
InterSystems SQL Reference

Version 2023.3
2024-05-16

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

InterSystems SQL Reference
InterSystems IRIS Data Platform Version 2023.3 2024-05-16
Copyright © 2024 InterSystems Corporation
All rights reserved.

InterSystems®, HealthShare Care Community®, HealthShare Unified Care Record®, IntegratedML®, InterSystems Caché®, InterSystems
Ensemble® InterSystems HealthShare®, InterSystems IRIS®, and TrakCare are registered trademarks of InterSystems Corporation.
HealthShare® CMS Solution Pack™ HealthShare® Health Connect Cloud™, InterSystems IRIS for Health™, InterSystems Supply Chain
Orchestrator™, and InterSystems TotalView™ For Asset Management are trademarks of InterSystems Corporation.TrakCare is a registered
trademark in Australia and the European Union.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

Symbols and Syntax Conventions .. 1
Symbols Used in InterSystems SQL .. 2
Syntax Conventions .. 7

SQL Commands ... 9
ALTER FOREIGN SERVER (SQL) .. 10
ALTER FOREIGN TABLE (SQL) .. 12
ALTER ML CONFIGURATION (SQL) .. 14
ALTER MODEL (SQL) ... 16
ALTER TABLE (SQL) ... 17
ALTER USER (SQL) ... 27
ALTER VIEW (SQL) ... 29
BUILD INDEX (SQL) ... 33
CALL (SQL) .. 35
CANCEL QUERY (SQL) .. 40
CASE (SQL) .. 42
%CHECKPRIV (SQL) ... 45
CLOSE (SQL) .. 49
COMMIT (SQL) .. 51
CREATE AGGREGATE (SQL) ... 53
CREATE DATABASE (SQL) .. 57
CREATE FOREIGN SERVER (SQL) ... 59
CREATE FOREIGN TABLE (SQL) .. 61
CREATE FUNCTION (SQL) .. 67
CREATE INDEX (SQL) .. 74
CREATE METHOD (SQL) ... 83
CREATE ML CONFIGURATION (SQL) ... 89
CREATE MODEL (SQL) .. 92
CREATE PROCEDURE (SQL) ... 96
CREATE QUERY (SQL) ... 105
CREATE ROLE (SQL) .. 111
CREATE SCHEMA (SQL) .. 113
CREATE TABLE (SQL) .. 114
CREATE TABLE AS SELECT (SQL) ... 146
CREATE TRIGGER (SQL) ... 150
CREATE USER (SQL) .. 161
CREATE VIEW (SQL) .. 163
DECLARE (SQL) .. 171
DELETE (SQL) .. 174
DROP AGGREGATE (SQL) .. 183
DROP DATABASE (SQL) ... 184
DROP FOREIGN SERVER (SQL) .. 186
DROP FOREIGN TABLE (SQL) .. 188
DROP FUNCTION (SQL) ... 190
DROP INDEX (SQL) ... 192
DROP METHOD (SQL) .. 196
DROP ML CONFIGURATION (SQL) .. 198
DROP MODEL (SQL) ... 199

InterSystems SQL Reference iii

DROP PROCEDURE (SQL) .. 200
DROP QUERY (SQL) .. 202
DROP ROLE (SQL) ... 204
DROP SCHEMA (SQL) ... 206
DROP TABLE (SQL) ... 207
DROP TRIGGER (SQL) .. 211
DROP USER (SQL) ... 214
DROP VIEW (SQL) ... 216
EXPLAIN (SQL) .. 218
FETCH (SQL) .. 221
FREEZE PLANS (SQL) .. 225
GRANT (SQL) ... 227
INSERT (SQL) ... 235
INSERT OR UPDATE (SQL) .. 255
%INTRANSACTION (SQL) ... 263
JOIN (SQL) .. 264
LOAD DATA (SQL) ... 279
LOCK (SQL) .. 295
OPEN (SQL) .. 298
PURGE CACHED QUERIES (SQL) .. 299
REVOKE (SQL) ... 301
ROLLBACK (SQL) .. 306
SAVEPOINT (SQL) ... 309
SELECT (SQL) .. 311
SET ML CONFIGURATION (SQL) ... 335
SET OPTION (SQL) .. 336
SET TRANSACTION (SQL) ... 341
START TRANSACTION (SQL) .. 346
TRAIN MODEL (SQL) ... 351
TRUNCATE TABLE (SQL) ... 354
TUNE TABLE (SQL) ... 358
UNFREEZE PLANS (SQL) ... 361
UNLOCK (SQL) .. 363
UPDATE (SQL) .. 365
USE DATABASE (SQL) .. 379
VALIDATE MODEL (SQL) .. 380

SQL Clauses ... 383
DISTINCT (SQL) .. 384
FROM (SQL) .. 389
GROUP BY (SQL) ... 395
HAVING (SQL) ... 399
INTO (SQL) ... 407
ORDER BY (SQL) ... 412
TOP (SQL) ... 420
UNION (SQL) .. 425
VALUES (SQL) ... 431
WHERE (SQL) .. 434
WHERE CURRENT OF (SQL) ... 443

SQL Predicate Conditions .. 445
Overview of Predicates ... 446

iv InterSystems SQL Reference

ALL (SQL) ... 453
ANY (SQL) .. 455
BETWEEN (SQL) .. 457
EXISTS (SQL) ... 460
%FIND (SQL) .. 462
FOR SOME (SQL) ... 464
FOR SOME %ELEMENT (SQL) .. 467
IN (SQL) .. 471
%INLIST (SQL) ... 475
%INSET (SQL) .. 478
IS JSON (SQL) ... 480
IS NULL (SQL) ... 482
LIKE (SQL) .. 483
%MATCHES (SQL) ... 487
%PATTERN (SQL) .. 490
SOME (SQL) .. 493
%STARTSWITH (SQL) ... 494

SQL Aggregate Functions ... 501
Overview of Aggregate Functions .. 502
AVG (SQL) ... 507
COUNT (SQL) ... 511
%DLIST (SQL) .. 518
JSON_ARRAYAGG (SQL) .. 522
LIST (SQL) .. 526
MAX (SQL) ... 530
MIN (SQL) ... 533
STDDEV, STDDEV_SAMP, STDDEV_POP (SQL) .. 536
SUM (SQL) .. 538
VARIANCE, VAR_SAMP, VAR_POP (SQL) ... 541
XMLAGG (SQL) ... 543

SQL Window Functions .. 547
Overview of Window Functions ... 548
AVG (SQL) ... 554
COUNT (SQL) ... 555
CUME_DIST() (SQL) .. 556
DENSE_RANK() (SQL) .. 557
FIRST_VALUE (SQL) ... 558
LAG (SQL) ... 559
LAST_VALUE (SQL) .. 560
LEAD (SQL) .. 561
MAX (SQL) ... 562
MIN (SQL) ... 563
NTH_VALUE (SQL) ... 564
NTILE (SQL) ... 565
PERCENT_RANK() (SQL) ... 566
RANK() (SQL) ... 567
ROW_NUMBER() (SQL) .. 568
SUM (SQL) .. 569

SQL Functions ... 571

InterSystems SQL Reference v

ABS (SQL) ... 572
ACOS (SQL) .. 574
ASCII (SQL) .. 575
ASIN (SQL) ... 576
ATAN (SQL) .. 577
ATAN2 (SQL) .. 578
CAST (SQL) .. 579
CEILING (SQL) ... 590
CHAR (SQL) .. 592
CHARACTER_LENGTH (SQL) ... 593
CHARINDEX (SQL) ... 595
CHAR_LENGTH (SQL) .. 598
COALESCE (SQL) .. 600
CONCAT (SQL) ... 603
CONVERT (SQL) .. 606
COS (SQL) ... 614
COT (SQL) ... 615
CURDATE (SQL) .. 616
CURRENT_DATE (SQL) .. 618
CURRENT_TIME (SQL) .. 620
CURRENT_TIMESTAMP (SQL) ... 622
CURTIME (SQL) ... 626
DATABASE .. 628
DATALENGTH (SQL) ... 629
DATE (SQL) ... 630
DATEADD (SQL) .. 633
DATEDIFF (SQL) .. 639
DATENAME (SQL) ... 646
DATEPART (SQL) ... 650
DATE_TRUNC (SQL) ... 655
DAY (SQL) ... 659
DAYNAME (SQL) ... 660
DAYOFMONTH (SQL) ... 662
DAYOFWEEK (SQL) .. 665
DAYOFYEAR (SQL) ... 669
DECODE (SQL) .. 671
DEGREES (SQL) ... 674
%EXACT (SQL) .. 675
EXP (SQL) ... 677
%EXTERNAL (SQL) .. 679
$EXTRACT (SQL) .. 681
$FIND (SQL) ... 684
FLOOR (SQL) .. 687
GETDATE (SQL) ... 689
GETUTCDATE (SQL) ... 692
GREATEST (SQL) ... 695
HOUR (SQL) ... 697
IFNULL (SQL) .. 699
INSTR (SQL) ... 703
%INTERNAL (SQL) ... 705
ISNULL (SQL) .. 707

vi InterSystems SQL Reference

ISNUMERIC (SQL) ... 710
JSON_ARRAY (SQL) .. 712
JSON_OBJECT (SQL) .. 715
$JUSTIFY (SQL) ... 718
LAST_DAY (SQL) ... 721
LAST_IDENTITY (SQL) .. 723
LCASE (SQL) .. 725
LEAST (SQL) .. 726
LEFT (SQL) ... 728
LEN (SQL) ... 729
LENGTH (SQL) ... 730
$LENGTH (SQL) ... 733
$LIST (SQL) .. 736
$LISTBUILD (SQL) .. 740
$LISTDATA (SQL) .. 743
$LISTFIND (SQL) ... 745
$LISTFROMSTRING (SQL) ... 747
$LISTGET (SQL) .. 748
$LISTLENGTH (SQL) .. 751
$LISTSAME (SQL) ... 753
$LISTTOSTRING (SQL) ... 755
LOG (SQL) .. 757
LOG10 (SQL) .. 758
LOWER (SQL) ... 759
LPAD (SQL) ... 760
LTRIM (SQL) ... 762
%MINUS (SQL) .. 763
MINUTE (SQL) ... 765
MOD (SQL) ... 767
MONTH (SQL) .. 769
MONTHNAME (SQL) .. 771
NOW (SQL) ... 773
NULLIF (SQL) .. 775
NVL (SQL) .. 777
%OBJECT (SQL) ... 780
%ODBCIN (SQL) .. 781
%ODBCOUT (SQL) .. 782
%OID (SQL) .. 783
PI (SQL) ... 784
$PIECE (SQL) .. 785
%PLUS (SQL) .. 789
POSITION (SQL) .. 791
POWER (SQL) ... 793
PREDICT (SQL) .. 795
PROBABILITY (SQL) ... 797
QUARTER (SQL) .. 799
RADIANS (SQL) ... 801
REPEAT (SQL) .. 802
REPLACE (SQL) ... 803
REPLICATE (SQL) .. 805
REVERSE (SQL) ... 806

InterSystems SQL Reference vii

RIGHT (SQL) .. 808
ROUND (SQL) ... 809
RPAD (SQL) .. 812
RTRIM (SQL) .. 814
SEARCH_INDEX (SQL) .. 815
SECOND (SQL) ... 817
SIGN (SQL) ... 820
SIN (SQL) .. 822
SPACE (SQL) ... 823
%SQLSTRING (SQL) ... 824
%SQLUPPER (SQL) ... 827
SQRT (SQL) ... 830
SQUARE (SQL) ... 831
STR (SQL) ... 832
STRING (SQL) .. 833
STUFF (SQL) ... 835
SUBSTR (SQL) .. 837
SUBSTRING (SQL) .. 839
SYSDATE (SQL) ... 842
%SYSTEM_SQL.DefaultSchema() ... 843
TAN (SQL) ... 844
TIMESTAMPADD (SQL) .. 845
TIMESTAMPDIFF (SQL) ... 848
TO_CHAR (SQL) .. 851
TO_DATE (SQL) ... 860
TO_NUMBER (SQL) .. 867
TO_POSIXTIME (SQL) .. 870
TO_TIMESTAMP (SQL) ... 876
$TRANSLATE (SQL) .. 883
TRIM (SQL) ... 885
TRUNCATE (SQL) .. 888
%TRUNCATE (SQL) ... 891
$TSQL_NEWID (SQL) ... 893
UCASE (SQL) .. 894
UNIX_TIMESTAMP (SQL) .. 895
UPPER (SQL) .. 898
USER (SQL) .. 900
WEEK (SQL) ... 901
XMLCONCAT (SQL) .. 904
XMLELEMENT (SQL) ... 905
XMLFOREST (SQL) ... 909
YEAR (SQL) .. 912

SQL Unary Operators ... 915
- (Negative) ... 916
+ (Positive) ... 917

SQL Reference Material ... 919
Data Types (SQL) ... 920
Date and Time Constructs (SQL) ... 948
Default user name and password (SQL) ... 951
SQLCODE Error Codes ... 952

viii InterSystems SQL Reference

Field constraint ... 953
Reserved words (SQL) ... 954
Special Variables .. 956
String Manipulation (SQL) .. 958

InterSystems SQL Reference ix

List of Tables

Table B–1: ... 94
Table C–1: SQL Equality Comparison Predicates .. 402
Table C–2: SQL Equality Comparison Predicates .. 438
Table C–3: SQL Substring Predicates ... 439
Table D–1: LIKE Wildcard Characters ... 483
Table G–1: $HOROLOG Date and Time Format .. 634
Table G–2: Date Format .. 635
Table G–3: Time Format .. 635
Table G–4: $HOROLOG Date and Time Format .. 640
Table G–5: Date Format .. 641
Table G–6: Time Format .. 642
Table G–7: .. 655
Table G–8: $HOROLOG Date and Time Format .. 656
Table G–9: Date Format .. 656
Table G–10: Time Format .. 657
Table G–11: Date Formats ... 853
Table G–12: Time Formats .. 854
Table G–13: Number Formats ... 854

x InterSystems SQL Reference

Symbols and Syntax Conventions

InterSystems SQL Reference 1

Symbols Used in InterSystems SQL
A table of characters used in InterSystems SQL as operators, etc.

Table of Symbols
The following are the literal symbols used in InterSystems SQL on InterSystems IRIS® data platform. (This list does not
include symbols indicating format conventions, which are not part of the language.) There is a separate table for symbols
used in ObjectScript.

The name of each symbol is followed by its ASCII decimal code value.

Name and UsageSymbol

White space (Tab (9) or Space (32)): One or more whitespace characters between keywords,
identifiers, and variables.

[space] or
[tab]

Exclamation mark (33): OR logical operator in between predicates in condition expressions.
Used in the WHERE clause, the HAVING clause, and elsewhere.

In SQL Shell, the ! command is used to issue an ObjectScript command line.

!

Exclamation mark/Equal sign: Is not equal to comparison condition.!=

Quotes (34): Encloses a delimited identifier name.

In Dynamic SQL used to enclose literal values for class method arguments, such as SQL
code as a string argument for the %Prepare() method, or input parameters as string argu-
ments for the %Execute() method.

In %PATTERN used to enclose a literal value within a pattern string. For example,
'3L1"L".L' (meaning 3 lowercase letters, followed by the capital letter “L”, followed by any
number of lowercase letters).

In XMLELEMENT used to enclose a tag name string literal.

"

Two quotes: By themselves, an invalid delimited identifier. Within a delimited identifier, an
escape sequence for a literal quote character. For example, "a""good""id".

""

Pound sign (35): Valid identifier name character (not first character).

With spaces before and after, modulo arithmetic operator.

For Embedded SQL, ObjectScript macro preprocessor directive prefix. For example,
#include.

In SQL Shell the # command is used to recall statements from the SQL Shell history buffer.

#

Dollar sign (36): Valid identifier name character (not first character).

First character of some InterSystems IRIS extension SQL functions.

$

Double dollar sign: used to call an ObjectScript user-defined function (also known as an
extrinsic function). For more details, see Function and Method Call Selection in the selectItem
argument of the SELECT reference page.

$$

2 InterSystems SQL Reference

Symbols and Syntax Conventions

Name and UsageSymbol

Percent sign (37): Valid first character for identifier names (first character only).

First character of some InterSystems SQL extensions to the SQL standard, including string
collation functions (%SQLUPPER), aggregate functions (%DLIST), and predicate conditions
(%STARTSWITH).

First character of %ID, %TABLENAME, and %CLASSNAME keywords in SELECT.

First character of some privilege keywords (%CREATE_TABLE, %ALTER) and some role
names (%All).

First character of some Embedded SQL system variables (%ROWCOUNT, %msg).

Data type max length indicator: CHAR(%24)

LIKE condition predicate multi-character wildcard.

%

Double percent sign: Prefix for the pseudo-field reference variable keywords: %%CLASS-
NAME, %%CLASSNAMEQ, %%ID, and %%TABLENAME, used in ObjectScript computed
field code and trigger code.

%%

Ampersand (38): AND logical operator in WHERE clause and other condition expressions.

$BITLOGIC bitstring And operator.

Embedded SQL invocation prefix: &sql(SQL commands).

&

Single quote character (39): Encloses a string literal.'

Double single quote characters: An empty string literal.

An escape sequence for a literal single quote character within a string value. For example:
'can''t'

''

Parentheses (40,41): Encloses comma-separated lists. Encloses argument(s) of an SQL
function. Encloses the parameter list for a procedure, method, or query. In most cases, the
parentheses must be specified, even if no arguments or parameters are supplied.

In a SELECT DISTINCT BY clause, encloses an item or comma-separated list of items used
to select unique values.

In a SELECT statement, encloses a subquery in the FROM clause. Encloses the name of
a predefined query used in a UNION.

Encloses host variable array subscripts. For example, INTO :var(1),:var(2)

Encloses embedded SQL code: &sql(code)

Used to enforce precedence in arithmetic operations: 3+(3*5)=18. Used to group predicates:
WHERE NOT (Age<20 AND Age>12).

()

Double Parentheses: suppress literal substitution in cached queries. For example, SELECT
TOP ((4)) Name FROM Sample.Person WHERE Name %STARTSWITH (('A')). Optimizes
WHERE clause selection of a non-null outlier value.

(())

InterSystems SQL Reference 3

Symbols Used in InterSystems SQL

Name and UsageSymbol

Asterisk (42): A wildcard, indicating “all” in the following cases: In SELECT retrieve all
columns: SELECT * FROM table. In COUNT, count all rows (including nulls and duplicates).
In GRANT and REVOKE, all basic privileges, all tables, or all currently defined users.

In %MATCHES pattern string a multi-character wildcard.

Multiplication arithmetic operator.

*

Asterisk slash: Multi-line comment ending indicator. Comment begins with /*.*/

Plus sign (43): Addition arithmetic operator. Unary positive sign operator.+

Comma (44): List separator, for example, multiple field names.

In data size definition: NUMERIC (precision,scale).

,

Hyphen (minus sign) (45): Subtraction arithmetic operator. Unary negative sign operator.

SQLCODE error code prefix: –304.

Date delimiter.

In %MATCHES pattern string a range indicator specified within square brackets. For
example, [a-m].

–

Double hyphen: Single-line comment indicator.––

Hyphen, greater than (arrow): implicit join arrow syntax.–>

Period (46): Used to separate parts of multipart names, such as qualified table names:
schema.tablename, or column names: tablealias.fieldname

Decimal point for numeric literals in American numeric format.

Date delimiter for Russian, Ukrainian, and Czech locales: DD.MM.YYYY

Prefixed to a variable or array name, specifies passing by reference: .name

%PATTERN pattern string multi-character wildcard.

.

Slash (47): Division arithmetic operator.

Date delimiter.

/

Slash asterisk: Multi-line comment begins indicator. Comment ends with */./*

Colon (58): Host variable indicator prefix: :var

A time delimiter for hours, minutes, and seconds. In CAST and CONVERT functions, an
optional thousandth-of-a-second delimiter.

In trigger code a prefix indicating an ObjectScript label line.

In CREATE PROCEDURE ObjectScript code body, a macro preprocessor directive prefix.
For example, :#include.

:

Double colon: In trigger code this doubled prefix indicates that the identifier (::name) beginning
that line is a host variable, not a label line.

::

4 InterSystems SQL Reference

Symbols and Syntax Conventions

Name and UsageSymbol

Semicolon (59): SQL end of statement delimiter in procedures, methods, queries, and trigger
code. Accepted as an optional end of statement delimiter by ImportDDL() or wherever
specifying SQL code using a TSQL dialect. Otherwise, InterSystems SQL does not use or
allow a semicolon at the end of an SQL statement.

;

Less than (60): Less than comparison condition.<

Less than or equal to: Less than or equal to comparison condition.<=

Less than/Greater than: Is not equal to comparison condition.<>

Equal sign (61): Equal to comparison condition.

In WHERE clause, an Inner Join.

=

Greater than (62): Greater than comparison condition.>

Greater than or equal to: Greater than or equal to comparison condition.>=

Question mark (63): In Dynamic SQL, an input parameter variable supplied by the Execute
method.

In %MATCHES pattern string a single-character wildcard.

In SQL Shell the ? command displays help text for SQL Shell commands.

?

At sign (64): Valid identifier name character (not first character).@

The letter “E” (69, 101): Exponent indicator.

%PATTERN code specifying any printable character.

E, e

Open square bracket (91): Contains predicate. Used in the WHERE clause, the HAVING
clause, and elsewhere.

[

Open and close square brackets: In %MATCHES pattern string, encloses a list or range of
match characters. For example, [abc] or [a-m].

[]

Backslash (92): Integer division arithmetic operator.

In %MATCHES pattern string an escape character.

\

Close square bracket (93): Follows predicate. Used in the WHERE clause, the HAVING
clause, and elsewhere.

]

Caret (94): In %MATCHES pattern string a NOT character. For example, [^abc].^

Underscore (95): Valid first (or subsequent) character for identifier names.Valid first character
for certain user names (but not passwords).

Used in column names to represent embedded serial class data: SELECT Home_State,
where Home is a field that references a serial class and State is a property defined in that
serial class.

LIKE condition predicate single-character wildcard.

_

Curly braces (123,125): Enclose ODBC scalar functions: {fn name(...)}. Enclose time
and date construct functions: {d 'string'}, {t 'string'}, {ts 'string'}.

Enclose ObjectScript code in procedures, methods, queries, and trigger code.

{ }

InterSystems SQL Reference 5

Symbols Used in InterSystems SQL

Name and UsageSymbol

Double vertical bar (124): Concatenation operator.

Compound ID indicator. Used by InterSystems IRIS as a delimiter between multiple properties
in a generated compound object ID (a concatenated ID). This can be either an IDKey index
defined on multiple properties (prop1||prop2), or an ID for a parent/child relationship
(parent||child). Cannot be used in IDKEY field data.

||

6 InterSystems SQL Reference

Symbols and Syntax Conventions

Syntax Conventions
Specifies conventions used in the InterSystems SQL Reference.

Description
The following are the format conventions used in this reference. These format characters explain usage; they are not spec-
ified when coding an SQL program. For a table of the symbols that are used in SQL coding, refer to the SQL Symbols
table.

MeaningSymbol

An argument enclosed in square brackets is optional. Specify none or one.[nnnn]

An argument enclosed in curly braces is optional, and may be repeated multiple times.
Specify none, one, or more than one.

Curly braces are also used as literal characters, for example in ODBC scalar functions
with the form: {fn FUNCTION(arg)}

{ nnnn }

A vertical bar means OR. Specify either one or the other.mmmm | nnnn

An ellipsis indicates an unspecified portion of a complete SQL statement. It can also
be used to specify repetition: var1,var2,...

. . .

Is equivalent to.::=

If an argument appears as an "item-list", then the argument can consist of one or more of the particular items delimited by
a particular character. A cross-reference from an item-list points to the page for item itself.

If an argument appears as an "item-commalist", then the argument can consist of one or more of the particular items
delimited by a comma. A cross-reference from an item-commalist points to the page for item itself.

When an item is listed in bracketed parentheses, such as [(] identifier [)] then the pair of parentheses (as a unit)
is optional.

InterSystems SQL Reference 7

Syntax Conventions

SQL Commands

InterSystems SQL Reference 9

ALTER FOREIGN SERVER (SQL)
Alters a foreign server definition.

Synopsis
Change Connection

ALTER [FOREIGN] SERVER server-name
 ALTER CONNECTION jdbc-connection

ALTER [FOREIGN] SERVER server-name
 ALTER HOST file-path

Change Delimited Identifiers

ALTER [FOREIGN] SERVER server-name ALTER id-option

Change Connection and Delimited Identifiers

ALTER [FOREIGN] SERVER server-name
 MODIFY [CONNECTION jdbc-connection | HOST file-path],
id-option

Arguments
DescriptionArguments

The name for the foreign server definition being altered. A valid identifier.server-name

The name of the new JDBC connection that will connect InterSystems IRIS with
an external data source. A valid identifier. Must be the name of a JDBC
connection that has already been defined. Must be delimited.

CONNECTION cxn-name

The new file path that you want to use to access files that will be projected into
InterSystems IRIS.

HOST file-path

Either DELIMITEDIDS or NODELIMITEDIDS. Sets behavior based on whether
the external data source accepts delimited identifiers or not.

id-option

Description
The ALTER FOREIGN SERVER command allows you to change how a foreign server connects with an external data
source. You may use the ALTER variant of the command to change a single parameter or the MODIFY variant to change
multiple parameters. In particular, you may change the file path, JDBC connection, or delimited identifier option that the
foreign server uses when connecting with an external source.

Before you change the connection parameters of a foreign server with either the CONNECTION or HOST property, you
should be sure that your changes will not affect your ability to access the foreign tables you have defined on the foreign
server. For example, if you change the HOST file path and still want to access the tables you have already defined, you
should move any .csv files associated with foreign tables into the new file path. You will be unable to access data in these
tables until you have made the proper changes. There are no concerns when you use ALTER FOREIGN SERVER to change
these connection parameters on a foreign server that does not have a foreign table defined on it.

Examples
The following example alters a foreign server’s file path to read data from a different directory.

ALTER FOREIGN SERVER Sample.Test ALTER HOST '/second/filepath'

10 InterSystems SQL Reference

SQL Commands

The following example alters a foreign server’s JDBC connection to read data from a different database source and indicates
that the external data source permits delimited identifiers.

ALTER FOREIGN SERVER Sample.Test MODIFY CONNECTION 'anotherConnection', DELIMITEDIDS

See Also
• CREATE FOREIGN SERVER

• DROP FOREIGN SERVER

• CREATE FOREIGN TABLE

InterSystems SQL Reference 11

ALTER FOREIGN SERVER (SQL)

ALTER FOREIGN TABLE (SQL)
Alters a foreign table definition.

Synopsis
Change Column Name

ALTER FOREIGN TABLE table-name ALTER [COLUMN] old-name
 RENAME new-name
ALTER FOREIGN TABLE table-name MODIFY old-name
 RENAME new-name, old-name2 RENAME new-name2, ...
ALTER FOREIGN TABLE table-name ALTER [COLUMN] old-name
 RENAME new-name VALUES (external-name)
ALTER FOREIGN TABLE table-name MODIFY old-name
 RENAME new-name, old-name2 RENAME new-name2, ...
 VALUES (newexternal-name, newexternal-name2, ...)

Change Datatypes

ALTER FOREIGN TABLE table-name ALTER col-name datatype
ALTER FOREIGN TABLE table-name MODIFY col-name datatype
 {, col-name datatype ...}

Arguments
DescriptionArguments

The name for the foreign table that will be altered. A valid identifier. Must be the
name of a foreign table that exists on a foreign server before this command is
issued.

table-name

The name of the column within InterSystems IRIS that will be changed. A valid
identifier. Must correspond with the name of a column that exists in the foreign
table before this command is issued.

old-name

The new name of the column within InterSystems IRIS. A valid identifier.new-name

The new name of the column in the external data source that projects data into
the corresponding column in the RENAME clause.

external-name

The name of the column that will be converted to a new data type. A valid
identifier. Must correspond with the name of a column that exists in the foreign
table before this command is issued.

col-name

The new datatype of the column. Must be a valid SQL data type.dataype

Description
The ALTER FOREIGN TABLE command modifies a foreign table definition. There are two types of alterations you may
apply to a given table:

• Change the column name(s) of a column or list of columns.

• Change the data type(s) of a column or list of columns.

Change Column Names

You may use the ALTER FOREIGN TABLE command to change the column names of a single column or a list of columns
in a foreign table.

12 InterSystems SQL Reference

SQL Commands

There are two variations:

• ALTER FOREIGN TABLE table-name ALTER [COLUMN] old-name RENAME new-name renames a column
of the foreign table from old-name to new-name.

• ALTER FOREIGN TABLE table-name MODIFY old-name RENAME new-name renames one or more columns
of the foreign table from their old-name to their corresponding new-name.

• ALTER FOREIGN TABLE table-name ALTER [COLUMN] old-name RENAME new-name VALUES (
external-name) renames a column of the foreign table from old-name to new-name. This variation also changes the
name of the column in the external data source that projects data into the specified column.

• ALTER FOREIGN TABLE table-name MODIFY old-name RENAME new-name, old-name2 RENAME
new-name2 VALUES (external-name, external-name2) renames a series of columns of the foreign table from the
old-name to the corresponding new-name. This variation also changes the names of the columns in the external data
source that projects data into the specified columns.

Note: InterSystems does not recommend changing the name of a column or set of columns with the ALTER FOREIGN
TABLE command. Instead, because a foreign table is merely a projection of data from another source, if you
intend to make significant changes to the external data source, you should drop the foreign table, edit the database
or .csv file, and then recreate the foreign table.

