%DESCRIPTION description] [USING json-object-string]
[provider-connection-settings]

Arguments

ml-configuration-name The name for the ML configuration being created. A valid identifier, subject to
the same additional naming restrictions as a table name. An ML configuration
name is unqualified (mlconfig-name). An unqualified ML configuration name
takes the default schema name.

PROVIDER A string specifying the name of a machine learning provider, where values are:

provider-name . AutoML
« H20

 DataRobot
« PMML

%DESCRIPTION Optional — String. A text description for the ML configuration. See details below.
description

USING json-object-string | Optional — A JSON string specifying one or more key-value pairs; see details
below.

provider-connection-settings | Any additional settings, required for connection, that vary by the machine learning
provider. See details below.

Description

The CREATE ML CONFIGURATION command creates an ML configuration for training models. You can specify one
or more of the following properties:

e The provider (required)
e The description
* The USING clause

» Provider connection settings

ML Configuration Description

%DESCRIPTION accepts a text string enclosed in single quotes, which you can use to provide a description for documenting
your configuration. This text can be of any length, and can contain any characters, including blank spaces.

USING

You can specify a default USING clause for your configuration. This clause accepts a JSON string with one or more key-
value pairs. When TRAIN MODEL is executed, by default the USING clause of the configuration is used.

InterSystems SQL Reference 89

SQL Commands

You must make sure that the parameters you specify are recognized by the provider you select. Failing to do so may result
in an error when training.

An example with H20 as the provider:

CREATE ML CONFIGURATION h2o_config PROVIDER H20 USING {''seed':100, *nfolds':4}

Provider Connection Settings

Depending on the provider specified by your configuration, there may be additional fields you must enter to establish a
successful connection.

DataRobot
You must specify the following values to successfully connect to DataRobot:
e URL [=17 url-string—whereurl-stringisthe URL of a DataRobot endpoint.

e APITOKEN [=] token-string— wheretoken-string isyour client API token to access the DataRobot
AutoML server.

A complete ML configuration for DataRobot could be created with a query as follows:
CREATE ML CONFIGURATION datarobot-configuration PROVIDER DataRobotl URL url-string APITOKEN token-string
With proper values for ur | - stri ng andt oken-string

Required Security Privileges

Calling CREATE ML CONFIGURATION requires %CREATE_ML_CONFIGURATION privileges; otherwise, there
isa SQLCODE -99 error (Privilege Violation). To assign %CREATE_ML_CONFIGURATION privileges, use the GRANT
command.

Configuration Naming Conventions

Configuration names follow identifier conventions, subject to the restrictions below. By default, configuration names are
simple identifiers. A configuration name should not exceed 256 characters. Configuration names are not case-sensitive.

InterSystems IRIS® uses the configuration name to generate a corresponding class name. A class name contains only
alphanumeric characters (letters and numbers) and must be unique within the first 96 characters. To generate this class
name, InterSystems IRIS first strips punctuation characters from the configuration name, and then generates an identifier
that is unique within the first 96 characters, substituting an integer (beginning with 0) for the final character when needed
to create a unique class name. InterSystems IRIS generates a unique class name from a valid configuration name, but this
name generation imposes the following restrictions on the naming of configurations:

» A configuration name must include at least one letter. Either the first character of the view name or the first character
after initial punctuation characters must be a letter

» InterSystems IRIS supports 16-bit (wide) characters for configuration names. A character is a valid letter if it passes
the $ZNAME test.

» If the first character of the configuration name is a punctuation character, the second character cannot be a number.
This results in an SQLCODE -400 error, with a %msg value of “ERROR #5053: Class name 'schema.name’ is invalid”
(without the punctuation character). For example, specifying the configuration name %7A generates the %msg “ERROR
#5053: Class name 'User.7A" is invalid”.

» Because generated class names do not include punctuation characters, it is not advisable (though possible) to create a
configuration name that differs from an existing configuration name only in its punctuation characters. In this case,
InterSystems IRIS substitutes an integer (beginning with 0) for the final character of the name to create a unique class
name.

90 InterSystems SQL Reference

CREATE ML CONFIGURATION (SQL)

» A configuration name may be much longer than 96 characters, but configuration names that differ in their first 96
alphanumeric characters are much easier to work with.

A configuration name can only be unqualified. An unqualified configuration name (viewname) takes the system-wide
default schema name.

If you would like to redefine an ML configuration to use the same name, you can specify the OR REPLACE option to
replace a pre-existing ML configuration with different behavior.

Examples
CREATE ML CONFIGURATION autoML_config PROVIDER AutoML %DESCRIPTION "my AutoML configuration!*®

See Also

* ALTER ML CONFIGURATION, DROP ML CONFIGURATION

InterSystems SQL Reference 91

SQL Commands

CREATE MODEL (SQL)

Creates a model definition.

Synopsis

Classification or Regression Model

CREATE MODEL [IF NOT EXISTS] nodel - nane
PREDICTING (| abel -colum)

FROM nodel - sour ce
[USING j son-object 1]

CREATE MODEL [IF NOT EXISTS] nodel - nane
PREDICTING (| abel -col um)
WITH f eat ure-col umm-cl ause

[USING j son-object]

CREATE MODEL [IF NOT EXISTS] nodel - nanme
PREDICTING (| abel -col um)
WITH f eat ur e- col utm-cl ause

FROM nodel - sour ce
[USING j son-object]

Time Series Model

CREATE [TIME] SERIES MODEL [IF NOT EXISTS] nodel - nane
PREDICTING (| abel -columl, |abel-colum2, ...)

BY (timestep)
FROM nodel - sour ce
[USING j son-object]

Arguments

This synopsis shows the valid forms of CREATE MODEL. The CREATE MODEL command must have either a FROM

or WITH clause (or both).

model-name

PREDICTING (
label-column)

WITH
feature-column-clause
FROM model-source

USING json-object-string

BY (timestep)

Description

The name for the model definition being created. A valid identifier, subject to
the same additional haming restrictions as a table name. A model name is
unqualified (mode Iname). An unqualified model name takes the default schema
name.

The name of the column being predicted, also known as the label column. A
standard identifier. See details below.

Inputs to the model, also known as the feature columns, as either the name of
a column and it’s datatype or as a comma-separated list of the names of columns
and datatypes. Each column name is a standard identifier.

The table or view from which the model is being built. This can be a table, view,
or results of a join.

Optional — A JSON string specifying one or more key-value pairs. See more
details below.

The column containing the time-based data that a time series model will be built
on.

The CREATE MODEL command creates a model definition of the structure specified. This includes, at a minimum:

92

InterSystems SQL Reference

CREATE MODEL (SQL)

* The model name
» The label column (or columns, for a time series model)

» The feature column(s)

Regression and classification models are largely created in the same way and have the same considerations. However, time
series models employ a slightly different syntax because they require different considerations. These differences between
these types of models are enumerated in the applicable clauses below.

Predicting

You must specify the output column (or label column) that your model predicts, given the input columns (or feature columns).
For example, if you are designing a SpamFi Iter model which identifies emails that are spam mail, you may have a label
column named IsSpam, which is a boolean value designating whether a given email is spam or not. You can also specify
the data type of this column; otherwise, IntegratedML infers the type:

CREATE MODEL SpamFilter PREDICTING (IsSpam) FROM EmailData
CREATE MODEL SpamFilter PREDICTING (IsSpam binary) FROM Emai IData

When creating a time series model, you will often want to predict values for multiple columns. To do so, specify the names
of the columns that you would like to predict in a comma-separated list. You may also specify the data type of this column;
otherwise, IntegratedML infers the type. To specify that the model should predict values for every column in the table, use
an asterisk (*).

CREATE TIME SERIES MODEL WeatherForecast PREDICTING (Temp, Precipitation, Humidity, UVIndex) BY (Date)
FROM WeatherData
CREATE TIME SERIES MODEL WeatherForecast PREDICTING (*) BY (DATE) FROM WeatherData

WITH and FROM

A classification or regression model definition must contain a WITH or FROM or both to specify the schema characteristics
of the model. A time series model must contain a FROM clause and cannot have a WITH.

WITH

Using WITH, you can specify which input columns (features) to include in your model definition. Note that you must
specify the data type of each column, even when using a FROM clause in your statement:

CREATE MODEL SpamFilter PREDICTING (IsSpam) WITH (email_length int, subject_title varchar)
CREATE MODEL SpamFilter PREDICTING (IsSpam) WITH (email_length int, subject title varchar) FROM EmailData

FROM

FROM allows you to use every single column from a specified table or view, without having to identify each column
individually:

CREATE MODEL SpamFilter PREDICTING (IsSpam) FROM Emai lData

This clause is fully general, and can specify any subquery expression. IntegratedML infers the data types of each column.
By using FROM, you supply a default data set for future TRAIN MODEL statements using this model definition. You
can use FROM along with WITH to both supply a default data set and to explicitly name feature columns.

Without a WITH clause, IntegratedML infers the data types of each column, and implicitly uses the result of the FROM
clause as if it were the following query:

SELECT * FROM model-source

InterSystems SQL Reference 93

SQL Commands

USING

You can specify a default USING clause for your model definition. This clause accepts a JSON string with one or more
key-value pairs. When TRAIN MODEL is executed, by default the USING clause of the model definition is used. All
parameters specified in the USING clause of your ML configuration overwrite those same parameters in the USING clause
of your model definition.

You must make sure that the parameters you specify are recognized by the provider you select. Failing to do so may result
in an error when training.

Time Series Parameters
Time series models also support four optional parameters in a USING clause:

» Forward specifies the number of timesteps in the future that you would like to predict as a positive integer. Predicted
rows will appear after the latest time or date in the original dataset. You may specify both this and the Backward setting
at the same time.

« Backward specifies the number of timesteps in the past that you would like to predict as a positive integer. Predicted
rows will appear before the earliest time or date in the original dataset. You may specify both this and the Forward
setting at the same time. The AutoML provider ignores this parameter.

» Frequency specifies both the size and unit of the predicted timesteps as a positive integer followed by a letter that
denotes the unit of time. If this value is not specified, the most common timestep in the data is supplied. The DataRobot
provider ignores this parameter.

The letter abbreviations for units of time are outlined in the following table:

Table B-1:
Abbreviation Unit of Time
y year
m month
w week
d day
h hour
t minute
S second

Required Security Privileges

Calling CREATE MODEL requires %MANAGE_MODEL privileges; otherwise, there isa SQLCODE -99 error (Privilege
Violation). To assign %MANAGE_MODEL privileges, use the GRANT command.

Model Naming Conventions

Model names follow identifier conventions, subject to the restrictions below. By default, model names are simple identifiers.
A model name should not exceed 256 characters. Model names are not case-sensitive.

InterSystems IRIS uses the model name to generate a corresponding class name. A class name contains only alphanumeric
characters (letters and numbers) and must be unique within the first 96 characters. To generate this class name, InterSystems
IRIS first strips punctuation characters from the model name, and then generates an identifier that is unique within the first
96 characters, substituting an integer (beginning with 0) for the final character when needed to create a unique class name.

94 InterSystems SQL Reference

CREATE MODEL (SQL)

InterSystems IRIS generates a unique class name from a valid model name, but this name generation imposes the following
restrictions on the naming of models:

A model name must include at least one letter. Either the first character of the view name or the first character after
initial punctuation characters must be a letter

InterSystems IRIS supports 16-bit (wide) characters for model names. A character is a valid letter if it passes the
$ZNAME test.

If the first character of the model name is a punctuation character, the second character cannot be a number. This results
in an SQLCODE -400 error, with a %msg value of “ERROR #5053: Class name 'schema.name' is invalid” (without
the punctuation character). For example, specifying the model name %7A generates the %msg “ERROR #5053: Class
name 'User.7A'" is invalid”.

Because generated class names do not include punctuation characters, it is not advisable (though possible) to create a
model name that differs from an existing model name only in its punctuation characters. In this case, InterSystems
IRIS substitutes an integer (beginning with 0) for the final character of the name to create a unique class name.

A model name may be much longer than 96 characters, but model names that differ in their first 96 alphanumeric
characters are much easier to work with.

A model name can only be unqualified. An unqualified model name (viewname) takes the system-wide default schema
name.

Examples

SQL

CREATE MODEL PatientReadmit PREDICTING (IsReadmitted) FROM patient_table USING {"seed": 3}
CREATE MODEL PatientReadmit PREDICTING (IsReadmitted) WITH (age, gender, encounter_type, admit_reason,

starttime, endtime, prior_visits, diagnosis, comorbitities)

CREATE TIME SERIES MODEL BusinessGrowth PREDICTING (*) BY (date) FROM BusinessData USING {"Forward":5}

See Also

ALTER MODEL, DROP MODEL, TRAIN MODEL

InterSystems SQL Reference 95

SQL Commands

CREATE PROCEDURE (SQL)

Creates a method or query which is exposed as an SQL stored procedure.

Synopsis

CREATE PROCEDURE procnane(paraneter |list) [characteristics]
[LANGUAGE SQL]
BEGIN code_body ;
END

CREATE PROCEDURE procnane(paraneter _|ist) [characteristics]
LANGUAGE OBJECTSCRIPT
{ code_body }

CREATE PROCEDURE procnane(paraneter |list) [characteristics]

LANGUAGE { JAVA | PYTHON | DOTNET }
EXTERNAL NAME ext ernal - st or ed- procedur e

Description

The CREATE PROCEDURE statement creates a method or a query which is, by default, exposed as an SQL stored pro-
cedure. A stored procedure can be invoked by all processes in the current namespace. Stored procedures are inherited by
subclasses.

* If LANGUAGE SQL, the code_body must contain a SELECT statement in order to generate a query exposed as a
stored procedure. If the code does not contain a SELECT statement, CREATE PROCEDURE creates a method.

» If LANGUAGE OBJECTSCRIPT, the code_body must call Execute() and Fetch() methods in order to generate a
query exposed as a stored procedure. It may also call Close(), FetchRows(), and GetInfo() methods. If the code does
not call Execute() and Fetch(), CREATE PROCEDURE creates a method.

To create a method not exposed as a stored procedure, use the CREATE METHOD or CREATE FUNCTION statement.
To create a query not exposed as a stored procedure, use the CREATE QUERY statement. These statements can also be
used to create a method or query exposed as a stored procedure by specifying the PROCEDURE characteristic keyword.

In order to create a procedure, you must have %CREATE_PROCEDURE administrative privilege, as specified by the
GRANT command. If you are attempting to create a procedure for an existing class with a defined owner, you must be
logged in as the owner of the class. Otherwise, the operation fails with an SQLCODE -99 error.

You cannot create a procedure in a class if the class definition is a deployed class. This operation fails with an SQLCODE
-400 error with the %msg Unable to execute DDL that modifies a deployed class: "classname”.

A stored procedure is executed using the CALL statement.

For information on calling methods from within SQL statements, refer to User-defined Functions.

Arguments

procname

The name of the method or query to be created as a stored procedure. The procname must be followed by parentheses, even
if no parameters are specified. A procedure name can take any of the following forms:

e Unqualified: Takes the default schema name. For example, MedianAgeProc().
* Qualified: Supplies a schema name. For example, Patient.MedianAgeProc().

» Multilevel: Qualified with one or more schema levels to parallel corresponding class package members. In this case,
the procname may contain only one period character; the other periods in the corresponding class method name are
replaced with underline characters. The period is specified before the lowest level class package member. For example,
%SYSTEM.SQL_GetROWID(), or %SYS_PTools.StatsSQL_Export().

96 InterSystems SQL Reference

CREATE PROCEDURE (SQL)

An ungualified procname takes the default schema name. You can use the $SYSTEM.SQL.Schema.Default() method to
determine the current system-wide default schema name. The initial system-wide default schema name is SQLUser which
corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in procname. If a procedure with
this name already exists, the operation fails with an SQLCODE -361 error.

InterSystems SQL uses the SQL procname to generate a corresponding class name. This name consists of the package
name corresponding to the schema name, followed by a dot, followed by “proc”, followed by the specified procedure name.
For example, if the unqualified procedure name RandomLetter () takes the default schema SQLUser, the resulting class
name would be: User .procRandomLetter (). For further details, see SQL to Class Name Transformations.

InterSystems SQL does not allow you to specify a procname that differs only in letter case. Specifying a procname that
differs only in letter case from an existing procedure name results in an SQLCODE -400 error.

If the specified procname already exists in the current namespace, the system generates an SQLCODE -361 error. To
determine if a specified procname already exists in the current namespace, use the
$SYSTEM.SQL.Schema.ProcedureExists() method.

Include the optional keyword OR REPLACE to modify or replace an existing procedure without generating an error.
CREATE OR REPLACE PROCEDURE has the same effect as invoking DROP PROCEDURE to delete the old version
of the procedure and then invoking CREATE PROCEDURE.

Note: InterSystems SQL procedure names and InterSystems TSQL procedure names share the same set of names.
Therefore, you cannot create an SQL procedure that has the same name as a TSQL procedure in the same
namespace. Attempting to do so results in an SQLCODE -400 error.

parameter_list

A list of parameters used to pass values to the method or query. The parameter list is enclosed in parentheses, and parameter
declarations in the list are separated by commas. The parentheses are mandatory, even if you specify no parameters.

Each parameter declaration in the list consists of (in order):

» An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

» The parameter name. Parameter names are case-sensitive.

» The data type of the parameter.

e Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The following example creates a stored procedure with two input parameters, both of which have default values. One input
parameter specifies the optional DEFAULT keyword, the other input parameter omits this keyword:

SQL

CREATE PROCEDURE AgeQuerySP(IN topnum INT DEFAULT 10, IN minage INT 20)
BEGIN
SELECT TOP :topnum Name,Age FROM Sample.Person
WHERE Age > :minage ;
END

The following example is functionally identical to the example above. The optional DEFAULT keyword is omitted:

InterSystems SQL Reference 97

SQL Commands

SQL

CREATE PROCEDURE AgeQuerySP(IN topnum INT 10, IN minage INT 20)
BEGIN
SELECT TOP :topnum Name,Age FROM Sample.Person
WHERE Age > :minage ;
END

The following are all valid CALL statements for this procedure: CALL AgeQuerySP(6,65); CALL AgeQuerySP(6);
CALL AgeQuerySP(,65); CALL AgeQuerySP(Q).

The following example creates a method exposed as a stored procedure with three parameters:

SQL

CREATE PROCEDURE UpdatePaySP
(IN Salary INTEGER DEFAULT O,
IN Name VARCHAR(50),
INOUT PayBracket VARCHAR(50) DEFAULT “NULL")
BEGIN
UPDATE Sample.Person SET Salary = :Salary
WHERE Name=:Name ;
END

A stored procedure does not perform automatic format conversion of parameters. For example, an input parameter in ODBC
format or Display format remains in that format. It is the responsibility of the code that calls the procedure, and the procedure
code itself, to handle IN/OUT values in a format appropriate to the application, and to perform any necessary conversions.

Because the method or query is exposed as a stored procedure, it uses a procedure context handler to pass the procedure
context back and forth between the procedure and its caller. When a stored procedure is called, an object of the class
9%Library.SQLProcContext is instantiated in the %sqlcontext variable. This is used to pass the procedure context back and
forth between the procedure and its caller (for example, the ODBC server).

%sglcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

SET %sqlcontext.%SQLCODE=SQLCODE
SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
SET %sqlcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sglcontext
object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SY STEM.Error object and setting it as %sglcontext.Error.

characteristics

Different characteristics are used for creating a method than those used to create a query.

If you specify a characteristics that is not valid, the system generates an SQLCODE -47 error. Specifying duplicate
characteristics results in an SQLCODE -44 error.

The available method characteristics keywords are as follows:

Method Keyword Meaning

FOR className Specifies the name of the class in which to create the method. If the class
does not exist, it will be created. You can also specify a class name by
qualifying the method name. The class name specified in the FOR clause
overrides a class name specified by qualifying the method name.

If you specify the class name using the FOR my .class syntax, InterSystems
IRIS defines the class method with Sqlname=procname. Therefore, the
method should be invoked as my.procname() (not my.class_procname()).

98 InterSystems SQL Reference

CREATE PROCEDURE (SQL)

Method Keyword
FINAL

PRIVATE

RESULT SETS

DYNAMIC RESULT SETS [n]

RETURNS datatype

SELECTMODE mode

Meaning

Specifies that subclasses cannot override the method. By default, methods
are not final. The FINAL keyword is inherited by subclasses.

Specifies that the method can only be invoked by other methods of its own
class or subclasses. By default, a method is public, and can be invoked
without restriction. This restriction is inherited by subclasses.

Specifies that the method created will contain the ReturnResultsets
keyword. All forms of this characteristics phrase are synonyms.

Specifies the data type of the value returned by a call to the method. If
RETURNS is omitted, the method cannot return a value. This specification
is inherited by subclasses, and can be modified by subclasses. This
datatype can specify type parameters such as MINVAL, MAXVAL, and
SCALE. For example RETURNS DECIMAL(19,4). Note that when returning
a value, InterSystems IRIS ignores the length of datatype; for example,
RETURNS VARCHAR(32) can receive a string of any length that is returned
by a call to the method.

Only used when LANGUAGE is SQL (the default). When specified,
InterSystems IRIS adds an #SQLCOMPILE SELECT=mode statement to
the corresponding class method, thus generating the SQL statements
defined in the method with the specified SELECTMODE. The possible
mode values are LOGICAL, ODBC, RUNTIME, and DISPLAY. The default
is LOGICAL.

The available query characteristics keywords are as follows:

Query Keyword
CONTAINID integer

FOR className

FINAL

Description

Specifies which field, if any, returns the ID. Set CONTAINID to the
number of the column that returns the ID, or 0 if no column returns the
ID. InterSystems IRIS does not validate that the named field actually
contains the ID, so a user error here results in inconsistent data.

Specifies the name of the class in which to create the method. If the
class does not exist, it will be created. You can also specify a class
name by qualifying the method name. The class name specified in the
FOR clause overrides a class name specified by qualifying the method
name.

Specifies that subclasses cannot override the method. By default,
methods are not final. The FINAL keyword is inherited by subclasses.

InterSystems SQL Reference

99

SQL Commands

Query Keyword Description

RESULTS (result_set) Specifies the data fields in the order that they are returned by the query.
If you specify a RESULTS clause, you must list all fields returned by
the query as a comma-separated list enclosed in parentheses. Specify-
ing fewer or more fields than are returned by the query results in a
SQLCODE -76 cardinality mismatch error.

For each field you specify a column name (which will be used as the
column header) and a data type.

If LANGUAGE SQL, you can omit the RESULTS clause. If you omit the
RESULTS clause, the ROWSPEC is automatically generated during
class compilation.

SELECTMODE mode Specifies the mode used to compile the query. The possible values are
LOGICAL, ODBC, RUNTIME, and DISPLAY. The default is RUNTIME.

The SELECTMODE clause is used for SELECT query operations and for INSERT and UPDATE operations. It specifies
the compile-time select mode. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #sqlcompile select=mode. For further details, see #sqlcompile select.

* InaSELECT query, the SELECTMODE specifies the mode in which data is returned. If the modevalue is LOGICAL,
then logical (internal storage) values are returned. For example, dates are returned in $SHOROLOG format. If the mode
value is ODBC, logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is
DISPLAY, logical-to-display conversion is applied, and display format values are returned. If the mode value is
RUNTIME, the display mode can be set (to LOGICAL, ODBC, or DISPLAY) at execution time.

* Inan INSERT or UPDATE operation, the SELECTMODE RUNTIME option supports automatic conversion of input
data values from a display format (DISPLAY or ODBC) to logical storage format. This compiled display-to-logical
data conversion code is applied only if the select mode setting when the SQL code is executed is LOGICAL (which
is the default for all InterSystems SQL execution interfaces).

When the SQL code is executed, the %SQL.Statement class %SelectMode property specifies the execution-time select
mode, as described in Using Dynamic SQL. For further details on SelectMode options, refer to Data Display Options.

The RESULTS clause specifies the results of a query. The SQL data type parameters in the RESULTS clause are translated
into corresponding InterSystems IRIS data type parameters in the query’s ROWSPEC. For example, the RESULTS clause
RESULTS (Code VARCHAR(15)) generates a ROWSPEC specification of ROWSPEC =
“Code:%L.ibrary.String(MAXLEN=15)".

LANGUAGE

A keyword clause specifying the procedure code language. Available options are:

* LANGUAGE OBJECTSCRIPT (for ObjectScript) or LANGUAGE SQL. The procedure code is specified in the
code_body.

LANGUAGE JAVA, LANGUAGE PYTHON, or LANGUAGE DOTNET for an SQL procedure that invokes an
external stored procedure in one of these languages. The syntax for an external stored procedure is as follows:

LANGUAGE | angnane EXTERNAL NAME external -routi ne-nane

Where langname is JAVA, PYTHON, or DOTNET and exter nal-routine-name is a quoted string containing the name
an external routine in the specified language. The SQL procedure invokes an existing routine; you cannot write code
in these languages within the CREATE PROCEDURE statement. Stored procedure libraries in these languages are

100 InterSystems SQL Reference

CREATE PROCEDURE (SQL)

stored external to IRIS, and therefore do not have to be packaged, imported, or compiled within IRIS. The following
is an example of a CREATE PROCEDURE invoking an existing JAVA external stored procedure:

CREATE PROCEDURE updatePrice (item_name VARCHAR, new_price INTEGER)
LANGUAGE JAVA
EXTERNAL NAME "Orders.updatePrice”

If the LANGUAGE clause is omitted, SQL is the default.

code_body

The program code for the method or query to be created. You specify this code in either SQL or ObjectScript. The language
used must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL. InterSystems
IRIS uses the code you supply to generate the actual code of the method or query.

* SQL program code is prefaced with a BEGIN keyword, followed by the SQL code itself. At the end of each complete
SQL statement, specify a semicolon (;). A query contains only one SQL statement—a SELECT statement. You can
also create procedures that insert, update, or delete data. SQL program code concludes with an END keyword.

Input parameters are specified in the SQL statement as host variables, with the form -name. (Note that you should not
use question marks (?) to specify input parameters in the SQL code. The procedure will successfully build, but when
it is called these parameters cannot be passed or take default values.)

» ObjectScript program code is enclosed within curly braces: { code }. Lines of code must be indented. If specified,
a label or a #include preprocessor command must be prefaced by a colon and appear in the first column, as shown
in the following example:

SQL

CREATE PROCEDURE SP123()
LANGUAGE OBJECTSCRIPT

{

Top

:#include %occConstant
WRITE "Hello World"™
IF 0=$RANDOM(2) { GOTO Top }
ELSE {QUIT $$$0K }

The system automatically includes %occlInclude. If program code contains InterSystems IRIS Macro Preprocessor
statements (# commands, ## functions, or $$$macro references) the processing and expansion of these statements is
part of the procedure's method definition, and get processed and expanded when the method is compiled. For more
details on preprocessor commands, see Preprocessor Directives Reference.

InterSystems IRIS provides additional lines of code when generating the procedure that embed the SQL in an ObjectScript
“wrapper,” provide a procedure context handler, and handle return values. The following is an example of this InterSystems
IRIS-generated wrapper code:

ObjectScript

NEW SQLCODE,%ROWID,%ROWCOUNT , title
&sql(
-- code_body
QUIT)$GET(titIe)
If the code you specify is OBJECTSCRIPT, you must explicitly define the “wrapper” (which NEWSs variable and uses
QUIT val to return a value upon completion.

Examples
The examples that follow are divided into those that use an SQL code body, and those that use an ObjectScript code_body.

InterSystems SQL Reference 101

SQL Commands

Examples Using SQL Code

The following example creates a simple query, named PersonStateSP, exposed as a stored procedure. It declares no
parameters and takes default values for characteristicsand LANGUAGE:

ObjectScript

CREATE PROCEDURE PersonStateSP() BEGIN
SELECT Name,Home_State FROM Sample.Person ;
END

You can go to the Management Portal, select the Classes option, then select the SAMPLES namespace. There you will
find the stored procedure created by the above example: User.procPersonStateSP.cls. From this display you can delete this
procedure before rerunning the above program example. You can, of course, use DROP PROCEDURE to delete a procedure:

ObjectScript

DROP PROCEDURE SAMPLES.PersonStateSP)

The following example creates a procedure to update data. It uses CREATE PROCEDURE to generate the method
UpdateSalary in the class Sample.Employee:

SQL

CREATE PROCEDURE UpdateSalary (IN SSN VARCHAR(11), IN Salary INTEGER)
FOR Sample.Employee
BEGIN
UPDATE Sample.Employee SET Salary = :Salary WHERE SSN = :SSN;
END

Examples Using ObjectScript Code

The following example creates the RandomLetterSP() stored procedure method that generates a random capital letter. You
can then invoke this method as a function in a SELECT statement. A DROP PROCEDURE is provided to delete the
RandomLetterSP() method.

SQL

CREATE PROCEDURE RandomLetterSP()
RETURNS INTEGER

LANGUAGE OBJECTSCRIPT

{

Top

SET x=$RANDOM(90)

IF x<65 {GOTO Top}
ELSE {QUIT $CHARC)?}

SQL

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH RandomLetterSP()

SQL

DROP PROCEDURE RandomLetterSP

The following CREATE PROCEDURE example uses ObjectScript calls to the Execute(), Fetch(). and Close() methods.
Such procedures may also contain FetchRows() and Getlnfo() method calls:

102 InterSystems SQL Reference

CREATE PROCEDURE (SQL)

SQL

CREATE PROCEDURE GetTitle()

FOR Sample.Employee

RESULTS (ID %Integer)

CONTAINID 1

LANGUAGE OBJECTSCRIPT

Execute(INOUT gHandle %Binary)

{ QuIT 1}

Fetch(INOUT gHandle %Binary, INOUT Row %List, INOUT AtEnd %Integer)
QUIT 1 }

Close(INOUT gHandle %Binary)

{ QUIT 1}

The following CREATE PROCEDURE example uses an ObjectScript call to the %SQL.Statement result set class:

SQL

CREATE PROCEDURE Sample_Employee.GetTitle(
INOUT Title VARCHAR(50))
RETURNS VARCHAR(30)
FOR Sample.Employee
LANGUAGE OBJECTSCRIPT

{
SET myquery="SELECT TOP 10 Name,Title FROM Sample.Employee"
SET tStatement = ##class(%SQL.Statement) .%New()
SET qStatus = tStatement.%Prepare(myquery)
IF gStatus®=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(gStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()
WRITE !,"End of data"

}

If the ObjectScript code block fetches data into a local variable (for example, Row), you must conclude the code block with
the line SET Row="""" to indicate an end-of-data condition.

The following example uses CREATE PROCEDURE with ObjectScript code that includes Embedded SQL. It generates
the method GetTitle in the class Sample.Employee and passes out the Title value as a parameter:

SQL

CREATE PROCEDURE Sample_Employee.GetTitle(
IN SSN VARCHAR(11),
INOUT Title VARCHAR(50))
RETURNS VARCHAR(30)
FOR Sample.Employee
LANGUAGE OBJECTSCRIPT

NEW SQLCODE ,%ROWCOUNT
&sql (SELECT Title INTO :Title FROM Sample.Employee
WHERE SSN = :SSN)

{
SET %sqlcontext.%SQLCODE=SQLCODE
SET %sqlcontext.%ROWCOUNT=%ROWCOUNT }
QUIT

}

It uses the %sglcontext object, and sets its %SQLCODE and %ROWCOUNT properties using the corresponding SQL
variables. Note the curly braces enclosing the ObjectScript code following the procedure’s LANGUAGE OBJECTSCRIPT
keyword. Within the ObjectScript code there is Embedded SQL code, marked by &sqgl and enclosed in parentheses.

Security and Privileges

The CREATE PROCEDURE command is a privileged operation that requires the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a CREATE PROCEDURE command without
these privileges will result in an SQLCODE -99 error and the command will fail.

Users without proper permissions can still execute this command under one of two conditions:

» The command is executed via Embedded SQL, which does not perform privilege checks.

InterSystems SQL Reference 103

SQL Commands

The user explicitly specifies no privilege checking by, for example, calling either %Prepare() with the checkPriv

argument set to 0 or %oExecDirectNoPriv() on a %SQL.Statement.

See Also

SELECT

CALL

DROP PROCEDURE

CREATE METHOD, CREATE FUNCTION
GRANT

Defining and Using Stored Procedures

Querying the Database

104

InterSystems SQL Reference

CREATE QUERY (SQL)

CREATE QUERY (SQL)

Creates a query.

Synopsis

CREATE [OR REPLACE] QUERY querynane(paraneter_|ist)
[characteristics]
[LANGUAGE SQL]
BEGIN code_body ;
END

CREATE QUERY querynane(paraneter_list) [characteristics]
LANGUAGE OBJECTSCRIPT
{ code_body }

Description

The CREATE QUERY statement creates a query in a class. By default, a query named MySelect would be stored as
User.queryMySelect or SQLUser.queryMySelect.

CREATE QUERY creates a query which may or may not be exposed as a stored procedure. To create a query that is
exposed as a stored procedure, you must specify the PROCEDURE keyword as one of its characteristics. You can also
use the CREATE PROCEDURE statement to create a query which is exposed as a stored procedure.

In order to create a query, you must have %CREATE_QUERY administrative privilege, as specified by the GRANT
command. If you are attempting to create a query for an existing class with a defined owner, you must be logged in as the
owner of the class. Otherwise, the operation fails with an SQLCODE -99 error.

You cannot create a query in a class if the class definition is a deployed class. This operation fails with an SQLCODE -400
error with the %msg Unable to execute DDL that modifies a deployed class: "classname”.

Arguments

queryname

The name of the query to be created in a stored procedure class. The queryname must be a valid identifier and must be
followed by parentheses, even if no parameters are specified. The procedure name may be unqualified (StoreName) and
take the default schema name, or qualified by specifying the schema name (Patient.StoreName). You can use the
$SYSTEM.SQL.Schema.Default() method to determine the current system-wide default schema name. The initial system-
wide default schema name is SQLUser which corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in queryname. If a method with this
name already exists, the operation fails with an SQLCODE -361 error.

The name of the generated class is the package name corresponding to the schema name, followed by a dot, followed by
“query”, followed by the specified queryname. For example, if the unqualified query name RandomLetter takes the initial
default schema SQLUser, the resulting class name would be: User .queryRandomLetter. For further details, see SQL
to Class Name Transformations.

InterSystems SQL does not allow you to specify a queryname that differs only in letter case. Specifying a queryname that
differs only in letter case from an existing query name results in an SQLCODE -400 error.

If the specified queryname already exists in the current namespace, the system generates an SQLCODE -361 error.

Include the optional keyword OR REPLACE to modify or replace an existing query without generating an error. CREATE
OR REPLACE QUERY has the same effect as invoking DROP QUERY to delete the old version of the query and then
invoking CREATE QUERY.

InterSystems SQL Reference 105

SQL Commands

parameter-list

A list of parameter declarations for parameters used to pass values to the query. The parameter list is enclosed in parentheses,
and parameter declarations in the list are separated by commas. The parentheses are mandatory, even if you specify no
parameters.

Each parameter declaration in the list consists of (in order):

» An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

» The parameter name. Parameter names are case-sensitive.
» The data type of the parameter.

e Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The following example creates a query exposed as a stored procedure with two input parameters, both of which have default
values. The topnum input parameter specifies the optional DEFAULT keyword; the minage input parameter omits this
keyword:

SQL

CREATE QUERY AgeQuery(IN topnum INT DEFAULT 10, IN minage INT 20)
PROCEDURE
BEGIN
SELECT TOP :topnum Name,Age FROM Sample.Person
WHERE Age > :minage ;
END

The following are all valid CALL statements for this query: CALL AgeQuery(6,65); CALL AgeQuery(6); CALL
AgeQuery(,65); CALL AgeQuery().

characteristics

An optional argument denoting one or more keywords that specify the characteristics of a query. Characteristics can be
specified in any order. The available characteristics keywords are as follows:

Characteristics Keyword Description

CONTAINID integer Specifies which field, if any, returns the ID. Set CONTAINID to the
number of the column that returns the ID, or 0 if no column returns the
ID. InterSystems IRIS does not validate that the named field actually
contains the ID, so a user error here results in inconsistent data.

FOR className Specifies the name of the class in which to create the method. If the
class does not exist, it will be created. You can also specify a class
name by qualifying the method name. The class hame specified in the
FOR clause overrides a class name specified by qualifying the method
name.

FINAL Specifies that subclasses cannot override the method. By default,
methods are not final. The FINAL keyword is inherited by subclasses.

PROCEDURE Specifies that the query is an SQL stored procedure. Stored procedures
are inherited by subclasses. (This keyword can be abbreviated as
PROC.)

106 InterSystems SQL Reference

CREATE QUERY (SQL)

Characteristics Keyword Description

RESULTS (result_set) Specifies the data fields in the order that they are returned by the query.
If you specify a RESULTS clause, you must list all fields returned by
the query as a comma-separated list enclosed in parentheses. Speci-
fying fewer or more fields than are returned by the query results in a
SQLCODE -76 cardinality mismatch error.

For each field you specify a column name (which will be used as the
column header) and a data type.

If LANGUAGE SQL, you can omit the RESULTS clause. If you omit
the RESULTS clause, the ROWSPEC is automatically generated during
class compilation.

SELECTMODE mode Specifies the mode used to compile the query. The possible values are
LOGICAL, ODBC, RUNTIME, and DISPLAY. The default is RUNTIME.

If you specify a method keyword (such as PRIVATE or RETURNS) that is not valid for a query, the system generates an
SQLCODE -47 error. Specifying duplicate characteristics results in an SQLCODE -44 error.

The SELECTMODE clause specifies the mode in which data is returned. If the mode value is LOGICAL, then logical
(internal storage) values are returned. For example, dates are returned in $HOROLOG format. If the mode value is ODBC,
logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is DISPLAY, logical-to-
display conversion is applied, and display format values are returned. If the mode value is RUNTIME, the mode can be set
(to LOGICAL, ODBC, or DISPLAY) at execution time by setting the %SQL.Statement class %Sel ectMode property, as
described in Using Dynamic SQL. The RUNTIME mode default is LOGICAL. For further details on SelectMode options,
refer to Data Display Options. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #SQLCompile SELECT=mode. For further details, see #sqlcompile select.

The RESULTS clause specifies the results of a query. The SQL data type parameters in the RESULTS clause are translated
into corresponding InterSystems IRIS data type parameters in the query’s ROWSPEC. For example, the RESULTS clause
RESULTS (Code VARCHAR(15)) generates a ROWSPEC specification of ROWSPEC =
“Code:%L.ibrary.String(MAXLEN=15)".

LANGUAGE

An optional keyword clause specifying the language you are using for code_body. Permitted clauses are LANGUAGE
OBJECTSCRIPT or LANGUAGE SQL. If the LANGUAGE clause is omitted, SQL is the default.

If the LANGUAGE is SQL a class query of type %Library.SQLQuery is generated. If the LANGUAGE is OBJECTSCRIPT,
a class query of type %Library.Query is generated.

code_body

The program code for the query to be created. You specify this code in either SQL or ObjectScript. The language used
must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL.

If the code you specify is SQL, it must consist of a single SELECT statement. The program code for a query in SQL is
prefaced with a BEGIN keyword, followed by the program code (a SELECT statement). At the end of the program code,
specify a semicolon (;) then an END keyword.

If the code you specify is OBJECTSCRIPT, it must contain calls to the Execute() and Fetch() class methods of the
9%Library.Query class provided by InterSystems IRIS, and may contain Close(), FetchRows(), and GetlInfo() method calls.
ObjectScript code is enclosed in curly braces. If Execute() or Fetch() are missing, an SQLCODE -46 error is generated
upon compilation.

If the ObjectScript code block fetches data into a local variable (for example, Row), you must conclude the code block with
the line SET Row=""""to indicate an end-of-data condition.

InterSystems SQL Reference 107

SQL Commands

If the query is exposed as a stored procedure (by specifying the PROCEDURE keyword in characteristics), it uses a procedure
context handler to pass the procedure context back and forth between the procedure and its caller.

When a stored procedure is called, an object of the class %Library.SQLProcContext is instantiated in the %sglcontext variable.
This is used to pass the procedure context back and forth between the procedure and its caller (for example, the ODBC
server).

%sglcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

SET %sqlcontext.%SQLCODE=SQLCODE
SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
SET %sqglcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sglcontext
object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SYSTEM.Error object and setting it as %sglcontext.Error.

InterSystems IRIS uses the code you supply to generate the actual code of the query.

Examples

The following example creates a query named DocTestPersonState. It declares no parameters, sets the SELECTMODE
characteristic, and takes the default (SQL) for LANGUAGE:

SQL

CREATE QUERY DocTestPersonState() SELECTMODE RUNTIME
BEGIN

SELECT Name,Home_State FROM Sample.Person ;

END

You can go to the Management Portal, select the Classes option, then select the SAMPLES namespace. There you will
find the query created by the above example: User.queryDocTestPersonState.cls. From this display you can delete this
query before rerunning the above program example. You can, of course, use DROP QUERY to delete created queries.

The following Embedded SQL example creates a method-based query named DocTestSQLCODEL st which fetches a list
of SQLCODEs and their descriptions. It sets a RESULTS result set characteristic, sets LANGUAGE as ObjectScript, and
calls the Execute(), Fetch(), and Close() methods:

ObjectScript

&sql (CREATE QUERY DocTestSQLCODEList()

RESULTS (SQLCODE SMALLINT,Description VARCHAR(100))
PROCEDURE
LANGUAGE OBJECTSCRIPT

Execute(INOUT QHandle BINARY(255))

{SET QHandle=1,%i (QHandle)="""
QUIT ##11t($$$0K)

}
Fetch(INOUT QHandle BINARY(255), INOUT Row %List, INOUT AtEnd INT)

SET AtEnd=0,Row=""
SET %l(QHandIe) $0(A%qCacheSQL('SQLCODE" ,%i (QHandle)))
IF %i(QHandle)=""" {SET AtEnd=1 QUIT ##Ilt($$$OK) }
SET Row=$1b(%i (QHandle) ,qCacheSQL("*SQLCODE",%1(QHandle),1,1))
QUIT ##11t($$$0K)

}
Close(INOUT QHandle BINARY(255))
KILL %i(QHandle)
QUIT ##I1t($$$0K)

D)

IF SQLCODE=0 { WRITE !,"Created a query" }

ELSEIF SQLCODE=-361 { WRITE !,"Query exists: ",%msg }
ELSE { WRITE !,"CREATE QUERY error: ",SQLCODE }

108 InterSystems SQL Reference

CREATE QUERY (SQL)

You can go to the Management Portal, select the Classes option, then select the SAMPLES namespace. There you will
find the query created by the above example: User.queryDocTestSQLCODEList.cls. From this display you can delete this
query before rerunning the above program example. You can, of course, use DROP QUERY to delete created queries.

The following Dynamic SQL example creates a query named DocTest, then executes this query using the
%PrepareClassQuery() method of the %SQL.Statement class:

ObjectScript

/* Creating the Query */

set myquery=4

set myquery(1)="CREATE QUERY DocTest() SELECTMODE RUNTIME *

set myquery(2)="BEGIN

set myquery(3)=""SELECT TOP 5 Name,Home_State FROM Sample.Person ; "
set myquery(4)="END"

set tStatement = ##class(%SQL.Statement) .%New()

set gStatus = tStatement.%Prepare(.myquery)
if $$$I1SERR(qStatus) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(qStatus) quit}

set rset = tStatement.%Execute()
if (rset.%SQLCODE "= 0) {write "%Unable to call query', !, "SQLCODE ", rset.%SQLCODE, ': ",
rset.%Message quit}

/* Calling the Query */

write 1,"Calling a class query",!

set cqStatus = tStatement.%PrepareClassQuery(*'User.queryDocTest", ' 'DocTest')

iT $$SISERR(cgStatus) {write "%PrepareClassQuery failed:" do $SYSTEM.Status.DisplayError(cqStatus)

quit}
set rset = tStatement.%Execute()
if (rset.%SQLCODE "= 0) {write "Unable to call class query'", !, "SQLCODE ", rset.%SQLCODE, ": ",

rset.%Message quit}

write "Query data",!,!
while rset.%Next()

do rset.%Print()
%f (rset.%SQLCODE < 0) {write "%Next failed:', I, "SQLCODE ', rset.%SQLCODE, ': ", rset.%Message
qu&?%te 1,"End of data"
/* Deleting the Query */

&sql (DROP QUERY DocTest)
if SQLCODE = O {write !,"Deleted the query"}

For further details, refer to Dynamic SQL.

Security and Privileges

The CREATE QUERY command is a privileged operation that requires the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a CREATE QUERY command without these
privileges will result in an SQLCODE -99 error and the command will fail.

Users without proper permissions can still execute this command under one of two conditions:
* The command is executed via Embedded SQL, which does not perform privilege checks.

e The user explicitly specifies no privilege checking by, for example, calling either %Prepare() with the checkPriv
argument set to 0 or %6ExecDirectNoPriv() on a %SQL.Statement.

See Also
e SELECT
. CALL

» DROP QUERY
» CREATE PROCEDURE

InterSystems SQL Reference 109

SQL Commands

* Querying the Database

» Defining and Using Stored Procedures

110 InterSystems SQL Reference

CREATE ROLE (SQL)

CREATE ROLE (SQL)

Creates a role.

Synopsis

CREATE ROLE rol e-nane

Description

The CREATE ROLE command creates a role. A role is a named set of privileges that may be assigned to multiple users.
A role may be assigned to multiple users, and a user may be assigned multiple roles. A role is available system-wide, it is
not limited to a specific namespace.

A role-name can be any valid identifier of up to 64 characters. A role-name must follow identifier naming conventions. A
role name can contain Unicode characters. Role names are not case-sensitive. A role-name can be a delimited identifier
enclosed in quotation marks, if the Support Delimited Identifiers configuration option is checked (the default). If a delimited
identifier, role-name can be an SQL reserved word. It can contain a period (.), caret (), and the two-character arrow
sequence (->). It cannot contain a comma (,) or a colon (:) character. It may begin with any valid character, except the
asterisk (*).

When initially created, a role is just a name; it has no privileges. To add privileges to a role, use the GRANT command.
You can also use the GRANT command to assign one or more roles to a role. This permits you to create a hierarchy of
roles.

If you invoke CREATE ROLE to create a role that already exists, SQL issues an SQLCODE -118 error. You can determine
if a role already exists by invoking the $SYSTEM.SQL.Security.RoleExists() method:
ObjectScript

WRITE $SYSTEM.SQL.Security.RoleExists("%AlIl"™),!
WRITE $SYSTEM.SQL.Security.RoleExists(""Madmen')

This method returns 1 if the specified role exists, and O if the role does not exist. Role names are not case-sensitive.
To delete a role, use the DROP ROLE command.
Privileges

The CREATE ROLE command is a privileged operation. Before using CREATE ROLE in embedded SQL, you must
be logged in as a user with one of the following:

e The %Admin_Secure administrative resource with USE permission.

e The %Admin_RoleEdit administrative resource with USE permission.

» Full security privileges on the system.

If you are not, the CREATE ROLE command results in an SQLCODE -99 error (Privilege Violation). Use the
$SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login(username,password)
&sql(

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login() method. For further
information, see %SYSTEM.Security.

InterSystems SQL Reference 111

SQL Commands

Arguments

role-name

The name of the role to be created, which is an identifier. Role names are not case-sensitive.

Examples

The following examples attempt to create a role named BkUser. The user “FRED” in the first example does not have create
role privileges. The user “_SYSTEM?” in the second example does have create role privileges.

ObjectScript

DO $SYSTEM.Security.Login(*'FRED",""FredsPassword™)
&sql (CREATE ROLE BkUser)
IF SQLCODE=-99 {

WRITE !1,"You don"t have CREATE ROLE privileges" }
ELSEIF SQLCODE=-118 {

WRITE 1,"The role already exists" }
ELSE {

WRITE !,"Created a role. Error code is: ',SQLCODE }

ObjectScript

DO $SYSTEM.Security.Login(*"_SYSTEM","SYS™)
Main
&sql (CREATE ROLE BkUser)
IF SQLCODE=-99 {
WRITE 1,"You don"t have CREATE ROLE privileges" }
ELSEIF SQLCODE=-118 {
WRITE !,"The role already exists" }
ELSE {
WRITE !,"Created a role. Error code is: ",SQLCODE }
Cleanup
SET toggle=$RANDOM(2)
IF toggle=0 {
&sqgl (DROP ROLE BkUser)
WRITE !,"DROP USER error code: *,SQLCODE

}

ELSE {
WRITE 1,"No drop this time"
QUIT

}

(The $SRANDOM toggle is provided so that you can execute this example program repeatedly.)

See Also

e SQL statements: DROP ROLE, CREATE USER, DROP USER, GRANT, REVOKE, %CHECKPRIV
* SQL Users, Roles, and Privileges

e SQLCODE error messages

* ObjectScript: SROLES and $USERNAME special variables

112 InterSystems SQL Reference

CREATE SCHEMA (SQL)

CREATE SCHEMA (SQL)

Creates a schema.

Synopsis
CREATE SCHEMA [IF NOT EXISTS] nane
Arguments
Argument Description
name The name of the schema being created. The name is an identifier.
IF NOT EXISTS Optional — Suppresses the error that arises if a schema with name already exists.
The schema is not re-created.
Description

Creates a schema definition, along with a corresponding package definition. The owner of the schema will be defined as
the user who issues this command. A schema created in this manner will not appear in INFORMA-
TION_SCHEMA.SCHEMATA until a table has been created within the schema.

If IF NOT EXISTS was specified and the schema already exists, this command performs no action. If IF NOT EXISTS
was not specified but a schema with the same name already exists, SQLCODE -476 is returned.
See Also

« DROP SCHEMA
e SQLCODE error messages

InterSystems SQL Reference 113

SQL Commands

CREATE TABLE (SQL)

Creates a table definition.

Synopsis
Basic Table Creation

CREATE TABLE [IF NOT EXISTS] table (colum type, colum2 type2, ...)
CREATE TABLE [IF NOT EXISTS] table AS SELECT query ...

Column Constraints

CREATE TABLE table (colum type NOT NULL, ...)

CREATE TABLE table (columm type UNIQUE, ...
CREATE TABLE table (UNIQUE (colum, colum2, ...),
CREATE TABLE table (..., CONSTRAINT unlqueNane UNIQUE (col um, colum2, ...))

CREATE TABLE tabl e (colum type PRIMARY KEY, ...)

CREATE TABLE table (..., PRIMARY KEY (columm, colum2, D)

CREATE TABLE tabl e -, CONSTRAINT pKeyNane PRIMARY KEY (col um, colum2, ...))

CREATE TABLE tabl e -, CONSTRAINT f KeyName FOREIGN KEY (col um) REFERENCES r ef Tabl e (r ef Col um))

(

(
CREATE TABLE table (..., CONSTRAINT fKeyNane FOREIGN KEY (columm, colum2, ...) REFERENCES ref Table
(ref Col um, refColum2, ...))
CREATE TABLE table (, CONSTRAINT f KeyName FOREIGN KEY (...) REFERENCES ref Tabl €))
CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES ... ON UPDATE ref Action))
CREATE TABLE table (..., CONSTRAINT fKeyNane FOREIGN KEY (...) REFERENCES ... ON DELETE refAction))
CREATE TABLE table (, CONSTRAINT f KeyName FOREIGN KEY (...) REFERENCES ... NOCHECK))

Special Columns and Column Properties

CREATE TABLE table (columm type DEFAULT defaul t Spec, ...)
CREATE TABLE table (colum type COMPUTECODE [OBJECTSCRIPT | PYTHON] {code}, ...)

CREATE TABLE table (columm type COMPUTECODE ... {code} COMPUTEONCHANGE (columm, colum2, ...), ...)
CREATE TABLE tabl e (col um type COMPUTECODE ... {code} CALCULATED, ...)
CREATE TABLE table (colum type COMPUTECODE ... {code} TRANSIENT, ...)

CREATE TABLE table (colum type ON UPDATE updateSpec, ...)
CREATE TABLE table (columm type IDENTITY, 2

Table Options

CREATE TABLE table ... SHARD

CREATE TABLE table ... SHARD KEY (shardKeyCol um, shardKeyCol um2, ...)

CREATE TABLE table ... SHARD KEY (coshardKebeIunn) COSHARD WITH (coshardTabIe)

CREATE GLOBAL TEMPORARY TABLE table ...

CREATE TABLE table ... WITH %CLASSPARAMETER pName = pVal ue, %CLASSPARAMETER pNanme2 = pVal ue2,
Description

The CREATE TABLE command creates a table definition of the structure specified. CREATE TABLE creates both an
SQL table and the corresponding InterSystems IRIS® class. For more details, see Class Definitions of Created Tables.

Note: These syntaxes do not include keywords that are parsed for compatibility only but perform no operation. For more
details on these keywords, see Options Supported for Compatibility Only.

Basic Table Creation

You can create a table by specifying column definitions and their data types. Alternatively, you can use a CREATE TABLE
AS SELECT query to copy column definitions and data from an existing table.

e CREATE TABLE [IF NOT EXISTS] table (column type, column2 type2, ...) creates a table containing one or more
columns, each of the specified data type.

114 InterSystems SQL Reference

CREATE TABLE (SQL)

This statement creates a table with two columns. The first column accepts string values of up to 30 characters. The
second column accepts valid dates.

SQL

CREATE TABLE Sample.Person (
Name VARCHAR(30),
DateOfBirth TIMESTAMP)

Example: Create and Populate Table

CREATE TABLE [IF NOT EXISTS] table AS SELECT query copies column definitions and column data from
an existing table (or tables) into a new table based on the specified SELECT query. The SELECT query can specify
any combination of tables or views. You may also specify a STORAGETYPE, %CLASSPARAMETER, or sharded
table by supplying the relevant clauses.

This statement creates a new table, Sample.YoungPeople, based on a subset of data from the Sample .People
table with a columnar storage type.

CREATE TABLE Sample.YoungPeople
AS SELECT Name,Age

FROM Sample.People

WHERE Age < 21

WITH STORAGETYPE = COLUMNAR

When creating a table, the user has the option to include the IF NOT EXISTS condition. Doing so suppresses the error if
table already exists. For further details, see the following section on methods to check for existing tables.

Column Constraints

Column constraints govern what values are permitted for a column, what the default value is for a column, and whether
the column values must be unique. You can also define primary and foreign key constraints on columns. You can specify
multiple column constraints per column, in any order. Separate column constraints by a space.

NOT NULL Constraint

CREATE TABLE table (column type NOT NULL, ...) requires all records of the specified column to have a value
defined, that is, not be NULL values.

This statement creates a table where neither column can be null.

SQL
CREATE TABLE Sample.Person (

Name VARCHAR(30) NOT NULL,
DateOfBirth TIMESTAMP NOT NULL)

The empty string (") is not considered a null value. You can input an empty string into a column that accepts character
strings, even if that column is defined with a NOT NULL restriction.

The NULL data constraint keyword (without NOT) explicitly specifies that this column can accept a null value. This
is the default definition for a column.

Default Constraint

CREATE TABLE table (column type DEFAULT defaultSpec, ...) specifies the default data value that InterSystems
IRIS provides automatically for this column during an INSERT operation if the INSERT does not supply a data value.
If the INSERT operation inserts a NULL value into a column that specifies both a DEFAULT value and a NOT NULL
constraint, the column uses the DEFAULT value. If the column does not define a NOT NULL constraint, then it uses
the NULL value instead of the DEFAULT value.

This statement sets default values for the MembershipStatus and MembershipTerm columns.

InterSystems SQL Reference 115

SQL Commands

SQL

CREATE TABLE Sample.Member (
Memberld INT NOT NULL,
MembershipStatus CHAR(13) NOT NULL DEFAULT *M",
MembershipTerm INT NOT NULL DEFAULT 2)

Unique Constraints

Unique constraints require that a column can contain only unique values. To see which columns have the unique constraint
set, see Catalog Details for a Table.

CREATE TABLE table (column type UNIQUE, ...) constrains the specified column to accept only unique values.
No two records can contain the same value for this column.

This statement sets the unique constraint on the UserName column:

SQL

CREATE TABLE Sample.People (
UserName VARCHAR(30) UNIQUE NOT NULL,
FirstName VARCHAR(30),
LastName VARCHAR(30))

The SQL empty string (") is considered to be a data value, so with the UNIQUE data constraint applied, no two records
can contain an empty string value for this column. NULL is not considered to be a data value, so the UNIQUE data
constraint does not apply to multiple NULLSs. To restrict use of NULL for a column, use the NOT NULL keyword
constraint.

Note: Insharded tables, the unique constraint adds a significant performance cost to inserts and updates. If insert
or update performance is important, avoid this constraint or include a shard key for the table. Note that sharded
tables have additional restrictions on the UNIQUE constraint.

For more details on query performance, see Evaluate Unique Constraints and Querying the Sharded Cluster.

CREATE TABLE table (UNIQUE (column, column2, ...), ...) requires that all values for a specified group of columns,
when concatenated together, result in a unique value. The individual columns do not need to be unique. You can
specify this constraint at any location within the comma-separated list of columns being defined.

This statement requires that the combination of FirstName and LastName records in the created table are unique,
even though FirstName and LastName records can individually contain duplicates.

SQL

CREATE TABLE Sample.People (
FirstName VARCHAR(30),
LastName VARCHAR(30),

UNIQUE (FirstName,LastName))

CREATE TABLE table (..., CONSTRAINT uniqueName UNIQUE (column,column2, ...)) specifies a name for
the UNIQUE constraint. If you want to drop a UNIQUE constraint from a table definition, then the ALTER TABLE
command requires this constraint name.

This statement is functionally equivalent to the previous statement and names the constraint FirstLast.

SQL

CREATE TABLE Sample.People (
FirstName VARCHAR(30),
LastName VARCHAR(30),
CONSTRAINT FirstLast UNIQUE (FirstName,LastName))

116

InterSystems SQL Reference

CREATE TABLE (SQL)

Primary Key Constraints

The PRIMARY KEY constraint designates a column, or combination of columns, as the primary key, constraining that column
or columns to be unique and not null. Defining a primary key is optional. When you define a table, InterSystems IRIS
automatically creates a generated column, the RowID Column (default name "1D"), which functions as a unique row
identifier. For more details on the primary key, see Defining the Primary Key.

* CREATE TABLE table (column type PRIMARY KEY, ...) designates a single column in the table as the primary
key, constraining it be unique and not null.

This statement creates a table that designates the EmpNum column as the primary key:

SQL

CREATE TABLE Sample.Employee (
EmpNum INT PRIMARY KEY,
NameLast CHAR (30) NOT NULL,
NameFirst CHAR (30) NOT NULL,
StartDate TIMESTAMP,

Salary MONEY)

In the Catalog Details section of the Management Portal, the generated primary key name has the form tablePKeyN,
where table is the name of the table and N is the constraint count integer.

» CREATETABLE table(..., PRIMARY KEY (column, columnz, ...)) designates one or more columns as the primary
key. You can specify the PRIMARY KEY clause at any location within the comma-separated list of columns. Speci-
fying a single column in this clause is functionally equivalent to specifying this clause on a specific column by using
the previous syntax. If you specify a comma-separated list of columns in this clause, then each column is defined as
not null but may contain duplicate values, so long as the combination of the column values is a unique value.

This statement designates the combination of the Fi rstName and LastName columns as the primary key:

SQL

CREATE TABLE Sample.People (
FirstName VARCHAR(30),
LastName VARCHAR(30),
PRIMARY KEY (FirstName,LastName))

» CREATE TABLE table(..., CONSTRAINT pKeyName PRIMARY KEY (column, columnz2, ...)) enables you to
explicitly name your primary key. You can view the name of the primary key from the Catalog Details section of the
Management Portal.

This statement is functionally equivalent to the first PRIMARY KEY syntax and additionally names the primary key
EmployeePK.

SQL

CREATE TABLE Sample.Employee (
EmpNum INT,
NameLast CHAR (30) NOT NULL,
NameFirst CHAR (30) NOT NULL,
StartDate TIMESTAMP,
Salary MONEY,
CONSTRAINT EmployeePK PRIMARY KEY (EmpNum))

Foreign Key Constraints

The FOREIGN KEY constraint designates a column, or combination of columns, as a reference to another table. The value
stored in the foreign key column uniquely identifies a record in the other table. You can designate more than one foreign
key per table. Each foreign key reference must exist in the referenced table and must be defined as unique. The referenced
column cannot contain duplicate values or NULL. For more details on foreign keys, see Defining a Foreign Key.

InterSystems SQL Reference 117

SQL Commands

+ CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (column) REFERENCES refTable
(refColumn)) designates a column from the table being created as a foreign key that references the refColumn column
of the refTable reference table. The foreign key column and referenced column can have different names but they must
have the same data type and column constraints. fKeyName specifies the name of the foreign key and is required.

This statement creates an Orders table that defines a foreign key named CustomersFK. With this foreign key, the
values of the CustomerNum column are IDs specified in the CustID column of the Customers table.

SQL

CREATE TABLE Orders (
OrderlID INT,
Orderltem VARCHAR,
OrderQuantity INT,
CustomerNum INT,
CONSTRAINT OrdersPK PRIMARY KEY (OrderlD),
CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers (CustiD))

+ CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (column, column2, ...) REFERENCES
refTable (refColumn, refColumn2, ...)) designates a combination of columns as the foreign key of the referenced
columns. The foreign key columns and referenced columns must correspond in number of columns and in order listed.

This statement designates the CustomerNum and SalesPersonNum column combination of the Orders as the
foreign key. These column values reference the corresponding Cust1D and SalespID columns of the Customers
table.

SQL

CREATE TABLE Orders (

OrderlID INT,

Orderltem VARCHAR,

OrderQuantity INT,

CustomerNum INT,

SalesPersonNum INT,

CONSTRAINT OrdersPK PRIMARY KEY (OrderlD),

CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum,SalesPersonNum) REFERENCES Customers
(CustlID,SalesplD))

» CREATE TABLE table(..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES refTabl€)) omits
the reference column name. The foreign key of the column, or combination of columns, defaults to the primary key of
the reference table (if defined), otherwise the IDENTITY column of the reference table (if defined), and otherwise the
Row1D column of the reference table.

This statement sets a foreign key in which the CustomerNum column references the primary key of the Customers
table, assuming that this table has the primary key defined.

SQL

CREATE TABLE Orders (
OrderlID INT,
Orderltem VARCHAR,
OrderQuantity INT,
CustomerNum INT,
SalesPersonNum INT,
CONSTRAINT OrdersPK PRIMARY KEY (OrderlD),
CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers)

» CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (..) REFERENCES ... ON UPDATE
refAction)) defines the UPDATE rule for the reference table. When you attempt to change the primary key value of a
row from the reference table, the ON UPDATE clause defines what action to take for the rows in that table. Valid
reference action values are NO ACTION (default), SET DEFAULT, SET NULL, and CASCADE. You can specify
this clause in conjunction with the ON DELETE clause.

This statement creates a table that, when the reference column CustlID is updated, the foreign key column
CustomerNum receives the same update.

118 InterSystems SQL Reference

CREATE TABLE (SQL)

SQL

CREATE TABLE Orders (
OrderlID INT,
Orderltem VARCHAR,
OrderQuantity INT,
CustomerNum INT,
CONSTRAINT OrdersPK PRIMARY KEY (OrderlD),
CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers (CustlD)
ON UPDATE CASCADE)

CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES ... ON DELETE
refAction)) defines the DELETE rule for the reference table. When you attempt to delete a row from the reference
table, the ON DELETE clause defines what action to take for rows in that table. Valid reference action values are NO
ACTION (default), SET DEFAULT, SET NULL, and CASCADE. You can specify this clause in conjunction with
the ON UPDATE clause.

This statement creates a table that cascades updates of reference column values to the foreign key column, but if a
reference column value is deleted, the corresponding foreign key values are set to NULL.

SQL

CREATE TABLE Orders (

OrderlID INT,

Orderltem VARCHAR,

OrderQuantity INT,

CustomerNum INT,

CONSTRAINT OrdersPK PRIMARY KEY (OrderlD),

CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers (CustlD)
ON UPDATE CASCADE
ON DELETE SET NULL)

CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES ... NOCHECK))
disables checking for referential integrity of the foreign key, meaning that an INSERT or UPDATE operation might
specify a value for a foreign key column that does not correspond to a row in the reference table.

The NOCHECK keyword also prevents the execution of the ON DELETE or ON UPDATE referential actions for the
foreign key, if these actions are specified. The SQL query processor can use foreign keys to optimize joins among
tables. However, if a foreign key is defined as NOCHECK, the SQL query processor does not consider it as defined.
A NOCHECK foreign key is still reported to database driver catalog queries as a foreign key. For more information,
see Using Foreign Keys.

Special Columns and Column Properties

Computed Columns

These syntaxes show how to define columns that are computed on INSERT or UPDATE rather than user-supplied. For
more details on these columns, see Computing a column value on INSERT or UPDATE.

CREATE TABLE table (column type COMPUTECODE [OBJECTSCRIPT | PYTHON] {codg}, ...) defines a
column in which values are computed and stored upon INSERT using the specified ObjectScript or Python code. If
you omit the OBJECTSCRIPT or PYTHON keyword, the code defaults to ObjectScript. The values in computed
columns remain unchanged by subsequent table updates, such as an UPDATE command or trigger code operations.

This statement creates a table that, when a row is inserted, computes the Age column based on the date specified in
the DOB column.

InterSystems SQL Reference 119

SQL Commands

SQL/ObjectScript

CREATE TABLE MyStudents (
Name VARCHAR(16) NOT NULL,
DOB DATE,
Age VARCHAR(12) COMPUTECODE {
set bdate = $zdate({DOB}, 8)
set today = $zdate($horolog,8)
set {Age} = $select(bdate = "":"", 1:(today - bdate) \ 10000)},
Grade INT)

SQL/Python

CREATE TABLE MyStudents (

Name VARCHAR(16) NOT NULL,

DOB DATE,

Age VARCHAR(12) COMPUTECODE PYTHON {
import datetime as d
iris_date offset = d.date(1840,12,31).toordinal()
bdate = d.date.fromordinal(cols.getfield("DOB") + iris_date offset).strftime("%Y%m%d)
today = d.date.today()-strftime("%Y%m%d")
return str((int(today) - int(bdate)) // 10000) if bdate else """},

Grade INT)

* CREATE TABLE table (column type COMPUTECODE ... {code} COMPUTEONCHANGE (column, column2,
...), -..) recomputes the value of the computed column when any one of the table columns specified in the COMPUTEON-
CHANGE clause changes in a subsequent table update. The recomputed value replaces the previously stored value. If
a column specified in COMPUTEONCHANGE is not part of the table specification, then InterSystems SQL generates
an SQLCODE -31 error.

This statement recomputes the Age column when the DOB column is updated. The Birthday column includes the
timestamp for when the column last changed.

SQL

CREATE TABLE MyStudents (
Name VARCHAR(20) NOT NULL,
DOB TIMESTAMP,
Birthday VARCHAR(40) COMPUTECODE {
set {Birthday} = $zdate({DOB})
" changed: "$zdatetime($ztimestamp) }
COMPUTEONCHANGE (DOB))

COMPUTEONCHANGE defines the SqlComputeOnChange keyword with the %%UPDATE value for the class
property corresponding to the column definition. This property value is initially computed as part of the INSERT
operation and recomputed during an UPDATE operation. For a corresponding Persistent Class definition, see Defining
a Table by Creating a Persistent Class.

» CREATE TABLE table (column type COMPUTECODE ... {code} CALCULATED, ...) specifies that the column
value is not stored in the database but is instead generated each time the column is queried. Calculated columns reduce
the size of the data storage but can slow query performance.

This column defines the Calculated boolean keyword for the class property corresponding to the column definition.
CALCULATED properties cannot be indexed unless the property is also SQLComputed.

This statement calculates the value of the DaysToBi rthday column, which changes depending on the current date.
The {*} code is a shortcut syntax for specifying the column being computed, in this case DaysToBirthday.

SQL

CREATE TABLE MyStudents (
Name VARCHAR(20) NOT NULL,
DOB TIMESTAMP,
DaysToBirthday INT COMPUTECODE {
set {*} = $zdate({DOB},14) - S$zdate($horolog,14) } CALCULATED)

« CREATE TABLE table (column type COMPUTECODE ... {code} TRANSIENT, ...) is similar to CALCULATED
and also specifies that the column is not saved to the database.

120 InterSystems SQL Reference

CREATE TABLE (SQL)

This column defines the Transient boolean keyword for the class property corresponding to the column definition.
TRANSIENT properties cannot be indexed.

The CALCULATED and TRANSIENT keywords are mutually exclusive and provide similar behavior. TRANSIENT
means that InterSystems IRIS does not store the property. CALCULATED means that InterSystems IRIS does not
allocate any instance memaory for the property. Thus when CALCULATED is specified, TRANSIENT is implicitly
set.

» CREATE TABLE table (column type ON UPDATE updateSpec, ...) defines a column that is recomputed whenever
a row is updated in the table, based on the value specified by updateSpec. You cannot specify an ON UPDATE clause
if the column also has a COMPUTECODE data constraint.

This statement creates a table containing a LastUpdated column whose values are updated to the current time any
time the corresponding rows are updated. The timestamp values stored in the table have a precision of two digits.

CREATE TABLE MyStudents (
Name VARCHAR(20) NOT NULL,
DOB TIMESTAMP,
LastUpdated TIMESTAMP DEFAULT CURRENT_TIMESTAMP(2) ON UPDATE CURRENT_TIMESTAMP(2))

» CREATE TABLE table (column type IDENTITY, ...) replaces the system-generated integer RowID column with
the specified named column.

Like the RowID column, this column behaves as a single-column IDKEY index whose values are unique system-
generated integers, where each value serves as a unique record ID for the corresponding table row. Defining an
IDENTITY column prevents the defining of the Primary Key as the IDKEY. You can define only one IDENTITY
column per table. type must be an integer data type. If you omit type, then the data type is defined as BIGINT. The
IDENTITY values cannot be user-specified and cannot be modified in an UPDATE statement.

This statement sets the 1dNum column as the IDKEY. This column is returned as part of selection queries such as
SELECT *.

SQL

CREATE TABLE Employee (
EmpNum INT NOT NULL,
IdNum IDENTITY NOT NULL,
Name CHAR(30) NOT NULL,
CONSTRAINT EMPLOYEEPK PRIMARY KEY (EmpNum))

For more details about working with the IDENTITY column, see Creating Named Rowld Column Using IDENTITY
Keyword.

Counter Columns

InterSystems SQL provides three types of system-generated integer counter columns. These columns are not mutually
exclusive and can be specified together within the same table. The data types of all three columns map to the %Library.Bigint
data type class.

InterSystems SQL Reference 121

SQL Commands

Counter Type Scope @ Automadicadly When Usaqdd Duplicate Coumns Counter Sharded
of Incremented Umspdd values Values of this Reset Table
Counter = by value type by Support
is

AUTO_INCREMENT | Pertable | INSERT NULL Allowed, | Allowed | One TRNGAE | Yes

or0 does per TABLE
not table
affect
system
counter
SERIAL Perserial | INSERT NULL Allowed, | Allowed | Multiple = TRNAE @ No
counter or0 may per TABLE
column increment table
system
counter
ROWVERSION Noeasee | INSERT Not Not Not One Not No
and appicae | allowed | allowed | per reset
UPDATE table

For more details on these counter columns, see RowVersion, Autolncrement and Serial Counter Columns.

CREATE TABLE table (column type AUTO_INCREMENT, ...) creates a counter column that increments upon
each INSERT into the table. You can designate only one AUTO_INCREMENT counter column per table. You must
set the AUTO_INCREMENT keyword after an explicit integer data type. For example:

CREATE TABLE MyStudents (
Name VARCHAR(16) NOT NULL,
DOB TIMESTAMP,
Autolnc BIGINT AUTO_INCREMENT)

Alternatively, you can define an AUTO_INCREMENT column using the %Library.Autolncrement data type. Thus the
following are also valid column definition syntax: MyAutolnc %Autolncrement, MyAutolnc %Autolncrement
AUTO_INCREMENT.

CREATE TABLE table (column SERIAL, ...) creates a counter column that increments upon each INSERT into the
table. You can designate multiple columns as SERIAL counter columns. Specify the SERIAL keyword in place of an
explicit data type. For example:

SQL

CREATE TABLE MyStudents (
Name VARCHAR(16) NOT NULL,
DOB TIMESTAMP,
Counter SERIAL)

CREATE TABLE table (column ROWVERSION, ...) creates a counter column that increments upon each INSERT
or UPDATE operation across all tables in the namespace. Specify the ROWVERSION keyword in place of an explicit
data type. For example:

SQL

CREATE TABLE MyStudents (
Name VARCHAR(16) NOT NULL,
DOB TIMESTAMP,
RowVer ROWVERSION)

122

InterSystems SQL Reference

CREATE TABLE (SQL)

%DESCRIPTION Keyword

CREATE TABLE table(..., %DESCRIPTION description) specifies a description for the table being created.
Enclose the description text string in quotes. For example:

SQL

CREATE TABLE Employee (
%Description "Employees at XYZ Inc.",
EmpNum INT PRIMARY KEY,
NameLast VARCHAR(30) NOT NULL,
NameFirst VARCHAR(30) NOT NULL,
StartDate TIMESTAMP)

CREATE TABLE table (column type %DESCRIPTION description, ...) specifies a description for a column. You
can specify one description per column. Enclose the description text string in quotes. For example:

SQL

CREATE TABLE Employee (
EmpNum INT PRIMARY KEY,
NameLast VARCHAR(30) NOT NULL,
NameFirst VARCHAR(30) NOT NULL,
StartDate TIMESTAMP %Description "Format: MM/DD/YYYY®)

%PUBLICROWID Keyword

CREATE TABLE table (%PUBLICROWID, ...) makes the unique, system-generated integer RowID column public.
For example:
SQL

CREATE TABLE Employee (
%PUBLICROWID,
EmpNum INT PRIMARY KEY,
NameLast VARCHAR(30) NOT NULL,
NameFirst VARCHAR(30) NOT NULL,
StartDate TIMESTAMP)

This column is named "ID" and is assigned to column 1. The class corresponding to the table is defined with “Not
SqlRowldPrivate”. ALTER TABLE cannot be used to specify %PUBLICROWID.

If the RowlD is public:
— RowlD values are displayed by SELECT *,
— The RowlD can be used as a foreign key reference.