Change Column Data Types

You may use the ALTER FOREIGN TABLE command to convert the data types of a column or a list of columns in a
foreign table. The new data type(s) must be valid InterSystems SQL data type(s).

You may not change the data type of a column if the change would result in stream data being typed as non-stream data or
non-stream data being typed as stream data. Attempting to do so results in a SQLCODE -374 error.

There are two variations:

• ALTER FOREIGN TABLE table-name ALTER col-name datatype changes the data type of a single column.

• ALTER FOREIGN TABLE table-name MODIFY col-name datatype {, col-name datatype ...} changes the data
type(s) of one or more columns. You may specify a different data type for each column.

Examples
The following example change the names of the LastName column on a foreign table called Sample.Person. The example
shows both the ALTER and MODIFY forms of the command.

ALTER FOREIGN TABLE Sample.Person ALTER COLUMN LastName RENAME Surname
ALTER FOREIGN TABLE Sample.Person MODIFY LastName RENAME FamilyName, FirstName RENAME GivenName

The following example changes the data type of the Amount column on a foreign table called Sample.Account. The
example shows both the ALTER and MODIFY forms of the commands.

ALTER FOREIGN TABLE Sample.Person ALTER Amount INTEGER
ALTER FOREIGN TABLE Sample.Person MODIFY Amount INTEGER

See Also
• CREATE FOREIGN TABLE

• DROP FOREIGN TABLE

InterSystems SQL Reference 13

ALTER FOREIGN TABLE (SQL)

ALTER ML CONFIGURATION (SQL)
Modifies an ML configuration.

Synopsis

ALTER ML CONFIGURATION ml-configuration-name
 [PROVIDER provider-name] [%DESCRIPTION description]
 [USING json-object-string] [provider-connection-settings]

Arguments

The name for the ML configuration being altered.ml-configuration-name

A string specifying the name of a machine learning provider, where values are:PROVIDER provider-name

• AutoML

• H2O

• DataRobot

• PMML

Optional — String. A text description for the ML configuration. See details below.%DESCRIPTION
description

Optional — A JSON string specifying one or more key-value pairs; see details
below.

USING json-object-string

Any additional settings, required for connection, that vary by the machine learning
provider. See details below.

provider-connection-settings

Description
The ALTER ML CONFIGURATION statement alters one, or several, parameters within an ML configuration definition.
You can alter:

• The provider

• The description

• The USING clause

• Provider connection settings

ML Configuration Description

%DESCRIPTION accepts a text string enclosed in single quotes, which you can use to provide a description for documenting
your configuration. This text can be of any length, and can contain any characters, including blank spaces.

USING

You can specify a default USING clause for your configuration. This clause accepts a JSON string with one or more key-
value pairs. When TRAIN MODEL is executed, by default the USING clause of the configuration is used.

ALTER ML CONFIGURATION MyConfiguration USING {"seed": 3}

14 InterSystems SQL Reference

SQL Commands

You must make sure that the parameters you specify are recognized by the provider you select. Failing to do so may result
in an error when training.

Provider Connection Settings

Depending on the provider specified by your configuration, there may be additional fields you must enter to establish a
successful connection.

DataRobot

You must specify the following values to successfully connect to DataRobot:

• URL [=] url-string — where url-string is the URL of a DataRobot endpoint.

• APITOKEN [=] token-string — where token-string is your client API token to access the DataRobot
AutoML server.

Altering an ML configuration for DataRobot could be performed with a query as follows:

ALTER ML CONFIGURATION datarobot-configuration URL url-string APITOKEN token-string

With proper values for url-string and token-string

Required Security Privileges

Calling ALTER ML CONFIGURATION requires %ALTER_ML_CONFIGURATION privileges; otherwise, there is a
SQLCODE –99 error (Privilege Violation). To assign %ALTER_ML_CONFIGURATION privileges, use the GRANT
command.

Examples
The following SQL query edits an existing configuration named TestH2O to add a USING clause that the user wants used
for every model being trained:

ALTER ML CONFIGURATION TestH2O USING {"seed": 2}

See Also
• CREATE ML CONFIGURATION, DROP ML CONFIGURATION

InterSystems SQL Reference 15

ALTER ML CONFIGURATION (SQL)

ALTER MODEL (SQL)
Modifies a model

Synopsis

ALTER MODEL model-name PURGE [ALL] [integer DAYS]

ALTER MODEL model-name DEFAULT [TRAINED MODEL] trained-model-name

Arguments

The name of the machine learning model to alter.model-name

A trained machine learning model.DEFAULT
trained-model-name

An integer.integer DAYS

Description
An ALTER MODEL statement modifies a machine learning model. You can perform only one type of operation in each
ALTER MODEL statement.

• A PURGE deletes all training runs and validation runs for the associated model based on the given scope:

– If no scope is given, all records are deleted except for those associated with the default trained model.

– If integer DAYS is given, all records older than integer days are deleted.

– If ALL is given, all records are deleted regardless of when they occurred.

• A DEFAULT (or DEFAULT TRAINED MODEL) sets the default trained model to be the model specified. This is
useful when you have made several TRAIN MODEL statements using the same model definition, saving each trained
model to a different name, and you wish to switch which model the default name points to. Specifying a nonexistent
model results in an error.

Required Security Privileges

Calling ALTER MODEL requires %MANAGE_MODEL privileges; otherwise, there is a SQLCODE –99 error (Privilege
Violation). To assign %MANAGE_MODEL privileges, use the GRANT command.

Examples
The following query uses a PURGE clause to delete all training and validation run data for the SpamFilter model:

ALTER MODEL SpamFilter PURGE ALL

The following query uses a DEFAULT clause to change the default trained model of SpamFilter to SpamFilter3

ALTER MODEL SpamFilter DEFAULT SpamFilter3

See Also
• CREATE MODEL, DROP MODEL

16 InterSystems SQL Reference

SQL Commands

ALTER TABLE (SQL)
Modifies a table.

Synopsis

ALTER TABLE table alter-action

where alter-action is one of the following:
 ADD [(] add-action {,add-action} [)] |
 DROP [COLUMN] drop-column-action {,drop-column-action} |
 DROP drop-action |
 DELETE drop-action |
 ALTER [COLUMN] field alter-column-action |
 MODIFY modification-spec {,modification-spec}
 RENAME table

add-action ::=
 [CONSTRAINT identifier]
 [(] FOREIGN KEY (field-commalist)
 REFERENCES table (field-commalist)
 [ON DELETE ref-action] [ON UPDATE ref-action]
 [NOCHECK] [)]
 |
 [(] UNIQUE (field-commalist) [)]
 |
 [(] PRIMARY KEY (field-commalist) [)]
 |
 DEFAULT [(] default-spec [)] FOR field
 |
 [COLUMN] [(] field datatype [sqlcollation]
 [%DESCRIPTION string]
 [DEFAULT [(] default-spec [)]]
 [ON UPDATE update-spec]
 [UNIQUE] [NOT NULL]
 [REFERENCES table (field-commalist)
 [ON DELETE ref-action] [ON UPDATE ref-action]
 [NOCHECK]]
 [)]

drop-column-action ::=
 [COLUMN] field [RESTRICT | CASCADE] [%DELDATA | %NODELDATA]

drop-action ::=
 FOREIGN KEY identifier |
 PRIMARY KEY |
 CONSTRAINT identifier |

alter-column-action ::=
 RENAME newfieldname |

datatype |
 [SET] DEFAULT [(] default-spec [)] | DROP DEFAULT |
 NULL | NOT NULL |
 COLLATE sqlcollation

modification-spec ::=
oldfieldname RENAME newfieldname |
field [datatype]

 [DEFAULT [(] default-spec [)]]
 [CONSTRAINT identifier] [NULL] [NOT NULL]

sqlcollation ::=
 { %EXACT | %MINUS | %MVR | %PLUS | %SPACE |
 %SQLSTRING [(maxlen)] | %SQLUPPER [(maxlen)] |
 %TRUNCATE[(maxlen)] }

InterSystems SQL Reference 17

ALTER TABLE (SQL)

Arguments

DescriptionArgument

The name of the table to be altered. The table name can be qualified (schema.table),
or unqualified (table). An unqualified table name takes the default schema name.
Schema search path values are not used.

table

A unique name assigned to a constraint. Must be a valid identifier.identifier

The name of the column to be altered (added, modified, deleted). Must be a valid
identifier.

field

The name of a column or a comma-separated list of columns. An field-commalist must
be enclosed in parentheses, even when only a single column is specified. See SQL
Identifiers.

field-commalist

A valid InterSystems SQL data type. See Data Types.datatype

A default data value automatically supplied for this field, if not overridden by a
user-supplied data value. Allowed values are: a literal value; one of the following keyword
options (NULL, USER, CURRENT_USER, SESSION_USER, SYSTEM_USER,
CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP); or an
OBJECTSCRIPT expression. Do not use the SQL zero-length string as a default value.
For further details, see CREATE TABLE.

default-spec

See ON UPDATE in CREATE TABLE.update-spec

Optional — Specify one of the following SQL collation types: %EXACT, %MINUS,
%PLUS, %SPACE, %SQLSTRING, %SQLUPPER, %TRUNCATE, or %MVR. The
default is the namespace default collation (%SQLUPPER, unless changed).
%SQLSTRING, %SQLUPPER, and %TRUNCATE may be specified with an optional
maximum length truncation argument, an integer enclosed in parentheses.The percent
sign (%) prefix to these collation parameter keywords is optional.The COLLATE keyword
is optional. For further details refer to Table Field/Property Definition Collation.

COLLATE
sqlcollation

Description
An ALTER TABLE statement modifies a table definition; it can add elements, remove elements, or modify existing elements.
You can only perform one type of operation in each ALTER TABLE statement.

• RENAME can rename a table, or can rename an existing column in a table with either ALTER COLUMN or MODIFY
syntax.

• ADD can add multiple columns and/or constraints to a table. You specify the ADD keyword once, followed by a
comma-separated list. You can use a comma-separated list to add multiple new columns to a table, add a list of constraints
to existing columns, or both add new columns and add constraints to existing columns.

• DROP COLUMN can delete multiple columns from a table. You specify the DROP keyword once, followed by a
comma-separated list of columns each with their optional cascade and/or data-delete option.

• ALTER COLUMN can change the definition of a single column. It cannot alter multiple columns.

• MODIFY can change the definition of a single column or a comma-separated list of columns. It does not support all
of the options provided by ALTER COLUMN.

• DROP can drop a constraint from a field or group of fields. DROP can only operate on a single constraint.

The ALTER TABLE DROP keyword and the ALTER TABLE DELETE keyword are synonyms.

18 InterSystems SQL Reference

SQL Commands

To determine if a specified table exists in the current namespace, use the $SYSTEM.SQL.Schema.TableExists() method.

Privileges and Locking

The ALTER TABLE command is a privileged operation. The user must have %ALTER_TABLE administrative privilege
to execute ALTER TABLE. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does
not have %ALTER_TABLE privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not have required
%ALTER privilege needed to change the table definition for 'Schema.TableName'.

To determine if the current user has %ALTER privilege, invoke the %CHECKPRIV command. To determine if a specified
user has %ALTER privilege, invoke the $SYSTEM.SQL.Security.CheckPrivilege() method.

To assign the required administrative privilege, use the GRANT command with %ALTER_TABLE privilege; this requires
the appropriate granting privileges. To assign the %ALTER object privilege, you can use:

• The GRANT command with the %ALTER privilege. This requires the appropriate granting privileges.

• The ALTER check box for the table on the SQL Tables tab in the Management Portal on the page for editing a role or
user. This requires the appropriate granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

• ALTER TABLE cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class 'Schema.tablename'.

• ALTER TABLE cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

ALTER TABLE acquires a table-level lock on table. This prevents other processes from modifying the table’s data. This
lock is automatically released at the conclusion of the ALTER TABLE operation. When ALTER TABLE locks the cor-
responding class definition, it uses the SQL Lock Timeout setting for the current process.

To alter a table, the table cannot be locked by another process in either EXCLUSIVE MODE or SHARE MODE.
Attempting to alter a locked table results in an SQLCODE -110 error, with a %msg such as the following: Unable to
acquire exclusive table lock for table 'Sample.MyTest'.

RENAME Table

You can rename an existing table using the following syntax:

ALTER TABLE schema.TableName RENAME NewTableName

This operation renames the existing table in its existing schema. You can only change the table name, not the table schema.
Specifying a schema name in the NewTableName results in an SQLCODE -1 error. Specifying the same table name for
both old and new tables generates an SQLCODE -201 error.

InterSystems SQL Reference 19

ALTER TABLE (SQL)

Renaming a table changes the SQL table name. It does not change the corresponding persistent class name.

Renaming a table does not change references to the old table name in triggers.

If a view references the existing table name, attempting to rename the table will fail. This is because attempting to rename
the table is an atomic operation that causes a recompile of the view, which generates an SQLCODE -30 error “Table
'schema.oldname' not found”.

ADD COLUMN Restrictions

ADD COLUMN can add a single column, or can add a comma-separated list of columns.

If you attempt to add a field to a table through an ALTER TABLE tablename ADD COLUMN statement:

• If a column of that name already exists, the statement fails with an SQLCODE -306 error.

• If the statement specifies a NOT NULL constraint on the column and there is no default value for the column, then
the statement fails if data already exists in the table. This is because, after the completion of the DDL statement, the
NOT NULL constraint is not satisfied for all the pre-existing rows. This generates the error code SQLCODE -304
(Attempt to add a NOT NULL field with no default value to a table which contains data).

• If the statement specifies a NOT NULL constraint on the column and there is a default value for the column, the
statement updates any existing rows in the table and assigns the default value for the column to the field. This includes
default values such as CURRENT_TIMESTAMP.

• If the statement DOES NOT specify a NOT NULL constraint on the column and there is a default value for the column,
then there are no updates of the column in any existing rows. The column value is NULL for those rows.

To change this default NOT NULL constraint behaviors, refer to the COMPILEMODE=NOCHECK option of the SET
OPTION command.

If you specify an ordinary data field named “ID” and the RowID field is already named “ID” (the default), the ADD
COLUMN operation succeeds. ALTER TABLE adds the ID data column, and renames the RowId column as “ID1” to
avoid duplicate names.

Adding an Integer Counter

If you attempt to add an integer counter field to a table through an ALTER TABLE tablename ADD COLUMN statement:

• You can add an IDENTITY field to a table if the table does not have an IDENTITY field. If the table already has an
IDENTITY field, the ALTER TABLE operation fails with an SQLCODE -400 error with a %msg such as the following:
ERROR #5281: Class has multiple identity properties: 'Sample.MyTest::MyIdent2'. When
you use ADD COLUMN to define this field, InterSystems IRIS populates existing data rows for this field using the
corresponding RowID integer values.

If CREATE TABLE defined a bitmap extent index and later you add an IDENTITY field to the table, and the
IDENTITY field is not of type %BigInt, %Integer, %SmallInt, or %TinyInt with a MINVAL of 1 or higher, and there
is no data in the table, the system automatically drops the bitmap extent index.

• You can add one or more SERIAL (%Library.Counter) fields to a table. When you use ADD COLUMN to define this
field, existing data rows are NULL for this field. You can use UPDATE to supply values to existing data rows that
are NULL for this field; you cannot use UPDATE to change non-NULL values.

• You can add a ROWVERSION field to a table if the table does not have a ROWVERSION field. If the table already
has a ROWVERSION field, the ALTER TABLE operation fails with an SQLCODE -400 error with a %msg such as
the following: ERROR #5320: Class 'Sample.MyTest' has more than one property of type
%Library.RowVersion. Only one is allowed. Properties: MyVer,MyVer2. When you use ADD
COLUMN to define this field, existing data rows are NULL for this field; you cannot update ROWVERSION values
that are NULL.

20 InterSystems SQL Reference

SQL Commands

ALTER COLUMN Restrictions

ALTER COLUMN can modify the definition of a single column:

• Rename the column using the syntax ALTER TABLE tablename ALTER COLUMN oldname RENAME newname.
Renaming a column changes the SQL field name. It does not change the corresponding persistent class property name.
ALTER COLUMN oldname RENAME newname replaces oldfield name references in trigger code and ComputeCode.

• Change the column characteristics: data type, default value, NULL/NOT NULL, and collation type.

If the table contains data, you cannot change the data type of a column that contains data if this change would result in
stream data being typed as non-stream data or non-stream data being typed as stream data. Attempting to do so results in
an SQLCODE -374 error. If there is no existing data, this type of datatype change is permitted.

You can use ALTER COLUMN to add, change, or drop a field default value.

If the table contains data, you cannot specify NOT NULL for a column if that column contains null values; this results in
an SQLCODE -305 error.

If you change the collation type for a column that contains data, you must rebuild all indexes for that column.

MODIFY column Restrictions

MODIFY can modify the definitions of a single column or a comma-separated list of columns.

• Rename the column using the syntax ALTER TABLE tablename MODIFY oldname RENAME newname.
Renaming a column changes the SQL field name. It does not change the corresponding persistent class property name.
MODIFY oldname RENAME newname replaces oldfield name references in trigger code and ComputeCode.

• Change the column characteristics: data type, default value, and other characteristics.

If the table contains data, you cannot change the data type of a column that contains data to an incompatible data type:

• A data type with a lower (less inclusive) data type precedence if this conflicts with existing data values. Attempting
to do so results in an SQLCODE -104 error, with the %msg specifying which field and which data value caused the
error.

• A data type with a smaller MAXLEN or a MAXVAL/MINVAL if this conflicts with existing data values. Attempting
to do so results in an SQLCODE -104 error, with the %msg specifying which field and which data value caused the
error.

• A data type change from a stream data type to a non-stream data type or a non-stream data type to a stream data type.
Attempting to do so results in an SQLCODE -374 error. If there is no existing data, this type of datatype change is
permitted.

You can use MODIFY to add or change a field default value. You cannot use MODIFY to drop a field default value.

If the table contains data, you cannot specify NOT NULL for a column if that column contains null values; this results in
an SQLCODE -305 error. The syntax forms ALTER TABLE mytable MODIFY field1 NOT NULL and ALTER TABLE
mytable MODIFY field1 CONSTRAINT nevernull NOT NULL perform the same operation. The optional CON-
STRAINT identifier clause is a no-op provided for compatibility. InterSystems IRIS does not retain or use this field constraint
name. Attempting to drop this field constraint by specifying this field constraint name results in an SQLCODE -315 error.

DROP COLUMN Restrictions

DROP COLUMN can delete multiple column definitions, specified as a comma-separated list. Each listed column name
must be followed by its RESTRICT or CASCADE (if unspecified, the default is RESTRICT) and %DELDATA or
%NODELDATE (if unspecified, the default is %NODELDATA) options.

By default, deleting a column definition does not delete any data that has been stored in that column from the data map.
To delete both the column definition and the data, specify the %DELDATA option.

InterSystems SQL Reference 21

ALTER TABLE (SQL)

Deleting a column definition does not delete the corresponding column-level privileges. For example, the privilege granted
to a user to insert, update, or delete data on that column. This has the following consequences:

• If a column is deleted, and then another column with the same name is added, users and roles will have the same
privileges on the new column that they had on the old column.

• Once a column is deleted, it is not possible to revoke object privileges for that column.

For these reasons, it is generally recommended that you use the REVOKE command to revoke column-level privileges
from a column before deleting the column definition.

RESTRICT keyword (or no keyword): You cannot drop a column if that column appears in an index, or is defined in a
foreign key constraint or other unique constraint. Attempting a DROP COLUMN for that column fails with an SQLCODE
-322 error. RESTRICT is the default. See DROP INDEX.

CASCADE keyword: If the column appears in an index, the index will be deleted. There may be multiple indexes. If the
column appears in a foreign key, the foreign key will be deleted. There may be multiple foreign keys.

You cannot drop a column if that column is used in COMPUTECODE or in a COMPUTEONCHANGE clause. Attempting
to do so results in an SQLCODE -400 error.

ADD CONSTRAINT Restrictions

You can add a constraint to a comma-separated list of fields. For example, you can add the UNIQUE (FName,SurName)
constraint, which establishes a UNIQUE constraint on the combined values of the two fields FName and Surname. Similarly,
you can add a primary key constraint or a foreign key constraint on a comma-separated list of fields.

A constraint can be named or unnamed. If unnamed, InterSystems SQL generates a constraint name using the table name.
For example, MYTABLE_Unique1 or MYTABLE_PKEY1.

The following example creates two unnamed constraints, adding both the unique constraint and the primary key constraint
to comma-separated lists of fields:

SQL

 ALTER TABLE SQLUser.MyStudents
 ADD UNIQUE (FName,SurName),PRIMARY KEY (Fname,Surname)

• A field must exist to be used in a constraint. Specifying a non-existent field generates an SQLCODE -31 error.

• The RowId field cannot be used in a constraint. Specifying the RowId (ID) field generates SQLCODE -31 error.

• A stream field cannot be used in a constraint. Specifying a stream field generates an SQLCODE -400 error: “invalid
index attribute”

• A constraint can only be applied once to a field. Specifying the same constraint twice to a field generates an SQLCODE
-400 error: “index name conflict”.

By using the optional CONSTRAINT identifier keyword clause, you can create a named constraint. A named constraint
must be a valid identifier; constraint names are not case-sensitive. This provides a name for the constraint for future use.
This is shown in the following example:

SQL

 ALTER TABLE SQLUser.MyStudents
 ADD CONSTRAINT UnqFullName UNIQUE (FName,SurName)

You can specify multiple constraints as a comma-separated list; the constraint name is applied to the first constraint, the
other constraints receive default names.

22 InterSystems SQL Reference

SQL Commands

A constraint name must be unique for the table. Specifying the same constraint name twice to a field generates an SQLCODE
-400 error: “index name conflict”.

ADD PRIMARY KEY Restrictions

A primary key value is required and unique. Therefore, adding a primary key constraint to an existing field or combination
of fields makes each of these fields a required field. If you add a primary key constraint to a list of existing fields, the
combined values of these fields must be unique. You cannot add a primary key constraint to an existing field if that field
permits NULL values. You cannot add a primary key constraint to a field (or list of fields) if that field (or list of fields)
contain non-unique values.

If you add a primary key constraint to an existing field, the field may also be automatically defined as an IDKey index.
This depends on whether data is present and upon a configuration setting established in one of the following ways:

• The SQL SET OPTION PKEY_IS_IDKEY statement.

• The system-wide $SYSTEM.SQL.Util.SetOption() method configuration option DDLPKeyNotIDKey. To determine
the current setting, call $SYSTEM.SQL.CurrentSettings() which displays Are primary keys created through
DDL not ID keys; the default is 1.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View the
current setting of Define primary key as ID key for tables created via DDL.

– If the check box is not selected (the default), the Primary Key does not becomes the IDKey index in the class
definition. Access to records using a primary key that is not the IDKEY is significantly less efficient; however,
this type of primary key value can be modified.

– If the check box is selected, when a Primary Key constraint is specified through DDL, and the field does not
contain data, the primary key index is also defined as the IDKey index. If the field does contain data, the IDKey
index is not defined. If the primary key is defined as the IDKey index, data access is more efficient, but a primary
key value, once set, can never be modified.

If CREATE TABLE defined a bitmap extent index and later you use ALTER TABLE to add a primary key that is also
the IDKey, the system automatically drops the bitmap extent index.

ADD PRIMARY KEY When Already Exists

You can only define one primary key. By default, InterSystems IRIS rejects an attempt to define a primary key when one
already exists, or to define the same primary key twice, and issues an SQLCODE -307 error. The SQLCODE -307 error is
issued even if the second definition of the primary key is identical to the first definition. To determine the current configu-
ration, call $SYSTEM.SQL.CurrentSettings(), which displays a Allow create primary key through DDL
when key exists setting. The default is 0 (No), which is the recommended configuration setting. If this option is set
to 1 (Yes), an ALTER TABLE ADD PRIMARY KEY causes InterSystems IRIS to remove the primary key index from
the class definition, and then recreates this index using the specified primary key field(s).

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

However, even if this option is set to allow the creation of a primary key when one already exists, you cannot recreate a
primary key index if it is also the IDKEY index and the table contains data. Attempting to do so generates an SQLCODE
-307 error.

ADD FOREIGN KEY Restrictions

For information on foreign keys, refer to Defining Foreign Keys and Foreign Key Referential Action Clause in the CREATE
TABLE command, and to Using Foreign Keys.

InterSystems SQL Reference 23

ALTER TABLE (SQL)

By default, you cannot have two foreign keys with the same name. Attempting to do so generates an SQLCODE -311 error.
To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Allow DDL ADD foreign
key constraint when foreign key exists setting. The default is 0 (No), which is the recommended setting for
this option. When 1 (Yes), you can add a foreign key through DDL even if one with the same name already exists.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

Your table definition should not have two foreign keys with different names that reference the same field-commalist field(s)
and perform contradictory referential actions. In accordance with the ANSI standard, InterSystems SQL does not issue an
error if you define two foreign keys that perform contradictory referential actions on the same field (for example, ON
DELETE CASCADE and ON DELETE SET NULL). Instead, InterSystems SQL issues an error when a DELETE or
UPDATE operation encounters these contradictory foreign key definitions.

An ADD FOREIGN KEY that specifies a non-existent foreign key field generates an SQLCODE -31 error.

An ADD FOREIGN KEY that references a non-existent parent key table generates an SQLCODE -310 error. An ADD
FOREIGN KEY that references a non-existent field in an existing parent key table generates an SQLCODE -316 error. If
you do not specify a parent key field, it defaults to the ID field.

Before issuing an ADD FOREIGN KEY, the user must have REFERENCES privilege on the table being referenced or on
the columns of the table being referenced. REFERENCES privilege is required if the ALTER TABLE is executed via
Dynamic SQL or over a SQL driver connection.

An ADD FOREIGN KEY that references a field (or combination of fields) that can take non-unique values generates an
SQLCODE -314 error, with additional details available through %msg.

NO ACTION is the only referential action supported for sharded tables.

An ADD FOREIGN KEY is constrained when data already exists in the table. To change this default constraint behavior,
refer to the COMPILEMODE=NOCHECK option of the SET OPTION command.

When you define an ADD FOREIGN KEY constraint for a single field and the foreign key references the idkey of the
referenced table, InterSystems IRIS converts the property in the foreign key into a reference property. This conversion is
subject to the following restrictions:

• The table must contain no data.

• The property on the foreign key cannot be of a persistent class (that is, it cannot already be a reference property).

• The data types and data type parameters of the foreign key field and the referenced idkey field must be the same.

• The foreign key field cannot be an IDENTITY field.

DROP CONSTRAINT Restrictions

By default, you cannot drop a unique or primary key constraint if it is referenced by a foreign key constraint. Attempting
to do so results in an SQLCODE -317 error. To change this default foreign key constraint behavior, refer to the COMPILE-
MODE=NOCHECK option of the SET OPTION command.

The effects of dropping a primary key constraint depend on the setting of the Are Primary Keys also ID Keys setting (as
described above):

• If the PrimaryKey index is not also the IDKey index, dropping the primary key constraint drops the index definition.

• If the PrimaryKey index is also the IDKey index, and there is no data in the table, dropping the primary key constraint
drops the entire index definition.

• If the PrimaryKey index is also the IDKey index, and there is data in the table, dropping the primary key constraint
just drops the PRIMARYKEY qualifier from the IDKey index definition.

24 InterSystems SQL Reference

SQL Commands

DROP CONSTRAINT When Non-Existent

By default, InterSystems IRIS rejects an attempt to drop a field constraint on a field that does not have that constraint and
issues an SQLCODE -315 error. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays
a Allow DDL DROP of non-existent constraint setting. The default is 0 (No), which is the recommended setting.
If this option is set to 1 (Yes), an ALTER TABLE DROP CONSTRAINT causes InterSystems IRIS to perform no operation
and issue no error message.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

Examples
The following examples uses Embedded SQL programs to create a table, populate two rows, and then alter the table defi-
nition.

To demonstrate this, please run the first two Embedded SQL programs in the order shown. (It is necessary to use two
embedded SQL programs here because embedded SQL cannot compile an INSERT statement unless the referenced table
already exists.)