— Ifthere is no defined primary key, the RowlID is treated as an Implicit PRIMARY KEY constraint with the
Constraint Name RowIDField_As_PKey.

— The table cannot be used to copy data into a duplicate table without specifying the column names to be copied.

For more details of the RowID column, see RowID Hidden?.

Collation Property

CREATE TABLE table (column type COLLATE sglCollation, ...) sets the collation type used to order and compare
values in the specified column. Valid collation values are %EXACT, %MINUS, %PLUS, %SPACE, %SQLSTRING,
%SQLUPPER, %TRUNCATE, and %MVR.

This statement sorts the UserName column as a case-sensitive string, treating NULL and numeric values in the column
as string characters.

InterSystems SQL Reference 123

SQL Commands

SQL

CREATE TABLE Sample.People (
UserName VARCHAR(30) COLLATE %SQLSTRING,
FirstName VARCHAR(30),
LastName VARCHAR(30))

Table Options
Sharded Tables

These syntaxes provide the option to define a sharded table, where table rows are automatically horizontally partitioned
across data nodes by using one of its columns as a shard key. A sharded table improves the performance of queries against
that table, especially for tables containing a large number of rows. To improve the performance of queries that join large
tables, you can coshard the tables. Cosharding partitions rows in different tables that have matching shard key values into
the same data nodes. For more details on sharding, see Horizontally Scaling for Data Volume with Sharding.

Note: Notall CREATE TABLE syntaxes support sharded tables. For more details, see Sharded Table Restrictions.

e CREATE TABLE table... SHARD defines a sharded table and uses the RowID column as the shard key. This is
known as a system-assigned shard key (SASK). If the table has a defined IDENTITY column and no explicit shard
key, InterSystems SQL uses the IDENTITY column as the SASK instead. Using a SASK is the simplest and most
effective way to shard a table. Specify the SHARD keyword after the column definitions.

This statement creates a sharded table that uses the default RowID column as the shard key.

CREATE TABLE Vehicle (
Make VARCHAR(30) NOT NULL,
Model VARCHAR(20) NOT NULL,
Year INT NOT NULL,
Vin CHAR(L7) NOT NULL)
SHARD

e CREATETABLE table... SHARD KEY (shardKeyColumn, shardKeyColumnz2, ...) specifies a column, or comma-
separated list of columns, to use as the shard key. This is known as a user-defined shard key (UDSK).

This statement creates a table with a shard key composed of two columns.

CREATE TABLE Car (
Owner VARCHAR(30) NOT NULL,
Plate VARCHAR(10) NOT NULL,
State CHAR(2) NOT NULL)
SHARD KEY (Plate, State)

You can also use this syntax to coshard two or more tables that you are defining. Joins on the UDSK columns of
cosharded tables perform much more efficiently than joins on non-UDSK columns, so defining UDSKSs on the most
frequently used set of join columns is recommended.

These statements create two tables with defined shard keys on the columns Vin and VehicleNumber.

CREATE TABLE Vehicle (
Make VARCHAR(30) NOT NULL,
Model VARCHAR(20) NOT NULL,
Year INT NOT NULL
Vin CHAR(L17) NOT NULL)
SHARD KEY (Vin)

CREATE TABLE Citation (
CitationlD VARCHAR(8) NOT NULL,
Date TIMESTAMP NOT NULL,
LicenseNumber VARCHAR(12) NOT NULL
Plate VARCHAR(10) NOT NULL,
VehicleNumber CHAR(17) NOT NULL)
SHARD KEY (VehicleNumber)

124 InterSystems SQL Reference

CREATE TABLE (SQL)

These tables benefit from improved JOIN performance when joining on the UDSK column, such as this query that
returns traffic citations associated with a vehicle:

SQL

SELECT * FROM Citation, Vehicle WHERE Citation.VehicleNumber = Vehicle.Vin

For more details on choosing a shard key, see Choose a Shard Key.

CREATE TABLE table... SHARD KEY (coshardKeyColumn) COSHARD WITH (coshardTable) creates a table
and sets one of its integer-valued columns as a shard key, coshardKeyColumn. You can use this shard key column in
joins with another sharded table, coshardTable, which must have a system-assigned shard key (SASK) defined using
the SHARD syntax. You can optionally define coshardKeyColumn as a foreign reference to the SASK column of
coshardTableas well. The foreign key reference can be used to enforce referential integrity, while the shard key provides
faster performance for joins with the other table by matching on its SASK column.

This statement creates a table that defines the Customer 1D column as the shard key. This key is used in cosharded
joins with the shard key of an existing sharded table, Customer.

CREATE TABLE Order (
Date TIMESTAMP NOT NULL,
Amount DECIMAL(10,2) NOT NULL,
CustomerID CUSTOMER NOT NULL)

SHARD KEY (CustomerlID) COSHARD WITH Customer

Temporary Tables

CREATE GLOBAL TEMPORARY TABLE table... creates the table as a global temporary table, where the table

definition is available to all processes but the table data (including Stream data) and indexes persist only for the duration
of the process that created the table. This data is stored in process-private globals and is deleted when the process ter-
minates.

This statement creates a temporary table:

SQL

CREATE GLOBAL TEMPORARY TABLE TempEmp (
EmpNum INT NOT NULL,
NameLast CHAR(30) NOT NULL,
NameFirst CHAR(30) NOT NULL,
CONSTRAINT EMPLOYEEPK PRIMARY KEY (EmpNum))

Regardless of which process creates a temporary table, the owner of the temporary table is automatically setto _PUBLIC.
This means that all users can access a cached temporary table definition. For example, if a stored procedure creates a
temporary table, the table definition can be accessed by any user that is permitted to invoke the stored procedure. This
applies only to the temporary table definition. The temporary table data is specific to the invocation, and therefore can
only be accessed by the current user process.

The table definition of a global temporary table is the same as a base table. A global temporary table must have a
unique name. Attempting to give it the same name as an existing base table results in an SQLCODE -201 error. The
table persists until it is explicitly deleted (using DROP TABLE). You can alter the table definition using ALTER
TABLE.

You can only define global temporary tables through DDL statements.

Like standard InterSystems IRIS tables, the ClassType=persistent, and the class includes the Final keyword,
indicating that it cannot have subclasses.

InterSystems SQL Reference 125

SQL Commands

Table Storage

CREATE TABLE table... WITH STORAGETYPE = [ROW | COLUMNAR] specifies the layout used to store
the underlying data in the table.

— Specify ROW to store data in rows. Row storage enables efficient transactions, such as when frequently updating
or inserting rows in online transaction processing (OLTP) workflows. If you omit the WITH STORAGETYPE
clause, the created table defaults to row storage.

— Specify COLUMNAR to store data in columns. Columnar storage enables efficient queries, such as when filtering
or aggregating data in specific columns in online analytical processing (OLAP) workflows. Columnar storage is
an experimental feature for 2022.2. In previous InterSystems IRIS versions, all table data is stored in rows.

Note: For performance reasons, unless the collation type is specified explicitly, columnar storage layouts default
to using EXACT collation. Row storage layouts use namespace-default SQLUPPER collation.

For more details on choosing a storage layout, see Choose an SQL Table Storage Layout.

This statement creates a table with a columnar storage layout.

CREATE TABLE Sample.TransactionHistory (
AccountNumber INTEGER,
TransactionDate DATE,
Description VARCHAR(100),
Amount NUMERIC(10,2),
Type VARCHAR(10))
WITH STORAGETYPE = COLUMNAR

This statement creates a table with columnar storage by using the CREATE TABLE AS SELECT clause.

CREATE TABLE Sample.TransactionHistory AS
SELECT AccountNumber, TransactionDate, Description, Amount, Type
FROM Sample.BankTransaction

WITH STORAGETYPE = COLUMNAR

Tip: You can use CREATE TABLE AS SELECT to experiment with creating tables that have different storage
types and comparing their performance.

CREATE TABLE table (column type... WITH STORAGETYPE =[ROW | COLUMNARY], ...) specifies individual
columns as having row or columnar storage. All other columns default to row storage or to the storage type specified
in the WITH STORAGETYPE clause at the end of the table definition.

This statement creates a table with a columnar storage layout only for the Amount column. Because this statement
omits the WITH STORAGETYPE clause at the end of the table definition, the rest of the columns default to a row
storage layout.

CREATE TABLE Sample.BankTransaction (
AccountNumber INTEGER,
TransactionDate DATE,
Description VARCHAR(100),
Amount NUMERIC(10,2) WITH STORAGETYPE = COLUMNAR,
Type VARCHAR(10))

Class Parameters

CREATE TABLE table... WITH %CLASSPARAMETER pName = pValue, %0CLASSPARAMETER pName2
= pValue2, ... specifies one or more %CLASSPARAMETER name-value pairs that define core aspects of the table being
created. Each parameter name, pName, is set to the specified value, pValue.

126

InterSystems SQL Reference

CREATE TABLE (SQL)

In this statement, the USEEXTENTSET class parameter disables the use of generated Global names, such as
~EPgS.D8T6.1. These globals are used as IDKEY indexes into the data. The DEFAULTGLOBAL class parameter
specifies "GL.EMPLOYEE as an explicit Global name for indexes.

CREATE TABLE Employees (
EmpNum INT NOT NULL,
NameLast CHAR(30) NOT NULL,
NameFirst CHAR(30) NOT NULL,
CONSTRAINT EMPLOYEEPK PRIMARY KEY (EmpNum)

D)
WITH %CLASSPARAMETER USEEXTENTSET = O,
%CLASSPARAMETER DEFAULTGLOBAL = "~GL.EMPLOYEE"

You can use DEFAULTGLOBAL to specify an extended global reference, either the full reference (4CLASSPARAMETER
DEFAULTGLOBAL = "~|"USER"|GL.EMPLOYEE"), or just the namespace portion (4CLASSPARAMETER
DEFAULTGLOBAL = *~]"USER"|").

Arguments
table

Ina CREATE TABLE command, specify the name of the table you want to create as a valid identifier. A table name can
be qualified or unqualified.

* Anungualified table name has the following syntax: tablename; it omits schema (and the period (.) character). An
unqualified table name takes the default schema name. The initial system-wide default schema name is SQLUser,
which corresponds to the default class package name User. Schema search path values are ignored.

The system-wide default schema name can be configured.
To determine the current system-wide default schema name, use the $SYSTEM.SQL.Schema.Default() method.

e Aqualified table name has the following syntax: schema . tablename. It can specify either an existing schema name
or a new schema name. Specifying an existing schema name places the table within that schema. Specifying a new
schema name creates that schema (and associated class package) and places the table within that schema.

Table Name and Schema Name Conventions

Table names and schema names follow SQL identifier naming conventions, subject to additional constraints on the use of
non-alphanumeric characters, uniqueness, and maximum length. Names beginning with a % character are reserved for
system use. By default, schema names and table names are simple identifiers and are not case-sensitive.

InterSystems IRIS uses the table name to generate a corresponding class hame. A class name contains only alphanumeric
characters (letters and numbers) and must be unique within the first 96 characters. To generate a class name, InterSystems
IRIS first strips out symbol (non-alphanumeric) characters from the table name, and then generates a unique class name,
imposing uniqueness and maximum length restrictions.

InterSystems IRIS uses the schema name to generate a corresponding class package name. To generate a package name,
first it either strips out or performs special processing of symbol (hon-alphanumeric) characters in the schema name.
InterSystems IRIS then generates a unique package name, imposing uniqueness and maximum length restrictions. A schema
name is not case-sensitive but the corresponding class package name is. If you specify a schema name that differs only in
case from an existing class package name, and the package definition is empty (contains no class definitions), InterSystems
IRIS reconciles the two names by changing the case of the class package name.

You can use the same name for a schema and a table, but you cannot use the same name for a table and a view in the same
schema. For more details on how package and class names are generated from schema and table names, see Table Names
and Schema Names.

InterSystems SQL Reference 127

SQL Commands

Table Name Character Restrictions

InterSystems IRIS supports 16-bit (wide) characters for table and column names. For most locales, accented letters can be
used for table names and the accent marks are included in the generated class name.

Note: The Japanese locale does not support accented letter characters in identifiers. Japanese identifiers can contain (in
addition to Japanese characters) the Latin letter characters A-Z and a-z (65-90 and 97-122), the underscore
character (95), and the Greek capital letter characters (913-929 and 931-937). The nls.Language test uses [
(the Contains operator) rather than = because there are different Japanese locales for different operating system
platforms.

Check for Existing Tables
To determine if a table already exists in the current namespace, use $SYSTEM.SQL.Schema. TableExists(*'schema.tname"").

By default, when you try to create a table that has the same name as an existing table InterSystems IRIS rejects the create
table attempt and issues an SQLCODE -201 error. To determine the current system-wide configuration setting, call
$SYSTEM.SQL.CurrentSettings(), which displays an Allow DDL CREATE TABLE or CREATE VIEW for
existing table or view setting. The default is 0, which is the recommended setting. If this option is set to 1, Inter-
Systems IRIS deletes the class definition associated with the table and then recreates it. This is similar to performing a
DROP TABLE to delete the existing table and then performing CREATE TABLE. In this case, it is strongly recommended
that the $SYSTEM.SQL.CurrentSettings(), Does DDL DROP TABLE delete the table”s data? value be set
to 1 (the default). Refer to DROP TABLE for further details.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box. For more information on configuring these settings, consult the SQL Configuration Parameters page.

The behavior of the predicate IF NOT EXISTS takes priority over the settings described above. These settings effectively
overwrite the table and return SQLCODE 0. When IF NOT EXISTS is specified, the command does nothing and returns
SQLCODE 1 along with a message.

column

In a CREATE TABLE command, specify the column name, or a comma-separated list of column names, used to define
the columns of the table you are creating. You can specify the column names in any order, with a space separating the
column name from its associated data type. For example: CREATE TABLE myTable (columnl INT, column2
VARCHAR(10)). By convention, each column definition is usually presented on a separate line and indentation is used.
This is recommended for readability but is not required. Column names are also used to define unique, primary key, and
foreign key constraints.

Enclose column name lists in parentheses.

Rather than defining a column, a column definition can reference an existing embedded serial object that defines multiple
columns (properties). The column name is followed by the package and class name of the serial object. For example:
Office Sample.Address. Do not specify a data type or data constraints, but you can specify a % DESCRIPTION. You
cannot create an embedded serial object using CREATE TABLE.

Column Name Conventions

Column names follow identifier conventions, with the same naming restrictions as table names. Avoid beginning column
names beginning with a % character, though column names beginning with %z or %Z are permitted. A column name should
not exceed 128 characters. By default, column names are simple identifiers. They are not case-sensitive. Attempting to
create a column name that differs only in letter case from another column in the same table generates an SQLCODE -306
error.

InterSystems IRIS uses the column name to generate a corresponding class property name. A property name contains only
alphanumeric characters (letters and numbers) and is a maximum of 96 characters in length. To generate this property name,
InterSystems IRIS first strips punctuation characters from the column name, and then generates a unique identifier of 96

128 InterSystems SQL Reference

CREATE TABLE (SQL)

or fewer characters. InterSystems IRIS substitutes an integer, beginning with 0, for the final character of a column name
when this is needed to create a unique property name.

This example shows how InterSystems IRIS handles column names that differ only in punctuation. The corresponding
class properties for these columns are named PatNum, PatNu0, and PatNul:

SQL

CREATE TABLE MyPatients (
_PatNum VARCHAR(16),
%Pat@Num INTEGER,
Pat_Num VARCHAR(30),
CONSTRAINT Patient_PK PRIMARY KEY (_PatNum))

The column name, as specified in CREATE TABLE, is shown in the class property as the SqlFieldName keyword value.

During a dynamic SELECT operation, InterSystems IRIS might generate property name aliases to facilitate common letter
case variants. For example, given the column name Home_Street, InterSystems IRIS might assign the property name
aliases home_street, HOME_STREET, and HomeStreet. InterSystems IRIS does not assign an alias if that name would
conflict with the name of another field name, or with an alias assigned to another field name.

type

The data type class of the column name specified by column. A specified data type limits a column’s allowed data values
to the values appropriate for that data type. InterSystems SQL supports most standard SQL data types.

You can specify either an InterSystems SQL data type (for example, VARCHAR(24) or CHARACTER VARYING(24))
or the class that the data type maps to (for example, %Library.String(MAXLEN=24) or %String(MAXLEN=24)).

Specify data type classes when you want to define additional data definition parameters, such as an enumerated list of
permitted data values, pattern matching of permitted data values, maximum and minimum numeric values, and automatic
truncation of data values that exceed the maximum length (MAXLEN).

Note: A data type class parameter default may differ from the InterSystems SQL data type default. For example,
VARCHAR() and CHARACTER VARYING() default to MAXLEN=1; The corresponding data type class
%Library.String defaults to MAXLEN=50.

InterSystems IRIS maps these standard SQL data types to InterSystems IRIS data types by providing an SQL.System-
DataTypes mapping table and an SQL.UserDataTypes mapping table.

To view and modify the current data type mappings, go to the Management Portal, select System Administration, Configu-
ration, SQL and Object Settings, System DDL Mappings. To create additional data type mappings, go to the Management
Portal, select System Administration, Configuration, SQL and Object Settings, User DDL Mappings.

If you specify a data type in SQL for which no corresponding InterSystems IRIS data type exists, the SQL data type name
is used as the data type for the corresponding class property. You must create this user-defined InterSystems IRIS data type
before DDL runtime (SQLExecute).

You may also override data type mappings for a single parameter value. For instance, suppose you did not want VAR-
CHAR(100) to map to the supplied standard mapping %String(MAXLEN=100). You could override this by added a DDL
data type of 'VARCHAR(100)' to the table and then specify its corresponding InterSystems IRIS type. For example:

VARCHAR(100) maps to MyString100(MAXLEN=100)

Data Size

Following a data type, you can present the permissible data size in parentheses. Whitespace between the data type name
and data size parentheses is permitted but not required.

InterSystems SQL Reference 129

SQL Commands

For a string, data size represents the maximum number of characters. For example:
ProductName VARCHAR (64)

A numeric value that permits fractional numbers is represented as a pair of integers, (p,s). The first integer, p, is the data
type precision. This number is not identical to numerical precision, that is, the number of digits in the number, because the
underlying InterSystems IRIS data type classes do not have a precision. Instead, these classes use this number to calculate
the MAXVAL and MINVAL values. The second integer, s, is the scale, which specifies the maximum number of decimal
digits. For example:

UnitPrice NUMERIC(6,2) /* maximum value 9999.99 */

For more details on how precision and scale work, see Data Types.

query

A SELECT query that supplies the column definitions and column data for a table being created using the CREATE
TABLE AS SELECT syntax. This query can specify a table, a view, or multiple joined tables. However, it cannot contain
any ? parameters like regular SELECT queries.

The data definition of the CREATE TABLE AS SELECT query is as follows:

e CREATE TABLE AS SELECT copies column definitions from the query table. To rename copied columns specify
a column alias in the query.

CREATE TABLE AS SELECT can copy column definitions from multiple tables if the query specifies joined tables.
* CREATE TABLE AS SELECT always defines the RowlID as hidden.

— If the source table has a hidden RowID, CREATE TABLE AS SELECT does not copy the source table RowlD,
but creates a new RowlID column for the created table. Copied rows are assigned new sequential RowID values.

— If the source table has a public (non-hidden) RowlD, or if the query explicitly selects a hidden RowID, CREATE
TABLE AS SELECT creates a new RowlID column for the table. The source table RowlID is copied into the new
table as an ordinary Biglnt column that is not hidden, not unique, and not required. If the source table RowID is
named “ID”, the new table’s RowID is named “ID1”.

» If the source table has an IDENTITY column, CREATE TABLE AS SELECT copies it and its current data as an
ordinary BIGINT column for non-zero positive integers that is neither unique nor required.

e CREATE TABLE AS SELECT defines an IDKEY index. It does not copy indexes associated with copied column
definitions.

* CREATE TABLE AS SELECT does not copy any column constraints: it does not copy NULL/NOT NULL, UNIQUE,
Primary Key, or Foreign Key constraints associated with a copied column definition.

» CREATETABLEAS SELECT does not copy a Default restriction or value associated with a copied column definition.

e CREATE TABLE AS SELECT does not copy a COMPUTECODE data constraint associated with a copied column
definition.

» CREATE TABLE AS SELECT does not copy a %DESCRIPTION string associated with copied table or column
definition.

defaultSpec

The default value of a column, specified in the DEFAULT clause as a literal value or as a keyword option. A string supplied
as a literal default value must be enclosed in single quotes. A numeric default value does not require single quotes. For
example:

130 InterSystems SQL Reference

CREATE TABLE (SQL)

SQL

CREATE TABLE membertest (
Memberld INT NOT NULL,
Membership_status CHAR(13) DEFAULT *M*,
Membership_term INT DEFAULT 2)

The DEFAULT value is not validated when creating a table. When defined, a DEFAULT value can ignore data type, data
length, and data constraint restrictions. However, when using INSERT to supply data to the table, the DEFAULT value is
constrained. It is not limited by data type and data length restrictions, but is limited by data constraint restrictions. For
example, a column defined Ordernum INT UNIQUE DEFAULT "No Number® can take the default once, ignoring the
INT data type restriction. However, this column cannot take the default a second time, as this would violate the UNIQUE
column data constraint.

If no DEFAULT is specified, the implied default is NULL. If a column has a NOT NULL data constraint, you must specify
a value for that column, either explicitly or by DEFAULT. Do not use the SQL zero-length string (empty string) as a NOT
NULL default value. For more details on null values and the empty string, see NULL.

The DEFAULT data constraint accepts these keyword options: NULL, USER, CURRENT_USER, SESSION_USER,
SYSTEM_USER, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, SYSDATE, and OBJECTSCRIPT.

The USER, CURRENT _USER, and SESSION_USER default keywords set the column value to the ObjectScript
$USERNAME special variable.

The CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, GETDATE, GETUTCDATE, and SYSDATE
SQL functions can also be used as DEFAULT values. They are described in their respective reference pages. You can
specify CURRENT _TIME or a timestamp function with or without a precision value when used as a DEFAULT value.
If no precision is specified, InterSystems SQL uses the precision of the SQL configuration setting "Default time precision
for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP", which defaults to 0. The DEFAULT function uses
the time precision setting in effect when the CREATE TABLE statement is prepared and compiled, not at the time of
statement execution.

CURRENT_TIMESTAMP can be specified as the default for a column of data type %Library.PosixTime or

%Library. TimeStamp; the current date and time is stored in the format specified by the column’s data type. CURRENT_TIMES-
TAMP, GETDATE, GETUTCDATE, and SYSDATE can be specified as a default for a %Library. TimeStamp column (data
type TIMESTAMP or DATETIME). InterSystems IRIS converts the date value to the appropriate format for the data type.

SQL

CREATE TABLE mytest (
Testld INT NOT NULL,
CREATE_TIMESTAMP DATE DEFAULT CURRENT TIMESTAMP(2),
WORK_START TIMESTAMP DEFAULT SYSDATE)

You can use the TO_DATE function as the DEFAULT data constraint for data type DATE. You can use the TO_TIMES-
TAMP function as the DEFAULT data constraint for data type TIMESTAMP.

For a DATE, TIMESTAMP, or TIMESTAMP?2 field, the defaultSpec can be written in an ODBC date format; InterSystems
IRIS handles the conversion to the specified column type.

The OBJECTSCRIPT literal keyword phrase enables you to generate a default value by providing a quoted string containing
ObijectScript code, as shown in the following example:
SQL

CREATE TABLE mytest (
Testld INT NOT NULL,
CREATE_DATE DATE DEFAULT OBJECTSCRIPT "+$HOROLOG" NOT NULL,
LOGNUM NUMBER(12,0) DEFAULT OBJECTSCRIPT "$INCREMENT(~LogNumber)™)

See the ObjectScript Reference for further information.

InterSystems SQL Reference 131

SQL Commands

uniqueName

The name of the constraint listed in the CONSTRAINT UNIQUE clause, specified as a valid identifier. If specified as a
delimited identifier, a constraint name can include the ".", "A", """, and "->" characters. The constraint name uniquely
identifies the constraint and is also used to derive the corresponding index name. This constraint name is required when
using the ALTER TABLE command to drop a constraint from the table definition. Note that ALTER TABLE cannot drop
a column that is listed in CONSTRAINT UNIQUE. Attempting to do so generates an SQLCODE -322 error.

The CONSTRAINT UNIQUE clause has this syntax:
CONSTRAINT uniqueName UNIQUE (columnl,column2)

This constraint specifies that the combination of values of columns columnl and column2 must always be unique, even
though either of these columns by itself may take non-unique values. You can specify one or more columns for this constraint.

All of the columns specified in this constraint must be defined in the column definition. Specifying a column that does not
also appear in the column definitions generates an SQLCODE -86 error. The specified columns should be defined as NOT
NULL. None of the specified columns should be defined as UNIQUE, as this would make specifying this constraint
meaningless.

Columns can be specified in any order. The column order dictates the column order for the corresponding index definition.
Duplicate column names are permitted. Although you may specify a single column name in the UNIQUE columns constraint,
this would be functionally identical to specify the UNIQUE data constraint to that column. A single-column constraint does
provide a constraint name for future use.

You can specify multiple unique column constraint statements in a table definition. Constraint statements can be specified
anywhere in the column definition; by convention they are commonly placed at the end of the list of defined columns.

Refer to the Constraints option of Catalog Details for ways to list the columns of a table that are defined with a unique
constraint.

pKeyName

The name of the primary key defined in the PRIMARY KEY constraint clause, specified as a valid identifier. If specified
as a delimited identifier, a constraint name can include the ".", "A", """, and "->" characters. This optional constraint name
is used in ALTER TABLE to identify a defined constraint.

For more details on defining the primary key of a table, see Defining a Primary Key.

fKeyName

The name of a foreign key defined in the FOREIGN KEY constraint clause, specified as a valid identifier. If specified as
a delimited identifier, a constraint name can include the ".", """, " ", and "->" characters. This optional constraint name is
used in ALTER TABLE to identify a defined constraint.

For more details on defining a foreign key in a table, see Defining a Foreign Key.

refTable

The name of the table to reference in the FOREIGN KEY clause, specified as a valid identifier. A table name can be qual-
ified (schema.table), or unqualified (table).

refColumn

A column name or a comma-separated list of existing column names defined in the reference table that is specified in the
foreign key constraint. Enclose the referenced columns in parentheses. If you omit refColumn, then CREATE TABLE
assigns a default reference column, as described in Defining a Foreign Key.

To specify an explicit RowlD as the reference column, specify refColumn as %1D. For example: FOREIGN KEY
(CustomerNum) REFERENCES Customers (%I1D). Thisvalue is synonymous with an omitted column name, provided

132 InterSystems SQL Reference

CREATE TABLE (SQL)

that the reference table has no primary key or foreign key specified. If the class definition for the table contains SqlRowld-
Name, you can specify this value as the explicit RowlD.

refAction

If a table contains a foreign key, a change to one table has an effect on another table. To keep the data consistent, when
you define a foreign key, you also define what effect a change to the record from which the foreign key data comes has on
the foreign key value. In CREATE TABLE, the ON DELETE r ef Acti onand ON UPDATE r ef Act i on clauses specify
what action to take when a foreign key column specified by refColumn is changed.

» The ON DELETE clause defines the DELETE rule for the reference table. When an attempt to delete a row from the
reference table is made, the ON DELETE clause defines what action to take for the rows in the reference table.

e The ON UPDATE clause defines the UPDATE rule for the reference table. When an attempt to change (update) the
primary key value of a row from the reference table is made, the ON UPDATE clause defines what action to take for
the rows in the reference table.

InterSystems SQL supports these foreign key referential actions:

Referential Action Description

NO ACTION (default) If any row in the foreign key column references the
row being deleted or updated, the delete or update
fails. This constraint does not apply if the foreign key
references itself.

SET DEFAULT Set the foreign key columns that reference the row
being deleted or updated to their default values. If the
foreign key column does not have a default value, it
is set to NULL. A row must exist in the referenced
table that contains an entry for the default value.

SET NULL Set the foreign key columns that reference the row
being deleted or updated to NULL. The foreign key
columns must allow NULL values.

CASCADE ON DELETE — Also delete the rows of the foreign
key columns that reference the row being deleted.

ON UPDATE — Also update the rows of foreign key
columns that reference the row being updated.

Do not define two foreign keys with different names that reference the same column combination and perform contradictory
referential actions. In accordance with the ANSI standard, InterSystems SQL does not issue an error if such cases (for
example, ON DELETE CASCADE and ON DELETE SET NULL). Instead, InterSystems SQL issues an error when a
DELETE or UPDATE operation encounters these contradictory foreign key definitions. For more information, see Using
Foreign Keys.

code

Lines of code used in the COMPUTECODE data constraint to compute a default value of a column. Specify the code in
curly braces. Whitespace and line returns are permitted before or after the curly braces.

The programming language of the code depends on the value you set in the COMPUTECODE clause:

« COMPUTECODE or COMPUTECODE OBJECTSCRIPT — Specify code as ObjectScript code. Within the code,
you can reference SQL column names with curly brace delimiters, for example, {DOB}. The ObjectScript code can

InterSystems SQL Reference 133

SQL Commands

contain Embedded SQL. In the projected class, COMPUTECODE specifies the SqlComputeCode column name and
the computation for its value.

« COMPUTECODE PYTHON — Specify code as Python code. Within the code, you can reference SQL column names
by using the cols.getfield method, for example, cols.getFfield("DOB"). In the projected class, COMPUTE-
CODE specifies the Pr oper t yComputation class method, which stores the code that computes the column values.
Pr oper t y is the name of the column being computed. The projected class uses this class method in place of a
SqlComputeCode property keyword.

When you specify a computed field name, either in COMPUTECODE or in the SqlComputeCode property keyword,
you must specify the SQL field name, not the corresponding generated table property name.

A default data value supplied by COMPUTECODE must be in Logical (internal storage) mode. Embedded SQL in compute
code is automatically compiled and run in Logical mode.

The following example defines the Birthday COMPUTECODE column. It uses ObjectScript code to compute its default
value from the DOB column value:

SQL

CREATE TABLE MyStudents (
Name VARCHAR(16) NOT NULL,
DOB TIMESTAMP,
Birthday VARCHAR(12) COMPUTECODE {SET {Birthday}=$PIECE($ZDATE({DOB},9),",")},
Grade INT)

The COMPUTECODE can contain the pseudo-field reference variables %%CLASSNAME, %%CLASSNAMEQ,
%%OPERATION, %% TABLENAME, and %%ID. These variables are translated into specific values at class compilation
time. The variables are not case-sensitive.

* In ObjectScript compute code, call pseudo-field reference variables by enclosing them in curly braces. For example:
{%%CLASSNAME}

* In Python compute code, call pseudo-field reference variables by using the cols.getfield method. For example:
cols._getfield(%%CLASSNAME)

The COMPUTECODE value is a default. It is returned only if you did not supply a value to the column. The COMPUTE-
CODE value is not limited by data type restrictions. The COMPUTECODE value islimited by the UNIQUE data constraint
and other data constraint restrictions. If you specify both a DEFAULT and a COMPUTECODE, the DEFAULT is always

taken.

COMPUTECODE can optionally take a COMPUTEONCHANGE, CALCULATED, or TRANSIENT keyword.

If an error in the ObjectScript COMPUTECODE code occurs, SQL does not detect this error until the code is executed for
the first time. Therefore, if the value is first computed upon insert, the INSERT operation fails with an SQLCODE -415
error; if the value is first computed upon update, the UPDATE operation fails with an SQLCODE -415 error; if the value
is first computed when queried, the SELECT operation fails with an SQLCODE -350 error.

A COMPUTECODE stored value can be indexed. The application developer is responsible for making sure that computed
column stored values are validated and normalized (numbers in canonical form), based on their data type, especially if you
define (or intend to define) an index for the computed column.

updateSpec

When you create a table and specify a column using the ON UPDATE clause, that column is computed every time a row
is updated in the table. The most common use of this feature is to define a column in a table that contains a timestamp value
for the last time the row was updated.

134 InterSystems SQL Reference

CREATE TABLE (SQL)

Available updateSpec options are:

CURRENT_DATE | CURRENT_TIME[(precision)] | CURRENT_TIMESTAMP[(precision)] | GETDATE([prec]) |
GETUTCDATE([prec]) | SYSDATE | USER | CURRENT_USER | SESSION_USER | SYSTEM USER | NULL | <literal>
| -<number>

The following example sets the RowTS column to the current timestamp value when a row is inserted and each time that
row is updated:

CREATE TABLE mytest (
Name VARCHAR(48),
RowTS TIMESTAMP DEFAULT Current_Timestamp(6) ON UPDATE Current_Timestamp(6))

In this example, the DEFAULT keyword sets RowTS to the current timestamp on INSERT if no explicit value is specified
for the RowTS column. If an UPDATE specifies an explicit value for the RowTS column, the ON UPDATE keyword
validates, but ignores, the specified value, and updates RowTS with the current timestamp. If the specified value fails vali-
dation, a SQLCODE -105 error is generated.

The following example sets the HasBeenUpdated column to a boolean value:

CREATE TABLE mytest (
Name VARCHAR(48),
HasBeenUpdated TINYINT DEFAULT O ON UPDATE 1)

The following example sets the WhoLastUpdated column to the current user name:

CREATE TABLE mytest (
Name VARCHAR(48),
WhoLastUpdated VARCHAR(48) DEFAULT CURRENT USER ON UPDATE CURRENT USER)

You cannot specify an ON UPDATE clause if the column also has a COMPUTECODE data constraint. Attempting to do
so results in an SQLCODE -1 error at compile or prepare time.

description

InterSystems SQL provides a %DESCRIPTION keyword, which you can use to provide a description for documenting a
table or a column. %DESCRIPTION is followed by text string, description, enclosed in single quotes. This text can be of
any length, and can contain any characters, including blank spaces. (A single-quote character within a description is repre-
sented by two single quotes. For example: *Joe""s Table".) A table can have a %DESCRIPTION. Each column of a
table can have its own %DESCRIPTION, specified after the data type. If you specify more than one table-wide
%DESCRIPTION for a table, InterSystems IRIS issues an SQLCODE -82 error. If you specify more than one
%DESCRIPTION for a column, the system retains only the last % DESCRIPTION specified. You cannot use ALTER
TABLE to alter existing descriptions.

In the corresponding persistent class definition, a description appears prefaced by three slashes on the line immediately
before the corresponding class (table) or property (column) syntax. For example: /// Joe®s Table. In the Class Reference
for the corresponding persistent class, the table description appears at the top just after the class name and SQL table name;
a column description appears just after the corresponding property syntax.

You can display %DESCRIPTION text using the DESCRIPTION property of INFORMATION.SCHEMA.TABLES or
INFORMATION.SCHEMA.COLUMNS. For example:

SQL

SELECT COLUMN_NAME,DESCRIPTION FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME="MyTable*

sqlCollation

The type of collation used to sort values of a column, specified as one of the following SQL collation types: %EXACT,
%MINUS, %PLUS, %SPACE, %SQLSTRING, %SQLUPPER, %TRUNCATE, or %MVR. Collation keywords are not
case-sensitive. It is recommended that you specify the optional keyword COLLATE before the collation parameter for

InterSystems SQL Reference 135

SQL Commands

programming clarity, but this keyword is not required. The percent sign (%) prefix to the various collation parameter keywords
is also optional.

The default is the namespace default collation (%SQLUPPER, unless changed). %SQLSTRING, %SQLUPPER, and
%TRUNCATE may be specified with an optional maximum length truncation argument, an integer enclosed in parentheses.
For more information on collation, see Table Field/Property Definition Collation.

%EXACT collation follows the ANSI (or Unicode) character collation sequence. This provides case-sensitive string collation
and recognizes leading and trailing blanks and tab characters.

The %SQLUPPER collation converts all letters to uppercase for the purpose of collation. For further details on not case-
sensitive collation, refer to the %SQLUPPER function.

The %SPACE and %SQLUPPER collations append a blank space to the data. This forces string collation of NULL and
numeric values.

The %SQLSTRING, %SQLUPPER, and % TRUNCATE collations provide an optional maxlen parameter, which must be
enclosed in parentheses. maxlen is a truncation integer that specifies the maximum number of characters to consider when
performing collation. This parameter is useful when creating indexes with columns containing large data values.

The %PLUS and %MINUS collations handle NULL as a zero (0) value.

InterSystems SQL provides functions for most of these collation types. Refer to the %EXACT, %SQLSTRING,
%SQLUPPER, % TRUNCATE functions for further details.

ObijectScript provides the Collation() method of the %SYSTEM.Util class for data collation conversion.

Note: To change the namespace default collation from %SQLUPPER (which is not case-sensitive) to another collation
type, such as %SQLSTRING (which is case-sensitive), use the following command:
ObjectScript

WRITE $$SetEnvironment™apiOBJ(*'collation”,"%Library.String","SQLSTRING')

After issuing this command, you must purge indexes, recompile all classes, and then rebuild indexes. Do not
rebuild indexes while the table’s data is being accessed by other users. Doing so may result in inaccurate query
results.

shardKeyColumn

The column, or comma-separated list of columns, used as the shard key. Specify shardKeyColumn in the SHARD KEY
clause, immediately after the closing parenthesis of the table column list but before the WITH clause (if specified). Speci-
fying the shard key definition as an element within the table column list is supported for backwards compatibility, but
defining a shard key in both locations generates an SQLCODE -327 error.

You cannot define the RowID column as the shard key. However, if the created table includes an IDENTITY column or
IDKEY, you can define either of those columns as the shard key.

For information on choosing a shard key, see Choose a Shard Key.
coshardKeyColumn

The name of the shard key column that is used in cosharded joins with the shard key of the table defined in coshardTable.
Specify coshardKeyColumn in the COSHARD WITH syntax: SHARD KEY (coshar dkeyCol urm) COSHARD WITH
coshardTabl e.

coshardTable

The name of an existing table that the table being created coshards with. The table specified in the COSHARD WITH
clause must be a sharded table with a system-assigned shard key.

136 InterSystems SQL Reference

CREATE TABLE (SQL)

When you specify this table, InterSystems IRIS sets the CoshardWith index keyword in the ShardKey index for the sharded
table. This CoshardWith index keyword is equal to the class that projects the table.

To determine which sharded tables specified in a query are cosharded, view the Cosharding comment option.

pName = pValue

A %CLASSPARAMETER name-value pair that sets the class parameter named pName to the value pValue. You can
specify multiple %CLASSPARAMETER clauses using comma-separated name-value pairs. For example: WITH
%CLASSPARAMETER DEFAULTGLOBAL = "~GL.EMPLOYEE", %CLASSPARAMETER MANAGEDEXTENT O. Separate
the name and value using an equal sign or at least one space. Class parameter values are literal strings and numbers and
must be defined as constant values.

Some of the class parameters currently in use are: ALLOWIDENTITYINSERT, DATALOCATIONGLOBAL,
DEFAULTGLOBAL, DSNTERVAL, DSTIME, EXTENTQUERYSPEC, EXTENTS ZE, GUIDENABLED, MANAGEDEXTENT,
READONLY, ROWLEVELSECURITY, SQLPREVENTFULLSCAN, USEEXTENTSET, VERS ONCLIENTNAME,

VERS ONPROPERTY. Refer to the %Library.Persistent class for descriptions of these class parameters.

You can use the USEEXTENTSET and DEFAULTGLOBAL class parameters to define the global naming strategy for table
data storage and index data storage.

The IDENTIFIEDBY class parameter is deprecated. You must convert IDENTIFIEDBY relationships to proper Parent/Child
relationships to be supported in InterSystems IRIS.

A CREATE TABLE that defines a sharded table cannot define the DEFAULTGLOBAL, DSNTERVAL, DSTIME, or
VERS ONPROPERTY class parameter.

You can specify additional class parameters as needed. For more details, see Class Parameters.

Examples

Create and Populate Table
Use CREATE TABLE to create a table, Employee, with several columns:

e The EmpNum column (containing the employee's company ID number) is an integer value that cannot be NULL;
additionally, it is declared as a primary key for the table and automatically increments each time a row is inserted into
the table.

» The employee's last and first names are stored in character string columns that have a maximum length of 30 and
cannot be NULL.

e The remaining columns are for the employee's start date, accrued vacation time, and accrued sick time, which use the
TIMESTAMP and INT data types.

CREATE TABLE Employee (
EmpNum INT NOT NULL AUTO_INCREMENT,
NameLast CHAR(30) NOT NULL,
NameFirst CHAR(30) NOT NULL,
StartDate TIMESTAMP,
AccruedVacation INT,
AccruedSickLeave INT,
CONSTRAINT EMPLOYEEPK PRIMARY KEY (EmpNum))

To modify the table schema, use ALTER TABLE. For example, this statement changes the name of the table from Employee
to Employees.

ALTER TABLE Employee RENAME Employees

To insert rows into a table, use INSERT. For example, this statement inserts a row with only the required columns in the
table. The EmpNum column is also required, but you do not need to specify it because it auto-increments.

InterSystems SQL Reference 137

SQL Commands

SQL

INSERT INTO Employees (NameLast, NameFirst) VALUES ("Zubik®,"Jules®)

To update inserted rows, use UPDATE. For example, in the inserted row, this statement sets a value in one of the columns
that was missing data.

SQL

UPDATE Employees SET AccruedVacation = 15 WHERE Employees.EmpNum = 1

To delete a row, use DELETE. For example, this statement deletes the inserted row.

SQL

DELETE FROM Employess WHERE EmpNum = 1

To delete an entire table, use DROP TABLE. Be careful using DROP TABLE. Unless you specify the %NODELDATA
keyword, this command deletes both the table and all associated data.

SQL

DROP TABLE Employess

Security and Privileges

The CREATE TABLE command is a privileged operation that requires %CREATE_TABLE administrative privileges.
Executing a CREATE TABLE command without these privileges results in an SQLCODE -99 error. To assign %CRE-
ATE_TABLE privileges to a user or role, use the GRANT command, assuming that you hold appropriate granting privileges.
If you are using the CREATE TABLE AS SELECT syntax, then you must have SELECT privilege on the table specified
in the query. Administrative privileges are namespace-specific. For more details, see Privileges.

By default, CREATE TABLE security privileges are enforced. To configure this privilege requirement system-wide, use

the $SYSTEM.SQL.Util.SetOption() method. For example: SET

status=$SYSTEM.SQL .Util.SetOption(*'SQLSecurity',0, .oldval). To determine the current setting, call

the $SYSTEM.SQL.CurrentSettings() method, which displays an SQL security enabled setting. The default is 1

(enabled). When SQL security is enabled (recommended), a user can perform actions only on table or views for which they
have privileges. Set this method to O to disable SQL security for any new process started after changing this setting. This

means that privilege-based table/view security is suppressed. You can create a table without specifying a user. In this case,
Dynamic SQL assigns “_SYSTEM?” as user, and Embedded SQL assigns """ (the empty string) as user. Any user can perform
actions on a table or view even if that user has no privileges to do so.

Embedded SQL does not use SQL privileges. In Embedded SQL, you can use the $SYSTEM.Security.Login() method
to log in as a user with appropriate privileges. You must have the %Ser vi ce_Logi n: Use privilege to invoke the
$SYSTEM.Security.Login() method. For example:

ObjectScript

DO $SYSTEM.Security.Login(*"_SYSTEM","SYS")

NEW SQLCODE, %msg

&sql (CREATE TABLE MyTable (coll INT, col2 INT))
IF SQLCODE=0 {WRITE !,"Table created"}

ELSE {WRITE !,"SQLCODE="",SQLCODE,": ",%msg }

For more information, see %SYSTEM.Security.

If CREATE TABLE is used with computed columns that require executing code, the user will need %Development:USE
privileges in addition to %CREATE_TABLE privileges unless the command is used in Embedded SQL.

138 InterSystems SQL Reference

CREATE TABLE (SQL)

Users can also avoid privilege checks by creating a command with the %SQL.Statement class and using either the %Prepare()
method with the checkPriv argument set to 0 or the %ExecDirectNoPriv() method.

More About

Class Definitions of Created Tables

When you create an SQL table using CREATE TABLE, InterSystems IRIS® automatically creates a persistent class
corresponding to this table definition, with properties corresponding to the column definitions.

CREATE TABLE defines the corresponding class as DdIAllowed. It does not specify an explicit StorageStrategy in the
corresponding class definition; it uses the default storage %Storage.Persistent. By default, CREATE TABLE specifies
the Final class keyword in the corresponding class definition, indicating that it cannot have subclasses. (The default is 1;
you can change this default system-wide using the $SYSTEM.SQL.Util.SetOption() method SET
status=$SYSTEM.SQL.Util.SetOption(*'DDLFinal™,0, .oldval); to determine the current setting, call the
$SYSTEM.SQL.CurrentSettings() method).

Defining a Primary Key

Defining a primary key is optional. When you define a table, InterSystems IRIS automatically creates a generated column,
the RowID Column (default name "ID") which functions as a unique row identifier. As each record is added to a table,
InterSystems IRIS assigns a unique non-modifiable positive integer to that record’s RowlD column. You can optionally
define a primary key that also functions as a unique row identifier. A primary key allows the user to define a row identifier
that is meaningful to the application. For example, a primary key might be an Employee 1D column, a Social Security
Number, a Patient Record ID column, or an inventory stock number. You can explicitly define a column or group of columns
as the primary record identifier by using the PRIMARY KEY clause.

A primary key accepts only unique values and does not accept NULL. (The primary key index property is not automatically
defined as Required; however, it effectively is required, since a NULL value cannot be filed or saved for a primary key
column.) The collation type of a primary key is specified in the definition of the column itself.

Refer to the Constraints option of Catalog Details for ways to list the columns of a table that are defined as the primary
key.
For more details, see Primary Key.

Primary Key As IDKEY

By default, the primary key is not the unique IDKEY index. In many cases this is preferable, because it enables you to
update primary key values, set the collation type for the primary key, and so on. There are cases where it is preferable to
define the primary key as the IDKEY index. Be aware that this imposes the IDKEY restrictions on the future use of the
primary key.

If you add a primary key constraint to an existing column, the column may also be automatically defined as an IDKEY
index. This depends on whether data is present and upon a configuration setting established in one of the following ways:
e The SQL SET OPTION PKEY_IS_IDKEY statement.

» Thesystem-wide $SYSTEM.SQL.Util.SetOption() method configuration option DDLPKeyNot 1DKey. To determine
the current setting, call $SYSTEM.SQL.CurrentSettings() which displays Are primary keys created through
DDL not ID keys; the default is 1.

» Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View the
current setting of Define primary key as ID key for tables created via DDL.

— If the check box is not selected (the default), the Primary Key does not become the IDKEY index in the class
definition. Access to records using a primary key that is not the IDKEY is significantly less efficient; however,
this type of primary key value can be modified.

InterSystems SQL Reference 139

SQL Commands

— If the check box is selected, when a Primary Key constraint is specified through DDL, it automatically becomes
the IDKEY index in the class definition. With this option selected, data access is more efficient, but a primary key
value, once set, can never be modified.

However, if an IDENTITY column is defined in the table, the primary key can never be defined as the IDKEY, even when
you have used one of these configuration setting to define the primary key as the IDKEY.

InterSystems IRIS supports properties (columns) that are part of the IDKEY index to be SqlComputed. For example, a
parent reference column. The property must be a triggered computed column. An IDKEY property defined as SqlComputed
is only computed upon the initial save of a new Object or an INSERT operation. UPDATE computation is not supported,
because columns that are part of the IDKEY index cannot be updated.

No Primary Key

In most cases, you should explicitly define a primary key. However, if a primary key is not designated, InterSystems IRIS
attempts to use another column as the primary key for ODBC/JDBC projection, according to the following rules:

1. [Ifthereis an IDKEY index on a single column, report the IDKEY column as the SQLPrimaryKey column.

2. Else if the class is defined with SqlRowldPrivate=0 (the default), report the RowID column as the SQLPrimaryKey
column.

3. Else if there is an IDKEY index, report the IDKEY columns as the SQLPrimaryKey columns.
4. Else do not report an SQLPrimaryKey.

Multiple Primary Keys

You can only define one primary key. By default, InterSystems IRIS rejects an attempt to define a primary key when one
already exists, or to define the same primary key twice, and issues an SQLCODE -307 error. The SQLCODE -307 error is
issued even if the second definition of the primary key is identical to the first definition. To determine the current configu-
ration, call $SYSTEM.SQL.CurrentSettings(), which displays an Allow create primary key through DDL
when key exists setting. The default is 0 (No), which is the recommended configuration setting. If this option is set
to 1 (Yes), InterSystems IRIS drops the existing primary key constraint and establishes the last-specified primary key as
the table's primary key.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

For example, the following CREATE TABLE statement:

SQL

CREATE TABLE MyTable (f1 VARCHAR(16),
CONSTRAINT MyTablePK PRIMARY KEY (f1))

creates the primary key (if none exists). A subsequent ALTER TABLE statement:
SQL

ALTER TABLE MyTable ADD CONSTRAINT MyTablePK PRIMARY KEY (f1)
generates an SQLCODE -307 error.

Defining a Foreign Key

A foreign key is a column that references another table; the value stored in the foreign key column is a value that uniquely
identifies a record in the other table. The simplest form of this reference is shown in the following example, in which the
foreign key explicitly references the primary key column CustID in the Customers table:

140 InterSystems SQL Reference

CREATE TABLE (SQL)

SQL

CREATE TABLE Orders (
OrderID INT UNIQUE NOT NULL,
Orderltem VARCHAR,
OrderQuantity INT,
CustomerNum INT,
CONSTRAINT OrdersPK PRIMARY KEY (OrderliD),
CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers (CustiD))

Most commonly, a foreign key references the primary key column of the other table. However, a foreign key can reference
a RowlD (ID) or an IDENTITY column. In every case, the foreign key reference must exist in the referenced table and
must be defined as unique; the referenced column cannot contain duplicate values or NULL.

In a foreign key definition, you can specify:

e One column name: FOREIGN KEY (CustomerNum) REFERENCES Customers (CustlD). The foreign key
column (CustomerNum) and referenced column (CustID) may have different names (or the same name), but must have
the same data type and column constraints.

» A comma-separated list of column names: FOREIGN KEY (CustomerNum,SalespersonNum) REFERENCES
Customers (CustlD,SalesplD). The foreign key columns and referenced columns must correspond in number
of columns and in order listed.

e Anomitted column name: FOREIGN KEY (CustomerNum) REFERENCES Customers.

e Anexplicit RowlID column: FOREIGN KEY (CustomerNum) REFERENCES Customers (%I1D). Synonymous
with an omitted column name. If the class definition for the table contains SqlRowldName you can specify this value
as the explicit RowlID.

If you define a foreign key and omit the referenced column name, the foreign key defaults as follows:

1. The primary key column defined for the specified table.

2. If the specified table does not have a defined primary key, the foreign key defaults to the IDENTITY column defined
for the specified table.

3. If the specified table does not have either a defined primary key or a defined IDENTITY column, the foreign key
defaults to the RowlID. This occurs only if the specified table defines the RowID as public; the specified table definition
can do this explicitly, either by specifying the %PUBLICROWID keyword, or through the corresponding class definition
with SgIRowldPrivate=0 (the default). If the specified table does not define the RowlID as public, InterSystems IRIS
issues an SQLCODE -315 error. You must omit the referenced column name when defining a foreign key on the
RowID; attempting to explicitly specify ID as the referenced column name results in an SQLCODE -316 error.

If none of these defaults apply, InterSystems IRIS issues an SQLCODE -315 error.

Refer to the Constraints option of Catalog Details for ways to list the columns of a table that are defined as foreign key
columns and the generated Constraint Name for a foreign key.

In a class definition, you can specify a Foreign Key that contains a column based on a parent table IDKEY property, as
shown in the following example:

ForeignKey Claim(CheckWriterPost.Hmo,ld,Claim) References SQLUser.Claim.Claim(DBMSKeylIndex) ;

Because the parent column defined in a foreign key of a child has to be part of the IDKEY index of the parent class, the
only referential action supported for foreign keys of this type is NO ACTION.

» If aforeign key references a nonexistent table, InterSystems IRIS issues an SQLCODE -310 error, with additional
information provided in %msg.

» Ifaforeign key references a nonexistent column, InterSystems IRIS issues an SQLCODE -316 error, with additional
information provided in %msg.

InterSystems SQL Reference 141

SQL Commands

» Ifaforeign key references a nonunique column, InterSystems IRIS issues an SQLCODE -314 error, with additional
information provided in %msg.

If the foreign key column references a single column, the two columns must have the same data type and column data
constraints.

In a parent/child relationship, there is no defined ordering of the children. Application code must not rely on any particular
ordering.

You can define a foreign key constraint that references a class in a database that is mounted read-only. To define a FOREIGN
KEY, the user must have REFERENCES privilege on the table being referenced or on the columns of the table being ref-
erenced. REFERENCES privilege is required if the CREATE TABLE is executed via Dynamic SQL or a database driver.

Sharded Tables and Foreign Keys

Foreign keys are supported for any combination of sharded and unsharded tables, including: key table sharded, fkey table
unsharded; key table unsharded, fkey table sharded; and both key table and fkey table sharded. The key in the referenced
table can be the shard key or another key. A foreign key can be a single column or multiple columns.

NO ACTION is the only referential action supported for sharded tables.
For more details, see Querying the Sharded Cluster.
Implicit Foreign Key

It is preferable to explicitly define all foreign keys. If there is an explicit foreign key defined, InterSystems IRIS reports
this constraint and the implicit foreign key constraint is not defined.

However, it is possible to project implicit foreign keys to ODBC/JDBC and the Management Portal. These implicit foreign
keys are reported as UPDATE and DELETE referential actions of NO ACTION. This implicit reference foreign key is not
a true foreign key as there are no referential actions enforced. The name of this foreign key reported for the reference is
"IMPLICIT_FKEY_REFERENCE__" columnname. The reporting of this reference as a foreign key is provided for
interoperability with third-party tools.

Bitmap Extent Index

When you create a table using CREATE TABLE, by default InterSystems IRIS automatically defines a bitmap extent
index for the corresponding class. The SQL MapName of the bitmap extent index is %%DDLBEIndex:

Index DDLBEIndex [Extent, SqlName = "%%DDLBEIndex", Type = bitmap];

This bitmap extent index is not created in any of the following circumstances:

* The table is defined as a global temporary table (CREATE TABLE GLOBAL TEMPORARY TABLE ...).
» The table defines an explicit IDKEY index.

* The table contains a defined IDENTITY column that does not have MINVAL=1.

e The$SYSTEM.SQL.Util.SetOption() method DDLDefineBitmapExtent option is set to O to override the default
system-wide. To determine the current setting, call the $SYSTEM.SQL.CurrentSettings() method, which displays
aDo classes created by a DDL CREATE TABLE statement define a bitmap extent index
setting.

If, after creating a bitmap index, the CREATE BITMAPEXTENT INDEX command is run against a table where a bitmap
extent index was automatically defined, the bitmap extent index previously defined is renamed to the name specified by
the CREATE BITMAPEXTENT INDEX statement.

For DDL operations that automatically delete an existing bitmap extent index, refer to ALTER TABLE.

For more details, see Bitmap Extent Index.

142 InterSystems SQL Reference

CREATE TABLE (SQL)

Creating Named Rowld Column Using IDENTITY Keyword

InterSystems SQL automatically creates a RowID column for each table, which contains a system-generated integer that
serves as a unique record id. The optional IDENTITY keyword allows you to define a named column with the same prop-
erties as a RowlID record id column. An IDENTITY column behaves as a single-column IDKEY index, whose value is a
unique system-generated integer.

Defining an IDENTITY column prevents the defining of the Primary Key as the IDKEY..
Just as with any system-generated 1D column, an IDENTITY column has the following characteristics:

* You can only define one column per table as an IDENTITY column. Attempting to define more than one IDENTITY
column for a table generates an SQLCODE -308 error.

e The data type of an IDENTITY column must be an integer data type. If you do not specify a data type, its data type is
automatically defined as BIGINT. You can specify any integer data type, such as INTEGER or SMALLINT; BIGINT
is recommended to match the data type of RowlID. Any specified column constraints, such as NOT NULL or UNIQUE
are accepted but ignored.

» Data values are system-generated. They consist of unique, nonzero, positive integers.

e Bydefault, IDENTITY column data values cannot be user-specified. By default, an INSERT statement does not, and
cannot, specify an IDENTITY column value. Attempting to do so generates an SQLCODE -111 error. To determine
whether an IDENTITY column value can be specified, call the $SYSTEM.SQL.Util.GetOption(*'Identitylnsert')
method; the default is 0. To change this setting for the current process, call the $SYSTEM.SQL..Util.SetOption()
method, as follows: SET status=$SYSTEM.SQL.Util.SetOption(*ldentitylnsert”,1,.oldval).You
can also specify %CLASSPARAMETER ALLOWIDENTITYINSERT=L1 in the table definition. Specifying
ALLOWIDENTITYINSERT=1 overrides any setting applied using SetOption(*'ldentitylnsert'). For further details,
refer to the INSERT statement.

e IDENTITY column data values cannot be modified in an UPDATE statement. Attempting to do so generates an
SQLCODE -107 error.

» Thesystem automatically projects a primary key onthe IDENTITY column to ODBC and JDBC. If a CREATE TABLE
or ALTER TABLE statement defines a primary key constraint or a unique constraint on an IDENTITY column, or on
a set of columns including an IDENTITY column, the constraint definition is ignored and no corresponding primary
key or unique index definition is created.

e A SELECT * statement does return a table's IDENTITY column.

Following an INSERT, UPDATE, or DELETE operation, you can use the LAST_IDENTITY function to return the value
of the IDENTITY column for the most-recently modified record. If no IDENTITY column is defined, LAST_IDENTITY
returns the RowlID value of the most recently modified record.

These SQL statements create a table with an IDENTITY column and insert a rows into that table, generating an IDENTITY
column value for the created table:

SQL

CREATE TABLE Employee (
EmpNum INT NOT NULL,
MyID IDENTITY NOT NULL,
Name VARCHAR(30) NOT NULL,
CONSTRAINT EmployeePK PRIMARY KEY (EmpNum))

SQL

INSERT INTO Employee (EmpNum,Name)
SELECT ID,Name FROM SQLUser.Person WHERE Age >= "25¢

InterSystems SQL Reference 143

SQL Commands

In this case, the primary key, EmpNum, is taken from the ID column of another table. EmpNum values are unique integers,
but because of the WHERE clause, this column might contain gaps in the sequence. The IDENTITY column, My 1D, assigns
a user-visible unique sequential integer to each record.

Sharded Table Restrictions

When defining a sharded table, keep these restrictions in mind:

» Asharded table can only be used in a sharded environment; a non-sharded table can be used in a sharded or non-sharded
environment. Not all tables are good candidates for sharding. Optimal performance in a sharded environment is generally
achieved by using a combination of sharded tables (generally very large tables) and non-sharded tables. For more
details, see Evaluating the Benefits of Sharding and Evaluate Existing Tables for Sharding.

* You must define a table as a sharded table either using CREATE TABLE or a persistent class definition. You cannot
use ALTER TABLE to add a shard key to an existing table.

* A UNIQUE column constraint on a sharded table can have a significant negative impact on insert/update performance
unless the shard key is a subset of the unique key. For more details, see Evaluate Unique Constraints in “Horizontally
Scaling InterSystems IRIS for Data Volume with Sharding”.

» Sharding a table that is involved in complex transactions requiring atomicity is not recommended.
e Asharded table cannot contain a ROWVERSION data type or SERIAL (%Library.Counter) data type column.
e Asharded table cannot specify the VERS ONPROPERTY class parameter.

» To specify a shard key, the current namespace must be configured for sharding. If the current namespace is not configured
for sharding, a CREATE TABLE that specifies a shard key fails with an SQLCODE -400 error. For details on config-
uring namespaces for sharding, see Configure the Shard Master Data Server.

» The only referential action supported for sharded tables is NO ACTION. Any other referential action results in an
SQLCODE -400 error.

e Ashard key column can only take %EXACT, %SQLSTRING, or %SQLUPPER collation, with no truncation. For
more details, see Querying the Sharded Cluster.

For more details on sharding, see Create Target Sharded Tables.
Legacy Options
%EXTENTSIZE and %NUMROWS Keywords

The %EXTENTSIZE and %NUMROWS keywords provide an option to store the anticipated number of rows in the table
being created. The InterSystems SQL query optimizer uses this value to estimate the cost of query plans. A table can define
one or the other of these values but not both. For example:

SQL

CREATE TABLE Sample.DayslInAYear (
YEXTENTSIZE 366,
MonthName VARCHAR(24),
Day INTEGER)

Starting in 2021.2, the first time you query a table, InterSystems IRIS collects statistics such as the table size automatically.
The SQL query optimizer uses these generated statistics to suggest appropriate query plan, making the %EXTENTSIZE
and %NUMROWS keywords unnecessary. For more details on optimizing tables with table statisticss, see Table Statistics
for Query Optimizer.

%FILE Keyword

The %FILE keyword provides an option to specify a file name that documents the table. For example:

144 InterSystems SQL Reference

CREATE TABLE (SQL)

SQL

CREATE TABLE Employee (
%FILE "C:\SQL\employee_table_desc.txt",
EmpNum INT PRIMARY KEY,
NameLast VARCHAR(30) NOT NULL,
NameFirst VARCHAR(30) NOT NULL,
StartDate TIMESTAMP %Description “MM/DD/YY*®)

This keyword is not recommended. Instead, document the table by using the %DESCRIPTION keyword.
Shard Key and %CLASSPARAMETER in Column List Parentheses

Old CREATE TABLE code might include the Shard Key definition and %CLASSPARAMETER clauses as comma-separated
elements within the table element parentheses. For example: CREATE TABLE myTable(Name VARCHAR(50), DOB
DATE, %CLASSPARAMETER USEEXTENTSET = 1). The preferred syntax is to specify these clauses after the closing
parenthesis. For example: CREATE TABLE myTable(Name VARCHAR(50), DOB TIMESTAMP) WITH

%CLASSPARAMETER USEEXTENTSET = 1. Specifying duplicates of these clauses generates an SQLCODE -327 error.

Options Supported for Compatibility Only

InterSystems SQL accepts the following CREATE TABLE options for parsing purposes only, to aid in the conversion of
existing SQL code to InterSystems SQL. These options do not provide any actual functionality.

{ON | IN} dbspace-name LOCK MODE [ROW | PAGE] [CLUSTERED | NONCLUSTERED] WITH FILLFACTOR = literal
MATCH [FULL | PARTIAL] CHARACTER SET identifier COLLATE identifier /* But COLLATE keyword is still
used*/ NOT FOR REPLICATION

See Also

* ALTER TABLE, DROP TABLE

e SELECT, JOIN

* INSERT, UPDATE, INSERT OR UPDATE
* GRANT

» Defining Tables

e SQL and Object Settings Pages

e SQLCODE error messages

InterSystems SQL Reference 145

SQL Commands

CREATETABLE AS SELECT (SQL)

Copies column definitions and column data from an existing table into a new table.

Synopsis
CREATE TABLE tabl e-nane AS query [shard-key] [WITH tabl e-option]
Arguments
table-name The name of the table to be created, specified as a valid identifier. A table name can
be qualified (schema.table), or unqualified (table). An unqualified table name takes the
default schema name.
query A SELECT query that supplies the column definitions and column data for the new
table. This query can specify a table, a view, or multiple joined tables. However, it
cannot contain ? parameters like regular SELECT statements.
shard-key Optional — the shard key definition, consisting of the SHARD keyword by itself or

followed by additional shard key definition syntax.

WITH table-option | Optional — A comma-separated list of one or more table options, such as the
%CLASSPARAMETER keyword followed by a name and associated literal.

Description

The CREATE TABLE AS SELECT command creates a new table by copying the column definitions and column data
from an existing table (or tables), as specified in a SELECT query. The SELECT query can specify any combination of
tables or views.

Note: CREATE TABLE AS SELECT copies from an existing table definition. Use the CREATE TABLE command
to specify a new table definition.
A copy table operation can also be invoked using the QueryToTable() method call:

DO $SYSTEM.SQL.Schema.QueryToTable(query,t abl e- nane,0)

Copying Data Definition

« CREATE TABLE AS SELECT copies column definitions from the query table. To rename copied columns specify
a column alias in the query.

CREATE TABLE AS SELECT can copy column definitions from multiple tables if the query specifies joined tables.
* CREATE TABLE AS SELECT always defines the RowlID as hidden.

— If the source table has a hidden RowID, CREATE TABLE AS SELECT does not copy source table RowlID, but
creates a new RowlID column for the created table. Copied rows are assigned new sequential RowID values.

— If the source table has a public (hon-hidden) RowID, or if the query explicitly selects a hidden RowID, CREATE
TABLE AS SELECT creates a new RowlID column for the table. The source table RowlID is copied into the new
table as an ordinary Biglnt field that is not hidden, not unique, and not required. If the source table RowID is
named “ID”, the new table’s RowID is named “ID1”.

» Ifthesourcetable hasan IDENTITY field, CREATE TABLE AS SELECT copies it and its current data as an ordinary
BIGINT field for non-zero positive integers that is neither unique nor required.

146 InterSystems SQL Reference

CREATE TABLE AS SELECT (SQL)

» CREATE TABLE AS SELECT defines an IDKEY index. It does not copy indexes associated with copied column
definitions.

* CREATE TABLE AS SELECT does not copy any column constraints: it does not copy NULL/NOT NULL, UNIQUE,
Primary Key, or Foreign Key constraints associated with a copied column definition.

e CREATETABLEAS SELECT does not copy a Default restriction or value associated with a copied column definition.

e CREATE TABLE AS SELECT does not copy a COMPUTECODE data constraint associated with a copied column
definition.

» CREATE TABLE AS SELECT does not copy a %DESCRIPTION string associated with copied table or column
definition.

Privileges

The CREATE TABLE AS SELECT command is a privileged operation. The user must have %CREATE_TABLE
administrative privilege to execute CREATE TABLE AS SELECT. Failing to do so results in an SQLCODE -99 error
with the %msg User "name” does not have %CREATE_TABLE privileges.You can usethe GRANT command
to assign %CREATE_TABLE privileges to a user or role, if you hold appropriate granting privileges. Administrative
privileges are namespace-specific. For further details, refer to Privileges.

The user must have SELECT privilege on the table specified in the query.

Table Name
A table name can be qualified or unqualified.

» Anunqualified table name has the following syntax: tablename; it omits schema (and the period (.) character). An
unqualified table name takes the default schema name. The initial system-wide default schema name is SQLUser,
which corresponds to the default class package name User. Schema search path values are ignored.

The default schema name can be configured.
To determine the current system-wide default schema name, use the $SYSTEM.SQL.Schema.Default() method.

* Aqualified table name has the following syntax: schema. tablename. It can specify either an existing schema name
or a new schema name. Specifying an existing schema name places the table within that schema. Specifying a new
schema name creates that schema (and associated class package) and places the table within that schema.

Table names and schema names follow SQL identifier naming conventions, subject to additional constraints on the use of
non-alphanumeric characters, uniqueness, and maximum length. Names beginning with a % character are reserved for
system use. By default, schema names and table names are simple identifiers, and are not case-sensitive.

InterSystems IRIS uses the table name to generate a corresponding class hame. InterSystems IRIS uses the schema name
is used to generate a corresponding class package name. A class name contains only alphanumeric characters (letters and
numbers) and must be unique within the first 96 characters. To generate a class name, InterSystems IRIS first strips out
symbol (non-alphanumeric) characters from the table name, and then generates a unique class name, imposing uniqueness
and maximum length restrictions. To generate a package name, it then either strips out or performs special processing of
symbol (non-alphanumeric) characters in the schema name. InterSystems IRIS then generates a unique package name,
imposing uniqueness and maximum length restrictions. For further details on how package and class names are generated
from schema and table names, refer to Table Names and Schema Names.

You can use the same name for a schema and a table. You cannot use the same name for a table and a view in the same
schema.

A schema name is not case-sensitive; the corresponding class package name is case-sensitive. If you specify a schema name
that differs only in case from an existing class package name, and the package definition is empty (contains no class defi-
nitions). InterSystems IRIS reconciles the two names by changing the case of the class package name. For further details

on schema names, refer to Table Names and Schema Names.

InterSystems SQL Reference 147

SQL Commands

InterSystems IRIS supports 16-bit (wide) characters for table and column names. For most locales, accented letters can be
used for table names and the accent marks are included in the generated class name. The following example performs val-
idation tests on an SQL table name:

ObjectScript

TableNameValidation
SET tname="MyTestTableName"
SET x=$SYSTEM.SQL. IsValidRegularldentifier(tname)
IF x=0 {IF $LENGTH(tname)>200
{WRITE "Tablename is too long" QUIT}
ELSEIF $SYSTEM.SQL. IsReservedWord(tname)
{WRITE "Tablename is reserved word" QUIT}
ELSE {
WRITE "Tablename contains invalid characters”,!
SET nls=##class(%SYS.NLS.Locale).%New()
IF nls.Language ['"'Japanese™ {
WRITE "Japanese locale cannot use accented letters"

QUIT }
QUIT 3}

ELSE { WRITE tname," is a valid table name'"}

Note: The Japanese locale does not support accented letter characters in identifiers. Japanese identifiers may contain
(in addition to Japanese characters) the Latin letter characters A-Z and a-z (65-90 and 97-122), the underscore
character (95), and the Greek capital letter characters (913-929 and 931-937). The nls.Language test uses [(the
Contains operator) rather than = because there are different Japanese locales for different operating system platforms.

Existing Table
To determine if a table already exists in the current namespace, use $SYSTEM.SQL.Schema.TableExists(*'schema.tname"").

By default, when you try to create a table that has the same name as an existing table InterSystems IRIS rejects the create
table attempt and issues an SQLCODE -201 error. To determine the current system-wide configuration setting, call
$SYSTEM.SQL.CurrentSettings(), which displaysa Al low DDL CREATE TABLE or CREATE VIEW for existing
table or view setting. The default is 0; this is the recommended setting for this option. If this option is set to 1, Inter-
Systems IRIS deletes the class definition associated with the table and then recreates it. This is much the same as performing
a DROP TABLE, deleting the existing table and then performing the CREATE TABLE. In this case, it is strongly recom-
mended that the $SYSTEM.SQL.CurrentSettings(), Does DDL DROP TABLE delete the table™s data? value
be set to 1 (the default). Refer to DROP TABLE for further details.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

WITH table-option

The optional WITH clause can be specified after the SELECT query. The WITH clause can contain a comma-separated
list of %CLASSPARAMETER clauses.

The %CLASSPARAMETER keyword enables you to define a class parameter as part of the CREATE TABLE AS
SELECT command. A class parameter is always defined as a constant value. The %CLASSPARAMETER keyword is
followed by the class parameter name, an optional equal sign, and the literal value (a string or number) to assign to that
class parameter.

You can specify multiple %CLASSPARAMETER keyword clauses, defining one class parameter per clause. Multiple
%CLASSPARAMETER clauses are separated by commas.

148 InterSystems SQL Reference

CREATE TABLE AS SELECT (SQL)

For example, by default CREATE TABLE AS SELECT creates an IDKEY index for the created table with a generated
Global name, such as “"EPgS.D8T6 . 1; additional indexes use the same global name with a unique integer suffix. The
following example shows how to specify an explicit Global name for the IDKEY index and future additional indexes:

CREATE TABLE Sample.YoungPeople

AS SELECT Name,Age

FROM Sample.People

WHERE Age<21

WITH %CLASSPARAMETER DEFAULTGLOBAL = “A~GL.UNDERTWENTYONE®

For further details, refer to WITH Clause and %CLASSPARAMETER Keyword in the CREATE TABLE reference page.

See Also

» CREATE TABLE, ALTER TABLE, DROP TABLE
e SELECT, JOIN

* GRANT

o Defining Tables

e SQL and Object Settings Pages.

e SQLCODE error messages

InterSystems SQL Reference 149

SQL Commands

CREATE TRIGGER (SQL)

Creates a trigger.

Synopsis

CREATE [OR REPLACE] TRIGGER trigname {BEFORE | AFTER} event [,event]

[ORDER integer] ON table

[REFERENCING {OLD | NEW} [ROW] [AS] alias] action

Arguments

Argument

trigname

BEFORE event
AFTER event

ORDER integer

ON table

REFERENCING OLD ROW AS alias
REFERENCING NEW ROW AS alias

Description

The name of the trigger to be created, which is an
identifier. A trigger name may be qualified or unqualified;
if qualified, its schema name must match the table’s
schema name.

The time (BEFORE or AFTER) the event to execute the
trigger.

The trigger event, or a comma-separated list of trigger
events. Available event list options are INSERT,
DELETE, and UPDATE.

You can specify a single UPDATE OF event. The
UPDATE OF clause is followed by a column name or a
comma-separated list of column names. The UPDATE
OF clause can only be specified when LANGUAGE is
SQL. The UPDATE OF clause cannot be specified in a
comma-separated event list.

Optional — The order in which triggers should be
executed when there are multiple triggers for a table with
the same time and event. If order is omitted, a trigger is
assigned an order of 0.

The table the trigger is created for. A table name may
be qualified or unqualified; if qualified, the trigger must
reside in the same schema as the table.

Optional — A REFERENCING clause can only be used
when LANGUAGE is SQL. A REFERENCING clause
allows you to specify an alias that you can use to
reference a column. REFERENCING OLD ROW allows
you reference the old value of a column during an
UPDATE or DELETE trigger. REFERENCING NEW
ROW allows you to reference the new value of a column
during an INSERT or UPDATE trigger. The ROW AS
keywords are optional. For an UPDATE, you can specify
both OLD and NEW in the same REFERENCING clause,
as follows: REFERENCING OLD oldalias NEW
newalias.

150

InterSystems SQL Reference

CREATE TRIGGER (SQL)

Argument Description

action The program code for the trigger. The action argument
can contain various optional keyword clauses, including
(in order): a FOR EACH clause; a WHEN clause with a
predicate condition governing execution of the triggered
action; and a LANGUAGE clause which specifies either
LANGUAGE SQL or LANGUAGE OBJECTSCRIPT. If
the LANGUAGE clause is omitted, SQL is the default.
Following these clauses, you specify one or more lines
of either SQL trigger code or ObjectScript trigger code
specifying the action to perform when the trigger is
executed.

Description

The CREATE TRIGGER command defines a trigger, a block of code to be executed when data in a specific table is
modified. A trigger is executed (“fired” or “pulled”) when a specific triggering event occurs, such as a new row being
inserted into a specified table. A trigger executes user-specified trigger code. You can specify that the trigger should execute
this code before or after the execution of the triggering event. A trigger is specific to a specified table.