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(DROP TABLE SQLUser.MyStudents)
 IF SQLCODE=0 { WRITE !,"Deleted table" }
 ELSE { WRITE "DROP TABLE error SQLCODE=",SQLCODE }
 &sql(CREATE TABLE SQLUser.MyStudents (
 FirstName VARCHAR(35) NOT NULL,
 LastName VARCHAR(35) NOT NULL)
)
 IF SQLCODE=0 { WRITE !,"Created table" }
 ELSE { WRITE "CREATE TABLE error SQLCODE=",SQLCODE }

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 NEW SQLCODE,%msg
 &sql(INSERT INTO SQLUser.MyStudents (FirstName, LastName)
 VALUES ('David','Vanderbilt'))
 IF SQLCODE=0 { WRITE !,"Inserted data in table"}
 ELSE { WRITE !,"SQLCODE=",SQLCODE,": ",%msg }
 &sql(INSERT INTO SQLUser.MyStudents (FirstName, LastName)
 VALUES ('Mary','Smith'))
 IF SQLCODE=0 { WRITE !,"Inserted data in table"}
 ELSE { WRITE !,"SQLCODE=",SQLCODE,": ",%msg }

The following example uses ALTER TABLE to add the ColorPreference column. Because the column definition specifies
a default, the system populates ColorPreference with the value 'Blue' for the two existing rows of the table:

ObjectScript

 NEW SQLCODE,%msg
 &sql(ALTER TABLE SQLUser.MyStudents
 ADD COLUMN ColorPreference VARCHAR(16) NOT NULL DEFAULT 'Blue')
 IF SQLCODE=0 {
 WRITE !,"Added a column",! }
 ELSEIF SQLCODE=-306 {
 WRITE !,"SQLCODE=",SQLCODE,": ",%msg }
 ELSE { WRITE "SQLCODE error=",SQLCODE }

The following example uses ALTER TABLE to add two computed columns: FLName and LFName. For existing rows
these columns have no value. For any subsequently inserted row a value is computed for each of these columns:

InterSystems SQL Reference 25

ALTER TABLE (SQL)

ObjectScript

 NEW SQLCODE,%msg
 &sql(ALTER TABLE SQLUser.MyStudents
 ADD COLUMN FLName VARCHAR(71) COMPUTECODE { SET {FLName}={FirstName}_" "_{LastName}}
 COMPUTEONCHANGE (FirstName,LastName),
 COLUMN LFName VARCHAR(71) COMPUTECODE { SET {LFName}={LastName}_ "," _{FirstName}}
 COMPUTEONCHANGE (FirstName,LastName))
 IF SQLCODE=0 {
 WRITE !,"Added two computed columns",! }
 ELSE { WRITE "SQLCODE error=",SQLCODE }

See Also
• CREATE TABLE, DROP TABLE

• JOIN

• SELECT

• INSERT, UPDATE, INSERT OR UPDATE, DELETE

• Defining Tables

• SQL and Object Settings Pages

• SQLCODE error messages

26 InterSystems SQL Reference

SQL Commands

ALTER USER (SQL)
Changes a user’s password.

Synopsis

ALTER USER user-name IDENTIFY BY password
ALTER USER user-name IDENTIFIED BY password
ALTER USER user-name [WITH] PASSWORD password

Description
The ALTER USER command allows you to change a user's password. You can always change your own password. To
change another user's password, you must be logged in as a user with one of the following:

• The %Admin_Secure administrative resource with USE permission.

• The %Admin_UserEdit administrative resource with USE permission.

• Full security privileges on the system.

The IDENTIFY BY, IDENTIFIED BY, and WITH PASSWORD keywords are synonyms.

The user-name must be an existing user. Specifying a non-existent user generates an SQLCODE -400 error with a %msg
such as the following: ERROR #838: User badname does not exist. You can determine if a user exists by
invoking the $SYSTEM.SQL.Security.UserExists() method.

A user-name specified as a delimited identifier can be an SQL reserved word and can contain a comma (,), period (.), caret
(^), and the two-character arrow sequence (->). It may begin with any valid character except the asterisk (*).

A password can be a string literal, a numeric, or an identifier. A string literal must be enclosed in quotes, and can contain
any combination of characters, including blank spaces. A numeric or an identifier does not have to be enclosed in quotes.
A numeric must consist of only the characters 0 through 9. An identifier must start with a letter (uppercase or lowercase)
or a % (percent symbol); this can be followed by any combination of letters, numbers, or any of the following symbols: _
(underscore), & (ampersand), $ (dollar sign), or @ (at sign).

ALTER USER does not issue an error code if the new password is identical to the existing password. It sets SQLCODE
= 0 (Successful Completion).

You can also change a user password using the $SYSTEM.Security.ChangePassword() method:

$SYSTEM.Security.ChangePassword(args)

Privileges

The ALTER USER command is a privileged operation. Prior to using ALTER USER in embedded SQL, you must be
logged in as a user with either the %Admin_Secure administrative resource with USE permission, or the %Admin_UserEdit
administrative resource with USE permission, or full security privileges on the system. Failing to do so results in an SQL-
CODE -99 error (Privilege Violation). Use the $SYSTEM.Security.Login() method to assign a user with appropriate
privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

InterSystems SQL Reference 27

ALTER USER (SQL)

Arguments

user-name

The name of an existing user whose password is to be changed. User names are not case-sensitive.

password

The new password for the user. A password must be at least 3 characters and cannot exceed 32 characters. Passwords are
case-sensitive. Passwords can contain Unicode characters.

Examples
The following embedded SQL example changes the password of user Bill from “temp_pw” to “pw4AUser”:

ObjectScript

Main
 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(CREATE USER Bill IDENTIFY BY temp_pw)
 IF SQLCODE=0 { WRITE !,"Created user" }
 ELSE { WRITE "CREATE USER error SQLCODE=",SQLCODE,! }
 &sql(ALTER USER BILL IDENTIFY BY pw4AUser)
 IF SQLCODE=0 { WRITE !,"Altered user password" }
 ELSE { WRITE "ALTER USER error SQLCODE=",SQLCODE,! }
Cleanup
 SET toggle=$RANDOM(2)
 IF toggle=0 {
 &sql(DROP USER Bill)
 IF SQLCODE=0 { WRITE !,"Dropped user" }
 ELSE { WRITE "DROP USER error SQLCODE=",SQLCODE }
 }
 ELSE {
 WRITE !,"No drop this time"
 QUIT
 }

See Also
• SQL statements: CREATE USER, DROP USER, GRANT, REVOKE

• SQL Users, Roles, and Privileges

• ObjectScript: $ROLES and $USERNAME special variables

• SQLCODE error messages

28 InterSystems SQL Reference

SQL Commands

ALTER VIEW (SQL)
Modifies a view.

Synopsis

ALTER VIEW viewName AS query
ALTER VIEW viewName (column, column2, ...) AS query

ALTER VIEW viewName ... AS query WITH READ ONLY
ALTER VIEW viewName ... AS query WITH
 [LOCAL | CASCADED] CHECK OPTION

Description
The ALTER VIEW command modifies views created using the CREATE VIEW command or a view projected from a
persistent class. The altered view replaces the existing view, so you cannot modify specific columns in a view.

A view is a virtual table based on the result set of a SELECT query or a UNION of such queries. For more details on views,
see Defining and Using Views.

• ALTER VIEW viewName AS query replaces the existing columns in a view with the columns returned by the SELECT
query. The view column names are derived from the column names returned by the result set of the query, which can
be:

– The column names or aliases of the table or view being queried

– The column name of a class query defined as a table-valued function

This statement modifies the NewEmployees view so that it includes only employees hired within the last 12 months.
The view column names, Name, Office, and StartDate, match the column names of the source table.

SQL

ALTER VIEW NewEmployees AS
 SELECT Name,Office,StartDate
 FROM Sample.Employees
 WHERE DATEDIFF('month',StartDate,CURRENT_DATE) <= 12

• ALTER VIEW viewName (column, column2, ...) AS query specifies the names of the columns to include in the view.
The column names must correspond in number and sequence with the table columns returned by the SELECT query.
Alternatively, you can specify these view column names as column name aliases in the SELECT statement query.
These ALTER VIEW statements are equivalent:

SQL

ALTER VIEW MyView (MyViewCol1,MyViewCol2,MyViewCol3) AS
 SELECT TableCol1, TableCol2, TableCol3 FROM MyTable

SQL

ALTER VIEW MyView AS SELECT TableCol1 AS ViewCol1,
 TableCol2 AS ViewCol2,
 TableCol3 AS ViewCol3
 FROM MyTable

The column specification replaces any existing columns specified for the view.

Example: Create and Alter a View

InterSystems SQL Reference 29

ALTER VIEW (SQL)

• ALTER VIEW viewName ... AS query WITH READ ONLY specifies that no insert, update, or delete operations
can be performed through this view upon the table on which the view is based. The default is to permit these operations
through a view, subject to any specified WITH CHECK OPTION constraints.

Example: Set Read-Only View

• ALTER VIEW viewName ... AS query WITH [LOCAL | CASCADED] CHECK OPTION checks that any row
being updated or inserted into this view satisfies the WHERE constraints of the view. If the row does not meet these
constrains, that row is not updated or inserted. You can specify these check options:

– WITH LOCAL CHECK OPTION — Check only the WHERE clause of the view specified in the INSERT or
UPDATE statement.

– WITH CASCADED CHECK OPTION or WITH CHECK OPTION — Check the WHERE clause of the view
specified in the INSERT or UPDATE statement and all underlying views on which that view is based. This option
overrides any WITH LOCAL CHECK OPTION clauses in these underlying views and is recommended for all
updateable views.

For more details on these options, see The WITH CHECK Option.

Example: Validate Table Modifications Made Through a View

Arguments

viewName

The view being modified, which has the same naming rules as a table name. A view name can be qualified (schema.view-
name), or unqualified (viewname). An unqualified view name takes the default schema name.

To determine if a specified view exists in the current namespace, use the $SYSTEM.SQL.Schema.ViewExists() method.

If the view is projected from a persistent class, you can run ALTER VIEW only if the view has the Classtype="view"
and DDLAllowed keywords specified. You cannot alter views that are projected from a class query.

query

The result set from a query that serves as a the basis for the view. You can specify the query as a SELECT statement or a
UNION of two or more SELECT statements. For an example that uses a UNION command, see Alter View Using Combined
SELECT Queries.

A view query cannot contain host variables or include the INTO keyword. If you attempt to reference a host variable in
query, the system generates an SQLCODE -148 error.

column

The name of a column included in the modified view. Specify multiple column names in a comma-separated list. You can
specify column names after the viewName argument or in the query argument.

Examples

Create and Alter a View

This example shows how to create a view and then alter it. The example also shows how to query and delete the view.

Create a view the contains the names of people who live in Massachusetts. This example assumes that a Sample.Person
table already exists and contains a Home_State column.

SQL

CREATE VIEW MassFolks (vFullName) AS
 SELECT Name FROM Sample.Person WHERE Home_State='MA'

30 InterSystems SQL Reference

SQL Commands

You can then query the view as you would a regular table.

SQL

SELECT * FROM MassFolks

Modify the view to include new columns. Altering a view replaces the column list with a new column list but does not
preserve the prior column list. Therefore, this modified view contains only the vMassAbbrev and vCity columns, not
the vFullName column.

SQL

ALTER VIEW MassFolks (vMassAbbrev,vCity) AS
 SELECT Home_State,Home_City FROM Sample.Person WHERE Home_State='MA'

Delete the view. You can delete a view similar to how you would delete a regular table.

SQL

DROP VIEW MassFolks

Alter View Using Combined SELECT Queries

Alter a view to include the combined results of two SELECT queries. To combine the results, you use a UNION command.

SQL

ALTER VIEW MyView (vname,vstate) AS
 SELECT t1.name,t1.home_state
 FROM Sample.Person AS t1
 UNION
 SELECT t2.name,t2.office_state
 FROM Sample.Employee AS t2

Set Read-Only View

Modify a view to prevent modifying the underlying table through this view.

SQL

ALTER VIEW YoungPeople AS
 SELECT Name,DOB
 FROM Sample.Person
 WHERE DATEDIFF(year,DOB,CURRENT_DATE) <= 18
WITH READ ONLY

If you update any row through this view, the WITH READ ONLY prevents the update.

SQL

UPDATE YoungPeople (DOB)
VALUES (02/17/2022)
WHERE Name='Page,Laura O.'

Validate Table Modifications Made Through a View

Modify this view of honor students to prevent the insertion of students that do not meet the GPA criteria. This examples
assumes that a Sample.Student table already exists.

InterSystems SQL Reference 31

ALTER VIEW (SQL)

SQL

ALTER VIEW HonorsStudent AS
 SELECT Name, GPA
 FROM Sample.Student
 WHERE GPA > 3.0
WITH CHECK OPTION

If you try to insert a student with too low a GPA for this view, the VIEW CHECK OPTION prevents the insertion.

SQL

INSERT INTO HonorsStudent (Name, GPA)
VALUES ('Waal,Edgar P.',2.9)

Security and Privileges
The ALTER VIEW command is a privileged operation. The user must have %ALTER_VIEW administrative privilege to
execute ALTER VIEW. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not
have %ALTER_VIEW privileges.

The user must have %ALTER privilege on the specified view. If the user is the Owner (creator) of the view, the user is
automatically granted %ALTER privilege for that view. Otherwise, the user must be granted %ALTER privilege for the
view. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not have privilege
to ALTER the view 'Schema.ViewName'.

If you hold appropriate granting privileges, you can assign %ALTER_VIEW and %ALTER privileges by using the GRANT
command.

To determine if the current user has %ALTER privileges, call the %CHECKPRIV command. To determine if a specified
user has %ALTER privilege, call the $SYSTEM.SQL.Security.CheckPrivilege() method.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

 DO $SYSTEM.Security.Login("myUserName","myPassword")
 &sql(...)

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

ALTER VIEW cannot be used on a view based on a table projected from a deployed persistent class. This operation fails
with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

See Also
• CREATE VIEW, DROP VIEW, GRANT

• Defining Views

• SQLCODE error messages

32 InterSystems SQL Reference

SQL Commands

BUILD INDEX (SQL)
Populates one or more indexes with data.

Synopsis

BUILD INDEX [%NOLOCK] [%NOJOURN] FOR TABLE table-name
 [INDEX index-name [,index-name]]

BUILD INDEX [%NOLOCK] [%NOJOURN] FOR SCHEMA schema-name

BUILD INDEX [%NOLOCK] [%NOJOURN] FOR ALL

Description
BUILD INDEX provides three syntax forms for building/re-building all defined indexes:

• Table: BUILD INDEX FOR TABLE table-name. The optional INDEX clause allows you to build/re-build only the
specified indexes.

• All tables in a schema: BUILD INDEX FOR SCHEMA schema-name

• All tables in the current namespace: BUILD INDEX FOR ALL

You may wish to build indexes for any of the following reasons:

• You have used CREATE INDEX to add one or more indexes to a table that already contains data.

• You have performed INSERT, UPDATE, or DELETE operations on a table using the %NOINDEX option, rather
than accepting the performance overhead of having each of these operations write to the index.

In either case, use BUILD INDEX to populate these indexes with data.

BUILD INDEX returns the number of tables modified as the number of Rows Affected.

If you used CREATE INDEX with the DEFER BUILD option to create an index, you must manually build the index.
Note that the BUILD INDEX command builds the index’s data, but does not make the index selectable, or usable, in
queries. In order to make an index selectable, use the SetMapSelectability() method. You can view whether a map is
selectable or not in the Management Portal by navigating to System Explorer > SQL > Catalog Details and selecting the
Maps/Indices button.

Classes that were defined through ObjectScript may inherit indexes that need to be built from a superclass. To build these
“inherited” indexes, you must call BUILD INDEX on the superclass that defines the index, not on the subclass that uses
it.

If a table uses %Storage.SQL, then indexes explicitly defined within the class will not be built.

Privileges

The BUILD INDEX command is a privileged operation. The user must have %BUILD_INDEX administrative privilege
to execute BUILD INDEX. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does
not have %BUILD_INDEX privileges. You can use the GRANT command to assign %BUILD_INDEX privileges
to a user or role, if you hold appropriate granting privileges. Administrative privileges are namespace-specific. For further
details, refer to Privileges.

The user must have SELECT privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted SELECT privilege for that table. Otherwise, the user must be granted SELECT privilege for the
table.

• Issuing BUILD INDEX FOR TABLE without SELECT privilege on the specified table results in an SQLCODE –30
error with the %msg Table 'name' not found.

InterSystems SQL Reference 33

BUILD INDEX (SQL)

• Issuing BUILD INDEX FOR SCHEMA only builds indexes for those table for which the user has SELECT privilege.
If the user does not have SELECT privilege for any tables in the schema, the command completes without error, with
0 rows affected.

You can determine if the current user has SELECT privilege by invoking the %CHECKPRIV command. You can use the
GRANT command to assign SELECT privilege to a specified table. For further details, refer to Privileges.

Locking and Journaling

By default, the BUILD INDEX statement acquires an extent lock on each table prior to building its indexes. This prevents
other processes from modifying the table’s data. This lock is automatically released at the conclusion of the BUILD INDEX
operation. You can specify %NOLOCK to prevent table locking.

By default, the BUILD INDEX statement uses the journaling setting for the current process. You can specify %NOJOURN
to prevent journaling.

To use %NOLOCK or %NOJOURN, you must have the corresponding SQL administrative privilege, which you can set
by using the GRANT command.

Error Codes

• If the specified table-name does not exist, InterSystems IRIS issues an SQLCODE -30 error and sets %msg to Table
'sample.tname' does not exist. This error message is returned if you specify a view rather than a table, or
if you specify a table for which you do not have SELECT privilege.

• If the specified index-name does not exist, InterSystems IRIS issues an SQLCODE -400 error and sets %msg to ERROR
#5066: Index name 'sample.tname::badindex' is invalid.

• If the specified schema-name does not exist, InterSystems IRIS issues an SQLCODE -473 error and sets %msg to
Schema 'sample' not found.

Arguments

FOR TABLE table-name

The name of an existing table. A table-name can be qualified (schema.table), or unqualified (table). An unqualified table
name takes the default schema name.

INDEX index-name

An optional index name or a comma-separated list of index names. If specified, only these indexes are built. If not specified,
all indexes defined for the table are built.

FOR SCHEMA schema-name

The name of an existing schema. This command builds all indexes for all tables in the specified schema.

See Also
• CREATE INDEX

• Defining and Building Indices

• SQLCODE error messages

34 InterSystems SQL Reference

SQL Commands

CALL (SQL)
Invokes a stored procedure.

Synopsis

CALL procname(arg_list) [USING contextvar]

retval=CALL procname(arg_list) [USING contextvar]

Description
A CALL statement invokes a query exposed as an SQL stored procedure. The procname must be an existing stored procedure
in the current namespace. If InterSystems IRIS cannot locate procname, it generates an SQLCODE -428 error. The procname
must be a Stored Procedure with SqlProc=True. Refer to SqlProc.

For further details on stored procedures, refer to the CREATE PROCEDURE command.

Arguments

procname

The name of an existing stored procedure. The procname must be followed by parentheses, even if no arguments are
specified. A procedure name can take any of of the following forms:

• Unqualified: Takes the default schema name. For example, MedianAgeProc().

• Qualified: Supplies a schema name. For example, Patient.MedianAgeProc().

• Multilevel: Qualified with one or more schema levels to paralell corresponding class package members. In this case,
the procname may contain only one period character; the other periods in the corresponding class method name are
replaced with underline characters. The period is specified before the lowest level class package member. For example,
%SYSTEM.SQL_GetROWID(), or %SYS_PTools.StatsSQL_Export().

InterSystems IRIS locates the match for an unqualified procname in a schema, using either the default schema name, or
(if provided) a schema name from the schema search path. If InterSystems IRIS cannot locate the specified procedure using
either the schema search path or the system-wide schema default, it generates an SQLCODE -428 error. You can use the
$SYSTEM.SQL.Schema.Default() method to determine the current system-wide default schema name. The initial system-
wide default schema name is SQLUser, which corresponds to the class package name User.

To determine if a procname exists in the current namespace, use the $SYSTEM.SQL.Schema.ProcedureExists() method.
The procname is not case-sensitive.

You must append the argument parentheses to the procname, even if you are not specifying any arguments. Failing to do
so results in an SQLCODE -1 error.

arg_list

A list of arguments used to pass values to the stored procedure. The arg_list is enclosed in parentheses and arguments in
the list are separated by commas. The parentheses are mandatory, even if you specify no arguments.

The arg_list arguments are optional. This comma-separated list is known as the actual argument list, which must match in
number and in sequence the formal argument list in the procedure definition. You may specify fewer actual argument values
than the formal arguments defined in the stored procedure. If you specify more actual argument values than the formal
arguments defined in the stored procedure, the system generates an SQLCODE -370 error. This error message specifies
the name of the stored procedure, the number of arguments specified, and the number of arguments defined in the stored
procedure.

InterSystems SQL Reference 35

CALL (SQL)

You can omit trailing arguments; any missing trailing arguments are undefined and take default values. You can specify
an undefined argument within the argument list by specifying a placeholder comma. For example, (arg1,,arg3) passes three
arguments, the second of which is undefined. Commonly, undefined arguments take a default value that was specified when
defining the stored procedure. If no default is defined, an undefined argument takes NULL. For further details refer to
NULL and the Empty String.

If you specify an argument value that does not match the data type defined in the stored procedure that argument takes
NULL, even if a default value is defined. For example, a stored procedure defines an argument as IN numarg INT
DEFAULT 99. If CALL specifies a numeric argument, that arg value is used. If CALL omits the argument, the defined
default is used. However, if CALL specifies a non-numeric argument, NULL is used, not the defined default.

An arg_list argument can be a user-defined function (a method stored procedure that returns a value).

USING contextvar

An optional argument. contextvar specifies a descriptor area variable that receives the procedure context object generated
by the procedure call. If omitted, the default is %sqlcontext.

retval

An optional variable specified to receive the procedure return value. Can contain a single value, not a result set. Can be
specified as a local variable, a host variable, or a question mark (?) argument.

From Embedded SQL
ObjectScript embedded SQL can either issue a CALL statement, or use the DO command to invoke the underlying routine
or method.

Using Embedded SQL, you can supply argument values to CALL as literals or by using any combination of :name host
variables or question mark (?) input parameters, as follows:

ObjectScript

 SET a=7,b="A",c=99
 &sql(CALL MyProc(:a,:b,:c))

ObjectScript

 &sql(CALL MyProc(?,:b,?))

The initial invocation of a CALL statement in Embedded SQL creates an %sqlcontext variable, by default. Subsequent
iterations use this existing %sqlcontext variable, meaning multiple iterations accumulate results in %sqlcontext that could
potentially result in a <STORE> error. If a CALL statement is to be iterated repeatedly, you can explicitly specify the
%sqlcontext variable in the USING clause. When a procedure context is specified in the USING clause InterSystems IRIS
issues a NEW on that procedure context each time it is invoked.

A host variable used for an output arg can be a single value, an array reference, an oref.property reference, or a multidimen-
sional oref.property reference.

You can return a value from a CALL statement by using either a host variable or a question mark (?):

ObjectScript

 &sql(:rtnval=CALL MyProc())

ObjectScript

 &sql(?=CALL MyProc())

The CALL return value must be a single value. You cannot return a result set from a CALL statement in Embedded SQL.
Attempting to use retval=CALL syntax for a procedure that does not return a value generates an SQLCODE -371 error.

36 InterSystems SQL Reference

SQL Commands

For further details, refer to Embedded SQL.

From Dynamic SQL
The following Dynamic SQL example calls the Stored Procedure Sample.PersonSets, which performs two queries on
the Sample.Person table. The Stored Procedure arguments specify the WHERE clause values for these two queries. The
first argument specifies to return all records in the first query where Name starts with arg1 (in this case, the letter “M”).
The second argument specifies to return all records in the second query where Home_State = arg2 (in this case, “MA”):

ObjectScript

 SET mycall = "CALL Sample.PersonSets(?,'MA')"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(mycall)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute("M")
 IF rset.%SQLCODE '= 0 {WRITE "SQL error=",rset.%SQLCODE QUIT}
 DO rset.%Display()

The following Dynamic SQL example also calls the Stored Procedure Sample.PersonSets, returning the result sets
for each query separately. The %Next() method iterates through the first query result set. The %MoreResults() method
accesses the result set for the second query. If there were more than two queries, %MoreResults() would access each result
set in turn.

ObjectScript

 #include %occStatus
 set mycall = "CALL Sample.PersonSets(?,'MA')"
 set tStatement = ##class(%SQL.Statement).%New()
 set qStatus = tStatement.%Prepare(mycall)
 if $$$ISERR(qStatus) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(qStatus) quit}

 set rset = tStatement.%Execute("M")
 if (rset.%SQLCODE '= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
 quit}

FirstResultSet
 while rset.%Next()
 {
 write "Name: ",rset.%Get("Name")
 if rset.%Get("Spouse") {write " Spouse: ",rset.%Get("Spouse"),!}
 else {write " unmarried",!}
 }
 if (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

 write !,"1st row count=",rset.%ROWCOUNT,!!

SecondResultSet
 while rset.%MoreResults()
 {
 do rset.%CurrentResult.%Display()
 }

Note that it is important to check the %SQLCODE value set by the CALL execution before invoking %Next(). Invoking
the %Next() method sets %SQLCODE, overwriting the prior CALL %SQLCODE value. If %Next() receives no result
set data, it sets %SQLCODE=100. It does not distinguish between an empty result set (no rows selected) and a nonexistent
result set due to an error in CALL processing.

For further details on %SQL.Statement and on how to display a list of formal parameters and other metadata for a stored
procedure, refer to Using Dynamic SQL. Also, Returning the Full Result Set provides further information and examples
of the %Display() method. Returning Specific Values from the Result Set provides further information and examples of
the %Next() and %Get() methods.

InterSystems SQL Reference 37

CALL (SQL)

From ObjectScript
Rather than calling stored procedures directly from embedded SQL, you can invoke stored procedures through ObjectScript
calls to the class methods that contain them. In this case, you have to manage the parameters, and with query-based stored
procedures, the separate methods have to be called and the fetch loop managed.

For example, to call a method exposed as a stored procedure called UpdateAllAvgScores that has no arguments, the code
is:

ObjectScript

 NEW phnd
 SET phnd=##class(%SQLProcContext).%New()
 DO ##class(students).UpdateAllAvgScores(phnd)
 IF phnd.%SQLCODE {QUIT phnd.%SQLCODE}
 USE 0
 WRITE !,phnd.%ROWCOUNT," Rows Affected"

When specifying a procedure’s arguments in the call statement, you must not specify the %Library.SQLProcContext
parameter if the procedure has an explicitly defined %Library.SQLProcContext parameter. The handling of this parameter
is done automatically.

In the following example, the stored procedure takes two arguments. It has an explicitly defined procedure context.

ObjectScript

 NEW phnd
 SET phnd=##class(%SQLProcContext).%New()
 SET rtn=##class(Sample.ResultSets).PersonSets("D","NY")
 IF phnd.%SQLCODE {QUIT phnd.%SQLCODE}
 DO %sqlcontext.%Display()
 WRITE !,"All Done"

To call a stored procedure that has been implemented as a query, you must call all three methods:

ObjectScript

 NEW qhnd
 DO ##class(students).GetAvgScoreExecute(.qhnd,x1)
 NEW avgrow,AtEnd
 SET avgrow=$lb("")
 SET AtEnd=0
 DO ##class(students).GetAvgScoreFetch(.qhnd,.avgrow,.AtEnd)
 SET x5=$lg(avgrow,1)
 DO ##class(students).GetAvgScoreClose(qhnd)

If a query-based stored procedure is to be nested within a number of other stored procedures, it is useful to write a wrapper
method to hide all of this.

From ODBC or JDBC
InterSystems IRIS fully supports CALL syntax as defined by the ODBC 2.x and JDBC 1.0 standards. In JDBC, you can
invoke CALL through the methods of the CallableStatement class. In ODBC, there are APIs. The CALL syntax and
semantics are exactly the same for JDBC and ODBC. Further, they are processed in the same way: both drivers parse the
statement text and, if the statement is CALL, they directly invoke the special methods on the server side, bypassing the
SQL engine.

If class PERSON has a stored procedure called SP1, you can call this from an ODBC or JDBC client (such as Microsoft
Query) as follows:

retcode = SQLExecDirect(hstmt, "{?=call PERSON_SP1(?,?)}", SQL_NTS);

InterSystems IRIS conforms to the ODBC standard in its structure for calling stored procedures. See the relevant documen-
tation for more information on that standard.

38 InterSystems SQL Reference

SQL Commands

With ODBC only, InterSystems IRIS allows relaxed syntax for calls, so there does not need to be curly braces around
CALL or parentheses around parameters. (Since this is good programming form, the above example uses them.)

Again, with ODBC only, InterSystems IRIS allows modified syntax for using default parameters, so that CALL SP is dif-
ferent from CALL SP(). The second form implies passing of a default parameter — as does CALL SP (,,) or SP(,?,)
or other such syntax. In that sense, the parenthesized form of CALL is different from non-parenthesized.

See Also
• SQL statements: CREATE PROCEDURE, CREATE QUERY, CREATE METHOD

• ObjectScript: DO command

• Defining and Using Stored Procedures

• SQLCODE error messages

InterSystems SQL Reference 39

CALL (SQL)

CANCEL QUERY (SQL)
Cancels a query that is currently running on the system.

Synopsis

CANCEL QUERY pid [IDENTIFIED BY sql-id]
 [TIMEOUT timeout]

Description
If a query is consuming too many system resources, you may cancel its execution. The CANCEL QUERY command
cancels the execution of a query. Queries are canceled by specifying the process ID the query is running in and, optionally,
the SQL Statement ID of the query. A canceled query is still prepared, so canceling a query that is running for the first time
will still produce a cached query.

A SQL Statement ID, stored in the Statement Index, is assigned the first time the statement is run and never changes. It
can also be found by querying INFORMATION_SCHEMA.STATEMENTS, or, for statements that are currently running
on your instance, by querying INFORMATION_SCHEMA.CURRENT_STATEMENTS.

Queries may also be canceled by using the $SYSTEM.SQL.CancelQuery() method.

The CANCEL QUERY command will fail with SQLCODE -400 if the provided process ID is not running a query.

Privileges

Any user that attempts to cancel a query, either with CANCEL QUERY or with $SYSTEM.SQL.CancelQuery() executed
issued by a different user must have the %CANCEL_QUERY privilege.

Arguments

pid

A process ID that identifies a process in which a SQL query is running. Use $JOB to determine a process ID.

If the sql-id argument is not specified, then the system cancels the first query found running within the process; to cancel
a specific query, you must provide the sql-id argument.

sql-id

An optional argument that specifies the ID of the SQL query stored within the SQL Statement Index. If this argument is
omitted, the system will cancel the first query found running within the specified process; to cancel a specific query, you
must provide the sql-id argument.

timeout

An optional argument that specifies how many seconds to wait before canceling the specified query. If omitted, the default
is to immediately cancel the query.