» Atrigger is fired by a specified event: an INSERT, DELETE, or UPDATE operation. You can specify a comma-
separated list of eventsto execute the trigger when any one of the specified events occurs on the specified table.

» Atrigger is fired by an event either (potentially) multiple times or just once. A row-level trigger is fired once for each
row modified. A statement-level trigger is fired once for an event. This trigger type is specified using the FOR EACH
clause. A row-level trigger is the default trigger type.

« Commonly, firing a trigger code performs an operation on another table or file, such as performing a logging operation
or displaying a message. Firing a trigger cannot modify data in the triggering record. For example, if an update to
Record 7 fires a trigger, that trigger’s code block cannot update or delete Record 7. A trigger can modify the same
table that invoked the trigger, but the triggering event and the trigger code operation must be different to prevent a
recursive trigger infinite loop.

The optional keyword OR REPLACE allows you to modify or replace an existing trigger. CREATE OR REPLACE
TRIGGER has the same effect as invoking DROP TRIGGER to delete the old version of the trigger and then invoking
CREATE TRIGGER. The command DROP TABLE drops all triggers associated with that table.

Privileges and Locking

The CREATE TRIGGER command is a privileged operation. The user must have %CREATE_TRIGGER administrative
privilege to execute CREATE TRIGGER. Failing to do so results in an SQLCODE -99 error with the %msg User
"name® does not have %CREATE_TRIGGER privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE —99 error with the %msg User “"name” does not have required
%ALTER privilege needed to create a trigger on table: "Schema.TableName-®.

You can use the GRANT command to assign %CREATE_TRIGGER and %ALTER privileges, if you hold appropriate
granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login(*"_SYSTEM","SYS")
&sql(

InterSystems SQL Reference 151

SQL Commands

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the Inter Systems Class Reference.

« CREATE TRIGGER cannot be used on a table projected from a persistent class, unless the table class definition
includes [DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not
enabled for class "Schema.tablename®.

» CREATE TRIGGER cannot be used on a table projected from a deployed persistent class. This operation fails with
an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
"classname”.

The CREATE TRIGGER statement acquires a table-level lock on table. This prevents other processes from modifying
the table’s data. This lock is automatically released at the conclusion of the CREATE TRIGGER operation.

To create a trigger, the table cannot be locked by another process in either EXCLUSIVE MODE or SHARE MODE.
Attempting a CREATE TRIGGER operation on a locked table results in an SQLCODE -110 error, with a %msg such as
the following: Unable to acquire exclusive table lock for table "Sample_MyTest".

Other Ways of Defining Triggers

You can define an SQL trigger as a class object as described in Trigger Definitions. The following is an example of an
Object trigger:

Class Member

Trigger SQLJournal [CodeMode = objectgenerator, Event = INSERT/UPDATE, ForEach = ROW/OBJECT, Time =
AFTER]
{ /* ObjectScript trigger code

that updates a journal file

after a row is iInserted or updated. */

}

Arguments

trigname

A trigger name follows the same identifier requirements as a table name, but not the same uniqueness requirements. A
trigger name should be unique for all tables within a schema. Thus, triggers referencing different tables in a schema should
not have the same name. Violating this uniqueness requirement can result in a DROP TRIGGER error.

A trigger and its associated table must reside in the same schema. You cannot use the same name for a trigger and a table
in the same schema. Violating trigger naming conventions results in an SQLCODE -400 error at CREATE TRIGGER
execution time.

A trigger name may be unqualified or qualified. A qualified trigger name has the form:
schema.trigger

If the trigger name is unqualified, the trigger schema name defaults to the same schema as the specified table schema. If
the table name is unqualified, the table schema name defaults to the same schema as the specified trigger schema. If both
are unqualified, the default schema name is used; schema search paths are not used. If both are qualified, the trigger schema
name must be the same as the table schema name. A schema name mismatch results in an SQLCODE -366 error; this should
only occur when both the trigger name and the table name are qualified and they specify different schema names.

Trigger names follow identifier conventions, subject to the restrictions below. By default, trigger names are simple identifiers.
A trigger name should not exceed 128 characters. Trigger names are not case-sensitive.

InterSystems IRIS uses trignameto generate a corresponding trigger name in the InterSystems IRIS class. The corresponding
class trigger name contains only alphanumeric characters (letters and numbers) and is a maximum of 96 characters in length.
To generate this identifier name, InterSystems IRIS first strips punctuation characters from the trigger name, and then

152 InterSystems SQL Reference

CREATE TRIGGER (SQL)

generates a unique identifier of 96 (or less) characters, substituting a number for the 96th character when needed to create
a unique name. This name generation imposes the following restrictions on the naming of triggers:

» Atrigger name must include at least one letter. Either the first character of the trigger name or the first character after
initial punctuation characters must be a letter.

» InterSystems IRIS supports 16-bit (wide) characters for trigger names. A character is a valid letter if it passes the
$ZNAME test.

» Because names generated for an InterSystems IRIS class do not include punctuation characters, it is not advisable
(though possible) to create trigger names that differ only in their punctuation characters.

* Atrigger name may be much longer than 96 characters, but trigger names that differ in their first 96 alphanumeric
characters are much easier to work with.

Issuing a CREATE TRIGGER with the name of an existing trigger issues an SQLCODE -365 “Trigger name not unique”
error. Use the optional OR REPLACE keyword or drop the old trigger first with DROP TRIGGER.

If two triggers referencing different tables in a schema have the same name, a DROP TRIGGER may issue an SQLCODE
-365 “Trigger name not unique” error with the message “Trigger 'MyTrigName' found in 2 classes”

event

The time that the trigger is fired is specified by the BEFORE or AFTER keyword; these keywords specify that the trigger
operation should occur either before or after InterSystems IRIS executes the triggering event. A BEFORE trigger is executed
before performing the specified event, but after verifying the event. For example, InterSystems IRIS only executes a
BEFORE DELETE trigger if the DELETE statement is valid for the specified row(s), and the process has the necessary
privileges to perform the DELETE, including any foreign key referential integrity checks. If the process cannot perform
the specified event, InterSystems IRIS issues an error code for the event; it does not execute the BEFORE trigger.

The BEFORE or AFTER keyword is followed by the name of a triggering event, or a comma-separated list of triggering
events. A trigger specified as INSERT is executed when a row is inserted into the specified table. A trigger specified as
DELETE is executed when a row is deleted from the specified table. A trigger specified as UPDATE is executed when a
row is updated in the specified table. You can specify a single trigger event or a comma-separated list of INSERT, UPDATE,
or DELETE trigger events in any order.

A trigger specified as UPDATE OF is executed only when one or more of the specified columns is updated in a row in the
specified table. Column names are specified as a comma-separated list. Column names can be specified in any order. An
UPDATE OF trigger has the following restrictions:

» UPDATE OF is only valid if the trigger code language is SQL (the default); an SQLCODE -50 error is issued if the
trigger code language is OBJECTSCRIPT.

* UPDATE OF cannot be combined with other triggering events; an SQLCODE -1 error is issued if you specify UPDATE
OF in a comma-separated list of triggering events.

» UPDATE OF cannot specify a non-existent field; an SQLCODE -400 error is issued.
e UPDATE OF cannot specify a duplicate field name; an SQLCODE -58 error is issued.

The following are examples of event types:

SQL

CREATE TRIGGER TrigBl BEFORE INSERT ON Sample.Person
INSERT INTO TLog (Text) VALUES (“before insert®)

SQL

CREATE TRIGGER TrigAU AFTER UPDATE ON Sample.Person
INSERT INTO TLog (Text) VALUES ("after update®)

InterSystems SQL Reference 153

SQL Commands

SQL

CREATE TRIGGER TrigBUOF BEFORE UPDATE OF Home_Street,Home_ City,Home_State ON Sample.Person
INSERT INTO TLog (Text) VALUES ("before address update®)

CREATE TRIGGER TrigAD AFTER UPDATE,DELETE ON Sample.Person
INSERT INTO TLog (Text) VALUES ("after update or delete®)

ORDER

The ORDER clause determines the order in which triggers are executed when there are multiple triggers for the same table
with the same time and event. For example, two AFTER DELETE triggers. The trigger with the lowest ORDER integer is
executed first, then the next higher integer, and so on. If the ORDER clause is not specified, a trigger is created with an
assigned ORDER number of 0 (zero). Thus, triggers with no ORDER clause are always executed before triggers with
ORDER clauses.

You can assign the same order value to multiple triggers. You can also create multiple triggers with an (implicit or explicit)
order of 0. Multiple triggers with the same time, event, and order are executed together in random order.

Triggers are executed in the sequence: time > order > event. Thus if you have a BEFORE INSERT trigger and a BEFORE
INSERT,UPDATE trigger, the trigger with the lowest ORDER value would be executed first. If you have a BEFORE
INSERT trigger and a BEFORE INSERT,UPDATE trigger with the same ORDER valug, the INSERT is executed before
the INSERT,UPDATE. This is because — time and order being the same — a single-event trigger is always executed
before a multi-event trigger. If two (or more) triggers have identical time, order, and event values, the order of execution
is random.

The following examples show how ORDER numbers work. All of these CREATE TRIGGER statements create triggers
that are executed by the same event:
SQL

CREATE TRIGGER TrigA BEFORE DELETE ON doctable
INSERT INTO TLog (Text) VALUES ("doc deleted®)
/* Assigned ORDER=0 */
SQL
CREATE TRIGGER TrigB BEFORE DELETE ORDER 4 ON doctable
INSERT INTO TReport (Text) VALUES ("doc deleted")
/* Specified as ORDER=4 */
SQL
CREATE TRIGGER TrigC BEFORE DELETE ORDER 2 ON doctable
INSERT INTO Ttemps (Text) VALUES ("doc deleted®)
/* Specified as ORDER=2 */
SQL
CREATE TRIGGER TrigD BEFORE DELETE ON doctable

INSERT INTO Tflags (Text) VALUES ("doc deleted®)
/* Also assigned ORDER=0 */

These triggers will execute in the sequence: (TrigA, TrigD), TrigC, TrigB. Note that TrigA and TrigD have the same order
number, and thus execute in random sequence.

REFERENCING

The REFERENCING clause can specify an alias for the old value of a row, the new value of a row, or both. The old value
is the row value before the triggered action of an UPDATE or DELETE trigger. The new value is the row value after the

154 InterSystems SQL Reference

CREATE TRIGGER (SQL)

triggered action of an UPDATE or INSERT trigger. For an UPDATE trigger, you can specify aliases for both the before
and after row values, as follows:

REFERENCING OLD ROW AS oldalias NEW ROW AS newalias

The keywords ROW and AS are optional. Therefore, the same clause can also be specified as:
REFERENCING OLD oldalias NEW newalias

It is not meaningful to refer to an OLD value before an INSERT or a NEW value after a DELETE. Attempting to do so
results in an SQLCODE -48 error at compile time.

A REFERENCING clause can only be used when the action program code is SQL. Specifying a REFERENCING clause
with the LANGUAGE OBJECTSCRIPT clause results in an SQLCODE -49 error.

The following is an example of using REFERENCING with an INSERT:

SQL

CREATE TRIGGER TrigA AFTER INSERT ON doctable
REFERENCING NEW ROW AS new_row

BEGIN

INSERT INTO Log_Table VALUES ("INSERT into doctable®);

INSERT INTO New_Log _Table VALUES ("INSERT into doctable®,new_row.ID);
END
action

A triggered action consists of the following elements:

* Anoptional FOR EACH clause. The available values are FOR EACH ROW, FOR EACH ROW_AND_OBJECT, and
FOR EACH STATEMENT. The default is FOR EACH ROW:

— FOR EACH ROW — This trigger is fired by each row affected by the triggering statement. Note that row-level
triggers are not supported for TSQL.

— FOR EACH ROW_AND_OBJECT — This trigger is fired by each row affected by the triggering statement or by
changes via object access. Note that row-level triggers are not supported for TSQL.

This option defines a unified trigger, so called because it is fired by data changes that occur via SQL or object
access. (In contrast, with other triggers, if you want to use the same logic when changes occur via object access,
it is necessary to implement callbacks such as %60OnDelete().)

— FOR EACH STATEMENT — This trigger is fired once for the whole statement. Statement-level triggers are supported
for both ObjectScript and TSQL triggers.

For the corresponding trigger class options, see FOREACH.

You can list the FOR EACH value for each trigger using the ACTIONORIENTATION property of
INFORMATION.SCHEMA.TRIGGERS.

» Anoptional WHEN clause, consisting of the WHEN keyword followed by a predicate condition (simple or complex)
enclosed in parentheses. If the predicate condition evaluates to TRUE, the trigger is executed. A WHEN clause can
only be used when LANGUAGE is SQL. The WHEN clause can reference oldalias or newalias values. For further
details on predicate condition expressions and a list of available predicates, refer to the Overview of Predicates page
in this document.

* Anoptional LANGUAGE clause, either LANGUAGE SQL or LANGUAGE OBJECTSCRIPT. The default is LAN-
GUAGE SQL.

» User-written code that is executed when the trigger is executed.

InterSystems SQL Reference 155

SQL Commands

SQL Trigger Code

If LANGUAGE SQL (the default), the triggered statement is an SQL procedure block, consisting of either one SQL procedure
statement followed by a semicolon, or the keyword BEGIN followed by one or more SQL procedure statements, each followed
by a semicolon, concluding with an END keyword.

A triggered action is atomic, it is either fully applied or not at all, and cannot contain COMMIT or ROLLBACK statements.
The keyword BEGIN ATOMIC is synonymous with the keyword BEGIN.

If LANGUAGE SQL, the CREATE TRIGGER statement can optionally contain a REFERENCING clause, a WHEN
clause, and/or an UPDATE OF clause. An UPDATE OF clause specifies that the trigger should only be executed when an
UPDATE is performed on one or more of the columns specified for this trigger. A CREATE TRIGGER statement with
LANGUAGE OBJECTSCRIPT cannot contain these clauses.

SQL trigger code is executed as embedded SQL. This means that InterSystems IRIS converts SQL trigger code to
ObjectScript; therefore, if you view the class definition corresponding to your SQL trigger code, you will see
Language=objectscript in the trigger definition.

When executing SQL trigger code, the system automatically resets (NEWSs) all variable used in the trigger code. After the
execution of each SQL statement, InterSystems IRIS checks SQLCODE. If an error occurs, InterSystems IRIS sets the
%ok variable to 0, aborting and rolling back both the trigger code operation(s) and the associated INSERT, UPDATE, or
DELETE.

ObjectScript Trigger Code

If LANGUAGE OBJECTSCRIPT, the CREATE TRIGGER statement cannot contain a REFERENCING clause, a WHEN
clause, or an UPDATE OF clause. Specifying these SQL-only clauses with LANGUAGE OBJECTSCRIPT results in
compile-time SQLCODE errors -49, -57, or -50, respectively.

If LANGUAGE OBJECTSCRIPT, the triggered statement is a block of one or more ObjectScript statements, enclosed by
curly braces.

Because the code for a trigger is not generated as a procedure, all local variables in a trigger are public variables. This
means all variables in triggers should be explicitly declared with a NEW statement; this protects them from conflicting
with variables in the code that invokes the trigger.

If trigger code contains Macro Preprocessor statements (# commands, ## functions, or $$$macro references), these statements
are compiled beforethe CREATE TRIGGER DDL code itself.

ObijectScript trigger code can contain Embedded SQL.

You can issue an error from trigger code by setting the %ok variable to 0. This creates a runtime error that aborts and rolls
back execution of the trigger. It generates the appropriate SQLCODE error (for example, SQLCODE -131 “After insert
trigger failed™) and returns the user-specified value of the %msg variable as a string to describe the cause of the trigger code
error. Note that setting %ok to a non-numeric value sets %o0k=0.

The system generates trigger code only once, even for a multiple-event trigger.

Field References and Pseudo-field References

Trigger code written in ObjectScript can contain field references, specified as {fieldname}, where fieldname specifies an
existing field in the current table. No blank spaces are permitted within the curly braces.

You can follow the fieldname with *N (new), *O (old), or *C (compare) to specify how to handle an inserted, updated, or
deleted field data value, as follows:

o {fieldname*N}
— For UPDATE, returns the new field value after the specified change is made.

— For INSERT, returns the value inserted.

156 InterSystems SQL Reference

CREATE TRIGGER (SQL)

— For DELETE, returns the value of the field before the delete.

« {fieldname*O}
— For UPDATE, returns the old field value before the specified change is made.
— For INSERT, returns NULL.
— For DELETE, returns the value of the field before the delete.

» {fieldname*C}
— For UPDATE, returns 1 (TRUE) if the new value differs from the old value, otherwise returns 0 (FALSE).
— For INSERT, returns 1 (TRUE) if the inserted value is non-NULL, otherwise returns O (FALSE).
— For DELETE, returns 1 (TRUE) if the value being deleted is non-NULL, otherwise returns 0 (FALSE).

For UPDATE, INSERT, or DELETE, {fieldname} returns the same value as {fieldname*N}.

For example, the following trigger returns the Name field value for a new row inserted into Sample.Employee. (You can
perform the INSERT from the SQL Shell to view this result):

CREATE TRIGGER InsertNameTrig AFTER INSERT ON Sample.Employee
LANGUAGE OBJECTSCRIPT
{WRITE "The employee " ,{Name*N}," was " ,{%%OPERATION},"ed on " ,{%%TABLENAME}, 1}

Line returns are not permitted within a statement that sets a field value. For further details, refer to the SqlComputeCode
property keyword in the Class Definition Reference.

You can use the GetAllColumns() method to list the field names defined for a table. For further details, refer to Column
Names and Numbers.

Trigger code written in ObjectScript can also contain the pseudo-field reference variables {%%CLASSNAME},
{%%CLASSNAMEQ}, {%6%O0OPERATION}, {%%TABLENAME}, and {%%ID}. The pseudo-fields are translated into
a specific value at class compilation time. All of these pseudo-field keywords are not case-sensitive.

o {%%CLASSNAME} and {%%CLASSNAMEQ} both translate to the name of the class which projected the SQL
table definition. {%%CLASSNAME} returns an unquoted string and {%%CLASSNAMEQ} returns a quoted string.

* {%%OPERATION} translates to a string literal, either INSERT, UPDATE, or DELETE, depending on the operation
that invoked the trigger.

o {%%TABLENAME} translates to the fully qualified name of the table.

* {%%ID} translates to the RowlID name. This reference is useful when you do not know the name of the RowlID field.

Referencing Stream Property

When a Stream field/property is referenced in a trigger definition, like {StreamField}, {StreamField*Q}, or {StreamField*N},
the value of the {StreamField} reference is the stream's OID (object ID) value.

For a BEFORE INSERT or BEFORE UPDATE trigger, if a new value is specified by the INSERT/UPDATE/ObjectSave,
the {StreamField*N} value will be either the OID of the temporary stream object, or the new literal stream value. For a
BEFORE UPDATE trigger, if a new value is not specified for the stream field/property, {StreamField*O} and {Stream-
Field*N} will both be the OID of the current field/property stream object.

Referencing SQLComputed Property

When a transient SqlComputed field/property (either "Calculated” or explicitly "Transient™) is referenced in a trigger defi-
nition, Get()/Set() method overrides are not recognized by the trigger. Use SQLCOMPUTED/SQLCOMPUTONCHANGE,
rather than overriding the property's Get() or Set() method.

InterSystems SQL Reference 157

SQL Commands

Using Get()/Set() method overrides can result in the following erroneous result: The {property*O} value is determined
using SQL and does not use the overridden Get()/Set() methods. Because the property is not stored on disk, {property*O}
uses the SqlComputeCode to "recreate" the old value. However, {property*N} uses the overridden Get()/Set() methods to
access the property's value. As a result, there is a possibility for {property*O} and {property*N} to be different (and thus
{property*C}=1) even though the property did not actually change.

Labels

Trigger code may contain line labels (tags). To specify a label in trigger code, prefix the label line with a colon to indicate
that this line should begin in the first column. InterSystems IRIS strips out the colon and treats the remaining line as a label.
However, because trigger code is generated outside the scope of any procedure blocks, every label must be unique
throughout the class definition. Any other code compiled into the class's routine must not have the same label defined,
including in other triggers, in non-procedure block methods, SqlComputeCode, and other code.

Note: This use of a colon prefix for a label takes precedence over the use of a colon prefix for a host variable reference.
To avoid this conflict, it is recommended that embedded SQL trigger code lines never begin with a host variable
reference. If you must begin a trigger code line with a host variable reference, you can designate it as a host
variable (and not a label) by doubling the colon prefix.

Method Calls

You can call class methods from within trigger code, because class methods do not depend on having an open object. You
must use the ##class(classname) .Method() syntax to invoke a method. You cannot use the ..Method() syntax,
because this syntax requires a current open object.

You can pass the value of a field of the current row as an argument of the class method, but the class method itself cannot
use field syntax.

Listing Existing Triggers

You can use the INFORMATION.SCHEMA.TRIGGERS class to list the currently defined triggers. This class lists for each
trigger the name of the trigger, the associated schema and table name, and the trigger creation timestamp. For each trigger
it lists the EVENT_MANIPULATION property (INSERT, UPDATE, DELETE, INSERT/UPDATE,
INSERT/UPDATE/DELETE) and ACTION_TIMING property (BEFORE, AFTER). Italso lists the ACTION_STATEMENT,
which is the generated SQL trigger code.

Trigger Runtime Errors
A trigger and its invoking event execute as an atomic operation on a single row basis. That is:

» Afailed BEFORE trigger is rolled back, the associated INSERT, UPDATE, or DELETE operation is not executed,
and all locks on the row are released.

» Afailed AFTER trigger is rolled back, the associated INSERT, UPDATE, or DELETE operation is rolled back, and
all locks on the row are released.

» Afailed INSERT, UPDATE, or DELETE operation is rolled back, the associated BEFORE trigger is rolled back,
and all locks on the row are released.

e Afailed INSERT, UPDATE, or DELETE operation is rolled back, the associated AFTER trigger is not executed,
and all locks on the row are released.
Note that integrity is maintained for the current row operation only. Your application program must handle data integrity

issues involving operation on multiple rows by using transaction processing statements.

Because a trigger is an atomic operation, you cannot code transaction statements, such as commits and rollbacks, within
trigger code.

158 InterSystems SQL Reference

CREATE TRIGGER (SQL)

If an INSERT, UPDATE, or DELETE operation causes multiple triggers to execute, the failure of one trigger causes all
remaining triggers to remain unexecuted.

* SQLCODE -415: If there is an error in the trigger code (for example, a reference to a non-existent table or an undefined
variable) execution of the trigger code fails at runtime and InterSystems IRIS issues an SQLCODE -415 error “Fatal
error occurred within the SQL filer”.

e SQLCODE -130 through -135: When a trigger operation fails, InterSystems IRIS issues one of the SQLCODE error
codes -130 through -135 at runtime indicating the type of trigger that failed. You can force a trigger to fail by setting
the %ok variable to 0 in the trigger code. This issues the appropriate SQLCODE error (for example, SQLCODE -131
“After insert trigger failed”) and returns the user-specified value of the %msg variable as a string to describe the cause
of the trigger code error.

Examples

The following example demonstrates CREATE TRIGGER with an ObjectScript DELETE trigger. It assumes that there
is a data table (TestDummy) that contains records. It creates a log table (TestDummyLog) and a DELETE trigger that writes
to the log table when a delete is performed on the data table. The trigger inserts the name of the data table, the Rowld of
the deleted row, the current date, and the type of operation performed (the %oper special variable), in this case “DELETE":

SQL

CREATE TABLE TestDummyLog
(TableName VARCHAR(40),
IDVal INTEGER,
LogDate DATE,
Operation VARCHAR(40))

ObjectScript

&sql (CREATE TRIGGER TrigTestDummy AFTER DELETE ON TestDummy
LANGUAGE OBJECTSCRIPT {
NEW id
SET id = {ID}
&sql (INSERT INTO TestDummyLog (TableName, IDVal,LogDate,Operation)
VALUES ("TestDummy", :id,+$HOROLOG, :%oper))
3

D)
WRITE 1,"SQL trigger code is: ' ,SQLCODE

The following examples demonstrate CREATE TRIGGER with an SQL INSERT trigger. The first program creates a table,
an INSERT trigger for that table, and a log table for the trigger's use. The second program issues an INSERT against the
table, which invokes the trigger, which logs an entry in the log table. After displaying the log entry, the program drops both
tables so that this program can be run repeatedly:

SQL

CREATE TABLE TestDummy (
testnum INT NOT NULL,
firstword CHAR (30) NOT NULL,
lastword CHAR (30) NOT NULL,
CONSTRAINT TestDummyPK PRIMARY KEY (testnum))
CREATE TABLE TestDummyLog (
entry CHAR (60) NOT NULL)

)
CREATE TRIGGER TrigTestDummy AFTER INSERT ON TestDummy

BEGIN
INSERT INTO TestDummyLog (entry) VALUES
(CURRENT_TIMESTAMP] | * INSERT to TestDummy®);
END

InterSystems SQL Reference 159

SQL Commands

SQL

INSERT INTO TestDummy (testnum,firstword,lastword) VALUES
(46639, "hello”, "goodbye ™))

SELECT entry FROM TestDummyLog

DROP TABLE TestDummy

DROP TABLE TestDummylLog

The following example includes a WHEN clause that specifies that the action should only be performed when the predicate
condition in parentheses is met:

SQL

CREATE TRIGGER Trigger_2 AFTER INSERT ON Table_1
WHEN (F1 %STARTSWITH "A®)
BEGIN
INSERT INTO Log_Table VALUES (new_row.Category);
END

The following example defines a trigger that returns the old Name field value and the new Name field value after a row is
inserted, updated, or deleted in Sample.Employee. (You can perform the triggering event operation from the SQL Shell to
view this result):

CREATE TRIGGER EmployNameTrig AFTER INSERT,UPDATE,DELETE ON Sample.Employee
LANGUAGE OBJECTSCRIPT
{WRITE "Employee old name:",{Name*0}," new name:",{Name*N}," " ,{%%OPERATION}," on " ,{%%TABLENAME}, !}

See Also

« DROP TRIGGER
 GRANT

e Using Triggers

* SQLCODE error messages

160 InterSystems SQL Reference

CREATE USER (SQL)

CREATE USER (SQL)

Creates a user account.

Synopsis

CREATE USER user-nanme IDENTIFY BY password

CREATE USER user-nanme IDENTIFIED BY password

CREATE USER user-name [WITH] PASSWORD password

Description

The CREATE USER command creates a user account with the specified password.

A user-name can be any valid identifier of up to 160 characters. A user-name must follow identifier naming conventions.
A user-name can contain Unicode characters. User names are not case-sensitive.

A user-name specified as a delimited identifier can be an SQL reserved word and can contain a comma (,), period (.), caret
(™), and the two-character arrow sequence (->). It may begin with any valid character except the asterisk (*).

The IDENTIFY BY, IDENTIFIED BY, and WITH PASSWORD keywords are synonyms.

A password can be a numeric literal, an identifier, or a quoted string. A numeric literal or an identifier does not have to be
enclosed in quotes. A quoted string is commonly used to include blanks in a password; a quoted password can contain any
combination of characters, with the exception of the quote character itself. A numeric literal must consist of only the char-
acters 0 through 9. An identifier must start with a letter (uppercase or lowercase) or a % (percent symbol); this can be followed
by any combination of letters, numbers, or any of the following symbols: _ (underscore), & (ampersand), $ (dollar sign),
or @ (at sign).

Passwords are case-sensitive. A password must be at least three characters, and less than 33 characters, in length. Specifying
a password that is too long or too short generates an SQLCODE -400 error, with a %msg value of “ERROR #845: Password
does not match length or pattern requirements”.

You cannot use a host variable to specify a user-name or password value.

Creating a user does not create any roles or grant any roles to the user. Instead, the user is given permissions for the database
they are logging in to, and USE permission on the %SQL/Service service if the user holds at least one SQL privilege in the
namespace. To assign privileges or roles to a user, use the GRANT command. To create roles, use the CREATE ROLE
command.

If you invoke CREATE USER to create a user that already exists, SQL issues an SQLCODE -118 error, with a %msg
value of “User named 'name’ already exists”. You can determine if a user already exists by invoking the
$SYSTEM.SQL.Security.UserExists() method:

ObjectScript

WRITE $SYSTEM.SQL.Security.UserExists("Admin™),!
WRITE $SYSTEM.SQL.Security.UserExists(''BertieWooster™)

This method returns 1 if the specified user exists, and 0 if the user does not exist. User names are not case-sensitive.
Privileges

The CREATE USER command is a privileged operation. Prior to using CREATE USER in embedded SQL, you must
be logged in as a user with one of the following:

e The %Admin_Secure administrative resource with USE permission
e The %Admin_UserEdit administrative resource with USE permission

* Full security privileges on the system

InterSystems SQL Reference 161

SQL Commands

If you are not, the CREATE USER command results in an SQLCODE -99 error (Privilege Violation).
Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login(*"_SYSTEM","SYS™)
&sqgl(/7* SQL code here */)

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the Inter Systems Class Reference.

Arguments

user-name

The name of the user to be created. The name is an identifier with a maximum of 128 characters. It can contain Unicode
letters. user-name is not case-sensitive.

password

The password for this user. A password must be at least 3 characters, and cannot exceed 32 characters. Passwords are case-
sensitive. Passwords can contain Unicode characters.

Example

The following embedded SQL example creates a new user named “BillTest” with a password of “Carl4SHK”. (The
$RANDOM toggle is provided so that you can execute this example program repeatedly.)

ObjectScript

Main
DO $SYSTEM.Security.Login(*"_SYSTEM","SYS™)
SET Xx=$SYSTEM.SQL.Security.UserExists("'BillTest")
IF x=0 {&sql (CREATE USER BillTest IDENTIFY BY Carl4SHK)
IF SQLCODE "= 0 {WRITE "CREATE USER error: " ,SQLCODE,!

QUIT}
T
WRITE "User BillTest exists",!
Cleanup
SET toggle=$RANDOM(2)
IF toggle=0 {

&sql (DROP USER BillTest)
IF SQLCODE "= 0 {WRITE "DROP USER error: ",SQLCODE,!1}

b
ELSE {WRITE !,"No drop this time",!1}
WRITE "User BillTest exists? ",$SYSTEM.SQL.Security.UserExists("'BillTest™),!
QUIT

See Also

e SQL statements: ALTER USER, DROP USER, GRANT, REVOKE, CREATE ROLE
e SQL Users, Roles, and Privileges

¢ SQLCODE error messages

* ObjectScript: $ROLES and $SUSERNAME special variables

162 InterSystems SQL Reference

CREATE VIEW (SQL)

CREATE VIEW (SQL)

Creates a view.

Synopsis

CREATE [OR REPLACE] VIEW vi ewnanme [(col um-commalist)]
AS sel ect - st at enent
[WITH READ ONLY | WITH [l evel] CHECK OPTION]

Description

The CREATE VIEW command defines the content of a view. The SELECT statement that defines the view can reference
more than one table and can reference other views.

Privileges

The CREATE VIEW command is a privileged operation. The user must have %CREATE_VIEW administrative privilege
to execute CREATE VIEW. Failing to do so results in an SQLCODE —99 error with the %msg User “"name® does
not have %CREATE_VIEW privileges.You can use the GRANT command to assign %CREATE_VIEW privileges,
if you hold appropriate granting privileges.

To select from the objects referenced in the SELECT clause of a view being created, it is necessary to have the appropriate
privileges:

» When creating a view using Dynamic SQL or via a database driver, you must have SELECT privileges on all the
columns selected from the underlying tables (or views) referenced by the view. If you do not have SELECT privilege
for a specified table (or view) the CREATE VIEW command will not execute.

However, when compiling a class that projects a defined view, these SELECT privileges are not enforced on the
columns selected from the underlying tables (or views) referenced by the view. For example, if you create a view using
a privileged routine (that has these SELECT privileges), you can later compile the view class, because you are the
owner of the view, regardless of whether you have SELECT privileges for the tables referenced by the view.

» Toreceive SELECT privilege WITH GRANT OPTION for a view, you must have WITH GRANT OPTION for every
table (or view) referenced by the view.

e Toreceive INSERT, UPDATE, DELETE, or REFERENCES privilege for a view, you must have the same privilege
for every table (or view) referenced by the view. To receive WITH GRANT OPTION for any of these privileges, you
must hold the privilege WITH GRANT OPTION on the underlying tables.

* If the view is specified WITH READ ONLY, the view is not granted INSERT, UPDATE, or DELETE privileges,
regardless of the privileges you hold for the underlying tables. If the view is later redefined as read/write, these privileges
are added when the class projecting the view is recompiled.

You can determine if the current user has these table-level privileges by invoking the %CHECKPRIV command. You can
determine if a specified user has these table-level privileges by invoking the $SYSTEM.SQL.Security.CheckPrivilege()
method. For privilege assignment, refer to the GRANT command.

The creator (owner) of a view is granted the %ALTER privilege WITH GRANT OPTION when the view is compiled.
In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login(*'_SYSTEM","SYS™)
&sql(

InterSystems SQL Reference 163

SQL Commands

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

%CREATE_VIEW privileges are assigned using the GRANT command, which requires you to assign this privilege to a
user or role. By default, CREATE VIEW security privileges are enforced. This privileges requirement is configurable
system-wide using the $SYSTEM.SQL.Util.SetOption() method SET

status=$SYSTEM.SQL.Util _SetOption(*'SQLSecurity',0, .oldval); to determine the current setting, call
the $SYSTEM.SQL.CurrentSettings() method, which displays an SQL security enabled setting.

The default is 1 (enabled). When SQL Security is enabled, a user can only perform actions on a table or view for which
that user has been granted privilege. This is the recommended setting for this option.

If this method is set to 0, SQL Security is disabled for any new process started after changing this setting. This means
privilege-based table/view security is suppressed. You can create a table without specifying a user. In this case, Dynamic
SQL assigns “_SYSTEM?” as user, and Embedded SQL assigns " (the empty string) as user. Any user can perform actions
on a table or view even if that user has no privileges to do so.

View Naming Conventions

A view name has the same naming conventions as a table name, and shares the same name set. Therefore, you cannot use
the same name for a table and a view in the same schema. Attempting to do so results in an SQLCODE -201 error. To
determine if a table already exists in the current namespace, use the $SYSTEM.SQL.Schema. TableExists(*'schema.tname"")
method. A class that projects a table definition and a view definition with the same name also generates an SQLCODE -
201 error.

View names follow identifier conventions, subject to the restrictions below. By default, view names are simple identifiers.
A view name should not exceed 128 characters. View names are not case-sensitive.

InterSystems IRIS uses the view name to generate a corresponding class name. A class name contains only alphanumeric
characters (letters and numbers) and must be unique within the first 96 characters. To generate this class name, InterSystems
IRIS first strips punctuation characters from the view name, and then generates a identifier that is unique within the first
96 characters, substituting an integer (beginning with 0) for the final character when needed to create a unique class hame.
InterSystems IRIS generates a unique class name from a valid view name, but this name generation imposes the following
restrictions on the naming of views:

* A view name must include at least one letter. Either the first character of the view name or the first character after
initial punctuation characters must be a letter.

» InterSystems IRIS supports 16-bit (wide) characters for view names. A character is a valid letter if it passes the $ZNAME
test.

» Ifthe first character of the view name is a punctuation character, the second character cannot be a number. This results
in an SQLCODE -400 error, with a %msg value of “ERROR #5053: Class name 'schema.name' is invalid” (without
the punctuation character). For example, specifying the view name %7A generates the %msg “ERROR #5053: Class
name 'User.7A" is invalid”.

» Because generated class names do not include punctuation characters, it is not advisable (though possible) to create a
view name that differs from an existing view or table name only in its punctuation characters. In this case, InterSystems
IRIS substitutes an integer (beginning with 0) for the final character of the name to create a unique class name.

e Aview name may be much longer than 96 characters, but view names that differ in their first 96 alphanumeric characters
are much easier to work with.
A view name can be qualified or unqualified.

A qualified view name (schema. viewname) can specify an existing schema or a new schema. If it specifies a new schema,
the system creates that schema.

An unqgualified view name (viewname) takes the default schema name.

164 InterSystems SQL Reference

CREATE VIEW (SQL)

Existing View

To determine if a specified view already exists in the current namespace, use the
$SYSTEM.SQL.Schema.ViewEXxists(*'schema.vname'") method.

What happens when you try to create a view that has the same name as an existing view depends on the optional OR
REPLACE keyword and on the configuration setting.

With OR REPLACE

If you specify CREATE OR REPLACE VIEW, the existing view is replaced by the view definition specified in the
SELECT clause and any specified WITH READ ONLY or WITH CHECK OPTION. This is the same as performing the
corresponding ALTER VIEW statement. Any privileges that had been granted to the original view remain. Ownership of
the view transfers to the user who executes the CREATE OR REPLACE VIEW statement.

This keyword phrase provides no functionality not available through ALTER VIEW. It is provided for compatibility with
Oracle SQL code.