Examples
The following example cancels a query running in process 8044.

SQL

CANCEL QUERY 8044

The following example cancels a query running in process 12889 that has a SQL Statement ID of 68.

40 InterSystems SQL Reference

SQL Commands

SQL

CANCEL QUERY 12889 IDENTIFIED BY 68

The following example cancels a query running in process 10455 that has a SQL Statement ID of 104 with a timeout of 30
seconds.

SQL

CANCEL QUERY 10455 IDENTIFIED BY 104 TIMEOUT 30

See Also
• CALL and $SYSTEM.SQL.CancelQuery()

• INFORMATION_SCHEMA.STATEMENTS and INFORMATION_SCHEMA.CURRENT_STATEMENTS

• $JOB

InterSystems SQL Reference 41

CANCEL QUERY (SQL)

CASE (SQL)
Chooses one of a specified set of values depending on some condition.

Synopsis

CASE WHEN search_condition THEN value_expression
 [WHEN search_condition THEN value_expression ...]
 [ELSE value_expression]
 END

CASE value_expression WHEN value_expression THEN value_expression
 [WHEN value_expression THEN value_expression ...]
 [ELSE value_expression]
 END

Arguments

DescriptionArgument

An SQL boolean expression.search_condition

An SQL expression (such as a literal value or field name.)value_expression

Description
The CASE expression allows you to make comparison tests on series of values, returning when it encounters the first match.

The CASE expression comes in two forms: Simple and Searched.

The Simple CASE expression tests a series of value expressions (specified by a WHEN clause) to see if they are equal to
a given value expression:

SQL

SELECT
CASE Field1
 WHEN 1 THEN 'ONE'
 WHEN 2 THEN 'TWO'
 ELSE NULL
END
FROM MyTable

The value associated with the first matching expression is returned as the value of the CASE expression.

Numeric value_expression values may have different data types. The data type returned is the type most compatible with
all of the possible result values, the data type with the highest data type precedence. For numeric value_expression values
CASE returns the largest length, precision, and scale from all of the possible result values. A result value of NULL has the
lowest data type precedence; however, if all result values are NULL, the data type returned is VARCHAR.

The Searched CASE expression tests a series of search conditions (specified by a WHEN clause), finds the first WHEN
condition that evaluates to true, and returns the value associated with it:

SQL

SELECT
CASE
 WHEN Field1 = 1 THEN 'ONE'
 WHEN Field1 = 2 THEN 'TWO'
 ELSE NULL
END
FROM MyTable

42 InterSystems SQL Reference

SQL Commands

With either form of CASE expression, you can use an ELSE clause to specify what value to return if none of the WHEN
clause conditions are true. If you omit the ELSE clause and none of the WHEN clause conditions are true, CASE returns
NULL.

A CASE comparison that tests for NULL must use the IS NULL or IS NOT NULL keyword phrase. NULL is not a data
value (it represents the absence of a value). For this reason, any equality or arithmetic test for NULL always returns false.
A CASE expression that compares NULL and any data value always returns false. For example, NULL < 1 and NULL >
1 both return false. A CASE expression that equates NULL with NULL also returns false.

The end of a CASE expression is marked by an END token.

Examples
The following query is an example of a Simple CASE expression, where specified field values are replaced by supplied
values. Note the use of the RetireAge column alias after the END keyword; the optional AS keyword is omitted in this
example:

SQL

SELECT Name,
CASE Age
 WHEN 65 THEN 'Retire this year'
 WHEN 64 THEN 'Retire next year'
 ELSE 'Past retirement age '|| Age
END RetireAge
FROM Sample.Person
WHERE Age > 63
ORDER BY Age

The following query is another example of a Simple CASE expression. This query labels rows with certain Home_State
values as either “Northern NE” or “Southern NE”, and sets all other Home_State values in this column to NULL. It uses
the As clause to label this column as “NewEnglanders”, and also displays Names and the original Home_State values. The
resulting rows are ordered first by the NewEnglanders column (in descending order), and within this alphabetically by
Home_State, and then by Name.

SQL

SELECT Name,
CASE Home_State
 WHEN 'VT' THEN 'Northern NE'
 WHEN 'NH' THEN 'Northern NE'
 WHEN 'ME' THEN 'Northern NE'
 WHEN 'MA' THEN 'Southern NE'
 WHEN 'CT' THEN 'Southern NE'
 WHEN 'RI' THEN 'Southern NE'
 ELSE NULL
END AS NewEnglanders, Home_State
FROM Sample.Person
ORDER BY NewEnglanders DESC,Home_State,Name

The following query is an example of a Searched CASE expression. It uses logical operators (greater than (>), logical AND
(&), logical OR (!)) to specify a boolean statement for each WHEN clause. The first WHEN clause that tests True sets the
value expression that follows the THEN keyword. In this example, the Age and Home_State field values are used to
identify three types of Yankees: Old Yankees, Yankees (residents of the six New England states), and likely fans of the
New York Yankees baseball team:

InterSystems SQL Reference 43

CASE (SQL)

SQL

SELECT Name,
CASE
WHEN Age > 55 & Home_State = 'VT'
 ! Home_State='ME' ! Home_State='NH'
 ! Home_State='MA' ! Home_State='CT'
 ! Home_State='RI'
THEN 'Old Yankee'
WHEN Home_State = 'VT'
 ! Home_State='ME' ! Home_State='NH'
 ! Home_State='MA' ! Home_State='CT'
 ! Home_State='RI'
THEN 'Yankee'
WHEN Home_State='NY' THEN 'Yankees Fan'
 ELSE Home_State
END AS Yankees
FROM Sample.Person

The following example shows that any comparison with NULL always returns false:

SQL

SELECT TOP 5 Name,
CASE NULL
 WHEN NULL THEN 'Null = Null'
 WHEN 0 THEN 'Null = 0'
 WHEN '' THEN 'Null = empty string'
 WHEN CHAR(0) THEN 'Null = CHAR(0)'
 ELSE 'Null Arithmetic Invalid'
END
FROM Sample.Person

The following example shows how to use CASE with a field that has NULLs:

SQL

SELECT TOP 20 Name,
CASE
 WHEN FavoriteColors IS NULL THEN 'No Colors'
 ELSE $LISTTOSTRING(FavoriteColors,':')
END
FROM Sample.Person

CASE is not limited to use in queries, as shown in the following example:

SQL

INSERT INTO SQLUser.MyStudents (Name, PxTs) VALUES (
CASE ?
 WHEN 'a' THEN 'Alice'
 WHEN 'b' THEN 'Barney'
 ELSE 'Unknown' END,
CURRENT_TIMESTAMP)

See Also
• SQL functions: DECODE, GREATEST, LEAST, NULLIF, COALESCE

• ObjectScript function: $CASE

44 InterSystems SQL Reference

SQL Commands

%CHECKPRIV (SQL)
Checks whether the user holds a specified privilege.

Synopsis

%CHECKPRIV [GRANT OPTION FOR | ADMIN OPTION FOR] syspriv [,syspriv]
%CHECKPRIV [GRANT OPTION FOR] objpriv
 ON object
%CHECKPRIV column-privilege (column-list)
 ON table

Description
%CHECKPRIV can be used in two ways:

• To determine if the current user holds a specified system privilege, or holds all of the system privileges specified in a
comma-separated list.

• To determine if the current user holds a user privilege of a specified type on a specified object. These objects can
include table-level privileges on tables or views, column-level privileges on specified columns, and privileges on stored
procedures.

If the user holds the specified privilege, %CHECKPRIV sets SQLCODE=0. If the user does not hold the specified privilege,
%CHECKPRIV sets SQLCODE=100.

%CHECKPRIV enables you to check whether a privilege is held. It does not enforce privileges:

• Embedded SQL does not enforce privileges. %CHECKPRIV is primarily used for Embedded SQL. See Embedded
SQL and Privileges.

• Dynamic SQL enforces privileges at runtime. For example, if you do not have the %CREATE_TABLE system privilege,
%CHECKPRIV %CREATE_TABLE sets SQLCODE=100, showing that you don’t have this privilege. Dynamic
SQL enforces this privilege; a CREATE TABLE operation fails with an SQLCODE -99 error.

At runtime, Dynamic SQL and ODBC/JDBC enforce privileges and generate appropriate errors. The Management
Portal Execute Query SQL interface and the SQL Shell both execute as Dynamic SQL.

Because %CHECKPRIV requires access to the SQLCODE 100 value (an SQLCODE status value, not an SQLCODE
error value) to determine its result, %CHECKPRIV cannot be directly used by JDBC and other clients that can only dis-
tinguish error or no error status.

Because %CHECKPRIV prepares and executes quickly, and is generally run only once, InterSystems IRIS does not create
a cached query for %CHECKPRIV.

The CheckPrivilege() Method

The $SYSTEM.SQL.Security.CheckPrivilege() method provides greater functionality for checking user privileges on a
table, view, or stored procedure:

• CheckPrivilege() checks privileges for a specified user. %CHECKPRIV only checks privileges for the current user.

• CheckPrivilege() allows you to check multiple privileges. Each invocation of %CHECKPRIV can only check one
objpriv privilege.

• CheckPrivilege() allows you to check privileges on a table, view, or procedure defined in another namespace.
%CHECKPRIV only checks privileges for objects in the current namespace.

InterSystems SQL Reference 45

%CHECKPRIV (SQL)

Embedded SQL and Privileges

Privileges are not automatically checked or enforced for Embedded SQL. Therefore, an Embedded SQL program should
(in most cases) call %CHECKPRIV before attempting a privileged operation, such as an update:

ObjectScript

 SET name="Fred",age=25
 SET SQLCODE=""
 &sql(%CHECKPRIV UPDATE ON Sample.Person)
 IF SQLCODE=100 {
 WRITE !,"No UPDATE privilege"
 QUIT }
 ELSEIF SQLCODE < 0 {
 WRITE !,"Unexpected SQL error: ",SQLCODE," ",%msg
 QUIT }
 ELSE {
 WRITE !,"Proceeding with UPDATE" }
 &sql(UPDATE Sample.Person SET Name=:name,Age=:age WHERE Address='123 Bedrock')
 IF SQLCODE=0 { WRITE !,"UPDATE successful" }
 ELSE { WRITE "UPDATE error SQLCODE=",SQLCODE }

Arguments

GRANT OPTION FOR

This optional keyword phrase specifies checking whether the current user holds the WITH GRANT OPTION privilege on
the specified privilege(s). A %CHECKPRIV with this option does not check whether the user holds the specified privilege(s)
itself.

ADMIN OPTION FOR

This optional keyword phrase specifies checking whether the current user can grant the specified system privilege(s) to
other users or roles. A %CHECKPRIV with this option does not check whether the user holds the specified privilege(s)
itself.

syspriv

A system privilege, or a comma-separated list of system privileges. The available syspriv options include sixteen object
definition privileges and four data modification privileges.

The object definition privileges are: %CREATE_FUNCTION, %DROP_FUNCTION, %CREATE_METHOD,
%DROP_METHOD, %CREATE_PROCEDURE, %DROP_PROCEDURE, %CREATE_QUERY, %DROP_QUERY,
%CREATE_TABLE, %ALTER_TABLE, %DROP_TABLE, %CREATE_VIEW, %ALTER_VIEW, %DROP_VIEW,
%CREATE_TRIGGER, %DROP_TRIGGER. Alternatively, you can specify %DB_OBJECT_DEFINITION, which tests
all 16 object definition privileges.

The data modification privileges are the %NOCHECK, %NOINDEX, %NOLOCK, %NOTRIGGER privileges for INSERT,
UPDATE, and DELETE operations.

objpriv

An object privilege associated with a specified object. The available options are: %ALTER, DELETE, SELECT, INSERT,
UPDATE, EXECUTE, and REFERENCES.

object

The name of the object for which the objpriv is being checked.

column-privilege

A column-level privilege associated with one or more listed columns. Available options are SELECT, INSERT, UPDATE,
and REFERENCES.

46 InterSystems SQL Reference

SQL Commands

column-list

A list of one or more column names for which privilege assignment is being checked, separated by commas and enclosed
in parentheses. A space may be included or omitted between the column-privilege name and the opening parenthesis.

table

The name of the table or view that contains the column-list columns. A table name or view name can be qualified
(schema.tablename), or unqualified (tablename). An unqualified name takes the default schema name; a schema search
path is ignored.

Examples
The following Embedded SQL example checks whether the current user holds a specific object privilege for a specific
table:

ObjectScript

 &sql(%CHECKPRIV UPDATE ON Sample.Person)
 IF SQLCODE=0 {WRITE "Have update privilege"}
 ELSEIF SQLCODE=100 {WRITE "Do not have update privilege" QUIT}
 ELSE {WRITE "Unexpected %CHECKPRIV error: ",SQLCODE," ",%msg QUIT}

The following Embedded SQL example checks whether the current user holds system privileges on the three table operations.
If it has privileges, it creates a table:

ObjectScript

 &sql(%CHECKPRIV %CREATE_TABLE,%ALTER_TABLE,%DROP_TABLE)
 IF SQLCODE=0 {WRITE "Have table privileges",!}
 ELSEIF SQLCODE=100 {WRITE "Do not have one or more table privileges" QUIT}
 ELSE {WRITE "Unexpected %CHECKPRIV error: ",SQLCODE," ",%msg QUIT}
 &sql(CREATE TABLE Sample.MyTable (Name VARCHAR(40),Age INTEGER))
 WRITE "Created table"

The following Embedded SQL example checks whether the current user holds all 16 object definition privileges. The
SQLCODE value is set to either 0 (holds all 16 privileges) or 100 (does not hold one or more of the 16 privileges):

ObjectScript

 &sql(%CHECKPRIV %DB_OBJECT_DEFINITION)
 IF SQLCODE=0 {WRITE "Have all system privileges"}
 ELSEIF SQLCODE=100 {WRITE "Do not have one or more system privileges"}
 ELSE {WRITE "Unexpected SQLCODE error: ",SQLCODE," ",%msg}

The following Embedded SQL example checks whether the current user can grant the %CREATE_TABLE privilege to
other users or roles:

ObjectScript

 &sql(%CHECKPRIV ADMIN OPTION FOR %CREATE_TABLE)
 IF SQLCODE=0 {WRITE "Have admin option on privilege"}
 ELSEIF SQLCODE=100 {WRITE "Do not have admin option on privilege"}
 ELSE {WRITE "Unexpected SQLCODE error: ",SQLCODE," ",%msg}

The following Embedded SQL example checks whether the current user holds the specified column-level privileges. Fol-
lowing the name of the privilege, specify the name of a column (or a comma-separated list of columns) in parentheses:

ObjectScript

 &sql(%CHECKPRIV UPDATE(Name,Age) ON Sample.Person)
 IF SQLCODE=0 {WRITE "Have privilege on all specified columns"}
 ELSEIF SQLCODE=100 {WRITE "Do not have privilege on one or more specified columns"}
 ELSE {WRITE "Unexpected SQLCODE error: ",SQLCODE," ",%msg}

InterSystems SQL Reference 47

%CHECKPRIV (SQL)

See Also
• SQL statements: GRANT, REVOKE

• SQL Users, Roles, and Privileges

• ObjectScript: $ROLES and $USERNAME special variables

48 InterSystems SQL Reference

SQL Commands

CLOSE (SQL)
Closes a cursor.

Synopsis

CLOSE cursor-name

Description
A CLOSE statement shuts down an open cursor. It releases the current result set and frees any cursor locks held on the
rows on which the cursor is positioned. However, CLOSE does not delete the cursor; it leaves the data structures accessible
for reopening, but fetches and positioned updates are not allowed until the cursor is reopened. This behavior is demonstrated
by the following command sequences:

• DECLARE c1, OPEN c1, FETCH c1, CLOSE c1 is the standard sequence.

• DECLARE c1, OPEN c1, CLOSE c1, OPEN c1 reopens the declared cursor c1.

• DECLARE c1, OPEN c1, CLOSE c1, DECLARE c1, OPEN c1 reopens the cursor specified in the first DECLARE,
the second DECLARE is ignored.

• DECLARE c1, OPEN c1, FETCH c1, CLOSE c1, OPEN c1, FETCH c1 cause both fetch operations to retrieve the
same record.

CLOSE must be issued on an open cursor. Issuing a CLOSE on a cursor that has only been declared (but not opened), or
on a cursor that has already been closed results in an SQLCODE -102 error. Issuing a CLOSE on a non-existent cursor —
for example, a cursor that differs from the defined cursor in letter case — results in an SQLCODE -52 error.

The cursor-name is not namespace-specific. Changing the current namespace has no effect on use of a declared cursor.
The only namespace consideration is that FETCH must occur in the namespace that contains the table(s) being queried.

Note that, as an SQL statement, CLOSE is only supported from Embedded SQL. Equivalent operations are supported
through ODBC using the ODBC API.

Arguments

cursor-name

The name of the cursor to be closed. The cursor name was specified in the DECLARE statement. Cursor names are case-
sensitive.

Examples
The following Embedded SQL example shows a cursor (named EmpCursor) being opened and closed:

InterSystems SQL Reference 49

CLOSE (SQL)

ObjectScript

 SET name="LastName,FirstName",state="##"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Employee
 WHERE Home_State %STARTSWITH 'A')
 WRITE !,"BEFORE: Name=",name," State=",state
 &sql(OPEN EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"DURING: Name=",name," State=",state }
 WRITE !,"After FETCH SQLCODE: ",SQLCODE
 WRITE !,"After FETCH row count: ",%ROWCOUNT
 &sql(CLOSE EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}
 WRITE !,"After CLOSE SQLCODE: ",SQLCODE
 WRITE !,"After CLOSE row count: ",%ROWCOUNT
 WRITE !,"AFTER: Name=",name," State=",state

Note that after closing the cursor, the host variables remain set to the last fetched data values, and %ROWCOUNT remains
set to the number of rows retrieved. However, the SQLCODE value at the end of the fetch (SQLCODE=100) is overwritten
by the SQLCODE value for the CLOSE (SQLCODE=0).

The following Embedded SQL example shows that a cursor persists across namespaces. This cursor is declared in %SYS,
opened and fetched in USER, and closed in SAMPLES. Note that the OPEN must be executed in the namespace that contains
the table(s) being queried, and the FETCH must able to access the output host variables, which are namespace-specific:

 &sql(USE DATABASE %SYS)
 WRITE $ZNSPACE,!
 &sql(DECLARE NSCursor CURSOR FOR SELECT Name INTO :name FROM Sample.Employee)
 &sql(USE DATABASE "USER")
 WRITE $ZNSPACE,!
 &sql(OPEN NSCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 NEW SQLCODE,%ROWCOUNT,%ROWID
 FOR { &sql(FETCH NSCursor)
 QUIT:SQLCODE
 WRITE "Name=",name,! }
 &sql(USE DATABASE SAMPLES)
 WRITE $ZNSPACE,!
 &sql(CLOSE NSCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}

See Also
• DECLARE, FETCH, OPEN

• SQL Cursors

50 InterSystems SQL Reference

SQL Commands

COMMIT (SQL)
Commits work performed during a transaction.

Synopsis

COMMIT [WORK]

Description
A COMMIT statement commits all work completed during the current transaction, resets the transaction level counter,
and releases all locks established. This completes the transaction. Work committed cannot be rolled back.

COMMIT and COMMIT WORK are equivalent statements; both versions are supported for compatibility.

A transaction is defined as the operations that have occurred since and including the START TRANSACTION statement.
A COMMIT restores the transaction level counter ($TLEVEL) to its state immediately prior to the START TRANSACTION
statement that initialized the transaction. (Because InterSystems SQL does not support nested transactions, issuing additional
START TRANSACTION statements within a transaction has no effect on the transaction initialization point.)

A single COMMIT causes all savepoints within the transaction to be committed.

A START TRANSACTION statement is used to explicitly begin a new transaction. However, use of START
TRANSACTION is optional. If transaction processing is activated, the first database operation following a COMMIT
implicitly begins a new transaction. A COMMIT statement is not meaningful if either transaction processing is not in
effect, or transaction processing is in effect with automatic commits. If no transaction is in progress, a COMMIT completes
successfully (SQLCODE 0), but performs no operation.

The effects of a COMMIT on queries are determined by the current isolation level. These transaction parameters can be
set using either the SET TRANSACTION or START TRANSACTION command.

An SQLCODE -400 is issued if a transaction operation fails to complete successfully.

ObjectScript and SQL Transactions
ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

If a transaction involves SQL update statements, the transaction should be started by the SQL START TRANSACTION
statement and committed with the SQL COMMIT statement. Methods that use TSTART/TCOMMIT nesting can be
included in the transaction, as long as they don't initiate the transaction. Methods and stored procedures should not normally
use SQL transaction control statements, unless, by design, they are the main controller of the transaction. Stored procedures
should not normally use SQL transaction control statements, because these stored procedures are normally called from
ODBC/JDBC, which has its own model of transaction control.

Examples
The following Embedded SQL example demonstrates how a COMMIT restores the transaction level counter ($TLEVEL)
to the level immediately prior to the START TRANSACTION, regardless of how many SAVEPOINTS have been
established within the transaction. Note that the second START TRANSACTION in this program is a no-op which has
no effect on $TLEVEL:

InterSystems SQL Reference 51

COMMIT (SQL)

ObjectScript

 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Set transaction mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION)
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT b)
 WRITE !,"Set Savepoint b, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION) /* Performs no operation */
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT c)
 WRITE !,"Set Savepoint c, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT)
 WRITE !,"Commit transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

The following Embedded SQL example demonstrates that the first COMMIT statement commits the entire transaction
and that extra COMMIT statements have no effect and do not result in an error:

ObjectScript

 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Set transaction mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION)
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT)
 WRITE !,"Commit transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT) /* Performs no operation */
 WRITE !,"Commit again, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT) /* Performs no operation */
 WRITE !,"Commit again, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

See Also
• SQL commands: ROLLBACK SAVEPOINT SET TRANSACTION START TRANSACTION $TLEVEL

• Transaction Processing

• ObjectScript command: TCOMMIT

52 InterSystems SQL Reference

SQL Commands

CREATE AGGREGATE (SQL)
Creates a user-defined aggregate function.

Synopsis

CREATE [OR REPLACE] AGGREGATE name(parameter_list) [RETURNS datatype]
 [INITIALIZE WITH function-name]
 ITERATE WITH function-name
 [MERGE WITH function-name]
 [FINALIZE WITH function-name]

Description
The CREATE AGGREGATE command creates a user-defined aggregate function (UDAF). When invoked, this user-
defined aggregate function iterates through the row values and invokes one or more user-defined functions to compute an
aggregate value. You can use CREATE AGGREGATE to provide aggregate operations not provided by the standard
InterSystems IRIS SQL aggregate functions.

If you invoke CREATE AGGREGATE to create a UDAF that already exists, SQL issues an SQLCODE -428 error, with
a %msg such as: User Defined Aggregate Function SQLUser.MyUDAF already exists. If you specify the
optional OR REPLACE keyword clause (CREATE OR REPLACE AGGREGATE), specifying the name of an existing
UDAF does not generate an error. Instead, the existing UDAF is updated with the specified definition.

To delete a user-defined aggregate function, use the DROP AGGREGATE command.

Privileges

The CREATE AGGREGATE command is a privileged operation. Before using CREATE AGGREGATE you must
have Execute privilege for the UDAF and all referenced user-defined functions. Failing to do so results in an SQLCODE
-99 error (Privilege Violation).

Aggregate Function Name

The UDAF name must be a valid identifier. Aggregate function names are not case-sensitive.

The UDAF name can be qualified (schema.aggname), or unqualified (aggname). An unqualified name takes the default
schema name.

The UDAF name cannot be the same as the name of an existing stored procedure. Attempted to create a UDAF name that
duplicates a stored procedure name generates an SQLCODE -428 error, with a %msg such as User Defined Aggregate
Function SQLUser.MyFunction conflicts with existing stored procedure name.

INITIALIZE WITH Clause

The optional INITIALIZE WITH clause invokes the specified user-defined function or class method to compose the initial
state object. The state object value is used to pass interim aggregate values or other variables required to perform the end
calculation. If this clause is not specified, a null object is passed as the initial state object to the function specified in the
ITERATE WITH clause.

The specified user-defined function-name must exist when CREATE AGGREGATE is invoked; otherwise an SQLCODE
-428 error is generated and %msg specifies the UDAF function, the clause, and the non-existent function name.

The following is a user-defined function that defines an initial state object:

SQL

CREATE FUNCTION MyAggregateInit() returns varchar language ObjectScript { RETURN "^" }

InterSystems SQL Reference 53

CREATE AGGREGATE (SQL)

ITERATE WITH Clause

The ITERATE WITH clause invokes the specified user-defined function or class method once for each row being aggregated.
It take a state object representing the interim result and the current row's column value(s) as input parameters and performs
its operation on that state object, which accumulates the aggregate value. When all rows have been processed it returns the
new state value.

The specified user-defined function-name must exist when CREATE AGGREGATE is invoked; otherwise an SQLCODE
-428 error is generated and %msg specifies the UDAF function, the clause, and the non-existent function name.

MERGE WITH Clause

The optional MERGE WITH clause can be specified to enable parallel processing of the user-defined aggregate function.
If not specified, the query invoking the UDAF uses single-thread processing. For further details, see Parallel Processing.

FINALIZE WITH Clause

The optional FINALIZE WITH clause invokes the specified user-defined function or class method once, at the end of
processing, to perform any final calculations based on the state value returned from the last call to the ITERATE WITH
clause function. If the invoking query specifies a GROUP BY clause, this user-defined function is invoked once for each
GROUP BY grouped value.

The specified user-defined function-name must exist when CREATE AGGREGATE is invoked; otherwise an SQLCODE
-428 error is generated and %msg specifies the UDAF function, the clause, and the non-existent function name.

Arguments

name

The name of the user-defined aggregate function to be created. The name must be a valid identifier. The name can be
qualified (schema.aggname), or unqualified (aggname). An unqualified name takes the default schema name. Aggregate
function names are not case-sensitive. The name must be followed by parentheses containing one or more parameters.

parameter_list

A list of parameters used to pass values to the aggregate function. The parameter list is enclosed in parentheses. You can
specify a single parameter, or a list of parameters separated by commas. Each parameter in the list consists of a parameter
name and a data type. For example: (param1 INTEGER,param2 NUMERIC).

RETURNS datatype

An optional argument that specifies the data type to return the aggregate function value. If omitted, the data type defaults
to the data type of the first parameter in the parameter_list.

function-name

The name of an existing user-defined function created using the CREATE FUNCTION command, or a class method that
returns a value and is projected as an SQL procedure. A user-defined function is stored as a method in a stored procedure
class. For example, the user-defined function MyFunction takes the default schema name: SQLUser.MyFunction, which
corresponds to the class User.funcMyFunction which contains the classmethod MyFunction().

Invoking a User-defined Aggregate Function
User-defined aggregate functions follow the same usage rules as standard aggregate functions.

A UDAF is invoked in a SELECT list, either as a listed select-item or in a subquery select-item. It can specify a column
alias; if a column alias is not specified, it defaults to Aggregate_n. For example,

54 InterSystems SQL Reference

SQL Commands

SQL

SELECT Home_State,AVG(Age) AS AvgAge,MAX(Age) AS MaxAge,SecondHighest(Age) AS SecondMaxAge
FROM Sample.Person GROUP BY Home_State

A UDAF cannot be used directly in an ORDER BY clause. Attempting to do so generates an SQLCODE -73 error. However,
you can use a user-defined aggregate function in an ORDER BY clause by specifying the corresponding column alias or
select-item sequence number.

A UDAF can be used directly in a HAVING clause. However, a HAVING clause must explicitly specify the user-defined
aggregate function; it cannot specify a UDAF using the corresponding select-item column alias or select-item sequence
number.

An aggregate function cannot be used directly in:

• a WHERE clause. Attempting to do so generates an SQLCODE -19 error.

• a GROUP BY clause. Attempting to do so generates an SQLCODE -19 error.

• a TOP clause. Attempting to do so generates an SQLCODE -1 error.

• a JOIN. Attempting to specify an aggregate in an ON clause generates an SQLCODE -19 error. Attempting to specify
an aggregate in a USING clause generates an SQLCODE -1 error.

Unlike a standard aggregate function, a user-defined aggregate function cannot specify a DISTINCT, %FOREACH, or
%AFTERHAVING clause.

Parallel Processing
If the optional MERGE WITH clause is specified, the MERGE WITH function merges the supplied state objects coming
from the ITERATE WITH functions of two or more parallel subqueries, returning a single merged values that represents
the aggregated state. The MERGE WITH function is automatically invoked as many times as the number of parallel processes.
The result of these merges is supplied to the FINALIZE WITH clause.

When declaring a MERGE WITH function, it is assumed the state object supports implicit serialization. For example, by
implementing the %SerialObject interface in ObjectScript.

If a MERGE WITH function is not provided, the user-defined aggregate function is not processed by parallel threads when
%PARALLEL or sharding is specified. It is porcessed as a single thread.

Listing User-defined Aggregate Functions
The INFORMATION.SCHEMA.USERDEFINEDAGGREGATES persistent class displays information about all user-defined
aggregate functions in the current namespace. It provides a number of properties including the names of the user-defined
functions specified in its clauses.

The following example returns the schema name, user-defined aggregate name, ITERATE clause function name, and
returned data type for all user-defined aggregate functions in the current namespace:

SQL

SELECT AGGREGATE_SCHEMA,AGGREGATE_NAME,ITERATE_FUNCTION,RETURN_TYPE
FROM INFORMATION_SCHEMA.USER_DEFINED_AGGREGATES

If no RETURNS clause is specified, the RETURN_TYPE value is NULL.

Example
The following example creates a user-defined aggregate function that sums values by adding all high (>=5) values and
subtracting 5 for all low (<5) values. All values are data type NUMERIC(4,1). The first step is to create the iterate function,
specifying a state variable (tot) and an input variable (num):

InterSystems SQL Reference 55

CREATE AGGREGATE (SQL)

SQL

CREATE FUNCTION Sample.AddSub(tot NUMERIC(4,1),IN num NUMERIC(4,1)) RETURNS NUMERIC(4,1)
LANGUAGE OBJECTSCRIPT {IF num>=5 {SET tot=tot+num} ELSE {SET tot=tot-5} QUIT tot}

You can then define the user-defined aggregate function:

CREATE AGGREGATE Sample.SumAddSub(arg NUMERIC(4,1))
 ITERATE WITH Sample.AddSub

You can then invoke this user-defined aggregate function for the Score field as follows:

SELECT TestSubject,Score,SUM(Score) AS ScoreSum,Sample.SumAddSub(Score) AS ScoreAddHighSubtractLow

To avoid negative values, add a FINALIZE WITH function:

CREATE FUNCTION Sample.NoNeg(tot NUMERIC(4,1)) RETURNS NUMERIC(4,1)
LANGUAGE OBJECTSCRIPT {IF num>0 {QUIT tot} ELSE {SET tot=0 QUIT tot}}

CREATE OR REPLACE AGGREGATE Sample.SumAddSub(arg NUMERIC(4,1))
 ITERATE WITH Sample.AddSub
 FINALIZE WITH Sample.NoNeg

See Also
• CREATE FUNCTION command

• DROP AGGREGATE command

• Overview of Aggregate Functions

• SQLCODE error messages

56 InterSystems SQL Reference

SQL Commands

CREATE DATABASE (SQL)
Creates a database (namespace).

Synopsis

CREATE DATABASE dbname [ON DIRECTORY pathname]
 [WITH [ENCRYPTED_DB] [GLOBAL_JOURNAL_STATE [=] {YES | NO}]]

Description
The CREATE DATABASE command creates a namespace and two associated databases. This allows you to create a
namespace within SQL.

The specified dbname is the name of the created namespace and the directory that contains the corresponding database
files. Namespace names are not case-sensitive. A dbname follows the naming conventions for an SQL identifier, with the
following additional restrictions:

• An underscore (_) character is not permitted as the first character of dbname (but may be used elsewhere within the
name). The @, #, and $ characters are not permitted in dbname. Attempting to include these invalid characters in
dbname generates an SQLCODE -343 error.

• A hyphen (-) character is not permitted in dbname (hyphen is not a valid SQL identifier character). However, a
namespace name created by other means can include a hyphen character.

• A dbname cannot be longer than 63 characters; specifying a longer dbname generates an SQLCODE -400 fatal error
with the appropriate %msg.

If the specified dbname namespace already exists, InterSystems IRIS issues an SQLCODE -341 error.

You can specify neither, either, or both WITH options: ENCRYPTED_DB and/or GLOBAL_JOURNAL_STATE. If you
specify both, they are separated by a space, as follows: WITH ENCRYPTED_DB GLOBAL_JOURNAL_STATE=NO.

By default, CREATE DATABASE creates two databases in the mgr directory with the dbname name subdirectory con-
taining two subdirectories, C (code) and D (data). Each of these subdirectories contains a IRIS.DAT file, a iris.lck file, and
an empty stream folder. For example, on a Windows system, CREATE DATABASE Barney would create the namespace
BARNEY and the following database files:

c:\InterSystems\IRIS\mgr\Barney\C containing IRIS.DAT, iris.lck, stream folder
c:\InterSystems\IRIS\mgr\Barney\D containing IRIS.DAT, iris.lck, stream folder

The C (code) directory is used for the namespace routines database. The D (data) directory is used for the namespace
globals database. To return the location of the mgr directory, use the %SYSTEM.Util.ManagerDirectory() method.

The optional ON DIRECTORY pathname clause allows you to specify a different location for the database files, rather
than a directory with the same name as the namespace. For example:

SQL

CREATE DATABASE Flintstone ON DIRECTORY 'c:\InterSystems\IRIS\mgr\Fred'

If you specify a pathname that already exists, InterSystems IRIS issues an SQLCODE -341 error.

The CREATE DATABASE command is a privileged operation. Prior to using CREATE DATABASE, it is necessary
to be logged in as a user with the %Admin_Manage resource. Failing to do so results in an SQLCODE -99 error (Privilege
Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

InterSystems SQL Reference 57

CREATE DATABASE (SQL)

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

You can also create a namespace from the Management Portal. Select System Administration, Configuration, System Con-

figuration, Namespaces to list the existing namespaces. At the top of this table of existing namespaces you can click Create

New Namespace.

The maximum number of namespaces on a single InterSystems IRIS instance is 2048.

Arguments

dbname

The name of the database (namespace) to be created.

pathname

An optional argument that denotes the root pathname location for the databases, specified as a quoted string. The C and D
directories are created as subdirectories of this root path. The default is to create the database in the mgr directory.

WITH ENCRYPTED_DB

An optional argument that specifies whether or not the database is encrypted. The default is not encrypted.

WITH GLOBAL_JOURNAL_STATE

An optional argument that specifies whether or not the database is journaled. YES specifies that the database is journaled
(which is recommended). NO specifies that the database is not journaled. The equal sign (=) is optional. The default is
journaled.

See Also
• DROP DATABASE command

• USE DATABASE command

58 InterSystems SQL Reference

SQL Commands

CREATE FOREIGN SERVER (SQL)
Creates a foreign server.

Synopsis

CREATE [FOREIGN] SERVER server-name [TYPE server-type]
 FOREIGN DATA WRAPPER CSV HOST host-name

CREATE [FOREIGN] SERVER server-name [TYPE server-type]
 FOREIGN DATA WRAPPER JDBC CONNECTION connection-name id-options

Arguments
DescriptionArguments

The name for the foreign server definition being created. A valid identifier, subject
to the same additional naming restrictions as a table name. A foreign server
name is a qualified name.

server-name

The type of the foreign server. Foreign servers can be of two types: 'DB' or
'FILE'. Note that the delimiters are required.

TYPE server-type

Describes the protocol that will be used to access external data. The foreign
data wrapper can be one of two options: CSV or JDBC.

FOREIGN DATA
WRAPPER [CSV | JDBC
]

The source that stores the data. This name is a folder in a file system. The
host-name must be delimited by single quotation marks.

HOST host-name

The name of the JDBC connection that connects InterSystems IRIS to the
external system. Must be delimited. For details on establishing a JDBC
connection, see Connecting the SQL Gateway via JDBC.

CONNECTION
connection-name

Optional — Either DELIMITEDIDS or NODELIMITEDIDS. Specifies whether
the external data source accepts delimited identifiers or not.

id-options

Description
The CREATE FOREIGN SERVER command defines a remote location that InterSystems SQL can use to access an
external data source, called a foreign server. This command stores metadata that the system can use to project data from
an external data source into foreign tables that can be queried alongside native tables. In addition, it defines the foreign
data wrapper, which determines the protocol that the foreign server uses to access data from an external source.

InterSystems SQL currently supports two types of foreign servers (optionally specified with the TYPE keyword), 'FILE'
and 'DB', that retrieve external data from either a .csv file or database, respectively. Foreign servers of type 'FILE' access
files in file systems, while foreign servers of type 'DB' use pre-defined JDBC connections to access external databases. The
type of a foreign server is implicitly set by the foreign data wrapper.

Create a Foreign Server for .csv Files

When defining a foreign server that will create foreign tables by reading data stored in .csv files, you will use the CSV
foreign data wrapper. Foreign servers defined in this manner must define, at minimum, a local file path that stores any .csv

files that you may project into InterSystems IRIS. This file path is specified by using the HOST keyword.

The following example creates a foreign server that accesses .csv files:

CREATE FOREIGN SERVER Sample.DumpDir FOREIGN DATA WRAPPER CSV HOST '/data/dumps'

InterSystems SQL Reference 59

CREATE FOREIGN SERVER (SQL)

Create a Foreign Server with a JDBC Connection

When defining a foreign server that will create foreign tables by reading data stored in an external database, you will use
the JDBC foreign data wrapper. Foreign servers defined in this manner must specify a JDBC connection that will connect
the instance of InterSystems IRIS with the external data source. This connection’s name is specified by using the CONNEC-
TION keyword.

The following example creates a foreign server for JDBC connections:

CREATE FOREIGN SERVER Sample.Postgres FOREIGN DATA WRAPPER JDBC CONNECTION 'PostgresSQLConnection'

Using Delimited Identifiers

When connecting to an external data source, you may need to specify whether or not the foreign server should accept
delimited identifiers. By default, InterSystems IRIS may send delimited identifiers to an external database management
system when creating a projection, but not all database management systems allow delimited identifiers. If you are using
an external database management system that does not accept delimited identifiers, you should specify the NODELIMITE-
DIDS at the end of your CREATE FOREIGN SERVER command. The default setting allows delimited identifiers.

See Also
• DROP FOREIGN SERVER

• ALTER FOREIGN SERVER

• CREATE FOREIGN TABLE

60 InterSystems SQL Reference

SQL Commands

CREATE FOREIGN TABLE (SQL)
Creates a foreign table.

Synopsis
Foreign Table from File

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name
 (column type, column2 type2, ...)
 SERVER server-name FILE file-name
 [USING json-options]

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name
 (column type, column2 type2, ...)
 SERVER server-name FILE file-name
 COLUMNS (col-name, col-name2, ...)
 [USING json-options]

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name
 (column type, column2 type2, ...)
 SERVER server-name FILE file-name
 COLUMNS (col-name, col-name2, ...)
 VALUES (header, header2, ...)
 [USING json-options]

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name
 (column type, column2 type2, ...)
 SERVER server-name FILE file-name
 VALUES (header, header2, ...)
 [USING json-options]

Foreign Table from Database

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name
 [(column type, column2 type2, ...)]
 SERVER server-name

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name
 [(column type, column2 type2, ...)]
 SERVER server-name TABLE external-table
 [VALUES (header, header2, ...)]

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name
 [(column type, column2 type2, ...)]
 SERVER server-name QUERY query

CREATE FOREIGN TABLE [IF NOT EXISTS] table-name
 [(column type, column2 type2, ...)]
 SERVER server-name VALUES (header, header2, ...)

Description
The CREATE FOREIGN TABLE command creates a foreign table definition in the specified structure. CREATE
FOREIGN TABLE creates a projection of data from an external data source than can be queried alongside data native to
InterSystems IRIS.

If you do not specify the IF NOT EXISTS option and attempt to create a foreign table with the same name as a pre-existing
foreign table, the system returns an SQLCODE -201 error. The IF NOT EXISTS option suppresses the error, but InterSystems
IRIS does not recreate the foreign table.

Suppresses the error that arises if a schema with name already exists. The schema is not re-created.

If you create a foreign table from a .csv file, you may specify projection options by using a JSON object or a string containing
a JSON object in a USING clause, just as you might with a LOAD DATA command.

InterSystems SQL Reference 61

CREATE FOREIGN TABLE (SQL)

Foreign Table from File

You can create a foreign table that projects data from a file external to your instance of InterSystems IRIS. In these cases,
the foreign server on which you create the table must use CSV as its foreign data wrapper. Note that there is a slight difference
in behavior between usage when the file does and does not.

• CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name FILE file-name [USING json-options] creates a foreign table that projects data stored in the specified
file name.

– If the file does not have a header, the columns in the new foreign table contain data from the first n columns in
the file, where n is the length of the primary column list. Within InterSystems SQL, you can query this foreign
table by referring to the column names in the primary column list.

CREATE FOREIGN TABLE (
 firstName VARCHAR(15),
 lastName VARCHAR(15),
 DOB DATE
) Sample.Person SERVER Sample.HospitalDir FILE 'person.csv'

– If the file does have a header, The column names in the primary column list must correspond with header names
of columns in the file. Only the column names in the file that correspond to column names in the primary column
list appear in the projected table.

CREATE FOREIGN TABLE (
 firstName VARCHAR(15),
 lastName VARCHAR(15),
 DOB DATE
) Sample.Person SERVER Sample.HospitalDir FILE 'person.csv' USING { "from": { "file": { "header":
 true } } }

• CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name FILE file-name COLUMNS (col-name type, col-name2 type2, ...) [USING json-options] creates a
foreign table that projects data stored from the specified file with a column order specified by the COLUMNS clause.
Names in the primary column list specify the names of the columns in the table and positionally correlate with the
columns of the file. The names in the COLUMNS clause must be identical to the names in the primary column list and
each name must appear in both lists. The COLUMNS clause can be used to reorder the columns from the file; the order
of columns in the COLUMNS clause does not need to match the order of the columns in the primary column list. The
order of the columns in the foreign table is determined by the position of the column names in the COLUMNS clause.

If the file has a header, this command behaves identically, as the file’s header is disregarded. In this case, you should
specify the from.file.header JSON option as true in the USING clause.

CREATE FOREIGN TABLE Sample.Person (
 FileColumnOne VARCHAR(10),
 FileColumnTwo VARCHAR(20)
) SERVER Sample.HospitalDir FILE person.csv COLUMNS (FileColumnTwo VARCHAR(20), FileColumnOne
VARCHAR(10))

• CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name FILE file-name COLUMNS (col-name type, col-name2 type2, ...) VALUES (header, header2, ...) [
USING json-options] creates a foreign table that projects data stored from the specified file with a column order
specified by the VALUES clause, possibly omitting certain columns from the .csv file. The primary column list defines
the column names and types that appear in the foreign table. The COLUMNS clause lists the columns in the file and
their type; the length of this list can be longer than the length of the primary column list and the names need be similar.
The VALUES clause reorders the column names in the COLUMNS clause, but is the length of the primary columns
list.

You may use the VALUES clause to omit certain columns from the file (specified in the COLUMNS clause) from the
foreign table. The order of names in the VALUES clause is mapped onto the order of column names in the primary

62 InterSystems SQL Reference

SQL Commands

column list. Within InterSystems SQL, you can query this foreign table by referring to the column names in the primary
column list.

If the file has a header, this command behaves identically, as the file’s header is disregarded. In this case, you should
specify the from.file.header JSON option as true in the USING clause.

In the following example, the FieldOne column projects data from the second element of the COLUMNS clause, the
FieldTwo column projects data from the first element of the COLUMNS clause, and the FieldThree column projects
data from the fourth element of the COLUMNS clause.

CREATE FOREIGN TABLE Sample.Person (
 FieldOne VARCHAR(10),
 FieldTwo VARCHAR(20),
 FieldThree INTEGER
) SERVER Sample.HospitalDB FILE person.csv COLUMNS (FirstName VARCHAR(10), LastName(20), DOB DATE,
 Age INTEGER) VALUES (LastName, FirstName, Age)

• CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name FILE file-name VALUES (header, header2, ...) [USING json-options] creates a foreign table that
projects a subset of data stored from the specified file into the table. The column names in the VALUES clause must
correspond to column names in the .csv file, which may be different from the names in the primary column list. The
order of columns in the foreign table is determined by the order of the columns in the primary column list, with the
data in those columns coming from the positionally related element of the VALUES clause.

If the file does not have a header, the VALUES clause is ignored and meaningless.

CREATE FOREIGN TABLE Sample.Person (
 FirstName VARCHAR(10),
 LastName VARCHAR(20)
) SERVER Sample.HospitalDB FILE person.csv VALUES (FirstNameInFile, LastNameInFile) USING { "from":
 { "file": { "header": 1 } } }

Foreign Table from Database

You can create a foreign table that projects data from a database external to your instance of InterSystems IRIS. In these
cases, the foreign server on which you create the table must use JDBC as its foreign data wrapper.

• CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name [TABLE external-table] creates a foreign table that projects data from a table that exists in specified
table. The created table has the same columns as the table in the external database. If you omit the TABLE clause,
InterSystems IRIS attempts to access a table on the foreign server using table-name, rather than external-table.

CREATE FOREIGN TABLE Sample.Person (
 FirstName VARCHAR(10),
 LastName VARCHAR(20)
) SERVER Sample.ExternalDB TABLE 'hospital.people'

• CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name QUERY query creates a foreign table that projects data returned from executing a query, specified by
query, against a table that exists in an external database. InterSystems SQL does not validate the query before
attempting to execute it against the external database.

CREATE FOREIGN TABLE Sample.Team (
 FirstName VARCHAR(10),
 LastName VARCHAR(20)
) SERVER Sample.ExternalDB QUERY 'SELECT FirstName,LastName FROM Hospital.Patients'

• CREATE FOREIGN TABLE [IF NOT EXISTS] table-name (column type, column2 type2, ...) SERVER
server-name [TABLE external-table] VALUES (header, header2, ...) creates a foreign table that projects data
stored in the specified table with column names that differ from those in the external data source. If you omit the
TABLE clause, InterSystems IRIS attempts to access a table on the foreign server using table-name, rather than
external-table. The headers named in the VALUES clause identify the column names from the external data source,

InterSystems SQL Reference 63

CREATE FOREIGN TABLE (SQL)

but may differ from the names that you have specified in the column list. Consequently, the VALUES clause must
have the same number of columns as the column list.

CREATE FOREIGN TABLE Sample.Team (
 TeamID BIGINT,
 Name VARCHAR(100)
) SERVER Sample.ExternalDB TABLE 'hospital.teams' VALUES (team_id, name)

Arguments

table-name

In a CREATE FOREIGN TABLE command, this argument specifies the name of the foreign table that you want to create
as a valid identifier. A table name can be qualified or unqualified.

• An unqualified foreign table name has the following syntax: tablename; it omits schema (and the period (.) character).
An unqualified table name takes the default schema name. The initial system-wide default schema name is SQLUser,
which corresponds to the default class package name User. Schema search path values are ignored.

If you have created a foreign table using a JDBC connection and omitted the TABLE clause, then the unqualified table
name is leveraged against the external data source to create the project, but the table is accessible through InterSystems
SQL under the default schema qualified name.

If you have specified an unqualified foreign table name with a JDBC connection and do not specify a TABLE clause,
then the

The system-wide default schema name can be configured.

To determine the current system-wide default schema name, use the $SYSTEM.SQL.Schema.Default() method.

• A qualified foreign table name has the following syntax: schema.tablename. It can specify either an existing schema
name or a new schema name. Specifying an existing schema name places the foreign table within that schema. Speci-
fying a new schema name creates a new schema and associated class package, and places the table within that schema.

column

In a CREATE FOREIGN TABLE command, specify the column name or a comma-separated list of column names, used
to define the columns of the table you are creating, in the primary column list. You can specify the column names in any
order, with a space separating the column name from its associate data type. By convention, each column definition is
usually presented on a separate line and indentation is used. This convention is recommended for readability, but is not
required.

Enclose primary column lists in parentheses.

type

The InterSystems SQL data type class of the column name specified by column. A specified data type limits a column’s
allowed data values to the values appropriate for that data type. InterSystems SQL supports most standard SQL data types.

Data from the external data source is coerced into the specified type as part of the project. If the field cannot be coerced,
such as an invalid date format, a runtime error is raised.

server-name

In a CREATE FOREIGN TABLE command, this argument specifies the foreign server configuration that accesses the
external data source.

You may specify a qualified or unqualified foreign server name. If you specify an unqualified foreign server name, the
system attempts to locate the foreign server within the default schema, which is SQLUser by default. If you specify a
qualified foreign server name, the system attempts to locate the foreign server within the provided schema.

64 InterSystems SQL Reference

SQL Commands

If the foreign server cannot be located within the determined schema, the system raises an SQLCODE -360 error.

file-name

In a CREATE FOREIGN TABLE command, this argument specifies the location of a .csv file containing the data to
project into InterSystems IRIS, defined as a complete file path enclosed in quotes. This argument should only be used when
the foreign server specified in the command uses the CSV option for its foreign data wrapper.

• Each line in a file specifies a separate row to be projected into the foreign table. Newline (“\n”) is the default line
separator. Blank lines are ignored.

• Data values in a row are separated by a column separator character. A comma is the default column separator character.
All data fields must be indicated by column separators, including unspecified data indicated by placeholder column
separators. You can define a different column separator character by specifying the columnseparator option in the
USING json-options clause.

• By default, no escape character is defined. To include the column separator character as a literal in a data value, enclose
the data value in quotation marks. To include a quotation mark in a quoted data value, double the quote character. You
can define an escape character specifying the escapechar option in the USING json-options clause.

• By default, data values are specified in the order of the fields in the foreign table. You can use the COLUMNS and
VALUES clauses to specify the data in a different order.

• All data in a .csv file is validated against the table’s data criteria, including the number of data fields in the record, and
the data type and data length for each field. If a certain record in the file cannot be validated, an error message is issued.
Note that date and time constructs in .csv files must be in ODBC format, as other formats may produce errors or
incorrect query results.

col-name

In a CREATE FOREIGN TABLE command, this argument appears in a COLUMNS clause. When the file has no header,
the COLUMNS clause provides a name for the columns in the file. When the file has a header, the COLUMNS clause can
often be omitted.

header

In a CREATE FOREIGN TABLE command, this argument appears in a VALUES clause. A VALUES clause may be used
in a variety of scenarios

external-table

In a CREATE FOREIGN TABLE command that connects to an eternal data source through a JDBC connections, this
argument supplies the name of the external table to project into InterSystems IRIS. If you omitted a column list, a foreign
table created in this manner copies the column definitions, including column names and data types (where supported), from
the data source.

query

In a CREATE FOREIGN TABLE command that connects to an external data source through a JDBC connection, this
argument supplies the column definitions and column data for a foreign table by querying a table in the external data source.
It is a SELECT query that is executed against the external data source.

Foreign tables created in this way copy column definitions from the external data source, including column names and data
types (when supported). A foreign table can copy column definitions from multiple tables if the query specifies joined
tables from the external data source.

json-options

This argument specifies loading options as a JSON object or a string containing a JSON object in the USING clause. Its
usage is nearly identical to the corresponding argument in the LOAD DATA command. For a complete overview on the

InterSystems SQL Reference 65

CREATE FOREIGN TABLE (SQL)

syntax and options, refer to the LOAD DATA documentation. Note that the CREATE FOREIGN TABLE command supports
only the options in the from.file tree.

See Also
• CREATE FOREIGN SERVER

• ALTER FOREIGN TABLE

• DROP FOREIGN TABLE

• DROP FOREIGN SERVER

• LOAD DATA

66 InterSystems SQL Reference

SQL Commands

CREATE FUNCTION (SQL)
Creates a function as a method in a class.

Synopsis

CREATE FUNCTION name(parameter_list) [characteristics]
 [LANGUAGE SQL]
 BEGIN code_body ;
 END

CREATE FUNCTION name(parameter_list) [characteristics]
 LANGUAGE OBJECTSCRIPT
 { code_body }

CREATE FUNCTION name(parameter_list) [characteristics]
 LANGUAGE { JAVA | PYTHON | DOTNET }
 EXTERNAL NAME external-stored-procedure

Description
The CREATE FUNCTION statement creates a function as a method in a class. This class method is projected as an SQL
Stored Procedure. You can also use the CREATE PROCEDURE statement to create a method which is projected as an
SQL Stored Procedure. CREATE FUNCTION should be used when the method is to return a value, but it can be used to
create a method that does not return a value.

The optional keyword OR REPLACE allows you to modify or replace an existing function. CREATE OR REPLACE
FUNCTION has the same effect as invoking DROP FUNCTION to delete the old version of the function and then
invoking CREATE TRIGGER.

In order to create a function, you must have %CREATE_FUNCTION administrative privilege, as specified by the GRANT
command.

You cannot create a function in a class if the class definition is a deployed class. This operation fails with an SQLCODE
-400 error alongside the %msg Unable to execute DDL that modifies a deployed class: 'classname'.

For information on calling SQL functions from within SQL statements, refer to User-defined Functions. For calling SQL
stored procedures in a variety of contexts, refer to the CALL statement.

Arguments

name

The name of the function to be created in a stored procedure class. The name must be a valid identifier and must be followed
by parentheses, even if no parameters are specified. This name may be unqualified (StoreName) and take the default schema
name, or qualified by specifying the schema name (Patient.StoreName). You can use the $SYSTEM.SQL.Schema.Default()
method to determine the current system-wide default schema name. The initial system-wide default schema name is
SQLUser, which corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in name. If a function with this name
already exists, the operation fails with an SQLCODE -361 error.

The name of the generated class is the package name corresponding to the schema name, followed by a dot, “func”, and
then the specified name. For example, if the unqualified function name RandomLetter takes the initial default schema
SQLUser, the resulting class name would be: User.funcRandomLetter. For further details, see SQL to Class Name
Transformations.

InterSystems SQL does not allow you to specify a duplicate function name that differs only in letter case. Specifying a
function name that differs only in letter case from an existing function name results in an SQLCODE -400 error.

InterSystems SQL Reference 67

CREATE FUNCTION (SQL)

parameter-list

An optional list of parameters used to pass values to the function. The parameter list is enclosed in parentheses, which are
mandatory even when no parameters are specified, and parameter declarations in the list are separated by commas. Each
parameter declaration in the list consists of (in order):

• An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

• The parameter name. Parameter names are case-sensitive.

• The data type of the parameter.

• Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The following example specifies two input parameters, both of which have default values. The optional DEFAULT keyword
is specified for the first parameter, omitted for the second parameter:

SQL

CREATE FUNCTION RandomLetter(IN firstlet CHAR DEFAULT 'A',IN lastlet CHAR 'Z')
BEGIN
-- SQL program code
END

User-defined functions are supplied to the clauses of a user-defined aggregate function. When defining a function for use
in a user-defined aggregate function, you define a state parameter which is used to aggregate and pass the output value.

A function is “correlated” if it takes at least one parameter that is dependent on a value from a row of data, for example the
%ID field. Correlated functions are evaluated per row; uncorrelated functions (that is, functions that either take no param-
eters or take arguments that remain consistent across all rows) are evaluated a single time.

characteristics

An optional argument that consists of one or more keywords specifying the characteristics of the function. Multiple char-
acteristics are separated by whitespace (a space or line break), and characteristics can be specified in any order. The available
keywords are as follows:

68 InterSystems SQL Reference

SQL Commands

Specifies the name of the class in which to create the function. If the class
does not exist, it will be created.You can also specify a class name by
qualifying the function name. The class name specified in the FOR clause
overrides a class name specified by qualifying the function name.

FOR className

Specifies that subclasses cannot override the function. By default, functions
are not final. The FINAL keyword is inherited by subclasses.

FINAL

Specifies that the function can only be invoked by other function of its own
class or subclasses. By default, a function is public, and can be invoked
without restriction. This restriction is inherited by subclasses.

PRIVATE

Specifies that the function is projected as an SQL stored procedure. Stored
procedures are inherited by subclasses. Because CREATE FUNCTION
always projects an SQL stored procedure, this keyword is optional. This
keyword can be abbreviated as PROC.

PROCEDURE

Specifies the data type of the value returned by a call to the function. If
RETURNS is omitted, the function cannot return a value. This specification
is inherited by subclasses, and can be modified by subclasses.This datatype
can specify type parameters such as MINVAL, MAXVAL, and SCALE. For
example RETURNS DECIMAL(19,4). Note that when returning a value,
InterSystems IRIS ignores the length of datatype; for example, RETURNS
VARCHAR(32) can receive a string of any length that is returned by a call
to the function.

RETURNS datatype

Only used when LANGUAGE is SQL (the default). When specified,
InterSystems IRIS adds an #SQLCOMPILE SELECT=mode statement to
the corresponding class method, thus generating the SQL statements defined
in the method with the specified SELECTMODE.The possible mode values
are LOGICAL, ODBC, RUNTIME, and DISPLAY. The default is LOGICAL.

SELECTMODE mode

The SELECTMODE clause is used for SELECT query operations and for INSERT and UPDATE operations. It specifies
the compile-time select mode. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #sqlcompile select=mode. For further details, see #sqlcompile select.

• In a SELECT query, the SELECTMODE specifies the mode in which data is returned. If the mode value is LOGICAL,
then logical (internal storage) values are returned. For example, dates are returned in $HOROLOG format. If the mode
value is ODBC, logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is
DISPLAY, logical-to-display conversion is applied, and display format values are returned. If the mode value is
RUNTIME, the display mode can be set (to LOGICAL, ODBC, or DISPLAY) at execution time.

• In an INSERT or UPDATE operation, the SELECTMODE RUNTIME option supports automatic conversion of input
data values from a display format (DISPLAY or ODBC) to logical storage format. This compiled display-to-logical
data conversion code is applied only if the select mode setting when the SQL code is executed is LOGICAL (which
is the default for all InterSystems SQL execution interfaces).

When the SQL code is executed, the %SQL.Statement class %SelectMode property specifies the execution-time select
mode, as described in Using Dynamic SQL. For further details on SelectMode options, refer to Data Display Options.

LANGUAGE

An optional keyword clause specifying the procedure code language. Available options are:

• LANGUAGE OBJECTSCRIPT (for ObjectScript) or LANGUAGE SQL. The procedure code is specified in the
code_body.