Without OR REPLACE

By default, if you specify CREATE VIEW, InterSystems IRIS rejects an attempt to create a view with the name of an
existing view and issues an SQLCODE -201 error. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(),
which displays a Allow DDL CREATE TABLE or CREATE VIEW for existing table or view setting. The
default is 0 (No), which is the recommended setting. If this option is set to 1 (Yes), InterSystems IRIS deletes the class
definition associated with the view and then recreates it. This is the same as performing a DROP VIEW and then performing
a CREATE VIEW. Note that this setting affects both CREATE VIEW and CREATE TABLE.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

Column Names

A view can optionally include a column-commalist list of column names, enclosed in parentheses. These column names,
if specified, are the names used to access and display the data for the columns when using that view.

If you omit the column-commalist, the following apply:
» The column names of the SELECT source table are used to access and display the data when using the view.

» Ifany of the SELECT source table column names have column aliases, the column aliases are the names used to access
and display the data when using the view.

» Ifthe SELECT source table column names have table aliases, the table aliases are not used in the names used to access
and display the data when using the view.

If you omit the list of column names, you must also omit the parentheses.

If you specify the column-commalist, the following apply:

» A column name list must specify the enclosing parentheses, even when specifying a single field. You must separate
multiple column names with commas. Whitespace and comments are permitted within a column-commalist.

e The number of column names must correspond to the number of columns specified in the SELECT statement. Mismatch
between the number of view columns and query columns results in an SQLCODE -142 error at compile time.

» The names of column names must be valid identifiers. They may be different names than the SELECT column names,
the same names as the SELECT column names, or a combination of both. The specified order of the view column
names corresponds to the order of the SELECT column names. Because it is possible to assign a view column the
name of an unrelated SELECT column, you must exercise caution when assigning view column names.

InterSystems SQL Reference 165

SQL Commands

* A column name must be unique. Specifying a duplicate column name results in an SQLCODE -97 error. Column
names are converted to corresponding class property names by stripping out punctuation characters; column names
that differ only in punctuation characters are permitted, but discouraged.

The following example shows a CREATE VIEW with matching lists of view columns and query columns:

SQL

CREATE VIEW MyView (ViewColl, ViewCol2, ViewCol3) AS
SELECT TableColl, TableCol2, TableCol3
FROM MyTable

Alternatively, you can use the AS keyword in the query to specify the view columns as query column / view column pairs,
as shown in the following example:
SQL

CREATE VIEW MyView AS
SELECT TableColl AS ViewCol1l,
TableCol2 AS ViewCol2,
TableCol3 AS ViewCol3
FROM MyTable

SELECT Columns and View Columns

e Data from multiple SELECT columns can be concatenated into a single view column. For example:

SQL

CREATE VIEW MyView (fullname) AS SELECT firstname||® "|]|]lastname FROM MyTable

* Multiple view columns can refer to the same SELECT column. For example:

SQL

CREATE VIEW MyView (Iname,surname) AS SELECT lastname, lastname FROM MyTable

SELECT Clause Considerations

A view does not have to be a simple subset of the rows and columns of one particular table. A view can be created using
a SELECT clause of any complexity, specifying any combination of tables or views. There are, however, a few restrictions
on the SELECT clause of a view definition:

e Canonly include an ORDER BY clause if this clause is paired with a TOP clause. If you wish to include all of the
rows in the view, you can use a TOP ALL clause. You can include a TOP clause without an ORDER BY clause.
However, if you include an ORDER BY clause without a TOP clause, an SQLCODE -143 error is generated. If you
project an SQL view from a view class, the query of which contains an ORDER BY clause, the ORDER BY clause is
ignored in the view projection.

e Cannot contain host variables. If you attempt to reference a host variable in the SELECT clause, the system generates
an SQLCODE -148 error.

e Cannotinclude the INTO keyword. A view that specifies a SELECT with an INTO clause can be created, but execution
of this view fails with an SQLCODE -25 error.

CREATE VIEW can contain a UNION statement to select columns from the union of two tables. You can specify a
UNION as shown in the following example:

166 InterSystems SQL Reference

CREATE VIEW (SQL)

SQL

CREATE VIEW MyView (vname,vstate) AS
SELECT tl.name,tl.home_state
FROM Sample.Person AS tl
UNION
SELECT t2.name,t2.office_state
FROM Sample.Employee AS t2

Note that an unqualified view name, such as in the above example, defaults to the default schema name (for example, the
initial schema default SQLUser.MyView), even though the tables referenced by the view are in the Sample schema. Thus
it is usually a good practice to always qualify a view name to ensure that it is stored with its associated table(s).

View ID: %vid

When data is accessed through a view, InterSystems IRIS assigns a sequential integer view 1D (%vid) to each row returned
by that view. Like table row ID numbers, these view row ID numbers are system-assigned, unique, non-zero, non-null, and
non-modifiable. This %vid is usually invisible. Unlike a table row ID, it is not displayed when using asterisk syntax; it is
only displayed when explicitly specified in the SELECT. The %vid can be used to further restrict the number of rows
returned by a SELECT accessing a view. For further details on using %vid, refer to Defining and Using Views.

Arguments

view-name

The name for the view being created. A valid identifier, subject to the same additional naming restrictions as a table name.
A view name can be qualified (schema.viewname), or unqualified (viewname). An unqualified view name takes the default
schema name. Note that you cannot use the same name for a table and a view in the same schema.

column-commalist

An optional argument. The column names that compose the view, one or more valid identifiers. If specified, this list is
enclosed in parentheses and items in the list are separated by commas.

AS select-statement
A SELECT statement that defines the view.

WITH READ ONLY

An optional argument specifying that no insert, update, or delete operations can be performed through this view upon the
table on which the view is based. The default is to permit these operations through a view, subject to the constraints described
below.

WITH level CHECK OPTION

An optional argument that specifies how insert, update, or delete operations are performed through this view upon the table
on which the view is based. The level can be the keywords LOCAL or CASCADED. If no level is specified, the WITH
CHECK OPTION default is CASCADED.

Updating Through Views

A view can be used to update the tables on which the view is based. You can INSERT new rows through the view, UPDATE
data in rows seen through the view, and DELETE rows seen through the view. INSERT, UPDATE, and DELETE statements
can be issued for a view, if the CREATE VIEW statement specified this ability. To allow updating through a view, specify
WITH CHECK OPTION (the default) when defining the view.

InterSystems SQL Reference 167

SQL Commands

Note: If the view is based on a sharded table, you cannot INSERT, UPDATE, or DELETE through a view WITH
CHECK OPTION. Attempting to do so results in an SQLCODE -35 with the %msg INSERT/UPDATE/DELETE
not allowed for view (sample.myview) based on sharded table with check option
conditions.

To prevent updating through a view, specify WITH READ ONLY. Attempting an INSERT, UPDATE, or DELETE
through a view created WITH READ ONLY generates an SQLCODE -35 error.

In order to update through a view, you must have the appropriate privileges for the table or view to be updated, as specified
by the GRANT command.

Updating through views is subject to the following restrictions:
» The view cannot be a class query projected as a view.
* The view’s class cannot contain the class parameter READONLY=1.

e The view’s SELECT statement cannot contain a DISTINCT, TOP, GROUP BY, or HAVING clause, or be part of a
UNION.

» Theview’s SELECT statement cannot contain a subquery.
* Theview’s SELECT statement can only list value expressions that are column references.

» Theview’s SELECT statement can have only one table reference; it cannot contain FROM clause JOIN syntax or
arrow syntax in the select-list or WHERE clause. The table reference must specify either an updateable table or an
updateable view.

The WITH CHECK OPTION clause causes an insert or update operation to validate the resulting row against the WHERE
clause of the view definition. This ensures that the inserted or modified row is part of the derived view table. There are two
available check options:

* WITH LOCAL CHECK OPTION — only the WHERE clause of the view specified in the INSERT or UPDATE
statement is checked.

e WITH CASCADED CHECK OPTION — the WHERE clause of the view specified in the INSERT or UPDATE
statement and all underlying views are checked. This overrides any WITH LOCAL CHECK OPTION clauses in these
underlying views. WITH CASCADED CHECK OPTION is recommended for all updateable views.

If you specify WITH CHECK OPTION, the check option defaults to CASCADED. The keyword CASCADE is a
synonym for CASCADED.
Ifan INSERT operation fails WITH CHECK OPTION validation (as defined above), InterSystems IRIS issues an SQLCODE
-136 error.

If an UPDATE operation fails WITH CHECK OPTION validation (as defined above), InterSystems IRIS issues an SQL-
CODE -137 error.

Examples

The following example creates a view named "CityPhoneBook" from the PhoneBook table:

SQL

CREATE VIEW CityPhoneBook AS
SELECT Name FROM PhoneBook WHERE City="Boston”

The following example creates a view named "GuideHistory" from the Guides table. It lists all titles (from the Title column)
and whether or not the person is retired:

168 InterSystems SQL Reference

CREATE VIEW (SQL)

SQL

CREATE VIEW GuideHistory AS
SELECT Guides, Title, Retired, Date_Retired
FROM Guides

The following example creates the table MyTest, and then creates a view for this table, MyTestView, which selects one
field from MyTest:

SQL

CREATE TABLE Sample.MyTest (
TestNum INT NOT NULL,
FirstWord CHAR (30) NOT NULL,
LastWord CHAR (30) NOT NULL,
CONSTRAINT MyTestPK PRIMARY KEY (TestNum))

CREATE VIEW Sample.MyTestView AS
SELECT FirstWord FROM Sample.MyTest
WITH CASCADED CHECK OPTION

The following example creates a view MyTestView, which selects two fields from MyTest. The SELECT query for this
view contains a TOP clause and an ORDER BY clause:

SQL

CREATE TABLE Sample.MyTest (
TestNum INT NOT NULL,
FirstWord CHAR (30) NOT NULL,
LastWord CHAR (30) NOT NULL,
CONSTRAINT MyTestPK PRIMARY KEY (TestNum))

CREATE VIEW Sample.MyTestView AS
SELECT TOP ALL FirstWord,LastWord FROM Sample.MyTest
ORDER BY LastWord)

The following example creates a view named "StaffWorksDesign" from three tables (Proj, Staff, and Works). The columns
Name, Cost, and Project provide the data.
SQL

CREATE VIEW StaffWorksDesign (Name,Cost,Project)
AS SELECT EmpName,Hours*2*Grade,PName
FROM Proj,Staff,Works
WHERE Staff.EmpNum=Works .EmpNum
AND Works.PNum=Proj.PNum AND PType="Design”

The following example creates a view named “v_3” by selecting from b.table2 and a.tablel using a UNION:

SQL

CREATE VIEW v_3(fvarchar)
AS SELECT DISTINCT *
FROM
(SELECT fVARCHAR2 FROM b.table2
UNION ALL
SELECT fVARCHAR1 FROM a.tablel)

See Also

* ALTERVIEW

» DROPVIEW

» CREATE TABLE
* GRANT

» SELECT

InterSystems SQL Reference 169

SQL Commands

e Defining and Using Views
* SQL and Object Settings Pages
* SQLCODE error messages

170 InterSystems SQL Reference

DECLARE (SQL)

DECLARE (SQL)

Declares a cursor.

Synopsis

DECLARE cursor-nane CURSOR FOR query

Description

A DECLARE statement declares a cursor used in cursor-based Embedded SQL. After declaring a cursor, you issue an
OPEN statement to open the cursor and then a series of FETCH statements to retrieve individual records. The cursor defines
the SELECT query that is used to select records for retrieval by these FETCH statements. You issue a CLOSE statement
to close (but not delete) the cursor.

As an SQL statement, DECLARE is only supported from Embedded SQL. For Dynamic SQL, use instead either a simple
SELECT statement (with no INTO clause), or acombination of Dynamic SQL and Embedded SQL.. Equivalent operations
are supported through ODBC using the ODBC API.

DECLARE declares a forward-only (non-scrollable) cursor. Fetch operations begin with the first record in the query result
set and proceed sequentially through the result set records. A FETCH can only fetch a record once. The next FETCH
fetches the next sequential record in the result set.

Because DECLARE is a declaration, not an executed statement, it does not set or kill the SQLCODE variable.

Cursor Names
Cursor names are case-sensitive.

A cursor name must be unique within the routine and the corresponding class. A cursor name may be of any length, but
must be unique within the first 29 characters. Cursor names are case-sensitive. If a specified cursor has already been declared,
no compilation error is issued; SQL execution uses the most recently declared instance of that cursor.

Cursor names are not namespace-specific. You can DECLARE a cursor in one namespace, and OPEN, FETCH, or
CLOSE this cursor when in another namespace. Embedded SQL is complied when the OPEN command is executed. SQL
tables and local variables are namespace-specific, so the OPEN operation must be invoked in the same namespace (or be
able to access tables in the namespace) where the table(s) specified in the query are located.

The first character of a cursor name must be a letter. The second and subsequent characters of a cursor name must be either
a letter or a number. Unlike SQL identifiers, punctuation characters are not permitted in cursor names.

You can use a delimiter characters (double quotes) to specify an SQL reserved word as a cursor name. A delimited cursor
name is not an SQL delimited identifier; delimited cursor names are still case-sensitive and cannot contain punctuation
characters. In most cases, an SQL reserved word should not be used as a cursor name.

Updating through a Cursor

You can perform record updates and deletes through a declared cursor using an UPDATE or DELETE statement with the
WHERE CURRENT OF clause. In InterSystems SQL a cursor can always be used for UPDATE or DELETE operations
if you have the appropriate privileges on the affected tables and columns; refer to the GRANT statement for assigning
object privileges.

A DECLARE statement can specify a FOR UPDATE or FOR READ ONLY keyword clause following the query. These
clauses are optional and perform no operation. They are provided as a way to document in the code that the process issuing
the query has or does not have the needed update and delete object privileges.

InterSystems SQL Reference 171

SQL Commands

Arguments

cursor-name

The name of the cursor, which must begin with a letter and contain only letters and numbers. (Cursor names do not follow
SQL identifier conventions). Cursor names are case-sensitive. They are subject to additional naming restrictions, as described
below.

query

A standard SELECT statement that defines the result set of the cursor. This SELECT can include the %NOFPLAN keyword
to specify that InterSystems IRIS should ignore the frozen plan (if any) for this query. This SELECT can include an ORDER
BY clause, with or without a TOP clause. This SELECT can specify a table-valued function in the FROM clause.

Examples

The following Embedded SQL example uses DECLARE to define a cursor for a query that specifies two output host
variables. The cursor is then opened, fetched repeatedly, and closed:

ObjectScript

SET name='"John Doe",state="##"
&sql (DECLARE EmpCursor CURSOR FOR
SELECT Name, Home_State
INTO :name,:state FROM Sample.Person
WHERE Home_State %STARTSWITH "A*
FOR READ ONLY)
WRITE !,"BEFORE: Name=",name," State=",state
&sql (OPEN EmpCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
NEW %ROWCOUNT , %ROWID
FOR { &sql (FETCH EmpCursor)
QUIT:SQLCODE
WRITE I,"DURING: Name=",name," State=",state }
WRITE !,"FETCH status SQLCODE=",SQLCODE
WRITE I,"Number of rows fetched="",%ROWCOUNT
&sql (CLOSE EmpCursor)
IF SQLCODE<O {WRITE "SQL Close Cursor Error:",SQLCODE,"™ '",%msg QUIT}
WRITE !,"AFTER: Name='",6name,' State=",state

The following Embedded SQL example uses DECLARE to define a cursor for a query that specifies both output host
variables in the INTO clause and input host variables in the WHERE clause. The cursor is then opened, fetched repeatedly,
and closed:

ObjectScript

NEW SQLCODE , %ROWCOUNT ,%ROWID
SET EmpZipLow="10000"
SET EmpZipHigh="19999"
&sql (DECLARE EmpCursor CURSOR FOR
SELECT Name,Home_Zip
INTO :name,:zip
FROM Sample.Employee WHERE Home_Zip BETWEEN :EmpZipLow AND :EmpZipHigh)
&sql (OPEN EmpCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:*,SQLCODE,"™ ',%msg QUIT}
FOR { &sql (FETCH EmpCursor)
QUIT:SQLCODE
WRITE !,name," *,zip }
&sql (CLOSE EmpCursor)
IF SQLCODE<O {WRITE "SQL Close Cursor Error:",SQLCODE,"™ ",%msg QUIT}

The following Embedded SQL example uses a table-valued function as the FROM clause of the query:

172 InterSystems SQL Reference

DECLARE (SQL)

ObjectScript

SET $NAMESPACE="'Samples"
&sql (DECLARE EmpCursor CURSOR FOR
SELECT Name INTO :name FROM Sample.SP_Sample_By Name("A%)
FOR READ ONLY)
&sql (OPEN EmpCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:',SQLCODE,"™ ',%msg QUIT}
NEW %ROWCOUNT ,%ROWID
FOR { &sql (FETCH EmpCursor)
QUIT :SQLCODE
WRITE "Name=",name,! }
WRITE !,"FETCH status SQLCODE=",SQLCODE
WRITE 1,"Number of rows fetched="",%ROWCOUNT
&sql (CLOSE EmpCursor)
IF SQLCODE<O {WRITE "'SQL Close Cursor Error:",SQLCODE,"™ ",%msg QUIT}

See Also

* CLOSE command

* FETCH command

e OPEN command

* WHERE CURRENT OF clause
e SQL Cursors

InterSystems SQL Reference 173

SQL Commands

DELETE (SQL)

Removes rows from a table.

Synopsis

DELETE [%eyword] [FROM] tabl e-ref [[AS] t-alias]
[FROM [optim ze-option] select-table [[AS] t-alias]

{.,select-table2 [[AS] t-alias]} 1
[WHERE condi ti on- expression]

DELETE [%eyword] [FROM] tabl e-ref
[WHERE CURRENT OF cursor]

Arguments

Argument

%keyword

FROM table-ref

FROM clause

[[AS] t-alias]

Description

Optional — One or more of the following keyword options, separated
by spaces: %NOCHECK, %NOFPLAN, %NOINDEX, %NOJOURN,
%NOLOCK, %NOTRIGGER, %PROFILE, %PROFILE_ALL.

The table from which you are deleting rows. This is not a FROM
clause; it is a FROM keyword followed by a single table reference.
(The FROM keyword is optional; the table-ref is mandatory.)

A table name (or view name) can be qualified (schema.table), or
unqualified (table). An unqualified name is matched to its schema
using either a schema search path (if provided) or the default schema
name.

Rather than a table reference, you can specify a view through which
table rows can be deleted, or specify a subquery enclosed in paren-
theses. Unlike the SELECT statement FROM clause, you cannot
specify optimize-option keywords here. You cannot specify a table-
valued function or JOIN syntax in this argument.

Optional — A FROM clause, specified after the table-ref. This FROM
can be used to specify a select-table table or tables used to select
which rows are to be deleted.

Multiple tables can be specified as a comma-separated list or associ-
ated with ANSI join keywords. Any combination of tables or views
can be specified. If you specify a comma between two select-tables
here, InterSystems IRIS performs a CROSS JOIN on the tables and
retrieves data from the results table of the JOIN operation. If you
specify ANSI join keywords between two select-tables here, InterSys-
tems IRIS performs the specified join operation. For further details,
see JOIN.

You can optionally specify one or more optimize-option keywords to
optimize queryexecution. The available options are: %ALLINDEX,
%FIRSTTABLE tablename, %FULL, %INORDER, %IGNOR-
EINDICES, %NOFLATTEN, %NOMERGE, %NOSVSO,
%NOTOPOPT, %NOUNIONOROPT, %PARALLEL, and %START-
TABLE. See FROM clause for more details.

174

InterSystems SQL Reference

DELETE (SQL)

Argument Description

AS t-alias Optional — An alias for a table or view name. An alias must be a
valid identifier. The AS keyword is optional.

WHERE condition-expression Optional — Specifies one or more boolean predicates used to limit
which rows are to be deleted. You can specify a WHERE clause or
a WHERE CURRENT OF clause, but not both. If a WHERE clause
(or a WHERE CURRENT OF clause) is not supplied, DELETE
removes all the rows from the table. For further details, see WHERE.

WHERE CURRENT OF cursor Optional: Embedded SQL only — Specifies that the DELETE
operation deletes the record at the current position of cursor. You
can specify a WHERE CURRENT OF clause or a WHERE clause,
but not both. Ifa WHERE CURRENT OF clause (or a WHERE clause)
is not supplied, DELETE removes all the rows from the table. For
further details, see WHERE CURRENT OF.

Description

The DELETE command removes rows from a table that meet the specified conditions. You can delete rows from a table
directly, delete through a view, or delete rows selected using a subquery. Deleting through a view is subject to requirements
and restrictions, as described in CREATE VIEW.

The DELETE operation sets the %ROWCOUNT local variable to the number of deleted rows, and the %ROWID local
variable to the RowlID value of the last row deleted. If no rows are deleted, %ROWCOUNT=0 and %ROWID is undefined
or remains set to its previous value.

You must specify a table-ref; the FROM keyword before the table-ref is optional. To delete all rows from a table, you can
simply specify:
SQL

DELETE FROM tablename

or

SQL

DELETE tablename

This deletes all row data from the table, but does not reset the RowID, IDENTITY, stream field OID values, and SERIAL
(%L.ibrary.Counter) field counters. The TRUNCATE TABLE command both deletes all row data from a table and resets
these counters. By default, DELETE FROM tablename pulls delete triggers; you can speciy DELETE %NOTRIGGER
FROM tablename to not pull delete triggers. TRUNCATE TABLE does not pull delete triggers.

More commonly, a DELETE specifies the deletion of a specific row (or rows) based on a condition-expression. By default,
a DELETE operation goes through all of the rows of a table and deletes all rows that satisfy the condition-expression. If
no rows satisfy the condition-expression, DELETE completes successfully and sets SQLCODE=100 (No more data).

You can specify a WHERE clause or a WHERE CURRENT OF clause (but not both). If the WHERE CURRENT OF
clause is used, the DELETE operation deletes the record at the current position of the cursor. For an example of DELETE
using WHERE CURRENT OF, see “Embedded SQL and Dynamic SQL Examples” below. For details on positioned
operations, see WHERE CURRENT OF.

By default, DELETE is an all-or-nothing event: either all specified rows are deleted completely, or no deletion is performed.
InterSystems IRIS sets the status variable SQLCODE, indicating the success or failure of the DELETE.

To delete a row from a table:

InterSystems SQL Reference 175

SQL Commands

» Thetable must exist in the current (or specified) namespace. If the specified table cannot be located, InterSystems IRIS
issues an SQLCODE -30 error.

* The user must have DELETE privilege on the specified table. If the user is the Owner (creator) of the table, the user
is automatically granted DELETE privilege for that table. Otherwise, the user must be granted DELETE privilege for
the table. Failing to do so results in an SQLCODE -99 error with the %msg User "name” is not privileged
for the operation. You can determine if the current user has DELETE privilege by invoking the %CHECKPRIV
command. You can use the GRANT command to assign DELETE privilege to a specified table. For further details,
refer to Privileges.

e The table cannot be locked IN EXCLUSIVE MODE by another process. Attempting to delete a row from a locked
table results in an SQLCODE -110 error, with a %msg such as the following: Unable to acquire lock for
DELETE of table "Sample.Person® on row with RowlD = "10". Note that an SQLCODE -110 error
occurs only when the DELETE statement locates the first record to be deleted, then cannot lock it within the timeout
period.

o If the DELETE command’s WHERE clause specifies a non-existent field, an SQLCODE -29 is issued. To list all of
the field names defined for a specified table, refer to Column Names and Numbers. If the field exists but none of the
field values fulfill the DELETE command’s WHERE clause, no rows are affected and SQLCODE 100 (end of data)
is issued.

e The table cannot be defined as READONLY. Attempting to compile a DELETE that references a read-only table
results in an SQLCODE -115 error. Note that this error is now issued at compile time, rather than only occurring at
execution time. See the description of READONLY objects in Other Options for Persistent Classes.

» If deleting through a view, the view cannot be defined as WITH READ ONLY. Attempting to do so results in an
SQLCODE -35 error. If the view is based on a sharded table, you cannot DELETE through a view defined WITH
CHECK OPTION. Attempting to do so results in an SQLCODE -35 with the %msg INSERT/UPDATE/DELETE not
allowed for view (sample.myview) based on sharded table with check option conditions.
See the CREATE VIEW command for further details. Similarly, if you are attempting to delete through a subquery,
the subquery must be updateable; for example, the following subquery results in an SQLCODE -35 error: DELETE
FROM (SELECT COUNT(*) FROM Sample.Person) AS x.

» The row to delete must exist. Usually, attempting to delete a nonexistent row results in an SQLCODE 100 (No more
data) because the specified row could not be located. However, in rare cases, DELETE with %NOLOCK locates a
row to be deleted, but then the row is immediately deleted by another process; this situation results in an SQLCODE
-106 error. The %msg for this error lists the table name and the RowID.

» All of the rows specified for deletion must be available for deletion. By default, if one or more rows cannot be deleted
the DELETE operation fails and no rows are deleted. If a row to be deleted has been locked by another concurrent
process, DELETE issues an SQLCODE -110 error. If deleting one of the specified rows would violate foreign key
referential integrity (and %NOCHECK is not specified), the DELETE issues an SQLCODE -124 error. This default
behavior is modifiable, as described below.

» Certain %SYS namespace system—supplied facilities are protected against deletion. For example, DELETE FROM
Security.Users cannot be used to delete _SYSTEM, PUBLIC or UnknownUser. Attempting to do so results in
an SQLCODE -134 error.

FROM Syntax

A DELETE command can contain two FROM keywords that specify tables. These two uses of FROM are fundamentally
different:

* FROM before table-ref specifies the table (or view) from which rows are to be deleted. It is a FROM keyword, not a
FROM clause. Only one table may be specified. No join syntax or optimize-option keywords may be specified. The
FROM keyword itself is optional; the table-ref is required.

176 InterSystems SQL Reference

DELETE (SQL)

* FROM after table-ref is an optional FROM clause that can be used to determine which rows should be deleted. It may
specify one or more than one tables. It supports all of the FROM clause syntax available to a SELECT statement,
including join syntax and optimize-option keywords. This FROM clause is commonly (but not always) used with a
WHERE clause.

Thus any of the following are valid syntactical forms:

DELETE FROM table WHERE ... DELETE table WHERE ... DELETE
FROM table FROM table2 WHERE ... DELETE table FROM table2 WHERE ...

This syntax supports complex selection criteria in a manner compatible with Transact-SQL.

The following example shows how the two FROM keywords might be used. It deletes those records from the Employees
table where the same Empld is also found in the Retirees table:

SQL

DELETE FROM Employees AS Emp
FROM Retirees AS Rt
WHERE Emp.Empld = Rt_Empld

If the two FROM keywords make reference to the same table, these references may either be to the same table, or to a join
of two instances of the table. This depends on how table aliases are used:

« If neither table reference has an alias, both reference the same table:
DELETE FROM tablel FROM tablel,table2 /* join of 2 tables */
» If both table references have the same alias, both reference the same table:
DELETE FROM tablel AS x FROM tablel AS x,table2 /* join of 2 tables */

» If both table references have aliases, and the aliases are different, InterSystems IRIS performs a join of two instances
of the table:

DELETE FROM tablel AS x FROM tablel AS y,table2 /* join of 3 tables */

» Ifthe first table reference has an alias, and the second does not, InterSystems IRIS performs a join of two instances of
the table:

DELETE FROM tablel AS x FROM tablel,table2 /* join of 3 tables */

» If the first table reference does not have an alias, and the second has a single reference to the table with an alias, both
reference the same table, and this table has the specified alias:

DELETE FROM tablel FROM tablel AS x,table2 /* join of 2 tables */

» Ifthe first table reference does not have an alias, and the second has more than one reference to the table, InterSystems
IRIS considers each aliased instance a separate table and performs a join on these tables:

DELETE FROM tablel FROM tablel,tablel AS x,table2 /* join of 3 tables */
DELETE FROM tablel FROM tablel AS x,tablel AS y,table2 /* join of 4 tables */

%Keyword Options
Specifying %keyword argument(s) restricts processing as follows:

* %NOCHECK — suppress referential integrity checking for foreign keys that reference the rows being deleted. The
user must have the corresponding %NOCHECK administrative privilege for the current namespace to apply this

InterSystems SQL Reference 177

SQL Commands

restriction. Failing to do so results in an SQLCODE -99 error with the %msg User "name® does not have
%NOCHECK privileges.

* %NOFPLAN — the frozen plan (if any) is ignored for this operation; the operation generates a new query plan. The
frozen plan is retained, but not used. For further details, refer to Frozen Plans.

* %NOINDEX — suppresses deleting index entries in all indexes for the rows being deleted. This should be used with
extreme caution, because it leaves orphaned values in the table indexes. The user must have the corresponding
%NOINDEX administrative privilege for the current namespace to apply this restriction. Failing to do so results in an
SQLCODE -99 error with the %msg User "name® does not have %NOINDEX privileges.

* %NOJOURN — suppress journaling and disable transactions for the duration of the delete operation. None of the
changes made in any of the rows are journaled, including any triggers pulled. If you perform a ROLLBACK after a
statement with %NOJOURN, the changes made by the statement will not be rolled back. The user must have the cor-
responding %NOJOURN administrative privilege for the current namespace to apply this restriction. Failing to do so
results in an SQLCODE -99 error with the %msg User “name® does not have %NOJOURN privileges.

* 9%NOLOCK — suppress row locking of the row being deleted. This should only be used when a single user/process
is updating the database. The user must have the corresponding %NOLOCK administrative privilege for the current
namespace to apply this restriction. Failing to do so results in an SQLCODE -99 error with the %msg User "“name*”
does not have %NOLOCK privileges.

%NOTRIGGER — suppress the pulling of base table triggers that are otherwise pulled during DELETE processing.
The user must have the corresponding %NOTRIGGER administrative privilege for the current namespace to apply
this restriction. Failing to do so results in an SQLCODE —-99 error with the %msg User “name® does not have
%NOTRIGGER privileges.

* %PROFILE or %PROFILE_ALL — if one of these keyword directives is specified, SQLStats collecting code is gen-
erated. This is the same code that would be generated with PTools turned ON. The difference is that SQL Stats collecting
code is only generated for this specific statement. All other SQL statements within the routine/class being compiled
will generate code as if PTools is turned OFF. This enables the user to profile/inspect specific problem SQL statements
within an application without collecting irrelevant statistics for SQL statements that are not being investigated. For
further details, refer to SQL Runtime Statistics.

%PROFILE collects SQLStats for the main query module. %PROFILE_ALL collects SQLStats for the main query
module and all of its subquery modules.

You can specify multiple %keyword arguments in any order. Multiple arguments are separated by spaces.

If you specify a %keyword argument when deleting a parent record, the same %keyword argument will be applied when
deleting the corresponding child records.

Referential Integrity

If you do not specify %NOCHECK, InterSystems IRIS uses the system-wide configuration setting to determine whether
to perform foreign key referential integrity checking; the default is to perform foreign key referential integrity checking.
You can set this default system-wide, as described in Foreign Key Referential Integrity Checking. To determine the current
system-wide setting, call $SYSTEM.SQL.CurrentSettings().

During a DELETE operation, for every foreign key reference a shared lock is acquired on the corresponding row in the
referenced table. This row is locked until the end of the transaction. This ensures that the referenced row is not changed
before a potential rollback of the DELETE.

If a series of foreign key references are defined as CASCADE, a DELETE operation could potentially result in a circular
reference. InterSystems IRIS prevents DELETE with CASCADE referential action from performing a circular reference
loop recursion. InterSystems IRIS ends the cascade sequence when it returns to the original table.

If a DELETE operation with %NOLOCK is performed on a foreign key field defined with CASCADE, SET NULL, or
SET DEFAULT, the corresponding referential action changing the foreign key table is also performed with %NOLOCK.

178 InterSystems SQL Reference

DELETE (SQL)

Atomicity

By default, DELETE, UPDATE, INSERT, and TRUNCATE TABLE are atomic operations. A DELETE either completes
successfully or the whole operation is rolled back. If any of the specified rows cannot be deleted, none of the specified
rows are deleted and the database reverts to its state before issuing the DELETE.

You can modify this default for the current process within SQL by invoking SET TRANSACTION %COMMITMODE.
You can modify this default for the current process in ObjectScript by invoking the SetOption() method, as follows SET
status=$SYSTEM.SQL.Util_SetOption("'AutoCommit", intval, .oldval). The following intval integer
options are available:

e 1or IMPLICIT (autocommit on) — The default behavior, as described above. Each DELETE constitutes a separate
transaction.

e 2o0r EXPLICIT (autocommit off) — If no transaction is in progress, a DELETE automatically initiates a transaction,
but you must explicitly COMMIT or ROLLBACK to end the transaction. In EXPLICIT mode the number of database
operations per transaction is user-defined.

* 0or NONE (no auto transaction) — No transaction is initiated when you invoke DELETE. A failed DELETE operation
can leave the database in an inconsistent state, with some of the specified rows deleted and some not deleted. To provide
transaction support in this mode you must use START TRANSACTION to initiate the transaction and COMMIT
or ROLLBACK to end the transaction.

A sharded table is always in no auto transaction mode, which means all inserts, updates, and deletes to sharded tables
are performed outside the scope of a transaction.

You can determine the atomicity setting for the current process using the GetOption(**AutoCommit'") method, as shown
in the following ObjectScript example:

ObjectScript

SET stat=$SYSTEM.SQL.Util_SetOption(""AutoCommit",$RANDOM(3), .oldval)
IF stat™=1 {WRITE "SetOption failed:" DO $System.Status.DisplayError(gStatus) QUIT}
SET x=$SYSTEM.SQL.Util._GetOption('"AutoCommit')
IF x=1 {
WRITE "Default atomicity behavior",!
WRITE "automatic commit or rollback™ }
ELSEIF x=0 {
WRITE "No transaction initiated, no atomicity:",!
WRITE "failed DELETE can leave database inconsistent”,!
WRITE "rollback is not supported" }
ELSE { WRITE "Explicit commit or rollback required" }

Transaction Locking

If you do not specify %NOLOCK, the system automatically performs standard record locking on INSERT, UPDATE,
and DELETE operations. Each affected record (row) is locked for the duration of the current transaction.

The default lock threshold is 1000 locks per table, which means if you delete more than 1000 records from a table during
a transaction, the lock threshold is reached and InterSystems IRIS automatically escalates the locking level from record
locks to a table lock. This permits large-scale deletes during a transaction without overflowing the lock table.

InterSystems IRIS applies one of the two following lock escalation strategies:

» “E”-type lock escalation: InterSystems IRIS uses this type of lock escalation if the following are true: (1) the class
uses %Storage.Persistent (you can determine this from the Catalog Details in the Management Portal SQL schema
display). (2) the class either does not specify an IDKey index, or specifies a single-property IDKey index. “E”-type
lock escalation is described in the LOCK command.

» Traditional SQL lock escalation: The most likely reason why a class would not use “E”-type lock escalation is the
presence of a multi-property IDKey index. In this case, each %Save increments the lock counter. This means if you
do 1001 saves of a single object within a transaction, InterSystems IRIS will attempt to escalate the lock.

InterSystems SQL Reference 179

SQL Commands

For both lock escalation strategies, you can determine the current system-wide lock threshold value using the
$SYSTEM.SQL.Util.GetOption(*'LockThreshold'") method. The default is 1000. This system-wide lock threshold value
is configurable:

» Using the $SYSTEM.SQL.Util.SetOption(*'LockThreshold") method.

e Using the Management Portal: select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Lock escalation threshold. The default is 1000 locks. If you change this setting, any new
process started after changing it will have the new setting.

You must have USE permission on the %Admin Manage Resource to change the lock threshold. InterSystems IRIS
immediately applies any change made to the lock threshold value to all current processes.

One potential consequence of automatic lock escalation is a deadlock situation that might occur when an attempt to escalate
to a table lock conflicts with another process holding a record lock in that table. There are several possible strategies to
avoid this: (1) increase the lock escalation threshold so that lock escalation is unlikely to occur within a transaction. (2)
substantially lower the lock escalation threshold so that lock escalation occurs almost immediately, thus decreasing the
opportunity for other processes to lock a record in the same table. (3) apply a table lock for the duration of the transaction
and do not perform record locks. This can be done at the start of the transaction by specifying LOCK TABLE, then UNLOCK
TABLE (without the IMMEDIATE keyword, so that the table lock persists until the end of the transaction), then perform
deletes with the %NOLOCK option.

Automatic lock escalation is intended to prevent overflow of the lock table. However, if you perform such a large number
of deletes that a <LOCKTABLEFULL> error occurs, DELETE issues an SQLCODE -110 error.

For further details on transaction locking refer to Transaction Processing.

Examples

The following examples both delete all rows from the TempEmployees table. Note that the FROM keyword is optional:
SQL

DELETE FROM TempEmployees

SQL

DELETE TempEmployees
The following example deletes employee number 234 from the Employees table:

SQL

DELETE
FROM Employees
WHERE Empld = 234

The following example deletes all rows from the ActiveEmployees table in which the CurStatus column is set to "Retired":

SQL

DELETE FROM ActiveEmployees
WHERE CurStatus = "Retired”

The following example deletes rows using a subquery:

SQL

DELETE FROM (SELECT Name,Age FROM Sample.Person WHERE Age > 65)

180 InterSystems SQL Reference

DELETE (SQL)

Table Deletion Example

The following example demonstrates the task of deleting rows from a newly-created table and then subsequetly deleting
the table itself.

The first command in this example creates a table named SQLUser.WordPairs with three columns.

SQL

CREATE TABLE SQLUser.WordPairs (
Lang CHAR(2) NOT NULL,
Firstword CHAR(30),
Lastword CHAR(30))

The next few commands insert six records into the table.

SQL

INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
("En","hello", "goodbye™)

INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
("Fr*,"bonjour®,"au revoir")

INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
("1t","pronto”, "ciao”

INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES

“"Fr*,"oui”,"non")

INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
("En", "howdy" , "see ya")

INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
("Es","hola","adios")

The following commands delete all English records using cursor-based Embedded SQL.

ObjectScript

#sqlcompile path=Sample
NEW %ROWCOUNT , %ROWID
&sql (DECLARE WPCursor CURSOR FOR
SELECT Lang FROM WordPairs
WHERE Lang="En")
&sql (OPEN WPCursor)
QUIT: (SQLCODE"=0)
FOR { &sql (FETCH WPCursor)
QUIT :SQLCODE
&sql (DELETE FROM WordPairs
WHERE CURRENT OF WPCursor)
IF SQLCODE=0 {
WRITE !,"Delete succeeded"
WRITE !,"Row count="",%ROWCOUNT," RowlD="",%ROWID }
ELSE {
WRITE !,"Delete failed, SQLCODE=",SQLCODE }

gsql(CLOSE WPCursor)
This command then deletes all French records.
SQL
DELETE FROM WordPairs WHERE Lang="Fr*
The final two commands display the remaining records in the table and delete the table.
SQL

SELECT %ID,* FROM SQLUser.WordPairs
DROP TABLE SQLUser.WordPairs

InterSystems SQL Reference 181

SQL Commands

See Also

FROM

TRUNCATE TABLE
INSERT UPDATE
CREATE VIEW
WHERE

WHERE CURRENT OF
Modifying the Database
Defining Tables
Defining Views

Transaction Processing

SQL and Object Settings Pages.

SQLCODE error messages

182

InterSystems SQL Reference

DROP AGGREGATE (SQL)

DROP AGGREGATE (SQL)

Deletes a user-defined aggregate function.

Synopsis

DROP AGGREGATE [IF EXISTS] nane

Description

The DROP AGGREGATE command deletes a user-defined aggregate function (UDAF). A user-defined aggregate function
is created using the CREATE AGGREGATE command.

If you attempt to drop a UDAF that does not exist, SQL issues an SQLCODE -428 error, with a message such as: User
Defined Aggregate Function Sample.SecondHighest does not exist.

Dropping a UDAF automatically purges any cached queries that reference that UDAF.

Arguments

name

The name of the user-defined aggregate function to be deleted. The namecan be qualified (schema.aggname), or unqualified
(aggname). An unqualified name takes the default schema name.

See Also
*» CREATE AGGREGATE command
« Overview of Aggregate Functions

* SQLCODE error messages

InterSystems SQL Reference 183

SQL Commands

DROP DATABASE (SQL)

Deletes a database (namespace).

Synopsis

DROP DATABASE [IF EXISTS] dbname [RETAIN_FILES]

Description
The DROP DATABASE command deletes a namespace and its associated database.

The specified dbname is the name of the namespace and the directory that contains the corresponding database files.
Specify dbname as an identifier. Namespace names are not case-sensitive. If the specified dbname namespace does not
exist, InterSystems IRIS issues an SQLCODE -340 error.

The DROP DATABASE command is a privileged operation. Prior to using DROP DATABASE, it is necessary to be
logged in as a user with the %Admin_Manage resource. The user must also have READ permission on the resource for the
routines and global's database definitions. Failing to do so results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login(*"_SYSTEM","SYS')
&sqgl (

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

DROP DATABASE cannot be used to drop a system namespace, regardless of privileges. Attempting to do so results in
an SQLCODE -342 error.

DROP DATABASE cannot be used to drop the namespace that you are currently using or connected to. Attempting to do
so results in an SQLCODE -344 error.

You can also delete a namespace using the Management Portal. Select System Administration, Configuration, System Con-
figuration, Namespaces to list the existing namespaces. Click the Delete button for the namespace you wish to delete.

RETAIN_FILES

If you specify this option, the physical file structure is retained; the database and its associated namespace is removed.
After performing this operation, a subsequent attempt to use dbname results in the following:

* DROP DATABASE without RETAIN_FILES cannot remove this physical file structure. Instead, it results in an
SQLCODE -340 error (Database not found).

» DROP DATABASE with RETAIN_FILES also results in an SQLCODE -340 error (Database not found).

« CREATE DATABASE cannot create a new database with the same name. Instead, it results in an SQLCODE -341
error (Cannot create database file for database).

e Attempting to use this namespace results in a <NAMESPACE> error.

Server Init and Disconnect Codes

The Server Init Code and Server Disconnect Code can be assigned to a namespace using the
$SYSTEM.SQL.Util.SetOption(**ServerlnitCode" value) and
$SYSTEM.SQL.Util.SetOption(**ServerDisconnectCode",value) methods. The current values can be determined using
the corresponding $SYSTEM.SQL.Util.GetOption() method options.

184 InterSystems SQL Reference

DROP DATABASE (SQL)

Deleting a namespace, using DROP DATABASE or other interfaces, deletes these Server Init Code and Server Disconnect
Code values. Therefore, deleting and then re-creating a namespace will require you to re-specify these values.

Arguments

IF EXISTS

An optional argument that, if specified, suppresses the error if the command is executed on a nonexistent database.
dbname

The name of the database (namespace) to be deleted.

RETAIN_FILES

An optional argument that, if specified, the physical database files (IRIS.DAT files) will not be deleted. The default is to
delete the .DAT files along with the namespace and the other database entities.

Example

The following example deletes a namespace and its associated database (in this case ‘c:\InterSystems\IRIS\mgr\DocTestDB").
It retains the physical database files:

SQL
CREATE DATABASE DocTestDB ON DIRECTORY "c:\InterSystems\IRIS142\mgr\DocTestDB"
SQL

DROP DATABASE DocTestDB RETAIN_FILES

See Also

» CREATE DATABASE command
 USE DATABASE command

InterSystems SQL Reference 185

SQL Commands

DROP FOREIGN SERVER (SQL)

Drops a foreign server.

Synopsis
DROP [FOREIGN] SERVER server-name [RESTRICT | CASCADE]
Arguments
Arguments Description
server-name The name of the foreign server to be dropped. This name must be a valid
identifier. A foreign server by this name must exist for the command to execute
successfully.
RESTRICT Optional — Specifies that the foreign server should be dropped if nothing is
defined on it. This option supplies the default behavior.
CASCADE Optional — Specifies that all objects defined within the foreign server, including
tables, are dropped with the foreign server.
Description

The DROP FOREIGN SERVER command deletes a foreign server that was configured to host foreign tables.

By default, this command will only drop a foreign server that has no foreign tables defined on it; you may explicitly apply
this behavior by specifying the RESTRICT keyword. When the RESTRICT keyword has been implicitly or explicitly
specified, attempting to delete a foreign server with at least one table defined on it generates an SQLCODE -321 error.

When the CASCADE is specified, DROP FOREIGN SERVER will successfully delete the foreign server and all of the
tables defined on it.

In order to delete a foreign table, the following conditions must be met:

» The foreign server must exist in the current namespace. Attempting to delete a non-existent foreign server generates
an SQLCODE -30 error.

* You must have the necessary privileges to delete the foreign server. Attempting to delete a foreign server without the
necessary privileges generates an SQLCODE -99 error.

Examples

The following example drops a foreign server that does not have any tables defined on it.
DROP FOREIGN SERVER EmptyServer RESTRICT

The following example drops a foreign server that has tables defined on it. In the process of dropping the foreign server,
the tables associated with it are also dropped.

DROP FOREIGN SERVER FullServer CASCADE

See Also

» CREATE FOREIGN SERVER
* ALTER FOREIGN SERVER

186 InterSystems SQL Reference

DROP FOREIGN SERVER (SQL)

 DROP FOREIGN TABLE

InterSystems SQL Reference 187

SQL Commands

DROP FOREIGN TABLE (SQL)

Drops a foreign table.

Synopsis
DROP FOREIGN TABLE [IF EXISTS] table-nane [RESTRICT | CASCADE]
Arguments
Arguments Description
IF EXISTS Optional — Suppresses the error that arises if a foreign table with table-name
does not exist.
table-name The name of the foreign table to be dropped. This name must be a valid identifier.
A foreign table by this name must exist for the command to execute successfully.
RESTRICT Optional — Specifies that the foreign table should not be dropped if any SQL
objects, such as views, are defined on the foreign table. This option supplies
the default behavior.
CASCADE Optional — Specifies that all objects defined on the foreign table, such as views,
are dropped with the foreign table.
Description

The DROP FOREIGN TABLE command deletes a foreign table from a foreign server.

By default, this command will only delete a foreign table if no views are associated with it; you may explicitly apply this
behavior by specifying the RESTRICT keyword. When the RESTRICT keyword has been implicitly or explicitly specified,
attempting to delete a foreign table with associated views generates an SQLCODE -321 error.

When the CASCADE keyword is specified, DROP FOREIGN TABLE will successfully delete the table and any views
associated with it.

In order to delete a foreign table, the following conditions must be met:

» The foreign table must exist on a foreign server in the current namespace. Attempting to delete a non-existent foreign
table generates an SQLCODE -30 error. This error is suppressed by epcifying the IF EXISTS keywords.

* You must have the necessary privileges to delete the foreign table. Attempting to delete a table without the necessary
privileges generates an SQLCODE -99 error.

Examples

The following example deletes a foreign table that does not have any objects defined on it.
DROP FOREIGN TABLE Example.MyTable RESTRICT
The following example deletes a foreign table and any views associated with it.

DROP FOREIGN TABLE Example.MyTable CASCADE

See Also
. CREATE FOREIGN TABLE

188 InterSystems SQL Reference

DROP FOREIGN TABLE (SQL)

» ALTER FOREIGN SERVER
* DROP FOREIGN SERVER

InterSystems SQL Reference 189

SQL Commands

DROP FUNCTION (SQL)

Deletes a function.

Synopsis

DROP FUNCTION [IF EXISTS] name [FROM cl assName]

Description

The DROP FUNCTION command deletes a function. When you drop a function, InterSystems IRIS revokes it from all
users and roles to whom it has been granted and removes it from the database.

In order to drop a function, you must have %DROP_FUNCTION administrative privilege, as specified by the GRANT
command. Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a function if the class definition that contains that function definition is a deployed class. This operation
fails with an SQLCODE -400 error with the %msg Unablle to execute DDL that modifies a deployed
class: “classname”.

The following combinations of name and FROM className are supported. Note that the FROM clause specifies the class
package name and function name, not the SQL names. In these examples, the system-wide default schema name is SQLUser,
which corresponds to the User class package:

 DROP FUNCTION BonusCalc FROM funcBonusCalc: drops the function SQLUser.BonusCalc().

e DROP FUNCTION BonusCalc FROM User.funcBonusCalc: drops the function SQLUser.BonusCalc().

e DROP FUNCTION Test.BonusCalc FROM funcBonusCalc: drops the function SQLUser.BonusCalc().

* DROP FUNCTION BonusCalc FROM Employees.funcBonusCalc: drops the function Employees.BonusCalc().

* DROP FUNCTION Test.BonusCalc FROM Employees.funcBonusCalc: drops the function Employees.Bonus-
Calc().

If the specified function does not exist, DROP FUNCTION generates an SQLCODE -362 error. If the specified class does
not exist, DROP FUNCTION generates an SQLCODE -360 error. If the specified function could refer to two or more
functions, DROP FUNCTION generates an SQLCODE -361 error; you must specify a classNameto resolve this ambiguity.

Arguments
IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent function.

name

The name of the function to be deleted. The name is an identifier. Do not specify the function’s parameter parentheses. A
name can be qualified (schema.name), or unqualified (name). An unqualified function name takes the system-wide default
schema name, unless the FROM className clause is specified.

FROM className

If specified, the FROM className clause deletes the function from the given class. Note that you must specify the className
of a function (funcBonusCalc), not the SQL name (BonusCalc). If the FROM clause is not specified, InterSystems IRIS
searches all classes of the schema for the function, and deletes it. However, if no function of this name is found, or more
than one function of this name is found, an error code is returned. If the deletion of the function results in an empty class,
DROP FUNCTION deletes the class as well

190 InterSystems SQL Reference

DROP FUNCTION (SQL)

Examples

The following example attempts to delete myfunc from the class User.Employee. (Refer to CREATE TABLE for an
example that creates class User.Employee.)

SQL

DROP FUNCTION myfunc FROM User._Employee

See Also

« CREATE FUNCTION
e SQLCODE error messages

InterSystems SQL Reference 191

SQL Commands

DROP INDEX (SQL)

Removes an index.

Synopsis

DROP INDEX [IF EXISTS] [%NOJOURN] i ndex-nanme [ON [TABLE] tabl e- nane]
DROP INDEX [IF EXISTS] tabl e- nane.i ndex- nane

Description

A DROP INDEX statement deletes an index from a table definition. You can use DROP INDEX to delete a standard
index, bitmap index, or bitslice index. You can use DROP INDEX to delete a unique constraint or a primary key constraint
by deleting the corresponding Unique index. You cannot use DROP INDEX to delete a Bitmap Extent index or a Master
Map (Data/Master) IDKEY index.

You may wish to delete an index for any of the following reasons:

* Youintend to perform large numbers of INSERT, UPDATE, or DELETE operations on a table. Rather than accepting
the performance overhead of having each of these operations write to the index, you can use the %NOINDEX option
for the operation. Or, in certain cases, it may be preferable to delete the index, perform the bulk changes to the database,
and then recreate the index and populate it.

* Anindex exists for a field or combination of fields that are not used for query operations. In this case, the performance
overhead of maintaining the index may not be worthwhile.

» Anindex exists for a field or combination of fields that now contain large amounts of duplicate data. In this case, the
minimal gain to query performance may not be worthwhile.

You cannot drop an IDKEY index when there is data in the table. Attempting to do so generates an SQLCODE -325 error.

Privileges and Locking

The DROP INDEX command is a privileged operation. The user must have %ALTER_TABLE administrative privilege
to execute DROP INDEX. Failing to do so results in an SQLCODE —99 error with the %msg User “name” does not
have %ALTER_TABLE privileges. You can use the GRANT command to assign %ALTER_TABLE privileges to a
user or role, if you hold appropriate granting privileges. Administrative privileges are namespace-specific. For further
details, refer to Privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE —99 error with the %msg User “"name® does not have required
%ALTER privilege needed to change the table definition for "Schema.TableName®.You can
determine if the current user has %ALTER privilege by invoking the %CHECKPRIV command. You can use the GRANT
command to assign %ALTER privilege to a specified table. For further details, refer to Privileges.

» DROP INDEX cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdIAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class "Schema.tablename”.

 DROP INDEX cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
"classname”.

The DROP INDEX statement acquires a table-level lock on table-name. This prevents other processes from modifying
the table’s data. This lock is automatically released at the conclusion of the DROP INDEX operation.

192 InterSystems SQL Reference

DROP INDEX (SQL)

Index Name

When specifying an index-name to create an index, the system generates a corresponding class index name by stripping
out any punctuation characters; it retains the index-name you specified in the class as the SqiName value for the index (the
SQL map name). When you specify an index-name to DROP INDEX, you specify the name including the punctuation,
which is listed in the table’s Management Portal SQL Catalog Details as the SQL Map Name. For example, you specify the
generated SQL Map Name for a Unique constraint (MYTABLE_UNIQUE?2), not the Index Name (MYTABLEUNIQUE?).
This index-name is not case-sensitive.

Table Name
You can specify the table associated with the index using either DROP INDEX syntax form:

e index-name ON TABLE syntax: specifying the table name is optional. If omitted, InterSystems IRIS searches all of
the classes in the namespace for the corresponding index.

* table-name. index-name syntax: specifying the table name is required.

In either syntax, the table name can be unqualified (table), or qualified (schema.table). If the schema name is omitted, the
default schema name is used.

If DROP INDEX does not specify a table name, InterSystems IRIS searches through all indexes for an index SqlName
matching index-name, or an index name matching index-name for indexes where an SqlName is not specified for the index.
If InterSystems IRIS finds no matching indexes in any class, an SQLCODE -333 error is generated, indicating no such
index exists. If InterSystems IRIS finds more than one matching index, DROP INDEX cannot determine which index to
drop; it issues an SQLCODE -334 error: “Index name is ambiguous. Index found in multiple tables.” Index hames in
InterSystems IRIS are not unique per namespace.

Nonexistent Index

By default, if you try to delete a nonexistent index, DROP INDEX issues an SQLCODE -333 error. To determine the
current setting, call $SYSTEM.SQL.CurrentSettings(), which displays an Allow DDL DROP of non-existent
index setting. The default is 0 (“No™). This is the recommended setting. If setto 1 (“Yes”) DROP INDEX for a
nonexistent index performs no operation and issues no error message. For further details, refer to SQL and Object Settings
Pages.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

The behavior of the predicate IF EXISTS takes priority over settings in the Management Portal and the configuration
parameter file (CPF) which also govern DDL statements. These settings return SQLCODE 0 and suppress the error silently.
When IF EXISTS is specified, the command returns SQLCODE 1 along with a message.

Journaling

If you specify the %NOJOURN keyword, then DROP INDEX suppresses journaling and disables transactions for the
duration of the operation. To specify %NOJOURN, you must have %NOJOURN SQL administrative privileges, which
you can set by using the GRANT command.

Table Name
If you specify the optional table-name, it must correspond to an existing table.

» If the specified table-name does not exist, InterSystems IRIS issues an SQLCODE -30 error and sets %msg to Table
"SQLUser.tname" does not exist.

InterSystems SQL Reference 193

SQL Commands

» Ifthe specified table-name exists but does not have an index named index-name, InterSystems IRIS issues an SQLCODE
-333 error and sets %msg to Attempt to DROP INDEX “Mylndex®™ on table SQLUSER.TNAME failed
- index not found.

» If the specified table-name is a view, InterSystems IRIS issues an SQLCODE -333 error and sets %msg to Attempt
to DROP INDEX “EmpSalarylndex® on view SQLUSER.VNAME failed. Indices only supported
for tables, not views.

Arguments
IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent index. For further details, refer
to the following section on nonexistent indexes.

index-name

The name of the index to be deleted. index-name is the SQL version of the name, which can include underscores and other
punctuation. It is listed in the table’s Management Portal SQL Catalog Details as the SQL Map Name.

ON table-name, ON TABLE table-name

An optional argument specifying the name of the table associated with the index. You can specify the table-name using
either syntax: The first syntax uses the ON clause; the TABLE keyword is optional. The second syntax uses the qualified
name syntax schema-name . table-name . index-name. A table-name can be qualified (schema.table), or unqualified
(table). An unqualified table name takes the default schema name. If you omit the table-name entirely, InterSystems IRIS
deletes the first index found that matches index-name, as described below.

Examples
The first example creates a table named Employee, which is used in all of the examples in this section.

The following example creates an index named "EmpSalaryIndex" and later removes it. Note that here DROP INDEX does
not specify the table associated with the index; it assumes that "EmpSalaryIndex” is a unique index name in this namespace.

SQL

CREATE TABLE Employee (
EMPNUM INT NOT NULL,
NAMELAST CHAR(30) NOT NULL,
NAMEFIRST CHAR(30) NOT NULL,
STARTDATE TIMESTAMP,
SALARY MONEY,
ACCRUEDVACATION INT,
ACCRUEDSICKLEAVE INT,
CONSTRAINT EMPLOYEEPK PRIMARY KEY (EMPNUM))

CREATE INDEX EmpSalarylndex
ON TABLE Employee
(Namelast,Salary)

DROP INDEX EmpSalarylndex

The following example specifies the table associated with the index to be dropped using an ON TABLE clause:

SQL

CREATE INDEX EmpVacalndex
ON TABLE Employee
(NameLast,AccruedVacation)

DROP INDEX EmpVacalndex ON TABLE Employee

The following example specifies the table associated with the index to be dropped using qualified name syntax:

194 InterSystems SQL Reference

DROP INDEX (SQL)

SQL

CREATE INDEX EmpSicklIndex
ON TABLE Employee
(NameLast,AccruedSickLeave)
DROP INDEX Employee.EmpSicklndex

The following command attempts to drop a nonexistent index. It generates an SQLCODE -333 error:

SQL

DROP INDEX Peoplelndex ON TABLE Employee

See Also

« CREATE INDEX
» Defining and Building Indexes

* SQLCODE error messages

InterSystems SQL Reference 195

SQL Commands

DROP METHOD (SQL)

Deletes a method.

Synopsis

DROP METHOD [IF EXISTS] nanme [FROM cl assNane]

Description

The DROP METHOD command deletes a method. When you delete a method, InterSystems IRIS revokes it from all users
and roles to whom it has been granted and removes it from the database.

In order to delete a method, you must have %DROP_METHOD administrative privilege, as specified by the GRANT
command. If you are attempting to delete a method for a class with a defined owner, you must be logged in as the owner
of the class. Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a method if the class definition that contains that method definition is a deployed class. This operation
fails with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed
class: “classname”.

The following combinations of name and FROM className are supported. Note that the FROM clause specifies the class
package name and method name, not the SQL names. In these examples, the system-wide default schema name is SQLUser,
which corresponds to the User class package:

e DROP METHOD BonusCalc FROM methBonusCalc: drops the method SQLUser.BonusCalc().

e DROP METHOD BonusCalc FROM User.methBonusCalc: drops the method SQLUser.BonusCalc().
 DROP METHOD Test.BonusCalc FROM methBonusCalc: drops the method SQLUser.BonusCalc().

e« DROP METHOD BonusCalc FROM Employees.methBonusCalc: drops the method Employees.BonusCalc().
 DROP METHOD Test.BonusCalc FROM Employees.methBonusCalc: drops the method Employees.BonusCalc().
If the specified method does not exist, DROP METHOD generates an SQLCODE -362 error. If the specified className

does not exist, DROP METHOD generates an SQLCODE -360 error. If the specified method could refer to two or more
methods, DROP METHOD generates an SQLCODE -361 error; you must specify a className to resolve this ambiguity.

If a method has been defined with the PROCEDURE characteristic keyword, you can determine if it exists in the current
namespace by invoking the $SYSTEM.SQL.Schema.ProcedureExists() method. A method defined with the PROCEDURE
keyword can be deleted either by DROP METHOD or DROP PROCEDURE.

You can also delete a method by removing the method from the class definition and then recompiling the class, or by
deleting the entire class.

Arguments
IF EXISTS
An optional argument that suppresses the error if the command is executed on a nonexistent method.

name

The name of the method to be deleted. The name is an identifier. Do not specify the method’s parameter parentheses. A
name can be qualified (schema.name), or unqualified (name). An ungualified method name takes the default schema name,
unless the FROM className clause is specified.

196 InterSystems SQL Reference

DROP METHOD (SQL)

FROM className

If specified, the FROM className clause deletes the method from the given class. Note that you must specify the className
of a method (methBonusCalc), not the SQL name (BonusCalc). If this clause is not specified, InterSystems IRIS searches
all classes of the schema for the method, and deletes it. However, if no method of this name is found, or more than one
method of this name is found, an error code is returned. If the deletion of the method results in an empty class, DROP
METHOD deletes the class as well.

Examples

The following example attempts to delete mymeth from the class User.Employee. (Refer to CREATE TABLE for an
example that creates class User.Employee.)

SQL

DROP METHOD mymeth FROM User.Employee

See Also

* CREATE METHOD
* SQLCODE error messages

InterSystems SQL Reference 197

SQL Commands

DROP ML CONFIGURATION (SQL)

Deletes an ML configuration.

Synopsis
DROP ML CONFIGURATION ni -confi gurati on-nane
Arguments
ml-configuration-name The name of the ML configuration to delete.
Description

The DROP ML CONFIGURATION command deletes an ML configuration and its corresponding class definition.

Conditions

e The ML configuration must exist in the current namespace. Attempting to delete a non-existent ML configuration
generates an SQLCODE -30 error.

* You cannot delete the system default ML configuration. Attempting to do so results in a SQLCODE —189 error.

Required Security Privileges

Calling DROP ML CONFIGURATION requires %DROP_ML_CONFIGRATION privileges; otherwise, there is a
SQLCODE -99 error (Privilege Violation). To assign %DROP_ML_CONFIGRATION privileges, use the GRANT command.

See Also
. ALTER ML CONFIGURATION, CREATE ML CONFIGURATION

198 InterSystems SQL Reference

DROP MODEL (SQL)

DROP MODEL (SQL)

Deletes a model.

Synopsis
DROP MODEL nodel - nane

Arguments

model-name The name of the model to delete.

Description

The DROP MODEL command deletes a model and its corresponding class definition. It also purges any training runs and
validation runs associated with the model.

Deleting a Non-Existent Model

The model must exist in the current namespace. Attempting to delete a non-existent model generates an SQLCODE —30
error.

Required Security Privileges

Calling DROP MODEL requires %MANAGE_MODEL privileges; otherwise, there is a SQLCODE -99 error (Privilege
Violation). To assign %MANAGE_MODEL privileges, use the GRANT command.

See Also
. ALTER MODEL, CREATE MODEL

InterSystems SQL Reference 199

SQL Commands

DROP PROCEDURE (SQL)

Deletes a procedure.

Synopsis

DROP PROCEDURE [IF EXISTS] procnanme [FROM cl assNane]
DROP PROC procnane [FROM cl assNane]

Description

The DROP PROCEDURE command deletes a procedure in the current namespace. When you drop a procedure, InterSystems
IRIS revokes it from all users and roles to whom it has been granted and removes it from the database.

In order to drop a procedure, you must have %DROP_PROCEDURE administrative privilege, as specified by the GRANT
command. If you are attempting to delete a procedure for a class with a defined owner, you must be logged in as the owner
of the class. Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a procedure if the class definition that contains that procedure definition is a deployed class. This operation
fails with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed
class: “classname”.

The procname is not case-sensitive. You must specify procname without parameter parentheses; specifying parameter
parentheses results in an SQLCODE -25 error.

The following combinations of procname and FROM className are supported. Note that the FROM clause specifies the
class package name and procedure name, not the SQL names. In these examples, the system-wide default schema name is
SQLUser, which corresponds to the User class package:

» DROP PROCEDURE BonusCalc FROM procBonusCalc: drops the procedure SQLUser.BonusCalc().
 DROP PROCEDURE BonusCalc FROM User.procBonusCalc: drops the procedure SQLUser.BonusCalc().

e DROP PROCEDURE Test.BonusCalc FROM procBonusCalc: drops the procedure SQLUser.BonusCalc().

e DROP PROCEDURE BonusCalc FROM Employees.procBonusCalc: drops the procedure Employees.BonusCalc().
 DROP PROCEDURE Test.BonusCalc FROM Employees.procBonusCalc: drops the procedure Employ-

ees.BonusCalc().

If the specified procedure does not exist, DROP PROCEDURE generates an SQLCODE -362 error. If the specified class
does not exist, DROP PROCEDURE generates an SQLCODE -360 error. If the specified procedure could refer to two or
more procedures, DROP PROCEDURE generates an SQLCODE -361 error; you must specify a className to resolve
this ambiguity.

To determine if a specified procnameexists in the current namespace, use the $SYSTEM.SQL.Schema.ProcedureExists()
method. This method recognizes both procedures and methods defined with the PROCEDURE keyword. A method defined
with the PROCEDURE keyword can be deleted using DROP PROCEDURE.

If you execute a DROP PROCEDURE for a procedure that is an ObjectScript class query procedure, InterSystems IRIS
will also drop the methods related to the procedure, such as myprocExecute(), myprocGetinfo(), myprocFetch(),
myprocFetchRows(), and myprocClose().

You can also delete a procedure by removing the stored procedure from the class definition and then recompiling the class,
or by deleting the entire class.

200 InterSystems SQL Reference

DROP PROCEDURE (SQL)

Arguments

procname

The name of the procedure to be deleted. The name is an identifier. Do not specify the procedure’s parameter parentheses.
A name can be qualified (schema.name), or unqualified (name). An unqualified procedure name takes the default schema
name, unless the FROM className clause is specified.

FROM className

If specified, the FROM className clause deletes the procedure from the given class. If this clause is not specified, Inter-
Systems IRIS searches all classes of the schema for the procedure, and deletes it. However, if no procedure of this name
is found, or more than one procedure of this name is found, an error code is returned. If the deletion of the procedure results
in an empty class, DROP PROCEDURE deletes the class as well.

Examples

The following example attempts to delete myprocSP from the class User.Employee. (Refer to CREATE TABLE for an
example that creates class User.Employee.)

SQL

DROP PROCEDURE myprocSP FROM User.Employee

See Also

» CREATE PROCEDURE
e SQLCODE error messages

InterSystems SQL Reference 201

SQL Commands

DROP QUERY (SQL)

Deletes a query.

Synopsis

DROP QUERY [IF EXISTS] nane [FROM cl assName]

Description

The DROP QUERY command deletes a query. When you drop a query, InterSystems IRIS revokes it from all users and
roles to whom it has been granted and removes it from the database.

In order to drop a query, you must have %DROP_QUERY administrative privilege, as specified by the GRANT command.
If you are attempting to delete a query for a class with a defined owner, you must be logged in as the owner of the class.
Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a query if the class definition that contains that query definition is a deployed class. This operation fails
with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
"classname”.

The following combinations of name and FROM className are supported. Note that the FROM clause specifies the class
package name and query name, not the SQL names. In these examples, the system-wide default schema name is SQLUser,
which corresponds to the User class package:

e DROP QUERY BonusCalc FROM queryBonusCalc: drops the query SQLUser.BonusCalc().
e DROP QUERY BonusCalc FROM User.queryBonusCalc: drops the query SQLUser.BonusCalc().
 DROP QUERY Test.BonusCalc FROM queryBonusCalc: drops the query SQLUser.BonusCalc().

DROP QUERY BonusCalc FROM Employees.queryBonusCalc: drops the query Employees.BonusCalc().

DROP QUERY Test.BonusCalc FROM Employees.queryBonusCalc: drops the query Employees.BonusCalc().

If the specified query does not exist, DROP QUERY generates an SQLCODE -362 error. If the specified class does not
exist, DROP QUERY generates an SQLCODE -360 error. If the specified query could refer to two or more queries, DROP
QUERY generates an SQLCODE -361 error; you must specify a className to resolve this ambiguity.

You can also delete a query by removing the query (projected as a stored procedure) from the class definition and then
recompiling the class, or by deleting the entire class.

Arguments
IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent query.

name

The name of the query to be deleted. The name is an identifier. Do not specify the query’s parameter parentheses. A hame
can be qualified (schema.name), or unqualified (name). An unqualified query name takes the system-wide default schema
name, unless the FROM className clause is specified.

FROM className

If specified, the FROM className clause deletes the query from the given class. If this clause is not specified, InterSystems
IRIS searches all classes of the schema for the query, and deletes it. However, if no query of this name is found, or more

202 InterSystems SQL Reference

DROP QUERY (SQL)

than one query of this name is found, an error code is returned. If the deletion of the query results in an empty class, DROP
QUERY deletes the class as well.

Examples

The following example attempts to delete myq from the class User.Employee. (Refer to CREATE TABLE for an example
that creates class User.Employee.)

SQL

DROP QUERY myq FROM User_Employee

See Also

* CREATE QUERY
* SQLCODE error messages

InterSystems SQL Reference 203

SQL Commands

DROP ROLE (SQL)

Deletes a role.

Synopsis

DROP ROLE [IF EXISTS] rol e- nane

Description

The DROP ROLE statement deletes a role. When you drop a role, InterSystems IRIS revokes it from all users and roles
to whom it has been granted and removes it from the database.

You can determine if a role exists by invoking the $SYSTEM.SQL.Security.RoleExists() method. If you attempt to drop
a role that does not exist (or has already been dropped), DROP ROLE issues an SQLCODE -118 error.

Privileges

The DROP ROLE command is a privileged operation. Prior to using DROP ROLE in embedded SQL, it is necessary to
fulfill at least one of the following requirements:

* You are the owner of the role.

* You are logged in with one of the following:
— The %Admin_Secure administrative resource with USE permission
— The %Admin_RoleEdit administrative resource with USE permission

— Full security privileges on the system
* You were granted the role WITH ADMIN OPTION.

Failing to do so results in an SQLCODE -99 error (Privilege Violation).
Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login(*'_SYSTEM","SYS™)
&sql(

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

Arguments
IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent role.

role-name

The name of the role to be deleted. The name is an identifier. Role names are not case-sensitive.

Examples

The following example creates a role named BkUser and then deletes it:

204 InterSystems SQL Reference

DROP ROLE (SQL)

SQL

CREATE ROLE BkName
DROP ROLE BkName

See Also

e SQL statements: CREATE ROLE, CREATE USER, DROP USER, GRANT, REVOKE, %CHECKPRIV
e SQL Users, Roles, and Privileges

e SQLCODE error messages

* ObjectScript: $ROLES and $SUSERNAME special variables

InterSystems SQL Reference 205

SQL Commands

DROP SCHEMA (SQL)

Deletes the schema definition.

Synopsis
DROP SCHEMA [IF EXISTS] name [CASCADE | RESTRICT]
Arguments
Argument Description
name The name of the schema to be dropped. The name is an identifier.
IF EXISTS Optional — Suppresses the error that arises if a schema with name does not exist.
CASCADE Optional — Specifies that all objects with a schema are dropped, including tables,
views, queries and methods projected as stored procedures, and user-defined
aggregates.
RESTRICT Optional — Specifies that the schema should only be dropped if nothing is defined
within it. This option is assumed if CASCADE has not been specified.
Description

This command deletes a schema definition. The user that issues the command must either own the schema or have the
%SQLSchemaAdmin resource in order to execute the operation.

If CASCADE is specified, all tables, views, queries and methods projected as stored procedures, and user-defined aggregates
within the schema are dropped.

By default, the RESTRICT option is specified, but you may also specify it manually. When it is specified, the schema will
only be dropped if nothing is defined within it. If DROP SCHEMA is specified without CASCADE and the schema is not
empty, SQLCODE -475 is returned.

DROP SCHEMA provides an implicit % NOJOURN to suppress journaling and disable transactions while the operation is
running. It also provides an implicit %DELDATA to delete data associated with the tables it drops when CASCADE has
been specified.

If you run DROP SCHEMA on a schema that does not exist, SQLCODE -473 is returned.

See Also
e CREATE SCHEMA
* SQLCODE error messages listed in the Inter Systems IRIS Error Reference

206 InterSystems SQL Reference

DROP TABLE (SQL)

DROP TABLE (SQL)

Deletes a table and (optionally) its data.

Synopsis

DROP TABLE tabl e [RESTRICT | CASCADE] [%DELDATA | %NODELDATA]

Description

The DROP TABLE command deletes a table and its corresponding persistent class definition. If the table is the last item
in its schema, deleting the table also deletes the schema and its corresponding persistent class package.

By default, DROP TABLE deletes both the table definition and the table’s data (if any exists). The %NODELDATA
keyword allows you to specify deletion of the table definition but not the table’s data.

DROP TABLE deletes all indexes and triggers associated with the table.
In order to delete a table, the following conditions must be met:

e The table must exist in the current namespace. Attempting to delete a non-existent table generates an SQLCODE -30
error.

» Thetable definition must be modifiable. If the class that projects the table is defined without [DdlAllowed], attempting
to delete the table generates an SQLCODE -300 error.

» The table must not be locked by another concurrent process. If the table is locked, DROP TABLE waits indefinitely
for the lock to be released. If lock contention is a possibility, it is important that you LOCK the table IN EXCLUSIVE
MODE before issuing a DROP TABLE.

* The table must either have no associated views or DROP TABLE must specify the CASCADE keyword. Attempting
to delete a table with associated views without CASCADE generates an SQLCODE -321 error.

* You must have the necessary privileges to delete the table. Attempting to delete a table without the necessary privileges
generates an SQLCODE -99 error.

» You can delete a table even if the corresponding class is defined as a deployed class.

e You cannot delete a table if the persistent class that projects the table has derived classes (subclasses). Attempting to
delete a superclass that would leave a subclass orphaned generates an SQLCODE -300 error with a message: Class
"MySuperClass®™ has derived classes and therefore cannot be dropped via DDL.

You can use the $SYSTEM.SQL.Schema.DropTable() method to delete a table in the current namespace. You specify
the SQL table name. Unlike DROP TABLE, this method can delete a table that was defined without [DdIAllowed]. The
second argument specifies whether the table data should also be deleted; by default, data is not deleted.

ObjectScript

DO $SYSTEM.SQL.Schema.DropTable(''Sample.MyTable™,1, .SQLCODE, .%msg)
IF SQLCODE "= 0 {WRITE ""SQLCODE ' ,SQLCODE," error: ", %msg}

You can use the $SYSTEM.OBJ.Delete() method to delete one or more tables in the current namespace. You must specify
the persistent class name that projects the table (not the SQL table name). You can specify multiple class names using
wildcards. The second argument specifies whether the table data should also be deleted; by default, data is not deleted.

Privileges

The DROP TABLE command is a privileged operation. The user must have %DROP_TABLE administrative privilege
to execute DROP TABLE. Failing to do so results in an SQLCODE -99 error with the %msg User does not have

InterSystems SQL Reference 207

SQL Commands

%DROP_TABLE privileges. You can use the GRANT command to assign %DROP_TABLE privileges, if you hold
appropriate granting privileges.