InterSystems SQL Reference 69

CREATE FUNCTION (SQL)

• LANGUAGE JAVA, LANGUAGE PYTHON, or LANGUAGE DOTNET for an SQL procedure that invokes an
external stored procedure in one of these languages. The syntax for an external stored procedure is as follows:

LANGUAGE langname EXTERNAL NAME external-routine-name

Where langname is JAVA, PYTHON, or DOTNET and external-routine-name is a quoted string containing the name
of an external routine in the specified language. The SQL procedure invokes an existing routine; you cannot write code
in these languages within the CREATE FUNCTION statement. Stored procedure libraries in these languages are
stored external to IRIS, and therefore do not have to be packaged, imported, or compiled within IRIS. The following
is an example of a CREATE FUNCTION that invokes an existing JAVA external stored procedure that returns a
value:

CREATE FUNCTION getPrice (item_name VARCHAR)
RETURNS INTEGER
LANGUAGE JAVA
EXTERNAL NAME 'Orders.getPrice'

If the LANGUAGE clause is omitted, SQL is the default.

code_body

The program code for the method to be created. You specify this code in either SQL or ObjectScript. SQL program code
is prefaced with a BEGIN keyword and concludes with an END keyword. Each complete SQL statement within code_body
end with a semicolon (;). ObjectScript program code is enclosed in curly braces, and code lines must be indented. The
language used must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL.

InterSystems IRIS uses the code you supply to generate the actual code of the method. If the code you specify is SQL,
InterSystems IRIS provides additional lines of code when generating the method that embed the SQL in an ObjectScript
“wrapper,” provide a procedure context handler (if necessary), and handle return values. The following is an example of
this InterSystems IRIS-generated wrapper code:

ObjectScript

 NEW SQLCODE,%ROWID,%ROWCOUNT,title
 &sql(SELECT col FROM tbl)
 QUIT $GET(title)

If the code you specify is OBJECTSCRIPT, the ObjectScript code must be enclosed in curly braces. All code lines must
be indented from column 1, except for labels and macro preprocessor directives. A label or macro directive must be prefaced
by a colon (:) in column 1.

For ObjectScript code, you must explicitly define the “wrapper” (which NEWs variables, and uses QUIT to exit and
(optionally) to return a value upon completion).

When a stored procedure is called, an object of the class %Library.SQLProcContext is instantiated in the %sqlcontext variable.
This procedure context handler is used to pass the procedure context back and forth between the procedure and its caller
(for example, the ODBC server).

%sqlcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
 SET %sqlcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sqlcontext

object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SYSTEM.Error object and setting it as %sqlcontext.Error.

70 InterSystems SQL Reference

SQL Commands

An SQLCODE -361 error is generated if the specified function already exists. To avoid this error, use the optional OR
REPLACE keyword, or drop the old function first with DROP FUNCTION.

Executing a User-defined Function
You can execute a function in a SELECT statement, such as the following:

SQL

SELECT StudentName,StudentAge,SQLUser.HalfAge() AS HalfTheAge
FROM SQLUser.MyStudents

An SQLCODE -359 error is generated if the function does not exist.

An SQLCODE -149 error is generated if the execution of the function results in a error. The type of error is described in
%msg.

Examples
The following example creates the RandomLetter() function (method) stored as a procedure that generates a random capital
letter. You can then invoke this function in a SELECT statement. A DROP FUNCTION is provided to delete the Ran-
domLetter() function. Note that this example is of an uncorrelated function, so the result set of the SELECT statement will
contain Names that all start with the same, randomly chosen letter and will contain the number of names that start with the
randomly chosen letter. An example result set is provided.

SQL

CREATE FUNCTION RandomLetter()
RETURNS INTEGER
PROCEDURE
LANGUAGE OBJECTSCRIPT
{
:Top
 SET x=$RANDOM(90)
 IF x<65 {GOTO Top}
 ELSE {QUIT $CHAR(x)}
}

SQL

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH RandomLetter()

Abbott, Amelia P.
Adams,John J.
Alton,Lionel N.
Amblin,Stephen O.
Amory,Jennifer E.
Andrews,Olivia G.
Arias,Rowan K.
Avery,Marvin N.

DROP FUNCTION RandomLetter

The following example creates the RandomLetter() function (method) stored as a procedure that generates a random capital
letter as a correlated function that depends on the changing value of %ID, though the argument itself is not used within the

InterSystems SQL Reference 71

CREATE FUNCTION (SQL)

body of RandomLetter(). The result set of the SELECT statement will contain Names that start with different, randomly
chosen letters and its length will contain a variable number of elements. An example result set is provided.

CREATE FUNCTION RandomLetter(IN id INTEGER)
RETURNS INTEGER
PROCEDURE
LANGUAGE OBJECTSCRIPT
{
:Top
 SET x=$RANDOM(90)
 IF x<65 {GOTO Top}
 ELSE {QUIT $CHAR(x)}
}

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH RandomLetter(%ID)

Alton,Lionel N.
Cooper,Peter H.
Hertz,Lana C.
Jones,Alyssa D.

The following example creates a function that invokes ObjectScript code, which in turn contains embedded SQL:

ObjectScript

 &sql(CREATE FUNCTION TraineeName(
 SSN VARCHAR(11),
 OUT Name VARCHAR(50))
 PROCEDURE
 RETURNS VARCHAR(30)
 FOR SQLUser.MyStudents
 LANGUAGE OBJECTSCRIPT
 {
 NEW SQLCODE,%ROWCOUNT
 SET Name=""
 &sql(SELECT Name INTO :Name FROM Sample.Employee
 WHERE SSN = :SSN)
 IF $GET(%sqlcontext)'= "" {
 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT }
 QUIT Name
 })
 IF SQLCODE=0 { WRITE !,"Created a function" QUIT}
 ELSE { WRITE !,"CREATE FUNCTION error: ",SQLCODE," ",%msg,!
 &sql(DROP FUNCTION TraineeName FROM SQLUser.MyStudents) }
 IF SQLCODE=0 { WRITE !,"Dropped a function" QUIT}
 ELSE { WRITE !,"Drop error: ",SQLCODE }

It uses the %sqlcontext object, and sets its %SQLCODE and %ROWCOUNT properties using the corresponding SQL
variables. Note the curly braces enclosing the ObjectScript code following the function’s LANGUAGE OBJECTSCRIPT
keyword. Within the ObjectScript code there is Embedded SQL code, marked by &sql and enclosed in parentheses.

Security and Privileges
The CREATE FUNCTION command is a privileged operation that requires the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a CREATE FUNCTION command without
these privileges will result in an SQLCODE -99 error and the command will fail.

Users without proper permissions can still execute this command under one of two conditions:

• The command is executed via Embedded SQL, which does not perform privilege checks.

• The user explicitly specifies no privilege checking by, for example, calling either %Prepare() with the checkPriv
argument set to 0 or %ExecDirectNoPriv() on a %SQL.Statement.

See Also
• DROP FUNCTION command

72 InterSystems SQL Reference

SQL Commands

• CREATE AGGREGATE command

• Defining and Using Stored Procedures

InterSystems SQL Reference 73

CREATE FUNCTION (SQL)

CREATE INDEX (SQL)
Creates an index for a table.

Synopsis

CREATE index-type INDEX index-name
 ON [TABLE] table-name (field-name, ...)
 [AS index-class-name [(parameter-name = parameter_value, ...)]]
 [WITH DATA (datafield-name, ...)]
 [[IMMEDIATE | DEFER] [BUILD]]

Arguments

index-type

An optional argument that specifies the type of index to be created. The following are the options for the index type:

• UNIQUE: A constraint that ensures there will not be two rows in the table with identical values in all the fields in the
index. You cannot specify this keyword for a bitmap or bitslice index.

The UNIQUE keyword can be followed by (or replaced by) the CLUSTERED or NONCLUSTERED keywords. These
keywords are no-ops; they are provided for compatibility with other vendors.

• BITMAP: Indicates that a bitmap index should be created. A bitmap index enables rapid queries on fields with a small
number of distinct values.

• BITMAPEXTENT: Indicates that a bitmapextent index should be created. At most one bitmapextent index can be
created for a table. No field-name is specified with BITMAPEXTENT.

• BITSLICE: Indicates that a bitslice index should be created. A bitslice index enables very fast evaluation of certain
expressions, such as sums and range conditions. This is a specialized index type, which should only be used to solve
very specific problems.

• COLUMNAR: Indicates that a columnar index should be created. A columnar index enables very fast queries, especially
ones involving filtering and aggregation operations, on columns whose underlying data is stored across rows. Columnar
indexes are an experimental feature for 2022.2.

index-name

The index being defined. The name is an identifier.

table-name

The name of an existing table for which the index is being defined. You cannot create an index for a view. A table-name
can be qualified (schema.table), or unqualified (table). An unqualified table name takes the default schema name.

field-name

One or more field names that serve as the basis for the index. Field names must be enclosed in parentheses. Multiple field
names are separated by commas.

Each field name can be followed by an ASC or DESC keyword. These keywords are no-ops; they are provided for compat-
ibility with other vendors.

AS index-class-name

An optional argument specifying a class that defines an index, optionally followed by parentheses enclosing one or more
comma-separated pairs of parameter names and associated values.

74 InterSystems SQL Reference

SQL Commands

WITH DATA (datafield-name)

An optional argument that specifies one or more field names to be defined as Data properties for the index. Field names
must be enclosed in parentheses. Multiple field names are separated by commas. You cannot specify a WITH DATA clause
when specifying a BITMAP or BITSLICE index.

IMMEDIATE BUILD

An optional argument that specifies to build the index as soon as you create it. Indexes build immediately by default, so
this clause can be omitted. The BUILD keyword is optional.

DEFER BUILD

An optional argument that specifies to disable building the index upon creation. This option also marks the index as not
selectable, making it unavailable for use in queries. To later use the index, you must build it using BUILD INDEX and
then make it selectable by using the SetMapSelectability() method; you can view whether a map is selectable or not in
the Management Portal by navigating to System Explorer > SQL > Catalog Details and selecting the Maps/Indices button.
The BUILD keyword is optional.

See additional compatibility syntax below.

Description
CREATE INDEX creates a sorted index on the specified field (or fields) of the named table. InterSystems IRIS uses
indexes to improve performance of query operations. InterSystems IRIS automatically maintains indexes during INSERT,
UPDATE, and DELETE operations, and this index maintenance may negatively affect performance of these data modifi-
cation operations.

You can create an index using the CREATE INDEX command or by adding an index definition to a class definition, as
described in Defining and Building Indexes. You can delete an index by using the DROP INDEX command.

For information about properties on which you can and cannot create indexes, see Properties That Can Be Indexed.

CREATE INDEX can be used to create any of the following types of index:

• A regular index (Type=index): Specify either CREATE INDEX (for non-unique values) or CREATE UNIQUE
INDEX (for unique values).

• A bitmap index (Type=bitmap): Specify CREATE BITMAP INDEX.

• A bitslice index (Type=bitslice): Specify CREATE BITSLICE INDEX.

• A columnar index (Type=columnar): Specify CREATE COLUMNAR INDEX.

You can also define an index using the %Dictionary.IndexDefinition class.

You can use CREATE INDEX to add an index to a sharded table.

For information about indexes at the class level, see %Library.FunctionalIndex.

Privileges and Locking

The CREATE INDEX command is a privileged operation. The user must have %ALTER_TABLE administrative privilege
to execute CREATE INDEX. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does
not have %ALTER_TABLE privileges. You can use the GRANT command to assign %ALTER_TABLE privileges
to a user or role, if you hold appropriate granting privileges. Administrative privileges are namespace-specific. For further
details, refer to Privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not have required

InterSystems SQL Reference 75

CREATE INDEX (SQL)

%ALTER privilege needed to change the table definition for 'Schema.TableName'. You can
determine if the current user has %ALTER privilege by invoking the %CHECKPRIV command. You can use the GRANT
command to assign %ALTER privilege to a specified table. For further details, refer to Privileges.

• CREATE INDEX cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class 'Schema.tablename'.

• CREATE INDEX cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The CREATE INDEX statement acquires a table-level lock on table-name. This prevents other processes from modifying
the table’s data. This lock is automatically released at the conclusion of the CREATE INDEX operation. CREATE INDEX
maintains a lock on the corresponding class definition until the completion of the create index operation, including the
population of the index data.

To create an index, the table cannot be locked by another process in either EXCLUSIVE MODE or SHARE MODE.
Attempting a CREATE INDEX operation on a locked table results in an SQLCODE -110 error, with a %msg such as the
following: Unable to acquire exclusive table lock for table 'Sample.MyTest'.

Options Supported for Compatibility Only

InterSystems SQL accepts the following CREATE INDEX options for parsing purposes only, to aid in the conversion of
existing SQL code to InterSystems SQL. These options do not provide any actual functionality.

CLUSTERED | NONCLUSTERED owner.catalog. ASC | DESC

The following is an example showing the placement of these no-op keywords:

CREATE UNIQUE CLUSTERED INDEX index-name ON TABLE owner.catalog.schema.table (field1 ASC, field2
 DESC)

Index Name

The name of an index must be unique within a given table. Index names follow identifier conventions, subject to the
restrictions below. By default, index names are simple identifiers; an index name can be a delimited identifier. An index
name should not exceed 128 characters. Index names are not case-sensitive.

InterSystems IRIS uses the name you supply (which it refers to as the “SqlName”) to generate a corresponding index
property name in the class and the global. This index property name contains only alphanumeric characters (letters and
numbers) and is a maximum of 96 characters in length. To generate an index property name, InterSystems IRIS first strips
punctuation characters from the SqlName you supply, and then generates a unique identifier of 96 (or less) characters to
create a unique index property name.

• An index name can be the same as a field, table, or view name, but such name duplication is not advised.

• An index property name (after punctuation stripping) must be unique. If you specify a duplicate SQL index name, the
system generates an SQLCODE -324 error. If you specify an SQL index name that differs only in punctuation characters
from an existing SQL index name, InterSystems IRIS substitutes a capital letter (beginning with “A”) for the final
character to create a unique index property name. Therefore it is possible (though not advisable) to create SQL index
names that differ only in their punctuation characters.

• An index property name must begin with a letter. Therefore, either the first character of the index name or the first
character after initial punctuation characters are stripped must be a letter. A valid letter is a character that passes the
$ZNAME test. If the first character of the SQL index name is a punctuation character (% or _) and the second character
is a number, InterSystems IRIS appends a lowercase “n” as the first character of the stripped index property name.

76 InterSystems SQL Reference

SQL Commands

• An index name may be much longer than 31 characters, but index names that differ in their first 31 alphanumeric
characters are much easier to work with.

The Management Portal SQL interface Catalog Details displays the SQL index name (SQL Map Name) and the corresponding
index property name (Index Name) for each index.

What happens when you try to create an index with the same name as an existing index is described below.

Existing Index

By default, InterSystems IRIS rejects an attempt to create an index that has the same name as an existing index for that
table and issues an SQLCODE -324 error. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which
displays a Allow DDL CREATE INDEX for existing index setting. The deault is 0, which is the recommended
setting for this option. If this option is set to 1, InterSystems IRIS deletes the existing index from the class definition and
then recreates it by performing the CREATE INDEX. It deletes the named index from the table specified in CREATE
INDEX. This option permits the delete/recreate of a UNIQUE constraint index (which cannot be done using a DROP
INDEX command). To delete/recreate a primary key index, refer to the ALTER TABLE command.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

However, even if this option is set to allow the recreating of an existing index, you cannot recreate a Primary Key IDKEY
index if the table contains data. Attempting to do so generates an SQLCODE -324 error.

Table Name

You must specify the name of an existing table.

• If table-name is a nonexistent table, CREATE INDEX fails with an SQLCODE -30 error, and sets %msg to Table
'SQLUSER.MYTABLE' does not exist.

• If table-name is a view, CREATE INDEX fails with an SQLCODE -30 error, and sets %msg to Attempt to
CREATE INDEX 'My_Index' on view SQLUSER.MYVIEW failed. Indices only supported for

tables, not views..

Creating an index modifies the table’s definition; if you do not have permission to change the table definition, CREATE
INDEX fails with an SQLCODE -300 error, and sets %msg to DDL not enabled for class 'schema.tablename'.

Field Names

You must specify at least one field name to index on. Specify a field name or a comma-separated list of field names enclosed
in parentheses. Duplicate field names are permitted and preserved in the index definition. Specifying more than one field
may improve performance of GROUP BY operations, for example, group by state and then by city within each state.
Generally, you should avoid indexing on a field or fields that have large amounts of duplicate data. For example, in a
database of people, indexing on a Name field would be appropriate because most names are unique. Indexing on a State
field would (in most cases) not be appropriate because of the large number of duplicate data values. The fields you specify
must either be defined in the table or in the superclass of the table’s persistent class. (all classes must, of course, have been
compiled.) Specifying a nonexistent field generates an SQLCODE -31 error.

In addition to ordinary data fields, you can use CREATE INDEX to create an index:

• On a SERIAL field (a %Counter field).

• On an IDENTITY field.

• On the ELEMENTS or KEYS value for a collection.

You cannot create an index on a stream value field.

InterSystems SQL Reference 77

CREATE INDEX (SQL)

You cannot create an index with multiple IDKEY fields if one of the IDKEY fields (properties) is SQL Computed. This
limitation does not apply to a single field IDKEY index. Because multiple IDKEY fields in an index are delimited using
the “||” (double vertical bar) characters, you cannot include this character string in IDKEY field data.

Field in an Embedded Object (%SerialObject)

To index a field in an embedded object, you create an index in the table (%Persistent class) referencing that embedded
object. In CREATE INDEX the field-name specifies the name of the referencing field in the table (%Persistent object)
joined by an underbar to the field name in the embedded object (%SerialObject), as shown in the following example:

SQL

CREATE INDEX StateIdx ON TABLE Sample.Person (Home_State)

Here Home is a field in Sample.Person that references the embedded object Sample.Address, which contains the State field.

Only those embedded object records associated with the persistent class referencing property are indexed. You cannot index
a %SerialObject property directly.

For further details on defining embedded objects (also known as serial objects) refer to Embedded Object (%SerialObject);
for further details on indexing a property (field) defined in an embedded object, refer to Indexing an Embedded Object
(%SerialObject) Property.

Index Class Name

This optional syntax allow users to specify a class and parameters for a functional index using SQL.

An SQL example is:

CREATE INDEX HistIdx ON TABLE Sample.Person (MedicalHistory) AS %iFind.Index.Basic (LANGUAGE='en',
LOWER=1)

For further details, refer to Indexing Sources for SQL Search.

WITH DATA Clause

Specifying this clause may allow a query to be resolved by only reading the index, which greatly reduces the amount of
disk I/O, improving performance.

You should specify the same field in the field-name and the WITH DATA datafield-name if field-name uses string collation;
this allows retrieval of the uncollated value without having to go to the Master Map. If the value in field-name does not use
string collation there is no advantage to specifying this field in the WITH DATA datafield-name.

You can specify fields in WITH DATA datafield-name that are not indexed. This allows more queries to be satisfied from
the index without going to the Master Map. The tradeoff is how many indexes you want to maintain; and that adding data
to an index makes it quite a bit larger, which will slow down operations that don't need the data.

You can specify fields in WITH DATA datafield-name that are defined in the superclass for the table’s persistent class.

The UNIQUE Keyword

Using the UNIQUE keyword, you can specify that each record in the index has a unique value. More specifically, this
ensures that no two records within the index (and hence in the table that contains the index) can have the same collated
value. By default, most indexes use uppercase string collation (to make searches not case-sensitive). In this case, the values
“Smith” and “SMITH” are considered to be equal and not unique. CREATE INDEX cannot specify non-default index
string collation. You can specify a different string collation for individual indexes by defining the index in the class definition.

You can change the namespace default collation to make fields/properties case-sensitive by default. Changing this option
requires recompiling all classes and rebuilding all indexes in the namespace. Go to the Management Portal, select the

78 InterSystems SQL Reference

SQL Commands

Classes option, select the namespace for your stored queries and use the Compile option to recompile the corresponding
classes. Then rebuild all indexes. They will be case-sensitive.

CAUTION: Do not rebuild indexes while the table’s data is being accessed by other users. Doing so may result in
inaccurate query results.

The BITMAP Keyword

Using the BITMAP keyword, you can specify that this index will be a bitmap index. A bitmap index consists of one or
more bit strings in which the bit position represents the row id, and each bit value represents the presence (1) or absence
(0) of a specific value for the field in that row (or the value for the combined field-name fields). InterSystems SQL maintains
these positional bits (as compressed bit strings) when inserting, updating, or deleting data; there is no significant difference
in the performance of INSERT, UPDATE, or DELETE operations between using a bitmap index and a regular index. A
bitmap index is highly efficient for many types of query operations. They have the following characteristics:

• You can only define bitmap indexes in tables (classes) that either use system-assigned RowID with positive integer
values, or use a primary key IDKEY to define custom ID values when the IDKEY is based on a single property with
type %Integer and MINVAL > 0, or type %Numeric with SCALE = 0 and MINVAL > 0.

You can use the $SYSTEM.SQL.Util.SetOption() method SET
status=$SYSTEM.SQL.Util.SetOption("BitmapFriendlyCheck",1,.oldval) to set a system-wide
configuration parameter to check at compile time for this restriction, determining whether a defined bitmap index is
allowed in a %Storage.SQL class. This check only applies to classes that use %Storage.SQL. The default is 0. You
can use $SYSTEM.SQL.Util.GetOption("BitmapFriendlyCheck") to determine the current configuration of this
option.

You can only define a bitmap index for tables that use default (%Storage.Persistent) structure. Tables with compound
keys, such as a child table, cannot use a bitmap index. If you use DDL (as opposed to using class definitions) to create
a table, it meets this requirement and you can make use of bitmap indexes.

• A bitmap index should only be used when the number of possible distinct field values is limited and relatively small.
For example, a bitmap index is a good choice for a field for gender, or nationality, or timezone. A bitmap should not
be used on a field with the UNIQUE constraint. A bitmap should not be used if a field can have more than 10,000
distinct values, or if multiple indexed fields can have more than 10,000 distinct values.

• Bitmap indexes are very efficient when used in combination with logical AND and OR operations in a WHERE clause.
If two or more fields are commonly queried in combination, it may be advantageous to define bitmap indexes for those
fields.

For more details, see Bitmap Indexes.

The BITMAPEXTENT Keyword

A bitmap extent index is a bitmap index for the table itself. InterSystems SQL uses this index to improve performance of
COUNT(*), which returns the number of records (rows) in the table. A table can have, at most, one bitmap extent index.
Attempting to create more than one bitmap extent index results in an SQLCODE -400 error with the %msg ERROR #5445:
Multiple Extent indexes defined: DDLBEIndex.

All tables defined using CREATE TABLE automatically define a bitmap extent index. This automatically generated index
is assigned the Index Name DDLBEIndex and the SQL MapName %%DDLBEIndex. A table defined as a class may have
a bitmap extent index defined with an Index Name and SQL MapName of $ClassName.

You can use CREATE BITMAPEXTENT INDEX to add a bitmap extent index to a table, or to rename an automatically-
generated bitmap extent index. The index-name you specify should be the class name corresponding to the table-name of
the table. This becomes the SQL MapName for the index. No field-name or WITH DATA clause can be specified.

InterSystems SQL Reference 79

CREATE INDEX (SQL)

The following example creates a bitmap extent index with Index Name DDLBEIndex and the SQL MapName Patient. If
Sample.Patient already had a %%DDLBEIndex bitmap extent index, this example renames that index to SQL MapName
Patient:

SQL

CREATE BITMAPEXTENT INDEX Patient ON TABLE Sample.Patient

For more details, see Bitmap Extent Index.

The BITSLICE Keyword

Using the BITSLICE keyword, you can specify that this index will be a bitslice index. A bitslice index is used exclusively
for numeric data which is used in calculations. A bitslice index represents each numeric data value as a binary bit string.
Rather than indexing a numeric data value using a boolean flag (as in a bitmap index), a bitslice index creates a bit string
for each numeric value, a separate bit string for each record. This is a highly specialized type of index that should only be
used for fast aggregate calculations. For example, the following would be a candidate for a bitslice index:

SQL

SELECT SUM(Salary) FROM Sample.Employee

You can create a bitslice index for a string data field, but the bitslice index will represent these data values as canonical
numbers. In other words, any non-numeric string, such as “abc” will be indexed as 0. This type of bitslice index could be
used to rapidly count records that have a value for a string field and not count those that are NULL.

A bitslice index should not be used in a WHERE clause, because they are not used by the SQL query optimizer.

Populating and maintaining a bitslice index using INSERT, UPDATE, or DELETE operations is significantly slower than
using a bitmap index or a regular index. Using several bitslice indexes, and/or using a bitslice index on a field that is frequently
updated may have a significant performance cost.

A bitslice index can only be used for records that have system-assigned row Ids with positive integer values. A bitslice
index can only be used on a single field-name. You cannot specify a WITH DATA clause.

For more details, see Bitslice Indexes.

The COLUMNAR Keyword

Using the COLUMNAR keyword, you can specify that this index will be a columnar index. A columnar index is used for
a column that is frequently queried but whose table has an underlying row storage structure. By default, each row of a table
is stored as a $LIST in a separate global subscript. For more details, see Columnar Indexes and Choose an SQL Table
Storage Layout.

Rebuilding an Index

Creating an index using the CREATE INDEX statement automatically builds the index. However, there are cases when
you may wish to explicitly rebuild an index.

CAUTION: You must take additional steps when rebuilding an index if the table’s data is being accessed by other
users. Failing to do so may result in inaccurate query results. For more details, refer to Building Indexes
on an Active System.

You can build/re-build indexes as follows:

• Using the BUILD INDEX SQL command.

• Using the Management Portal to rebuild all of the indexes for a specified class (table).

• Using the %BuildIndices() method.

80 InterSystems SQL Reference

SQL Commands

To rebuild all indexes for an inactive table, execute the following:

ObjectScript

 SET status = ##class(myschema.mytable).%BuildIndices()

By default, this command purges the indexes prior to rebuilding them. You can override this purge default and use the
%PurgeIndices() method to explicitly purge specified indexes. If you call %BuildIndices() for a range of ID values,
InterSystems IRIS does not purge indexes by default.

You can also purge/rebuild specified indexes:

ObjectScript

 SET status = ##class(myschema.mytable).%BuildIndices($ListBuild("NameIDX","SpouseIDX"))

You may want to purge/rebuild an index if the index is corrupt or to change the case sensitivity of the index, as described
above. To recompress a bitmap index, use the %SYS.Maint.Bitmap methods, rather than purge/rebuild.

For more details, see Building Indexes.

Examples
The following example creates a table named Fred, and then creates an index named "FredIndex" (by stripping out the
punctuation from the supplied name “Fred_Index”) on the Lastword and Firstword fields of the Fred table.

SQL

CREATE TABLE Fred (
 TESTNUM INT NOT NULL,
 FIRSTWORD CHAR (30) NOT NULL,
 LASTWORD CHAR (30) NOT NULL,
 CONSTRAINT FredPK PRIMARY KEY (TESTNUM))

CREATE INDEX Fred_Index
ON TABLE Fred (LASTWORD,FIRSTWORD)

The following example creates an index, named “CityIndex” on the City field of the Staff table:

SQL

CREATE INDEX CityIndex ON Staff (City)

The following example creates an index, named “EmpIndex” on the EmpName field of the Staff table. The UNIQUE constraint
is used to avoid having rows with identical values in the fields:

SQL

CREATE UNIQUE INDEX EmpIndex ON TABLE Staff (EmpName)

The following example creates a bitmap index, named “SKUIndex” on the SKU field of the Purchases table. The BITMAP
keyword indicates that this is a bitmap index:

SQL

CREATE BITMAP INDEX SKUIndex ON TABLE Purchases (SKU)

See Also
• BUILD INDEX command

• DROP INDEX command

InterSystems SQL Reference 81

CREATE INDEX (SQL)

• SEARCH_INDEX function

• Defining Tables

• Defining and Building Indexes

• Using Indexes

• SQL and Object Settings Pages

• SQLCODE error messages

• %Library.FunctionalIndex

82 InterSystems SQL Reference

SQL Commands

CREATE METHOD (SQL)
Creates a method in a class.

Synopsis

CREATE [STATIC] METHOD name (parameter_list)
 [characteristics]
 [LANGUAGE SQL]
 BEGIN code_body ;
 END

CREATE [STATIC] METHOD name (parameter_list)
 [characteristics]
 LANGUAGE OBJECTSCRIPT
 { code_body }

Description
The CREATE METHOD statement creates a class method. This class method may or may not be a stored procedure. To
create a method in a class that is exposed as an SQL stored procedure, you must specify the PROCEDURE keyword. By
default, CREATE METHOD does not create a method which is also a stored procedure; the CREATE PROCEDURE
statement always creates a method which is also a stored procedure.

The optional STATIC keyword is provided to clarify that the method created is a static (class) method, not an instance
method. This keyword provides no actual functionality.

In order to create a method, you must have %CREATE_METHOD administrative privilege, as specified by the GRANT
command. If you are attempting to create a method for an existing class with a defined owner, you must be logged in as
the owner of the class. Otherwise, the operation fails with an SQLCODE -99 error.

You cannot create a method in a class if the class definition is a deployed class. This operation fails with an SQLCODE -
400 error with the %msg Unable to execute DDL that modifies a deployed class: 'classname'.

The following two examples both show the creation of the same class method. The first example uses CREATE METHOD,
the second defines the class method in the class User.Letters:

SQL

CREATE METHOD RandCaseLetter(IN caps CHAR)
 RETURNS INTEGER
 PROCEDURE
LANGUAGE OBJECTSCRIPT
{
:Top
 IF caps="U" {SET x=$RANDOM(91) IF x>64 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSEIF caps="L" {SET x=$RANDOM(123) IF x>97 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSE {QUIT "case must be 'U' or 'L'"}
}

Class User.Letters Extends %Persistent [DdlAllowed]
{
 ClassMethod RandCaseLetter(caps) As %String [SqlName = RandomLetter, SqlProc]
 {
 Top
 IF caps="U" {SET x=$RANDOM(91) IF x>64 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSEIF caps="L" { SET x=$RANDOM(123) IF x>97 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSE {QUIT "case must be 'U' or 'L'"}
 }
}

For information on calling methods from within SQL statements, refer to User-defined Functions. For calling SQL stored
procedures in a variety of contexts, refer to the CALL statement.