It is not necessary for the user to have DELETE object privilege for the specified table, even when the DROP TABLE
operation deletes both the table and the table data.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login(*'_SYSTEM","SYS™)
&sql(

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the Inter Systems Class Reference.

DROP TABLE cannot be used on a table created by defining a persistent class, unless the table class definition includes
[DdIAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class "Schema.tablename”®.

Existing Object Privileges

Deleting a table does not delete the object privileges for that table. For example, the privilege granted to a user to insert,
update, or delete data on that table. This has the following two consequences:

» Ifatableis deleted, and then another table with the same name is created, users and roles will have the same privileges
on the new table that they had on the old table.

» Once atable is deleted, it is not possible to revoke object privileges for that table.

For these reasons, it is generally recommended that you use the REVOKE command to revoke object privileges from a
table before deleting the table.

Table Containing Data

By default, DROP TABLE deletes the table definition and deletes the table’s data. This table data delete is an atomic
operation; if DROP TABLE encounters data that cannot be deleted (for example, a row with a referential constraint) any
data deletion already performed is automatically rolled back, with the result that no table data is deleted.

You can set the system-wide default for table data deletion using the $SYSTEM.SQL..Util.SetOption() method
DDLDropTabDe IData option. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays
the Does DDL DROP TABLE delete the table®s data? setting.

The defaultis 1 (“Yes™). This is the recommended setting for this option. Set this option to 0 (“No”) if you want DROP
TABLE to not delete the table’s data when it deletes the table definition.

The deletion of data can be overridden on a per-table basis. When deleting a table, you can specify DROP TABLE with
the %NODELDATA option to prevent the automatic deletion of the table’s data. If the system-wide default is set to not
delete table data, you can delete data on a per-table basis by specifying DROP TABLE with the %DELDATA option.

In most circumstances DROP TABLE automatically deletes the table’s data using a highly efficient kill extent operation.
The following circumstances prevent the use of kill extent: the table has foreign keys that reference it; the class projecting
the table is a subclass of a persistent class; the class does not use default storage; there is a ForEach = "row/object" trigger;
there is a stream field that references a non-default stream field global location. If any of these apply, DROP TABLE
deletes the table’s data using a less-efficient delete record operation.

You can use the TRUNCATE TABLE command to delete the table’s data without deleting the table definition.

208 InterSystems SQL Reference

DROP TABLE (SQL)

Lock Applied

The DROP TABLE statement acquires an exclusive table-level lock on table. This prevents other processes from modifying
the table definition or the table data while table deletion is in process. This table-level lock is sufficient for deleting both
the table definition and the table data; DROP TABLE does not acquire a lock on each row of the table data. This lock is
automatically released at the end of the DROP TABLE operation.

Foreign Key Constraints

By default, you cannot drop a table if any foreign key constraints are defined on another table that references the table you
are attempting to drop. You must drop all referencing foreign key constraints before dropping the table they reference.
Failing to delete these foreign key constraints before attempting a DROP TABLE operation results in an SQLCODE -320
error.

This default behavior is consistent with the RESTRICT keyword option. The CASCADE keyword option is not supported
for foreign key constraints.

To change this default foreign key constraint behavior, refer to the COMPILEMODE=NOCHECK option of the SET
OPTION command.

Associated Queries

Dropping a table automatically purges any related cached queries and purges query information as generated by
%SYS.PTools.StatsSQL. Dropping a table automatically purges any SQL runtime statistics (SQL Stats) information for
any related query.

Nonexistent Table
To determine if a specified table exists in the current namespace, use the $SYSTEM.SQL.Schema.TableExists() method.

By default, if you try to delete a nonexistent table, DROP TABLE issues an SQLCODE -30 error. This is the recommended
setting. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Allow DDL DROP
of non-existent table or viewsetting. The defaultis 0 (“No”). If thisoptionissetto 1 (“Yes”), DROP TABLE
for a nonexistent table performs no operation and does not issue an error message.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

Arguments
table

The name of the table to be deleted. The table name can be qualified (schema.table), or unqualified (table). An unqualified
table name takes the default schema name. Schema search path values are not used.

RESTRICT, CASCADE

An optional argument. RESTRICT only allows a table with no dependent views or integrity constraints to be deleted.
RESTRICT is the default if no keyword is specified. CASCADE allow a table with dependent views or integrity constraints
to be deleted; any referencing views or integrity constraints will also be deleted as part of the table deletion. The CASCADE
keyword option is not supported for foreign key constraints.

%DELDATA, %NODELDATA

These optional keywords specify whether to delete data associated with a table when deleting the table. The default is to
delete table data.

InterSystems SQL Reference 209

SQL Commands

Examples

The following example creates a table named SQLUser.MyEmployees and later deletes it. This example specifies that any
data associated with this table not be deleted when the table is deleted:

SQL

CREATE TABLE SQLUser.MyEmployees (
NAMELAST CHAR (30) NOT NULL,
NAMEFIRST ~ CHAR (30) NOT NULL,
STARTDATE TIMESTAMP,

SALARY MONEY)

DROP TABLE SQLUser.MyEmployees %NODELDATA

See Also

* ALTER TABLE, CREATE TABLE, TRUNCATE TABLE
» Defining Tables

* SQL and Object Settings Pages

e SQLCODE error messages

210 InterSystems SQL Reference

DROP TRIGGER (SQL)

DROP TRIGGER (SQL)

Deletes a trigger.

Synopsis

DROP TRIGGER [IF EXISTS] nanme [FROM table]

Description

The DROP TRIGGER command deletes a trigger. If you wish to modify an existing trigger you must invoke DROP
TRIGGER to delete the old version of the trigger before invoking CREATE TRIGGER.

Note: DROP TABLE drops all triggers associated with that table.

Privileges and Locking

The DROP TRIGGER command is a privileged operation. The user must have %DROP_TRIGGER administrative priv-
ilege to execute DROP TRIGGER. Failing to do so results in an SQLCODE -99 error with the %msg User “name*
does not have %DROP_TRIGGER privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE —99 error with the %msg User "name® does not have required
%ALTER privilege needed to change the table definition for "Schema.TableName®.

You can use the GRANT command to assign %DROP_TRIGGER and %ALTER privileges, if you hold appropriate
granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login("*_SYSTEM","SYS")
&sql()

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

« DROP TRIGGER cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdIAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class "Schema.tablename”.

« DROP TRIGGER cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
"classname”.

The DROP TRIGGER statement acquires a table-level lock on table. This prevents other processes from modifying the
table’s data. This lock is automatically released at the conclusion of the DROP TRIGGER operation.

FROM Clause

A trigger and its table must reside in the same schema. If the trigger name is unqualified, the trigger schema name defaults
to the same schema as the table schema, as specified in the FROM clause. If the trigger name is unqualified, and there is
no FROM clause, or the table name is also unqualified, the trigger schema defaults to the default schema name; schema
search paths are not used. If both names are qualified, the trigger schema name must be the same as the table schema name.

InterSystems SQL Reference 211

SQL Commands

A schema name mismatch results in an SQLCODE -366 error; this should only occur when both the trigger name and the
table name are qualified and they specify different schema names.

In InterSystems SQL, a trigger name must be unique within its schema for a specific table. Thus it is possible to have more
than one trigger in a schema with the same name. The optional FROM clause is used to determine which trigger to delete:

» Ifno FROM clause is specified, and InterSystems IRIS locates a unique trigger in the schema that matches the specified
name, InterSystems IRIS deletes the trigger.

» IfaFROM clause is specified, and InterSystems IRIS locates a unique trigger in the schema that matches both the
specified name and the FROM table name, InterSystems IRIS deletes the trigger.

» Ifno FROM clause is specified, and InterSystems IRIS locates more than one trigger that matches the specified name,
InterSystems IRIS issues an SQLCODE -365 error.

» If InterSystems IRIS locates no trigger that matches the specified name, either for the table specified in the FROM
clause or, if there is no FROM clause, for any table in the schema, InterSystems IRIS issues an SQLCODE -363 error.

Arguments

IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent trigger.
name

The name of the trigger to be deleted. A trigger name may be qualified or unqualified; if qualified, its schema name must
match the table’s schema name.

FROM table

An optional argument that specifies the table the trigger is to be deleted from. If the FROM clause is specified, only the
table is searched for the named trigger. If the FROM clause is not specified, the entire schema specified in name is searched
for the named trigger.

Examples

The following example deletes a trigger named Trigger_1 associated with any table in the system-wide default schema.
(The initial default schema is SQLUser):

SQL

DROP TRIGGER Trigger_1

The following example deletes a trigger named Trigger_2 associated with any table in the A schema.
SQL

DROP TRIGGER A.Trigger_2

The following example deletes a trigger named Trigger_3 associated with the Patient table in the system-wide default
schema. If atrigger named Trigger_3 is found, but it is not associated with Patient, InterSystems IRIS issues an SQLCODE
-363 error.

SQL

DROP TRIGGER Trigger 3 FROM Patient

The following examples all delete a trigger named Trigger_4 associated with the Patient table in the Test schema.

212 InterSystems SQL Reference

DROP TRIGGER (SQL)

SQL
DROP TRIGGER Test.Trigger_4 FROM Patient
SQL
DROP TRIGGER Trigger_4 FROM Test.Patient
SQL

DROP TRIGGER Test.Trigger_4 FROM Test.Patient

See Also

» CREATE TRIGGER

* GRANT

* Using Triggers

* SQLCODE error messages

InterSystems SQL Reference 213

SQL Commands

DROP USER (SQL)

Removes a user account.

Synopsis

DROP USER [IF EXISTS] user-nane

Description

The DROP USER command removes a user account. This user account was created and the user-name specified using
CREATE USER. If the specified user-name does not correspond to an existing user account, InterSystems IRIS issues an
SQLCODE -118 error. You can determine if a user exists by invoking the $SYSTEM.SQL.Security.UserExists() method.

User names are not case-sensitive.

You can also delete a user by using the Management Portal. Select System Administration, Security, Users to list the existing
users. On this table of user accounts you can click Delete for the user account you wish to delete.

Privileges

The DROP USER command is a privileged operation. Prior to using DROP USER in embedded SQL, you must be logged
in as a user with one of the following:

e The %Admin_Secure administrative resource with USE permission
e The %Admin_UserEdit administrative resource with USE permission

* Full security privileges on the system

If you are not, the DROP USER command results in an SQLCODE -99 error (Privilege Violation).
Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login(*"_SYSTEM","SYS"™)
&sql(

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

Arguments
user-name

An optional argument that suppresses the error if the command is executed on a nonexistent user.

Examples
You can drop PSMITH by issuing the statement:

SQL

DROP USER psmith

See Also

* SQL statements: CREATE USER, ALTER USER, GRANT, REVOKE, %CHECKPRIV

214 InterSystems SQL Reference

DROP USER (SQL)

e SQL Users, Roles, and Privileges
* SQLCODE error messages
» ObjectScript: SROLES and $USERNAME special variables

InterSystems SQL Reference 215

SQL Commands

DROP VIEW (SQL)

Deletes a view.

Synopsis

DROP VIEW [IF EXISTS] vi ew nane [CASCADE | RESTRICT]

Description
The DROP VIEW command removes a view, but does not remove the underlying tables or data.
A drop view operation can also be invoked using the DropView() method call:

$SYSTEM.SQL . Schema.DropView(viewname, SQLCODE, %msQ)
Privileges

The DROP VIEW command is a privileged operation. Prior to using DROP VIEW it is necessary for your process to
have either %DROP_VIEW administrative privilege or a DELETE object privilege for the specified view. Failing to do
so results in an SQLCODE -99 error (Privilege Violation). You can determine if the current user has DELETE privilege
by invoking the %CHECKPRIV command. You can determine if a specified user has DELETE privilege by invoking the
$SYSTEM.SQL.Security.CheckPrivilege() method. You can use the GRANT command to assign %DROP_VIEW
privileges, if you hold appropriate granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

DO $SYSTEM.Security.Login(*_SYSTEM","SYS™)
&sql()

You must have the %Ser vi ce_Logi n: Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

You can delete a view based on a table that is projected from a deployed persistent class.

Nonexistent View
To determine if a specified view exists in the current namespace, use the $SYSTEM.SQL.Schema.ViewExists() method.

By default, if you try to delete a nonexistent view, DROP VIEW issues an SQLCODE -30 error. To determine the current
setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Allow DDL DROP of non-existent table
or view setting. The default is 0 (“No™). This is the recommended setting for this option. If set to 1 (“Yes”) issuing a
DROP VIEW or DROP TABLE for nonexistent views and tables performs no operation and issues no error message.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

The behavior of the predicate IF EXISTS takes priority over settings in the Management Portal and the configuration
parameter file (CPF) which also govern DDL statements. These settings return SQLCODE 0 and suppress the error silently.
When IF EXISTS is specified, the command returns SQLCODE 1 along with a message.

VIEW Referenced by Other Views

If you try to delete a view referenced by other views in their queries, DROP VIEW issues an SQLCODE -321 error by
default. This is the RESTRICT keyword behavior.

216 InterSystems SQL Reference

DROP VIEW (SQL)

By specifying the CASCADE keyword, an attempt to delete a view referenced by other views in their queries succeeds.
The DROP VIEW also deletes these other views. If InterSystems IRIS cannot perform all cascade view deletions (for
example, due to an SQLCODE -300 error) no views are deleted.

Associated Queries

Dropping a view automatically purges any related cached queries and purges query information generated by
%SYS.PTools.StatsSQL. Dropping a view automatically purges any SQL runtime statistics (SQL Stats) information for
any related query.

Arguments
IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent view. For further details, refer
to the following section on nonexistent tables.

view-name

The name of the view to be deleted. A view name can be qualified (schema.viewname), or unqualified (viewname). An
unqualified view name takes the default schema name.

CASCADE, RESTRICT

An optional argument. Specify the CASCADE keyword to drop any other view that references view-name. Specify
RESTRICT to issue an SQLCODE -321 error if there is another view that references view-name. The default is RESTRICT.

Examples

The following example creates a view named "CityAddressBook™ and later deletes the view. Because it is specified with
the RESTRICT keyword (the default), an SQLCODE -321 error is issued if the view is referenced by other views:
SQL

CREATE VIEW CityAddressBook AS
SELECT Name,Home_Street FROM Sample.Person
WHERE Home_City="Boston*

DROP VIEW CityAddressBook RESTRICT)

See Also

* ALTERVIEW, CREATE VIEW, GRANT
* Views

e SQL and Object Settings Pages

e SQLCODE error messages

InterSystems SQL Reference 217

SQL Commands

EXPLAIN (SQL)

Returns the query plan(s) for a specified query.

Synopsis

EXPLAIN [ALT | ALL] [STAT | STATS] [INTO :host-variabl e] query

Description

The EXPLAIN command returns the query plan for a specified query as an XML-tagged text string. This query plan is
returned as a result set consisting of a single field named Plan.

The query must be a SELECT, DELETE, or UPDATE query. Specifying an INSERT query results in an SQLCODE -
474; using EXPLAIN with any other keyword results in an SQLCODE -51. You can use Show Plan to display a query
plan for other queries, such as for INSERT queries which contain a SELECT clause. All errors are processed and thrown
when the query reference by the EXPLAIN command is executed.

The ALT and STAT keywords can be specified in any order. The INTO keyword must be specified after these keywords.
The optional ALT keyword generates alternate query plans. All of the alternate query plans are returned in the same XML-
tagged text string. The normalized query text (tagged as <sgl>) is listed before each query plan. The optional STAT keyword
generates runtime performance statistics for each module in the query plan. The STAT keyword is only supported for
SELECT queries. Runtime statistics are included in the same XML-tagged text string that contains the query plan. The
following statistics are collected for each module:

* <ModuleName>: module name.

* <TimeSpent>: total execution time for the module, in seconds.

* <GlobalRefs>: a count of global references.

* <LinesOfCode>: a count of lines of code executed.

» <DiskWait>: disk wait time in seconds.

* <RowCount>: number of rows in result set.

* <ModuleCount>: number of times this module was executed.

* <Counter>: number of times this program was executed.

These statistics are returned within the text of the query plan(s) in the XML-tagged text string. Performance statistics for

all modules in a query plan are returned before the associated query plan. Embedded SQL cannot generate or return runtime
performance statistics; the STAT keyword is ignored and no error is issued.

The user that issues the EXPLAIN command must have execute privileges for the %SYSTEM.QUERY _PLAN procedure.

The EXPLAIN command returns Show Plan results by invoking the $SYSTEM,SQL.Explain() method, then formatting
the result set as a single field containing an XML-tagged text string. The EXPLAIN ALT command returns the alternate

show plans results by invoking the $SYSTEM,SQL.Explain() method with the all=1 qualifier, then formatting the result
set as a single field containing an XML-tagged text string.

Note: This command is fully supported for use in Embedded SQL, Dynamic SQL, the SQL Shell, the Management
Portal, JDBC, and ODBC interfaces.

Result Set XML Structure

The following is the structure of an XML-tagged text string for EXPLAIN ALT STAT query. Line breaks, indents, and
comment notes are provided here for explanatory purposes:

218 InterSystems SQL Reference

EXPLAIN (SQL)

<plans> /* tag included even if there is only one plan */
<plan> /* the first query plan */
<sql> /* the normalzed SELECT statement text */ </sqgl>
<cost value="1147000"/>
[* if STAT, include the following <stats> tags */
<stats> <ModuleName>MAIN</ModuleName> /* XML-tagged list of stats (above) for MAIN module */ </stats>
<stats> <ModuleName>FIRST</ModuleName> /* XML-tagged list of stats (above) for FIRST module */ </stats>
<stats> /* additional modules */ </stats>
[* text of query plan */
</plan>
<plan> /* if ALT, same info for first alternate plan */
</plan>
</plans>

The Explain() Method

You can return the same query plan information from ObjectScript using the $SYSTEM.SQL.Explain() method, as shown
in the following example:

SET myquery=2
SET myquery(1)="SELECT Name,Age FROM Sample.Person WHERE Name %STARTSWITH *Q" "
SET myquery(2)="ORDER BY Age"
SET status=$SYSTEM.SQL.Explain(.myquery,{"all'':0},,.plan)
IF sta}us':l {WRITE "Explain() failed:" DO $System.Status.DisplayError(status) QUIT}
ZWRITE plan

Arguments
ALT

An optional argument that returns alternate query plans. The default is to return a single query plan.

STAT

(Dynamic SQL only): An optional argument that returns query plan runtime performance statistics. The default is to return
query plan(s) without runtime statistics. This syntax is ignored for Embedded SQL.

INTO :host-variable

(Embedded SQL only): An optional output host variable into which the query plan(s) are placed. This syntax is ignored
for Dynamic SQL.

query
A SELECT, UPDATE, or DELETE query.

Examples
This example returns the query plan as an XML string. It first returns the SQL query text, then the query plan:
EXPLAIN SELECT Name,DOB FROM Sample.Person WHERE Name ["Q*

This example returns the query plan and performance statistics as an XML string. It first returns the SQL query text, then
the performance statistics (by module), then the query plan:

EXPLAIN STAT SELECT Name,DOB FROM Sample.Person WHERE Name ["QF
This example returns alternate query plans as an XML string. It returns SQL query text before each query plan:

EXPLAIN ALT SELECT Name,DOB FROM Sample.Person WHERE Name ["QF

InterSystems SQL Reference 219

SQL Commands

This example returns a more complex query plan. Performance statistics appear both before and within the query plan:

EXPLAIN STAT SELECT p.Name AS Person, e.Name AS Employee
FROM Sample.Person AS p, Sample._Employee AS e
WHERE p.Name %STARTSWITH "Q" GROUP BY e.Name ORDER BY p.Name

The following Embedded SQL example returns the query plan as an XML string. It first returns the SQL query text, then
the query plan:

#sqlcompile select=Runtime
&sql (EXPLAIN INTO :gqplan SELECT Name,DOB FROM Sample.Person WHERE Name ["QF)
WRITE gplan

The following Embedded SQL example returns alternative query plans as an XML string. It first returns the SQL query
text, then the first query plan, then the SQL query text, then the second query plan, and so forth:

#sqlcompile select=Runtime
&sql (EXPLAIN ALT INTO :qplans SELECT Name,DOB FROM Sample.Person WHERE Name ["QF)
WRITE gplans

The following Embedded SQL example returns the query plan. The STAT keyword is ignored:

#sqlcompile select=Runtime
&sql (EXPLAIN STAT INTO :gplan SELECT Name,DOB FROM Sample.Person WHERE Name ["QF)
WRITE gplan

See Also
e SELECT
. JOIN

e Show Plan
* Runtime Performance Statistics

e Querying the Database

220 InterSystems SQL Reference

FETCH (SQL)

FETCH (SQL)

Repositions a cursor, and retrieves data from it.

Synopsis

FETCH cursor-nane [INTO host-variable-list]

Description

Within an embedded SQL application, a FETCH statement retrieves data from a cursor. The required sequence of actions
is: DECLARE, OPEN, FETCH, CLOSE. Attempting a FETCH on a cursor that is not open results in an SQLCODE -
102 error.

As an SQL statement, this is supported only from within embedded SQL. Equivalent operations are supported through
ODBC using the ODBC API. For further details, refer to Embedded SQL.

An INTO clause can be specified as a clause of the DECLARE statement, as a clause of the FETCH statement, or both.

The INTO clause allows data from the columns of a fetch to be placed into local host variables. Each host variable in the

list, from left to right, is associated with the corresponding column in the cursor result set. The data type of each variable

must either match or be a supported implicit conversion of the data type of the corresponding result set column. The number
of variables must match the number of columns in the cursor select list.

The FETCH operation completes when the cursor advances to the end of the data. This sets SQLCODE=100 (No more
data). It also sets the %ROWCOUNT variable to the number of fetched rows.

Note: The values returned by INTO clause host variables are only reliable while SQLCODE=0. If SQLCODE=100 (No
more data) the host variable values should not be used.

The cursor-name is not namespace-specific. Changing the current namespace has no effect on use of a declared cursor.
The only namespace consideration is that FETCH must occur in the namespace that contains the table(s) being queried.

%ROWID

When a FETCH retrieves a row of an updateable cursor, it sets %ROWID to the RowID value of the fetched row. An
updateable cursor is one in which the top FROM clause contains exactly one element, either a table name or an updateable
view name.

This setting of %ROWID for each row retrieved is subject to the following conditions:

* The DECLARE cursorname CURSOR and OPEN cursorname statements do not initialize %ROWID; the % ROWID
value is unchanged from its prior value. The first successful FETCH sets %ROWID. Each subsequent FETCH that
retrieves a row resets %ROWID to the current RowID. FETCH sets %ROWID if it retrieves a row of an updateable
cursor. If the cursor is not updateable, %ROWID remains unchanged. If no rows matched the query selection criteria,
FETCH does not change the prior the %ROWID value. Upon CLOSE or when FETCH issues an SQLCODE 100
(No Data, or No More Data), %ROWID contains the RowlD of the last row retrieved.

* Acursor-based SELECT with a DISTINCT keyword or a GROUP BY clause does not set %ROWID. The %ROWID
value is unchanged from its previous value (if any).

» Acursor-based SELECT that performs only aggregate operations does not set %ROWID. The %ROWID value is
unchanged from its previous value (if any).

An Embedded SQL SELECT with no declared cursor does not set %ROWID. The %ROWID value is unchanged upon
the completion of a simple SELECT statement.

InterSystems SQL Reference 221

SQL Commands

FETCH for UPDATE or DELETE

You can use FETCH to retrieve a row for update or delete. The UPDATE or DELETE must specify the WHERE CURRENT
OF clause. The DECLARE should specify the FOR UPDATE clause. The following example shows a cursor-based delete
that deletes all selected rows:

ObjectScript

SET $NAMESPACE="Samples™
&sql (DECLARE MyCursor CURSOR FOR SELECT %ID,Status
FROM Sample.Quality WHERE Status="Bad" FOR UPDATE)
&sql (OPEN MyCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:",SQLCODE,"™ ",%msg QUIT}
NEW %ROWCOUNT , %ROWID
FOR {&sql (FETCH MyCursor) QUIT:SQLCODE"=0
&sqgl (DELETE FROM Sample.Quality WHERE CURRENT OF MyCursor) }
WRITE I,"Number of rows updated="",%ROWCOUNT
&sql (CLOSE MyCursor)
IF SQLCODE<O {WRITE "'SQL Close Cursor Error:",SQLCODE,"™ ",%msg QUIT}

Arguments

cursor-name

The name of a currently open cursor. The cursor name was specified in the DECLARE command. Cursor names are case-
sensitive.

INTO host-variable-list

An optional argument that places data from the columns of a fetch into local variables. The host-variable-list specifies a
host variable, or a comma-separated list of host variables, that are targets to contain data associated with the cursor. The
INTO clause is optional. If it is not specified, the FETCH statement positions the cursor only.

Examples

The following Embedded SQL example shows FETCH invoked by an argumentless FOR loop retrieving data from a
cursor named EmpCursor. The INTO clause is specified in the DECLARE statement:

ObjectScript

&sql (DECLARE EmpCursor CURSOR FOR
SELECT Name, Home_State
INTO :name,:state FROM Sample.Employee
WHERE Home_State %STARTSWITH *M*)
&sql (OPEN EmpCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:",SQLCODE,"™ ",%msg QUIT}
NEW %ROWCOUNT ,%ROWID
FOR { &sql (FETCH EmpCursor)
QUIT:SQLCODE"=0
WRITE "count: " ,%ROWCOUNT,"™ RowlD: *,%ROWID,!
WRITE " Name=",name," State=",state,! }
WRITE I,"Final Fetch SQLCODE: ",SQLCODE
&sql (CLOSE EmpCursor)
IF SQLCODE<O {WRITE "'SQL Close Cursor Error:",SQLCODE,"™ ",%msg QUIT}

The following Embedded SQL example shows FETCH invoked by an argumentless FOR loop retrieving data from a
cursor named EmpCursor. The INTO clause is specified as part of the FETCH statement:

222 InterSystems SQL Reference

FETCH (SQL)

ObjectScript

&sql (DECLARE EmpCursor CURSOR FOR
SELECT Name,Home_State FROM Sample.Employee
WHERE Home_State %STARTSWITH "M®)
&sql (OPEN EmpCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:",SQLCODE,"™ ",%msg QUIT}
FOR { &sql (FETCH EmpCursor INTO :name, :state)
QUIT:SQLCODE"=0
WRITE "count: " ,%ROWCOUNT,"™ RowlD: ',%ROWID,!
WRITE " Name=",name,'" State=",state,! }
WRITE I,"Final Fetch SQLCODE: ",SQLCODE
&sql (CLOSE EmpCursor)
IF SQLCODE<O {WRITE "SQL Close Cursor Error:",SQLCODE,™ '",%msg QUIT}

The following Embedded SQL example shows FETCH invoked using a WHILE loop:

ObjectScript

&sql (DECLARE C1 CURSOR FOR
SELECT Name,Home_State INTO :name,:state FROM Sample.Person
WHERE Home_State %STARTSWITH "M®)

&sql (OPEN C1)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:'",SQLCODE,"™ ",%msg QUIT}

&sql (FETCH C1)

WHILE (SQLCODE = 0) {
WRITE "count: " ,%ROWCOUNT," RowlD: ",%ROWID,!
WRITE ** Name=",name,' State=",state,!
&sql (FETCH C1) }

WRITE !I,"Final Fetch SQLCODE: ",SQLCODE

&sql (CLOSE C1)

IF SQLCODE<O {WRITE "'SQL Close Cursor Error:",SQLCODE,"™ *",%msg QUIT}

The following Embedded SQL example shows FETCH retrieving aggregate function values. %ROWID is not set:

ObjectScript

&sql (DECLARE PersonCursor CURSOR FOR
SELECT COUNT(*),AVG(Age) FROM Sample.Person)
&sql (OPEN PersonCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:*,SQLCODE,"™ '",%msg QUIT}
NEW %ROWCOUNT
FOR { &sql (FETCH PersonCursor INTO :cnt,:avg)
QUIT:SQLCODE"=0
WRITE %ROWCOUNT," Num People=",cnt," Average Age=",avg,! }
WRITE !,"Final Fetch SQLCODE: *,SQLCODE
&sql (CLOSE PersonCursor)
IF SQLCODE<O {WRITE "'SQL Close Cursor Error:",SQLCODE,"™ ",%msg QUIT}

The following Embedded SQL example shows FETCH retrieving DISTINCT values. %ROWID is not set:

ObjectScript

&sql (DECLARE EmpCursor CURSOR FOR
SELECT DISTINCT Home_State FROM Sample.Employee
WHERE Home_State %STARTSWITH "M~
ORDER BY Home_State)
&sql (OPEN EmpCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:",SQLCODE,"™ ",%msg QUIT}
NEW %ROWCOUNT
FOR { &sql (FETCH EmpCursor INTO :state)
QUIT:SQLCODE"=0
WRITE %ROWCOUNT,'" State=",state,! }
WRITE !I,"Final Fetch SQLCODE: **,SQLCODE
&sql (CLOSE EmpCursor)
IF SQLCODE<O {WRITE "'SQL Close Cursor Error:",SQLCODE,"™ ",%msg QUIT}

InterSystems SQL Reference 223

SQL Commands

The following Embedded SQL example shows that a cursor persists across namespaces. This cursor is declared in %SYS,
opened and fetched in USER, and closed in SAMPLES. Note that the OPEN must be executed in the namespace that contains
the table(s) being queried, and the FETCH must able to access the output host variables, which are namespace-specific:

&sql (USE DATABASE %SYS)
WRITE $ZNSPACE, !
&sql (DECLARE NSCursor CURSOR FOR SELECT Name INTO :name FROM Sample.Employee)
&sql (USE DATABASE "USER'™)
WRITE $ZNSPACE, !
&sql (OPEN NSCursor)
IF SQLCODE<O {WRITE "'SQL Open Cursor Error:",SQLCODE,"™ ',%msg QUIT}
NEW SQLCODE ,%ROWCOUNT , %ROWID
FOR { &sql (FETCH NSCursor)
QUIT:SQLCODE
WRITE "Name=",name,! }
&sql (USE DATABASE SAMPLES)
WRITE $ZNSPACE, !
&sql (CLOSE NSCursor)
IF SQLCODE<O {WRITE "SQL Close Cursor Error:",SQLCODE,"™ ",%msg QUIT}

See Also

e CLOSE, DECLARE, OPEN
e SQL Cursors

e SQLCODE error messages

224 InterSystems SQL Reference

FREEZE PLANS (SQL)

FREEZE PLANS (SQL)

Freezes one or more query plans.

Synopsis

FREEZE PLANS BY ID st at enent-hash
FREEZE PLANS BY TABLE t abl e- nane
FREEZE PLANS BY SCHEMA schenma- nane
FREEZE PLANS

Description
The FREEZE PLANS command freezes query plans. To unfreeze frozen query plans use the UNFREEZE PLANS command.

FREEZE PLANS can freeze query plans with the Plan State Unfrozen. It cannot freeze query plans with the Plan State
Unfrozen/Parallel.

FREEZE PLANS provides four syntax forms for freezing query plans:

» A specified query plan: FREEZE PLANS BY ID statement-hash. The statement-hash value must be delimited by
double quotation marks.

e All query plans for a table: FREEZE PLANS BY TABLE table-name. You can specify a table name or a view name.
If a query plan references multiple tables and/or views, specifying any of these tables or views freezes the query plan.

» All query plans for all tables in a schema: FREEZE PLANS BY SCHEMA schema-name.
* All query plans for all tables in the current namespace: FREEZE PLANS.

This command issues SQLCODE 0 if one or more query plans are frozen; it issues SQLCODE 100 if no query plans are
frozen. The Rows Affected (%ROWCOUNT) indicates the number of query plans frozen.

Other Interfaces

You can use the following $SYSTEM.SQL.Statement methods to freeze a single query plan or multiple query plans:
FreezeStatement() for a single plan; FreezeRelation() for all plans for a relation (a table or view referenced in the query
plan); FreezeSchemay() for all plans for a schema; FreezeAll() for all plans in the current namespace. There are corresponding
Unfreeze methods.

You can use the Management Portal, to freeze a query plan as described in Frozen Plans Interface.

Arguments

statement-hash

The internal hash representation of the SQL Statement definition for a query plan, enclosed in quotation marks. Occasionally,
what appear to be identical SQL statements may have different statement hash entries. Any difference in settings/options
that require different code generation of the SQL statement result in a different statement hash. This may occur with different
client versions or different platforms that support different internal optimizations. Refer to SQL Statement Details.

table-name

The name of an existing table or view. A table-name can be qualified (schema.table), or unqualified (table). An unqualified
table name takes the default schema name.

schema-name

The name of an existing schema. This command freezes all query plans for all tables in the specified schema.

InterSystems SQL Reference 225

SQL Commands

Security and Privileges

The FREEZE PLANS command is a privileged operation that required the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a FREEZE PLANS command without this
privileges will result in a SQLCODE -99 error and the command will fail. There are two exceptions:

» The command is executed via Embedded SQL, which does not perform privilege checks.

* The user explicitly specifies not privilege checking by, for example, calling either %Prepare() with the checkPriv
argument set to 0 or %0ExecDirectNoPriv() on a %SQL.Statement.

See Also
e UNFREEZE PLANS command
e Frozen Plans

* Analyze SQL Statements and Statistics

226 InterSystems SQL Reference

GRANT (SQL)

GRANT (SQL)

Grants privileges to a user or role.

Synopsis

GRANT admi n-privilege TO grantee [WITH ADMIN OPTION]
GRANT role TO grantee [WITH ADMIN OPTION]

GRANT role TO grantee [WITH ADMIN OPTION]

GRANT obj ect-privilege ON object-1list
TO grantee [WITH GRANT OPTION]

GRANT SELECT ON CUBE[S] obj ect-1i st
TO grantee [WITH GRANT OPTION]

GRANT col ume-privil ege (colum-list) ON table
TO grantee [WITH GRANT OPTION]

Description

The GRANT command gives privileges to do specified tasks on specified tables, views, columns, or other entities to one
or more specified users or roles. You can do the following basic operations:

e Grant a privilege to a user.
» Granta privilege to arole.
» Grantarole to a user.

* Grantarole to a role, creating a hierarchy of roles.

If you grant a privilege to a user, the user can immediately exercise the privilege. If you grant a privilege to a role, users
who have been granted the role can immediately exercise the privilege. If you revoke a privilege, the user immediately
loses the privilege. A privilege is effectively granted to a user only once. Multiple users can grant the same privilege to a
user multiple times, but a single REVOKE removes the privilege.

Privileges are granted on a per-namespace basis.
SQL privileges are only enforced through ODBC, JDBC, and Dynamic SQL (%SQL.Statement).

Because GRANT prepares and executes quickly, and is generally run only once, InterSystems IRIS does not create a cached
query for GRANT in ODBC, JDBC, or Dynamic SQL. The expansion of * is performed when the GRANT command is
executed.

GRANT admin-privilege

SQL administrative (admin) privileges apply to users or roles. Any privilege that is not tied to any particular object (and
thus is a general right for that user or role) is considered an admin privilege. These privileges are granted on a per-namespace
basis for the current namespace.

The %DB_OBJECT_DEFINITION privilege grants all 16 of the data definition privileges. It does not grant
%BUILD_INDEX, %NOCHECK, %NOINDEX, %NOLOCK, and %NOTRIGGER privileges, which must be granted
explicitly.

The %BUILD_INDEX privilege grants use of the BUILD INDEX command. The %NOCHECK, %NOINDEX, %NOLOCK,
and %NOTRIGGER privileges grant use of these options in the restriction clause of an INSERT, UPDATE, INSERT OR
UPDATE, or DELETE statement. They have no effect on the use of the %NOINDEX keyword as a preface to a predicate
condition. Because TRUNCATE TABLE performs a delete of all of the rows from a table with %NOTRIGGER behavior,
you must have %NOTRIGGER privilege in order to run TRUNCATE TABLE. You must have the appropriate %NOCHECK,
%NOINDEX, %NOLOCK, or %NOTRIGGER privilege to use that restriction when preparing an INSERT, UPDATE,
INSERT OR UPDATE, or DELETE statement.

InterSystems SQL Reference 227

SQL Commands

If the specified admin privilege is not a valid privilege name (for example, due to a spelling error), InterSystems IRIS
completes successfully, issuing an SQLCODE 100 (reached end of data); InterSystems IRIS does not check if the specified
user (or role) exists. If the specified admin privilege is valid, but the specified user (or role) does not exist, InterSystems
IRIS issues an SQLCODE -118 error.

GRANT role

This form of GRANT assigns a user to a specified role. You can also assign a role to another role. If the specified role that
receives the assignment does not exist, InterSystems IRIS issues an SQLCODE 100 (reached end of data). If the specified
user (or role) that is assigned to a role does not exist, InterSystems IRIS issues an SQLCODE -118 error. If you are not the
SuperUser, and you are attempting to grant a role that you don't own and don't have ADMIN OPTION for, InterSystems
IRIS issues an SQLCODE -112 error.

Roles are created using the CREATE ROLE statement. If the role name is a delimited identifier, you must enclose it in
quotation marks when assigning to it.

Roles can be granted or revoked via either the SQL GRANT and REVOKE commands, or via InterSystems IRIS System
Security:

» Go to the Management Portal, select System Administration, Security, Users to display the current users. Select the
name of the desired user to display edit options for that user, then select the Roles tab to