InterSystems SQL Reference 83

CREATE METHOD (SQL)

Arguments

name

The name of the method to be created. This name may be unqualified (StoreName) and take the system-wide default schema
name, or qualified by specifying the schema name (Patient.StoreName). You can use the $SYSTEM.SQL.Schema.Default()
method to determine the current system-wide default schema name. The initial system-wide default schema name is
SQLUser which corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in name. If a method with this name
already exists, the operation fails with an SQLCODE -361 error. To avoid this error, use the optional keyword OR REPLACE
to modify or replace the existing method. CREATE OR REPLACE METHOD has the same effect as invoking DROP
METHOD to delete the old version of the method and then invoking CREATE METHOD.

The name of the generated class is the package name corresponding to the schema name, followed by a dot, followed by
“meth”, followed by the specified name. For example, if the unqualified method name RandomLetter takes the initial
default schema SQLUser, the resulting class name would be: User.methRandomLetter. For further details, see SQL
to Class Name Transformations.

InterSystems SQL does not allow you to specify a duplicate method name that differs only in letter case. Specifying a
method name that differs only in letter case from an existing method name results in an SQLCODE -400 error.

parameter-list

A list of parameters used to pass values to the method. The parameter list is enclosed in parentheses, and parameter decla-
rations in the list are separated by commas. The parentheses are mandatory, even when specifying no parameters. Each
parameter declaration in the list consists of (in order):

• An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

• The parameter name. Parameter names are case-sensitive.

• The data type of the parameter.

• Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The output value from a method is automatically converted from Logical format to Display/ODBC format.

An input value to a method is, by default, not converted from Display/ODBC format to Logical format. However, input
display-to-logical conversion can be configured systemwide using the
$SYSTEM.SQL.Util.SetOption("SQLFunctionArgConversion") method. You can use
$SYSTEM.SQL.Util.GetOption("SQLFunctionArgConversion") to determine the current configuration of this option.

characteristics

The available keywords are as follows:

84 InterSystems SQL Reference

SQL Commands

Specifies the name of the class in which to create the method. If the class
does not exist, it will be created.You can also specify a class name by
qualifying the method name.The class name specified in the FOR clause
overrides a class name specified by qualifying the method name.

FOR className

Specifies that subclasses cannot override the method. By default, methods
are not final. The FINAL keyword is inherited by subclasses.

FINAL

Specifies that the method can only be invoked by other methods of its
own class or subclasses. By default, a method is public, and can be
invoked without restriction. This restriction is inherited by subclasses.

PRIVATE

Specifies that the method is an SQL stored procedure. Stored procedures
are inherited by subclasses. (This keyword can be abbreviated as PROC.)

PROCEDURE

Specifies that the method created will contain the ReturnResultsets
keyword. All forms of this characteristics phrase are synonyms.

RESULT SETS

DYNAMIC RESULT SETS [n]

Specifies the data type of the value returned by a call to the method. If
RETURNS is omitted, the method cannot return a value.This specification
is inherited by subclasses, and can be modified by subclasses. This
datatype can specify type parameters such as MINVAL, MAXVAL, and
SCALE. For example RETURNS DECIMAL(19,4). Note that when returning
a value, InterSystems IRIS ignores the length of datatype; for example,
RETURNS VARCHAR(32) can receive a string of any length that is returned
by a call to the method.

RETURNS datatype

Only used when LANGUAGE is SQL (the default). When specified,
InterSystems IRIS adds an #SQLCOMPILE SELECT=mode statement to
the corresponding class method, thus generating the SQL statements
defined in the method with the specified SELECTMODE. The possible
mode values are LOGICAL, ODBC, RUNTIME, and DISPLAY.The default
is LOGICAL.

SELECTMODE mode

If you specify a query keyword (such as CONTAINSID or RESULTS) that is not valid for a method, the system generates
an SQLCODE -47 error. If you specify a duplicate query keyword (such as FINAL FINAL), the system generates an
SQLCODE -44 error.

The SELECTMODE clause is used for SELECT query operations and for INSERT and UPDATE operations. It specifies
the compile-time select mode. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #sqlcompile select=mode. For further details, see #sqlcompile select.

• In a SELECT query, the SELECTMODE specifies the mode in which data is returned. If the mode value is LOGICAL,
then logical (internal storage) values are returned. For example, dates are returned in $HOROLOG format. If the mode
value is ODBC, logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is
DISPLAY, logical-to-display conversion is applied, and display format values are returned. If the mode value is
RUNTIME, the display mode can be set (to LOGICAL, ODBC, or DISPLAY) at execution time.

• In an INSERT or UPDATE operation, the SELECTMODE RUNTIME option supports automatic conversion of input
data values from a display format (DISPLAY or ODBC) to logical storage format. This compiled display-to-logical
data conversion code is applied only if the select mode setting when the SQL code is executed is LOGICAL (which
is the default for all InterSystems SQL execution interfaces).

When the SQL code is executed, the %SQL.Statement class %SelectMode property specifies the execution-time select
mode, as described in Using Dynamic SQL. For further details on SelectMode options, refer to Data Display Options.

InterSystems SQL Reference 85

CREATE METHOD (SQL)

LANGUAGE

A keyword clause specifying the language you are using for code_body. Permitted clauses are LANGUAGE OBJECTSCRIPT
(for ObjectScript) or LANGUAGE SQL. If the LANGUAGE clause is omitted, SQL is the default.

code_body

The program code for the method to be created. You specify this code in either SQL or ObjectScript. The language used
must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL.

InterSystems IRIS uses the code you supply to generate the actual code of the method.

If the code you specify is SQL, InterSystems IRIS provides additional lines of code when generating the method that embed
the SQL in an ObjectScript “wrapper,” provide a procedure context handler (if necessary), and handle return values. The
following is an example of this InterSystems IRIS-generated wrapper code:

ObjectScript

 NEW SQLCODE,%ROWID,%ROWCOUNT,title
 &sql(SELECT col FROM tbl)
 QUIT $GET(title)

If the code you specify is OBJECTSCRIPT, the ObjectScript code must be enclosed in curly braces. All code lines must
be indented from column 1, except for labels and macro preprocessor directives. A label or macro directive must be prefaced
by a colon (:) in column 1.

For ObjectScript code, you must explicitly define the “wrapper” (which NEWs variable and uses QUIT exit and (optionally)
to return a value upon completion).

The method can be exposed as a stored procedure by specifying the PROCEDURE keyword. When a stored procedure is
called, an object of the class %Library.SQLProcContext is instantiated in the %sqlcontext variable. This procedure context
handler is used to pass the procedure context back and forth between the procedure and its caller (for example, the ODBC
server).

%sqlcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
 SET %sqlcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sqlcontext

object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SYSTEM.Error object and setting it as %sqlcontext.Error.

Examples
The following two examples both show the creation of the same class method. The first example uses CREATE METHOD,
the second defines the class method in the class User.Letters:

86 InterSystems SQL Reference

SQL Commands

SQL

CREATE METHOD RandCaseLetter(IN caps CHAR)
 RETURNS INTEGER
 PROCEDURE
LANGUAGE OBJECTSCRIPT
{
:Top
 IF caps="U" {SET x=$RANDOM(91) IF x>64 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSEIF caps="L" {SET x=$RANDOM(123) IF x>97 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSE {QUIT "case must be 'U' or 'L'"}
}

Class User.Letters Extends %Persistent [DdlAllowed]
{
 ClassMethod RandCaseLetter(caps) As %String [SqlName = RandomLetter, SqlProc]
 {
 Top
 IF caps="U" {SET x=$RANDOM(91) IF x>64 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSEIF caps="L" { SET x=$RANDOM(123) IF x>97 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSE {QUIT "case must be 'U' or 'L'"}
 }
}

The following example specifies two input parameters, both of which have default values. The optional DEFAULT keyword
is specified for the first parameter, omitted for the second parameter:

SQL

CREATE METHOD RandomLetter(IN firstlet CHAR DEFAULT 'A',IN lastlet CHAR 'Z')
BEGIN
-- SQL program code
END

The following example uses CREATE METHOD with SQL code to generate the method UpdateSalary in the class
Sample.Employee:

The following example uses CREATE METHOD with SQL code to generate the method UpdateSalary in the class
Sample.Employee:

SQL

CREATE METHOD UpdateSalary (IN SSN VARCHAR(11), IN Salary INTEGER)
 FOR Sample.Employee
 BEGIN
 UPDATE Sample.Employee SET Salary = :Salary WHERE SSN = :SSN;
 END

The following example creates the RandomLetter() method stored as a procedure that generates a random capital letter.
You can then invoke this method as a function in a SELECT statement. A DROP METHOD is provided to delete the
RandomLetter() method.

SQL

CREATE METHOD RandomLetter()
RETURNS INTEGER
PROCEDURE
LANGUAGE OBJECTSCRIPT
{
:Top
 SET x=$RANDOM(91)
 IF x<65 {GOTO Top}
 ELSE {QUIT $CHAR(x)}
}

InterSystems SQL Reference 87

CREATE METHOD (SQL)

SQL

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH RandomLetter()

SQL

DROP METHOD RandomLetter

The following Embedded SQL example uses CREATE METHOD with ObjectScript code to generate the method
TraineeTitle in the class SQLUser.MyStudents and returns a Title value:

ObjectScript

 &sql(CREATE METHOD TraineeTitle(
 IN SSN VARCHAR(11),
 INOUT Title VARCHAR(50))
 RETURNS VARCHAR(30)
 FOR SQLUser.MyStudents
 LANGUAGE OBJECTSCRIPT
 {
 NEW SQLCODE,%ROWCOUNT
 &sql(SELECT Title INTO :Title FROM Sample.Employee
 WHERE SSN = :SSN)
 IF $GET(%sqlcontext)'= "" {
 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT }
 QUIT
 })
 IF SQLCODE=0 { WRITE !,"Created a method" QUIT}
 ELSEIF SQLCODE=-361 { WRITE !,"Method already exists SQLCODE: ",SQLCODE
 &sql(DROP METHOD TraineeTitle FROM SQLUser.MyStudents)
 IF SQLCODE=0 { WRITE !,"Dropped a method" QUIT}}
 ELSE { WRITE !,"SQL error: ",SQLCODE }

It uses the %sqlcontext object, and sets its %SQLCODE and %ROWCOUNT properties using the corresponding SQL
variables. Note the curly braces enclosing the ObjectScript code following the method’s LANGUAGE OBJECTSCRIPT
keyword. Within the ObjectScript code there is Embedded SQL code, marked by &sql and enclosed in parentheses.

Security and Privileges
The CREATE METHOD command is a privileged operation that requires the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a CREATE METHOD command without these
privileges will result in an SQLCODE -99 error and the command will fail.

Users without proper permissions can still execute this command under one of two conditions:

• The command is executed via Embedded SQL, which does not perform privilege checks.

• The user explicitly specifies no privilege checking by, for example, calling either %Prepare() with the checkPriv
argument set to 0 or %ExecDirectNoPriv() on a %SQL.Statement.

See Also
• CALL

• CREATE PROCEDURE

• DROP METHOD

• Defining and Using Stored Procedures

88 InterSystems SQL Reference

SQL Commands

CREATE ML CONFIGURATION (SQL)
Creates an ML configuration.

Synopsis

CREATE [OR REPLACE] ML CONFIGURATION ml-configuration-name PROVIDER provider-name
 [%DESCRIPTION description] [USING json-object-string]
 [provider-connection-settings]

Arguments

The name for the ML configuration being created. A valid identifier, subject to
the same additional naming restrictions as a table name. An ML configuration
name is unqualified (mlconfig-name). An unqualified ML configuration name
takes the default schema name.

ml-configuration-name

A string specifying the name of a machine learning provider, where values are:PROVIDER
provider-name

• AutoML

• H2O

• DataRobot

• PMML

Optional — String. A text description for the ML configuration. See details below.%DESCRIPTION
description

Optional — A JSON string specifying one or more key-value pairs; see details
below.

USING json-object-string

Any additional settings, required for connection, that vary by the machine learning
provider. See details below.

provider-connection-settings

Description
The CREATE ML CONFIGURATION command creates an ML configuration for training models. You can specify one
or more of the following properties:

• The provider (required)

• The description

• The USING clause

• Provider connection settings

ML Configuration Description

%DESCRIPTION accepts a text string enclosed in single quotes, which you can use to provide a description for documenting
your configuration. This text can be of any length, and can contain any characters, including blank spaces.

USING

You can specify a default USING clause for your configuration. This clause accepts a JSON string with one or more key-
value pairs. When TRAIN MODEL is executed, by default the USING clause of the configuration is used.

InterSystems SQL Reference 89

CREATE ML CONFIGURATION (SQL)

You must make sure that the parameters you specify are recognized by the provider you select. Failing to do so may result
in an error when training.

An example with H2O as the provider:

CREATE ML CONFIGURATION h2o_config PROVIDER H2O USING {"seed":100, "nfolds":4}

Provider Connection Settings

Depending on the provider specified by your configuration, there may be additional fields you must enter to establish a
successful connection.

DataRobot

You must specify the following values to successfully connect to DataRobot:

• URL [=] url-string — where url-string is the URL of a DataRobot endpoint.

• APITOKEN [=] token-string — where token-string is your client API token to access the DataRobot
AutoML server.

A complete ML configuration for DataRobot could be created with a query as follows:

CREATE ML CONFIGURATION datarobot-configuration PROVIDER DataRobot1 URL url-string APITOKEN token-string

With proper values for url-string and token-string

Required Security Privileges

Calling CREATE ML CONFIGURATION requires %CREATE_ML_CONFIGURATION privileges; otherwise, there
is a SQLCODE –99 error (Privilege Violation). To assign %CREATE_ML_CONFIGURATION privileges, use the GRANT
command.

Configuration Naming Conventions

Configuration names follow identifier conventions, subject to the restrictions below. By default, configuration names are
simple identifiers. A configuration name should not exceed 256 characters. Configuration names are not case-sensitive.

InterSystems IRIS® uses the configuration name to generate a corresponding class name. A class name contains only
alphanumeric characters (letters and numbers) and must be unique within the first 96 characters. To generate this class
name, InterSystems IRIS first strips punctuation characters from the configuration name, and then generates an identifier
that is unique within the first 96 characters, substituting an integer (beginning with 0) for the final character when needed
to create a unique class name. InterSystems IRIS generates a unique class name from a valid configuration name, but this
name generation imposes the following restrictions on the naming of configurations:

• A configuration name must include at least one letter. Either the first character of the view name or the first character
after initial punctuation characters must be a letter

• InterSystems IRIS supports 16-bit (wide) characters for configuration names. A character is a valid letter if it passes
the $ZNAME test.

• If the first character of the configuration name is a punctuation character, the second character cannot be a number.
This results in an SQLCODE -400 error, with a %msg value of “ERROR #5053: Class name 'schema.name' is invalid”
(without the punctuation character). For example, specifying the configuration name %7A generates the %msg “ERROR
#5053: Class name 'User.7A' is invalid”.

• Because generated class names do not include punctuation characters, it is not advisable (though possible) to create a
configuration name that differs from an existing configuration name only in its punctuation characters. In this case,
InterSystems IRIS substitutes an integer (beginning with 0) for the final character of the name to create a unique class
name.

90 InterSystems SQL Reference

SQL Commands

• A configuration name may be much longer than 96 characters, but configuration names that differ in their first 96
alphanumeric characters are much easier to work with.

A configuration name can only be unqualified. An unqualified configuration name (viewname) takes the system-wide
default schema name.

If you would like to redefine an ML configuration to use the same name, you can specify the OR REPLACE option to
replace a pre-existing ML configuration with different behavior.

Examples

CREATE ML CONFIGURATION autoML_config PROVIDER AutoML %DESCRIPTION 'my AutoML configuration!'

See Also
• ALTER ML CONFIGURATION, DROP ML CONFIGURATION

InterSystems SQL Reference 91

CREATE ML CONFIGURATION (SQL)

CREATE MODEL (SQL)
Creates a model definition.

Synopsis
Classification or Regression Model

CREATE MODEL [IF NOT EXISTS] model-name
 PREDICTING (label-column)
 FROM model-source
 [USING json-object]

CREATE MODEL [IF NOT EXISTS] model-name
 PREDICTING (label-column)
 WITH feature-column-clause
 [USING json-object]

CREATE MODEL [IF NOT EXISTS] model-name
 PREDICTING (label-column)
 WITH feature-column-clause
 FROM model-source
 [USING json-object]

Time Series Model

CREATE [TIME] SERIES MODEL [IF NOT EXISTS] model-name
 PREDICTING (label-column1, label-column2, ...)
 BY (timestep)
 FROM model-source
 [USING json-object]

Arguments

This synopsis shows the valid forms of CREATE MODEL. The CREATE MODEL command must have either a FROM
or WITH clause (or both).

The name for the model definition being created. A valid identifier, subject to
the same additional naming restrictions as a table name. A model name is
unqualified (modelname). An unqualified model name takes the default schema
name.

model-name

The name of the column being predicted, also known as the label column. A
standard identifier. See details below.

PREDICTING (
label-column)

Inputs to the model, also known as the feature columns, as either the name of
a column and it’s datatype or as a comma-separated list of the names of columns
and datatypes. Each column name is a standard identifier.

WITH
feature-column-clause

The table or view from which the model is being built. This can be a table, view,
or results of a join.

FROM model-source

Optional — A JSON string specifying one or more key-value pairs. See more
details below.

USING json-object-string

The column containing the time-based data that a time series model will be built
on.

BY (timestep)

Description
The CREATE MODEL command creates a model definition of the structure specified. This includes, at a minimum:

92 InterSystems SQL Reference

SQL Commands

• The model name

• The label column (or columns, for a time series model)

• The feature column(s)

Regression and classification models are largely created in the same way and have the same considerations. However, time
series models employ a slightly different syntax because they require different considerations. These differences between
these types of models are enumerated in the applicable clauses below.

Predicting

You must specify the output column (or label column) that your model predicts, given the input columns (or feature columns).
For example, if you are designing a SpamFilter model which identifies emails that are spam mail, you may have a label
column named IsSpam, which is a boolean value designating whether a given email is spam or not. You can also specify
the data type of this column; otherwise, IntegratedML infers the type:

CREATE MODEL SpamFilter PREDICTING (IsSpam) FROM EmailData
CREATE MODEL SpamFilter PREDICTING (IsSpam binary) FROM EmailData

When creating a time series model, you will often want to predict values for multiple columns. To do so, specify the names
of the columns that you would like to predict in a comma-separated list. You may also specify the data type of this column;
otherwise, IntegratedML infers the type. To specify that the model should predict values for every column in the table, use
an asterisk (*).

CREATE TIME SERIES MODEL WeatherForecast PREDICTING (Temp, Precipitation, Humidity, UVIndex) BY (Date)
 FROM WeatherData
CREATE TIME SERIES MODEL WeatherForecast PREDICTING (*) BY (DATE) FROM WeatherData

WITH and FROM

A classification or regression model definition must contain a WITH or FROM or both to specify the schema characteristics
of the model. A time series model must contain a FROM clause and cannot have a WITH.

WITH
Using WITH, you can specify which input columns (features) to include in your model definition. Note that you must
specify the data type of each column, even when using a FROM clause in your statement:

CREATE MODEL SpamFilter PREDICTING (IsSpam) WITH (email_length int, subject_title varchar)
CREATE MODEL SpamFilter PREDICTING (IsSpam) WITH (email_length int, subject_title varchar) FROM EmailData

FROM
FROM allows you to use every single column from a specified table or view, without having to identify each column
individually:

CREATE MODEL SpamFilter PREDICTING (IsSpam) FROM EmailData

This clause is fully general, and can specify any subquery expression. IntegratedML infers the data types of each column.
By using FROM, you supply a default data set for future TRAIN MODEL statements using this model definition. You
can use FROM along with WITH to both supply a default data set and to explicitly name feature columns.

Without a WITH clause, IntegratedML infers the data types of each column, and implicitly uses the result of the FROM
clause as if it were the following query:

SELECT * FROM model-source

InterSystems SQL Reference 93

CREATE MODEL (SQL)

USING

You can specify a default USING clause for your model definition. This clause accepts a JSON string with one or more
key-value pairs. When TRAIN MODEL is executed, by default the USING clause of the model definition is used. All
parameters specified in the USING clause of your ML configuration overwrite those same parameters in the USING clause
of your model definition.

You must make sure that the parameters you specify are recognized by the provider you select. Failing to do so may result
in an error when training.

Time Series Parameters

Time series models also support four optional parameters in a USING clause:

• Forward specifies the number of timesteps in the future that you would like to predict as a positive integer. Predicted
rows will appear after the latest time or date in the original dataset. You may specify both this and the Backward setting
at the same time.

• Backward specifies the number of timesteps in the past that you would like to predict as a positive integer. Predicted
rows will appear before the earliest time or date in the original dataset. You may specify both this and the Forward
setting at the same time. The AutoML provider ignores this parameter.

• Frequency specifies both the size and unit of the predicted timesteps as a positive integer followed by a letter that
denotes the unit of time. If this value is not specified, the most common timestep in the data is supplied. The DataRobot
provider ignores this parameter.

The letter abbreviations for units of time are outlined in the following table:

Table B–1:

Unit of TimeAbbreviation

yeary

monthm

weekw

dayd

hourh

minutet

seconds

Required Security Privileges

Calling CREATE MODEL requires %MANAGE_MODEL privileges; otherwise, there is a SQLCODE –99 error (Privilege
Violation). To assign %MANAGE_MODEL privileges, use the GRANT command.

Model Naming Conventions

Model names follow identifier conventions, subject to the restrictions below. By default, model names are simple identifiers.
A model name should not exceed 256 characters. Model names are not case-sensitive.

InterSystems IRIS uses the model name to generate a corresponding class name. A class name contains only alphanumeric
characters (letters and numbers) and must be unique within the first 96 characters. To generate this class name, InterSystems
IRIS first strips punctuation characters from the model name, and then generates an identifier that is unique within the first
96 characters, substituting an integer (beginning with 0) for the final character when needed to create a unique class name.

94 InterSystems SQL Reference

SQL Commands

InterSystems IRIS generates a unique class name from a valid model name, but this name generation imposes the following
restrictions on the naming of models:

• A model name must include at least one letter. Either the first character of the view name or the first character after
initial punctuation characters must be a letter

• InterSystems IRIS supports 16-bit (wide) characters for model names. A character is a valid letter if it passes the
$ZNAME test.

• If the first character of the model name is a punctuation character, the second character cannot be a number. This results
in an SQLCODE -400 error, with a %msg value of “ERROR #5053: Class name 'schema.name' is invalid” (without
the punctuation character). For example, specifying the model name %7A generates the %msg “ERROR #5053: Class
name 'User.7A' is invalid”.

• Because generated class names do not include punctuation characters, it is not advisable (though possible) to create a
model name that differs from an existing model name only in its punctuation characters. In this case, InterSystems
IRIS substitutes an integer (beginning with 0) for the final character of the name to create a unique class name.

• A model name may be much longer than 96 characters, but model names that differ in their first 96 alphanumeric
characters are much easier to work with.

A model name can only be unqualified. An unqualified model name (viewname) takes the system-wide default schema
name.

Examples

SQL

CREATE MODEL PatientReadmit PREDICTING (IsReadmitted) FROM patient_table USING {"seed": 3}
CREATE MODEL PatientReadmit PREDICTING (IsReadmitted) WITH (age, gender, encounter_type, admit_reason,
 starttime, endtime, prior_visits, diagnosis, comorbitities)
CREATE TIME SERIES MODEL BusinessGrowth PREDICTING (*) BY (date) FROM BusinessData USING {"Forward":5}

See Also
• ALTER MODEL, DROP MODEL, TRAIN MODEL

InterSystems SQL Reference 95

CREATE MODEL (SQL)

CREATE PROCEDURE (SQL)
Creates a method or query which is exposed as an SQL stored procedure.

Synopsis

CREATE PROCEDURE procname(parameter_list) [characteristics]
 [LANGUAGE SQL]
 BEGIN code_body ;
 END

CREATE PROCEDURE procname(parameter_list) [characteristics]
 LANGUAGE OBJECTSCRIPT
 { code_body }

CREATE PROCEDURE procname(parameter_list) [characteristics]
 LANGUAGE { JAVA | PYTHON | DOTNET }
 EXTERNAL NAME external-stored-procedure

Description
The CREATE PROCEDURE statement creates a method or a query which is, by default, exposed as an SQL stored pro-
cedure. A stored procedure can be invoked by all processes in the current namespace. Stored procedures are inherited by
subclasses.

• If LANGUAGE SQL, the code_body must contain a SELECT statement in order to generate a query exposed as a
stored procedure. If the code does not contain a SELECT statement, CREATE PROCEDURE creates a method.

• If LANGUAGE OBJECTSCRIPT, the code_body must call Execute() and Fetch() methods in order to generate a
query exposed as a stored procedure. It may also call Close(), FetchRows(), and GetInfo() methods. If the code does
not call Execute() and Fetch(), CREATE PROCEDURE creates a method.

To create a method not exposed as a stored procedure, use the CREATE METHOD or CREATE FUNCTION statement.
To create a query not exposed as a stored procedure, use the CREATE QUERY statement. These statements can also be
used to create a method or query exposed as a stored procedure by specifying the PROCEDURE characteristic keyword.

In order to create a procedure, you must have %CREATE_PROCEDURE administrative privilege, as specified by the
GRANT command. If you are attempting to create a procedure for an existing class with a defined owner, you must be
logged in as the owner of the class. Otherwise, the operation fails with an SQLCODE -99 error.

You cannot create a procedure in a class if the class definition is a deployed class. This operation fails with an SQLCODE
-400 error with the %msg Unable to execute DDL that modifies a deployed class: 'classname'.

A stored procedure is executed using the CALL statement.

For information on calling methods from within SQL statements, refer to User-defined Functions.

Arguments

procname

The name of the method or query to be created as a stored procedure. The procname must be followed by parentheses, even
if no parameters are specified. A procedure name can take any of the following forms:

• Unqualified: Takes the default schema name. For example, MedianAgeProc().

• Qualified: Supplies a schema name. For example, Patient.MedianAgeProc().

• Multilevel: Qualified with one or more schema levels to parallel corresponding class package members. In this case,
the procname may contain only one period character; the other periods in the corresponding class method name are
replaced with underline characters. The period is specified before the lowest level class package member. For example,
%SYSTEM.SQL_GetROWID(), or %SYS_PTools.StatsSQL_Export().

96 InterSystems SQL Reference

SQL Commands

An unqualified procname takes the default schema name. You can use the $SYSTEM.SQL.Schema.Default() method to
determine the current system-wide default schema name. The initial system-wide default schema name is SQLUser which
corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in procname. If a procedure with
this name already exists, the operation fails with an SQLCODE -361 error.

InterSystems SQL uses the SQL procname to generate a corresponding class name. This name consists of the package
name corresponding to the schema name, followed by a dot, followed by “proc”, followed by the specified procedure name.
For example, if the unqualified procedure name RandomLetter() takes the default schema SQLUser, the resulting class
name would be: User.procRandomLetter(). For further details, see SQL to Class Name Transformations.

InterSystems SQL does not allow you to specify a procname that differs only in letter case. Specifying a procname that
differs only in letter case from an existing procedure name results in an SQLCODE -400 error.

If the specified procname already exists in the current namespace, the system generates an SQLCODE -361 error. To
determine if a specified procname already exists in the current namespace, use the
$SYSTEM.SQL.Schema.ProcedureExists() method.

Include the optional keyword OR REPLACE to modify or replace an existing procedure without generating an error.
CREATE OR REPLACE PROCEDURE has the same effect as invoking DROP PROCEDURE to delete the old version
of the procedure and then invoking CREATE PROCEDURE.

Note: InterSystems SQL procedure names and InterSystems TSQL procedure names share the same set of names.
Therefore, you cannot create an SQL procedure that has the same name as a TSQL procedure in the same
namespace. Attempting to do so results in an SQLCODE -400 error.

parameter_list

A list of parameters used to pass values to the method or query. The parameter list is enclosed in parentheses, and parameter
declarations in the list are separated by commas. The parentheses are mandatory, even if you specify no parameters.

Each parameter declaration in the list consists of (in order):

• An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

• The parameter name. Parameter names are case-sensitive.

• The data type of the parameter.

• Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The following example creates a stored procedure with two input parameters, both of which have default values. One input
parameter specifies the optional DEFAULT keyword, the other input parameter omits this keyword:

SQL

CREATE PROCEDURE AgeQuerySP(IN topnum INT DEFAULT 10,IN minage INT 20)
 BEGIN
 SELECT TOP :topnum Name,Age FROM Sample.Person
 WHERE Age > :minage ;
 END

The following example is functionally identical to the example above. The optional DEFAULT keyword is omitted:

InterSystems SQL Reference 97

CREATE PROCEDURE (SQL)

SQL

CREATE PROCEDURE AgeQuerySP(IN topnum INT 10,IN minage INT 20)
 BEGIN
 SELECT TOP :topnum Name,Age FROM Sample.Person
 WHERE Age > :minage ;
 END

The following are all valid CALL statements for this procedure: CALL AgeQuerySP(6,65); CALL AgeQuerySP(6);
CALL AgeQuerySP(,65); CALL AgeQuerySP().

The following example creates a method exposed as a stored procedure with three parameters:

SQL

CREATE PROCEDURE UpdatePaySP
 (IN Salary INTEGER DEFAULT 0,
 IN Name VARCHAR(50),
 INOUT PayBracket VARCHAR(50) DEFAULT 'NULL')
BEGIN
 UPDATE Sample.Person SET Salary = :Salary
 WHERE Name=:Name ;
END

A stored procedure does not perform automatic format conversion of parameters. For example, an input parameter in ODBC
format or Display format remains in that format. It is the responsibility of the code that calls the procedure, and the procedure
code itself, to handle IN/OUT values in a format appropriate to the application, and to perform any necessary conversions.

Because the method or query is exposed as a stored procedure, it uses a procedure context handler to pass the procedure
context back and forth between the procedure and its caller. When a stored procedure is called, an object of the class
%Library.SQLProcContext is instantiated in the %sqlcontext variable. This is used to pass the procedure context back and
forth between the procedure and its caller (for example, the ODBC server).

%sqlcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
 SET %sqlcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sqlcontext

object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SYSTEM.Error object and setting it as %sqlcontext.Error.

characteristics

Different characteristics are used for creating a method than those used to create a query.

If you specify a characteristics that is not valid, the system generates an SQLCODE -47 error. Specifying duplicate
characteristics results in an SQLCODE -44 error.

The available method characteristics keywords are as follows:

MeaningMethod Keyword

Specifies the name of the class in which to create the method. If the class
does not exist, it will be created.You can also specify a class name by
qualifying the method name. The class name specified in the FOR clause
overrides a class name specified by qualifying the method name.

If you specify the class name using the FOR my.class syntax, InterSystems
IRIS defines the class method with Sqlname=procname. Therefore, the
method should be invoked as my.procname() (not my.class_procname()).

FOR className

98 InterSystems SQL Reference

SQL Commands

MeaningMethod Keyword

Specifies that subclasses cannot override the method. By default, methods
are not final. The FINAL keyword is inherited by subclasses.

FINAL

Specifies that the method can only be invoked by other methods of its own
class or subclasses. By default, a method is public, and can be invoked
without restriction. This restriction is inherited by subclasses.

PRIVATE

Specifies that the method created will contain the ReturnResultsets
keyword. All forms of this characteristics phrase are synonyms.

RESULT SETS

DYNAMIC RESULT SETS [n]

Specifies the data type of the value returned by a call to the method. If
RETURNS is omitted, the method cannot return a value.This specification
is inherited by subclasses, and can be modified by subclasses. This
datatype can specify type parameters such as MINVAL, MAXVAL, and
SCALE. For example RETURNS DECIMAL(19,4). Note that when returning
a value, InterSystems IRIS ignores the length of datatype; for example,
RETURNS VARCHAR(32) can receive a string of any length that is returned
by a call to the method.

RETURNS datatype

Only used when LANGUAGE is SQL (the default). When specified,
InterSystems IRIS adds an #SQLCOMPILE SELECT=mode statement to
the corresponding class method, thus generating the SQL statements
defined in the method with the specified SELECTMODE. The possible
mode values are LOGICAL, ODBC, RUNTIME, and DISPLAY. The default
is LOGICAL.

SELECTMODE mode

The available query characteristics keywords are as follows:

DescriptionQuery Keyword

Specifies which field, if any, returns the ID. Set CONTAINID to the
number of the column that returns the ID, or 0 if no column returns the
ID. InterSystems IRIS does not validate that the named field actually
contains the ID, so a user error here results in inconsistent data.

CONTAINID integer

Specifies the name of the class in which to create the method. If the
class does not exist, it will be created.You can also specify a class
name by qualifying the method name. The class name specified in the
FOR clause overrides a class name specified by qualifying the method
name.

FOR className

Specifies that subclasses cannot override the method. By default,
methods are not final. The FINAL keyword is inherited by subclasses.

FINAL

InterSystems SQL Reference 99

CREATE PROCEDURE (SQL)

DescriptionQuery Keyword

Specifies the data fields in the order that they are returned by the query.
If you specify a RESULTS clause, you must list all fields returned by
the query as a comma-separated list enclosed in parentheses. Specify-
ing fewer or more fields than are returned by the query results in a
SQLCODE -76 cardinality mismatch error.

For each field you specify a column name (which will be used as the
column header) and a data type.

If LANGUAGE SQL, you can omit the RESULTS clause. If you omit the
RESULTS clause, the ROWSPEC is automatically generated during
class compilation.

RESULTS (result_set)

Specifies the mode used to compile the query. The possible values are
LOGICAL, ODBC, RUNTIME, and DISPLAY. The default is RUNTIME.

SELECTMODE mode

The SELECTMODE clause is used for SELECT query operations and for INSERT and UPDATE operations. It specifies
the compile-time select mode. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #sqlcompile select=mode. For further details, see #sqlcompile select.

• In a SELECT query, the SELECTMODE specifies the mode in which data is returned. If the mode value is LOGICAL,
then logical (internal storage) values are returned. For example, dates are returned in $HOROLOG format. If the mode
value is ODBC, logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is
DISPLAY, logical-to-display conversion is applied, and display format values are returned. If the mode value is
RUNTIME, the display mode can be set (to LOGICAL, ODBC, or DISPLAY) at execution time.

• In an INSERT or UPDATE operation, the SELECTMODE RUNTIME option supports automatic conversion of input
data values from a display format (DISPLAY or ODBC) to logical storage format. This compiled display-to-logical
data conversion code is applied only if the select mode setting when the SQL code is executed is LOGICAL (which
is the default for all InterSystems SQL execution interfaces).

When the SQL code is executed, the %SQL.Statement class %SelectMode property specifies the execution-time select
mode, as described in Using Dynamic SQL. For further details on SelectMode options, refer to Data Display Options.

The RESULTS clause specifies the results of a query. The SQL data type parameters in the RESULTS clause are translated
into corresponding InterSystems IRIS data type parameters in the query’s ROWSPEC. For example, the RESULTS clause
RESULTS (Code VARCHAR(15)) generates a ROWSPEC specification of ROWSPEC =
“Code:%Library.String(MAXLEN=15)”.

LANGUAGE

A keyword clause specifying the procedure code language. Available options are:

• LANGUAGE OBJECTSCRIPT (for ObjectScript) or LANGUAGE SQL. The procedure code is specified in the
code_body.

• LANGUAGE JAVA, LANGUAGE PYTHON, or LANGUAGE DOTNET for an SQL procedure that invokes an
external stored procedure in one of these languages. The syntax for an external stored procedure is as follows:

LANGUAGE langname EXTERNAL NAME external-routine-name

Where langname is JAVA, PYTHON, or DOTNET and external-routine-name is a quoted string containing the name
an external routine in the specified language. The SQL procedure invokes an existing routine; you cannot write code
in these languages within the CREATE PROCEDURE statement. Stored procedure libraries in these languages are

100 InterSystems SQL Reference

SQL Commands

stored external to IRIS, and therefore do not have to be packaged, imported, or compiled within IRIS. The following
is an example of a CREATE PROCEDURE invoking an existing JAVA external stored procedure:

CREATE PROCEDURE updatePrice (item_name VARCHAR, new_price INTEGER)
LANGUAGE JAVA
EXTERNAL NAME 'Orders.updatePrice'

If the LANGUAGE clause is omitted, SQL is the default.

code_body

The program code for the method or query to be created. You specify this code in either SQL or ObjectScript. The language
used must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL. InterSystems
IRIS uses the code you supply to generate the actual code of the method or query.

• SQL program code is prefaced with a BEGIN keyword, followed by the SQL code itself. At the end of each complete
SQL statement, specify a semicolon (;). A query contains only one SQL statement—a SELECT statement. You can
also create procedures that insert, update, or delete data. SQL program code concludes with an END keyword.

Input parameters are specified in the SQL statement as host variables, with the form :name. (Note that you should not
use question marks (?) to specify input parameters in the SQL code. The procedure will successfully build, but when
it is called these parameters cannot be passed or take default values.)

• ObjectScript program code is enclosed within curly braces: { code }. Lines of code must be indented. If specified,
a label or a #include preprocessor command must be prefaced by a colon and appear in the first column, as shown
in the following example:

SQL

CREATE PROCEDURE SP123()
 LANGUAGE OBJECTSCRIPT
{
:Top
:#include %occConstant
 WRITE "Hello World"
 IF 0=$RANDOM(2) { GOTO Top }
 ELSE {QUIT $$$OK }
}

The system automatically includes %occInclude. If program code contains InterSystems IRIS Macro Preprocessor
statements (# commands, ## functions, or $$$macro references) the processing and expansion of these statements is
part of the procedure's method definition, and get processed and expanded when the method is compiled. For more
details on preprocessor commands, see Preprocessor Directives Reference.

InterSystems IRIS provides additional lines of code when generating the procedure that embed the SQL in an ObjectScript
“wrapper,” provide a procedure context handler, and handle return values. The following is an example of this InterSystems
IRIS-generated wrapper code:

ObjectScript

 NEW SQLCODE,%ROWID,%ROWCOUNT,title
 &sql(
 -- code_body
)
 QUIT $GET(title)

If the code you specify is OBJECTSCRIPT, you must explicitly define the “wrapper” (which NEWs variable and uses
QUIT val to return a value upon completion.

Examples
The examples that follow are divided into those that use an SQL code_body, and those that use an ObjectScript code_body.

InterSystems SQL Reference 101

CREATE PROCEDURE (SQL)

Examples Using SQL Code

The following example creates a simple query, named PersonStateSP, exposed as a stored procedure. It declares no
parameters and takes default values for characteristics and LANGUAGE:

ObjectScript

 CREATE PROCEDURE PersonStateSP() BEGIN
 SELECT Name,Home_State FROM Sample.Person ;
 END

You can go to the Management Portal, select the Classes option, then select the SAMPLES namespace. There you will
find the stored procedure created by the above example: User.procPersonStateSP.cls. From this display you can delete this
procedure before rerunning the above program example. You can, of course, use DROP PROCEDURE to delete a procedure:

ObjectScript

 DROP PROCEDURE SAMPLES.PersonStateSP)

The following example creates a procedure to update data. It uses CREATE PROCEDURE to generate the method
UpdateSalary in the class Sample.Employee:

SQL

 CREATE PROCEDURE UpdateSalary (IN SSN VARCHAR(11), IN Salary INTEGER)
 FOR Sample.Employee
 BEGIN
 UPDATE Sample.Employee SET Salary = :Salary WHERE SSN = :SSN;
 END

Examples Using ObjectScript Code

The following example creates the RandomLetterSP() stored procedure method that generates a random capital letter. You
can then invoke this method as a function in a SELECT statement. A DROP PROCEDURE is provided to delete the
RandomLetterSP() method.

SQL

CREATE PROCEDURE RandomLetterSP()
RETURNS INTEGER
LANGUAGE OBJECTSCRIPT
{
:Top
 SET x=$RANDOM(90)
 IF x<65 {GOTO Top}
 ELSE {QUIT $CHAR(x)}
}

SQL

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH RandomLetterSP()

SQL

DROP PROCEDURE RandomLetterSP

The following CREATE PROCEDURE example uses ObjectScript calls to the Execute(), Fetch(). and Close() methods.
Such procedures may also contain FetchRows() and GetInfo() method calls:

102 InterSystems SQL Reference

SQL Commands

SQL

CREATE PROCEDURE GetTitle()
 FOR Sample.Employee
 RESULTS (ID %Integer)
 CONTAINID 1
 LANGUAGE OBJECTSCRIPT
 Execute(INOUT qHandle %Binary)
 { QUIT 1 }
 Fetch(INOUT qHandle %Binary, INOUT Row %List, INOUT AtEnd %Integer)
 { QUIT 1 }
 Close(INOUT qHandle %Binary)
 { QUIT 1 }

The following CREATE PROCEDURE example uses an ObjectScript call to the %SQL.Statement result set class:

SQL

CREATE PROCEDURE Sample_Employee.GetTitle(
 INOUT Title VARCHAR(50))
 RETURNS VARCHAR(30)
 FOR Sample.Employee
 LANGUAGE OBJECTSCRIPT
 {
 SET myquery="SELECT TOP 10 Name,Title FROM Sample.Employee"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"
 }

If the ObjectScript code block fetches data into a local variable (for example, Row), you must conclude the code block with
the line SET Row="" to indicate an end-of-data condition.

The following example uses CREATE PROCEDURE with ObjectScript code that includes Embedded SQL. It generates
the method GetTitle in the class Sample.Employee and passes out the Title value as a parameter:

SQL

CREATE PROCEDURE Sample_Employee.GetTitle(
 IN SSN VARCHAR(11),
 INOUT Title VARCHAR(50))
 RETURNS VARCHAR(30)
 FOR Sample.Employee
 LANGUAGE OBJECTSCRIPT
 {
 NEW SQLCODE,%ROWCOUNT
 &sql(SELECT Title INTO :Title FROM Sample.Employee
 WHERE SSN = :SSN)
 IF $GET(%sqlcontext)'= "" {
 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT }
 QUIT
 }

It uses the %sqlcontext object, and sets its %SQLCODE and %ROWCOUNT properties using the corresponding SQL
variables. Note the curly braces enclosing the ObjectScript code following the procedure’s LANGUAGE OBJECTSCRIPT
keyword. Within the ObjectScript code there is Embedded SQL code, marked by &sql and enclosed in parentheses.

Security and Privileges
The CREATE PROCEDURE command is a privileged operation that requires the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a CREATE PROCEDURE command without
these privileges will result in an SQLCODE -99 error and the command will fail.

Users without proper permissions can still execute this command under one of two conditions:

• The command is executed via Embedded SQL, which does not perform privilege checks.

InterSystems SQL Reference 103

CREATE PROCEDURE (SQL)

• The user explicitly specifies no privilege checking by, for example, calling either %Prepare() with the checkPriv
argument set to 0 or %ExecDirectNoPriv() on a %SQL.Statement.

See Also
• SELECT

• CALL

• DROP PROCEDURE

• CREATE METHOD, CREATE FUNCTION

• GRANT

• Defining and Using Stored Procedures

• Querying the Database

104 InterSystems SQL Reference

SQL Commands

CREATE QUERY (SQL)
Creates a query.

Synopsis

CREATE [OR REPLACE] QUERY queryname(parameter_list)
 [characteristics]
 [LANGUAGE SQL]
 BEGIN code_body ;
 END

CREATE QUERY queryname(parameter_list) [characteristics]
 LANGUAGE OBJECTSCRIPT
 { code_body }

Description
The CREATE QUERY statement creates a query in a class. By default, a query named MySelect would be stored as
User.queryMySelect or SQLUser.queryMySelect.

CREATE QUERY creates a query which may or may not be exposed as a stored procedure. To create a query that is
exposed as a stored procedure, you must specify the PROCEDURE keyword as one of its characteristics. You can also
use the CREATE PROCEDURE statement to create a query which is exposed as a stored procedure.

In order to create a query, you must have %CREATE_QUERY administrative privilege, as specified by the GRANT
command. If you are attempting to create a query for an existing class with a defined owner, you must be logged in as the
owner of the class. Otherwise, the operation fails with an SQLCODE -99 error.

You cannot create a query in a class if the class definition is a deployed class. This operation fails with an SQLCODE -400
error with the %msg Unable to execute DDL that modifies a deployed class: 'classname'.

Arguments

queryname

The name of the query to be created in a stored procedure class. The queryname must be a valid identifier and must be
followed by parentheses, even if no parameters are specified. The procedure name may be unqualified (StoreName) and
take the default schema name, or qualified by specifying the schema name (Patient.StoreName). You can use the
$SYSTEM.SQL.Schema.Default() method to determine the current system-wide default schema name. The initial system-
wide default schema name is SQLUser which corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in queryname. If a method with this
name already exists, the operation fails with an SQLCODE -361 error.

The name of the generated class is the package name corresponding to the schema name, followed by a dot, followed by
“query”, followed by the specified queryname. For example, if the unqualified query name RandomLetter takes the initial
default schema SQLUser, the resulting class name would be: User.queryRandomLetter. For further details, see SQL
to Class Name Transformations.

InterSystems SQL does not allow you to specify a queryname that differs only in letter case. Specifying a queryname that
differs only in letter case from an existing query name results in an SQLCODE -400 error.

If the specified queryname already exists in the current namespace, the system generates an SQLCODE -361 error.

Include the optional keyword OR REPLACE to modify or replace an existing query without generating an error. CREATE
OR REPLACE QUERY has the same effect as invoking DROP QUERY to delete the old version of the query and then
invoking CREATE QUERY.

InterSystems SQL Reference 105

CREATE QUERY (SQL)

parameter-list

A list of parameter declarations for parameters used to pass values to the query. The parameter list is enclosed in parentheses,
and parameter declarations in the list are separated by commas. The parentheses are mandatory, even if you specify no
parameters.

Each parameter declaration in the list consists of (in order):

• An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

• The parameter name. Parameter names are case-sensitive.

• The data type of the parameter.

• Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The following example creates a query exposed as a stored procedure with two input parameters, both of which have default
values. The topnum input parameter specifies the optional DEFAULT keyword; the minage input parameter omits this
keyword:

SQL

CREATE QUERY AgeQuery(IN topnum INT DEFAULT 10,IN minage INT 20)
 PROCEDURE
 BEGIN
 SELECT TOP :topnum Name,Age FROM Sample.Person
 WHERE Age > :minage ;
 END

The following are all valid CALL statements for this query: CALL AgeQuery(6,65); CALL AgeQuery(6); CALL
AgeQuery(,65); CALL AgeQuery().

characteristics

An optional argument denoting one or more keywords that specify the characteristics of a query. Characteristics can be
specified in any order. The available characteristics keywords are as follows:

DescriptionCharacteristics Keyword

Specifies which field, if any, returns the ID. Set CONTAINID to the
number of the column that returns the ID, or 0 if no column returns the
ID. InterSystems IRIS does not validate that the named field actually
contains the ID, so a user error here results in inconsistent data.

CONTAINID integer

Specifies the name of the class in which to create the method. If the
class does not exist, it will be created.You can also specify a class
name by qualifying the method name. The class name specified in the
FOR clause overrides a class name specified by qualifying the method
name.

FOR className

Specifies that subclasses cannot override the method. By default,
methods are not final. The FINAL keyword is inherited by subclasses.

FINAL

Specifies that the query is an SQL stored procedure. Stored procedures
are inherited by subclasses. (This keyword can be abbreviated as
PROC.)

PROCEDURE

106 InterSystems SQL Reference

SQL Commands

DescriptionCharacteristics Keyword

Specifies the data fields in the order that they are returned by the query.
If you specify a RESULTS clause, you must list all fields returned by
the query as a comma-separated list enclosed in parentheses. Speci-
fying fewer or more fields than are returned by the query results in a
SQLCODE -76 cardinality mismatch error.

For each field you specify a column name (which will be used as the
column header) and a data type.

If LANGUAGE SQL, you can omit the RESULTS clause. If you omit
the RESULTS clause, the ROWSPEC is automatically generated during
class compilation.

RESULTS (result_set)

Specifies the mode used to compile the query.The possible values are
LOGICAL, ODBC, RUNTIME, and DISPLAY. The default is RUNTIME.

SELECTMODE mode

If you specify a method keyword (such as PRIVATE or RETURNS) that is not valid for a query, the system generates an
SQLCODE -47 error. Specifying duplicate characteristics results in an SQLCODE -44 error.

The SELECTMODE clause specifies the mode in which data is returned. If the mode value is LOGICAL, then logical
(internal storage) values are returned. For example, dates are returned in $HOROLOG format. If the mode value is ODBC,
logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is DISPLAY, logical-to-
display conversion is applied, and display format values are returned. If the mode value is RUNTIME, the mode can be set
(to LOGICAL, ODBC, or DISPLAY) at execution time by setting the %SQL.Statement class %SelectMode property, as
described in Using Dynamic SQL. The RUNTIME mode default is LOGICAL. For further details on SelectMode options,
refer to Data Display Options. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #SQLCompile SELECT=mode. For further details, see #sqlcompile select.

The RESULTS clause specifies the results of a query. The SQL data type parameters in the RESULTS clause are translated
into corresponding InterSystems IRIS data type parameters in the query’s ROWSPEC. For example, the RESULTS clause
RESULTS (Code VARCHAR(15)) generates a ROWSPEC specification of ROWSPEC =
“Code:%Library.String(MAXLEN=15)”.

LANGUAGE

An optional keyword clause specifying the language you are using for code_body. Permitted clauses are LANGUAGE
OBJECTSCRIPT or LANGUAGE SQL. If the LANGUAGE clause is omitted, SQL is the default.

If the LANGUAGE is SQL a class query of type %Library.SQLQuery is generated. If the LANGUAGE is OBJECTSCRIPT,
a class query of type %Library.Query is generated.

code_body

The program code for the query to be created. You specify this code in either SQL or ObjectScript. The language used
must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL.

If the code you specify is SQL, it must consist of a single SELECT statement. The program code for a query in SQL is
prefaced with a BEGIN keyword, followed by the program code (a SELECT statement). At the end of the program code,
specify a semicolon (;) then an END keyword.

If the code you specify is OBJECTSCRIPT, it must contain calls to the Execute() and Fetch() class methods of the
%Library.Query class provided by InterSystems IRIS, and may contain Close(), FetchRows(), and GetInfo() method calls.
ObjectScript code is enclosed in curly braces. If Execute() or Fetch() are missing, an SQLCODE -46 error is generated
upon compilation.

If the ObjectScript code block fetches data into a local variable (for example, Row), you must conclude the code block with
the line SET Row="" to indicate an end-of-data condition.

InterSystems SQL Reference 107

CREATE QUERY (SQL)

If the query is exposed as a stored procedure (by specifying the PROCEDURE keyword in characteristics), it uses a procedure
context handler to pass the procedure context back and forth between the procedure and its caller.

When a stored procedure is called, an object of the class %Library.SQLProcContext is instantiated in the %sqlcontext variable.
This is used to pass the procedure context back and forth between the procedure and its caller (for example, the ODBC
server).

%sqlcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
 SET %sqlcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sqlcontext

object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SYSTEM.Error object and setting it as %sqlcontext.Error.

InterSystems IRIS uses the code you supply to generate the actual code of the query.

Examples
The following example creates a query named DocTestPersonState. It declares no parameters, sets the SELECTMODE
characteristic, and takes the default (SQL) for LANGUAGE:

SQL

CREATE QUERY DocTestPersonState() SELECTMODE RUNTIME
BEGIN
SELECT Name,Home_State FROM Sample.Person ;
END

You can go to the Management Portal, select the Classes option, then select the SAMPLES namespace. There you will
find the query created by the above example: User.queryDocTestPersonState.cls. From this display you can delete this
query before rerunning the above program example. You can, of course, use DROP QUERY to delete created queries.

The following Embedded SQL example creates a method-based query named DocTestSQLCODEList which fetches a list
of SQLCODEs and their descriptions. It sets a RESULTS result set characteristic, sets LANGUAGE as ObjectScript, and
calls the Execute(), Fetch(), and Close() methods:

ObjectScript

 &sql(CREATE QUERY DocTestSQLCODEList()
 RESULTS (SQLCODE SMALLINT,Description VARCHAR(100))
 PROCEDURE
 LANGUAGE OBJECTSCRIPT
 Execute(INOUT QHandle BINARY(255))
 {
 SET QHandle=1,%i(QHandle)=""
 QUIT ##lit($$$OK)
 }
 Fetch(INOUT QHandle BINARY(255), INOUT Row %List, INOUT AtEnd INT)
 {
 SET AtEnd=0,Row=""
 SET %i(QHandle)=$o(^%qCacheSQL("SQLCODE",%i(QHandle)))
 IF %i(QHandle)="" {SET AtEnd=1 QUIT ##lit($$$OK) }
 SET Row=$lb(%i(QHandle),^%qCacheSQL("SQLCODE",%i(QHandle),1,1))
 QUIT ##lit($$$OK)
 }
 Close(INOUT QHandle BINARY(255))
 {
 KILL %i(QHandle)
 QUIT ##lit($$$OK)
 }
)
 IF SQLCODE=0 { WRITE !,"Created a query" }
 ELSEIF SQLCODE=-361 { WRITE !,"Query exists: ",%msg }
 ELSE { WRITE !,"CREATE QUERY error: ",SQLCODE }

108 InterSystems SQL Reference

SQL Commands

You can go to the Management Portal, select the Classes option, then select the SAMPLES namespace. There you will
find the query created by the above example: User.queryDocTestSQLCODEList.cls. From this display you can delete this
query before rerunning the above program example. You can, of course, use DROP QUERY to delete created queries.

The following Dynamic SQL example creates a query named DocTest, then executes this query using the
%PrepareClassQuery() method of the %SQL.Statement class:

ObjectScript

 /* Creating the Query */
 set myquery=4
 set myquery(1)="CREATE QUERY DocTest() SELECTMODE RUNTIME "
 set myquery(2)="BEGIN "
 set myquery(3)="SELECT TOP 5 Name,Home_State FROM Sample.Person ; "
 set myquery(4)="END"
 set tStatement = ##class(%SQL.Statement).%New()

 set qStatus = tStatement.%Prepare(.myquery)
 if $$$ISERR(qStatus) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(qStatus) quit}

 set rset = tStatement.%Execute()
 if (rset.%SQLCODE '= 0) {write "%Unable to call query", !, "SQLCODE ", rset.%SQLCODE, ": ",
rset.%Message quit}

 /* Calling the Query */
 write !,"Calling a class query",!
 set cqStatus = tStatement.%PrepareClassQuery("User.queryDocTest","DocTest")
 if $$$ISERR(cqStatus) {write "%PrepareClassQuery failed:" do $SYSTEM.Status.DisplayError(cqStatus)
quit}

 set rset = tStatement.%Execute()
 if (rset.%SQLCODE '= 0) {write "Unable to call class query", !, "SQLCODE ", rset.%SQLCODE, ": ",
rset.%Message quit}

 write "Query data",!,!
 while rset.%Next()
 {
 do rset.%Print()
 }
 if (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}
 write !,"End of data"

 /* Deleting the Query */
 &sql(DROP QUERY DocTest)
 if SQLCODE = 0 {write !,"Deleted the query"}

For further details, refer to Dynamic SQL.

Security and Privileges
The CREATE QUERY command is a privileged operation that requires the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a CREATE QUERY command without these
privileges will result in an SQLCODE -99 error and the command will fail.

Users without proper permissions can still execute this command under one of two conditions:

• The command is executed via Embedded SQL, which does not perform privilege checks.

• The user explicitly specifies no privilege checking by, for example, calling either %Prepare() with the checkPriv
argument set to 0 or %ExecDirectNoPriv() on a %SQL.Statement.

See Also
• SELECT

• CALL

• DROP QUERY

• CREATE PROCEDURE

InterSystems SQL Reference 109

CREATE QUERY (SQL)

• Querying the Database

• Defining and Using Stored Procedures

110 InterSystems SQL Reference

SQL Commands

CREATE ROLE (SQL)
Creates a role.

Synopsis

CREATE ROLE role-name

Description
The CREATE ROLE command creates a role. A role is a named set of privileges that may be assigned to multiple users.
A role may be assigned to multiple users, and a user may be assigned multiple roles. A role is available system-wide, it is
not limited to a specific namespace.

A role-name can be any valid identifier of up to 64 characters. A role-name must follow identifier naming conventions. A
role name can contain Unicode characters. Role names are not case-sensitive. A role-name can be a delimited identifier
enclosed in quotation marks, if the Support Delimited Identifiers configuration option is checked (the default). If a delimited
identifier, role-name can be an SQL reserved word. It can contain a period (.), caret (^), and the two-character arrow
sequence (->). It cannot contain a comma (,) or a colon (:) character. It may begin with any valid character, except the
asterisk (*).

When initially created, a role is just a name; it has no privileges. To add privileges to a role, use the GRANT command.
You can also use the GRANT command to assign one or more roles to a role. This permits you to create a hierarchy of
roles.

If you invoke CREATE ROLE to create a role that already exists, SQL issues an SQLCODE -118 error. You can determine
if a role already exists by invoking the $SYSTEM.SQL.Security.RoleExists() method:

ObjectScript

 WRITE $SYSTEM.SQL.Security.RoleExists("%All"),!
 WRITE $SYSTEM.SQL.Security.RoleExists("Madmen")

This method returns 1 if the specified role exists, and 0 if the role does not exist. Role names are not case-sensitive.

To delete a role, use the DROP ROLE command.

Privileges

The CREATE ROLE command is a privileged operation. Before using CREATE ROLE in embedded SQL, you must
be logged in as a user with one of the following:

• The %Admin_Secure administrative resource with USE permission.

• The %Admin_RoleEdit administrative resource with USE permission.

• Full security privileges on the system.

If you are not, the CREATE ROLE command results in an SQLCODE -99 error (Privilege Violation). Use the
$SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login(username,password)
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login() method. For further
information, see %SYSTEM.Security.

InterSystems SQL Reference 111

CREATE ROLE (SQL)

Arguments

role-name

The name of the role to be created, which is an identifier. Role names are not case-sensitive.

Examples
The following examples attempt to create a role named BkUser. The user “FRED” in the first example does not have create
role privileges. The user “_SYSTEM” in the second example does have create role privileges.

ObjectScript

 DO $SYSTEM.Security.Login("FRED","FredsPassword")
 &sql(CREATE ROLE BkUser)
 IF SQLCODE=-99 {
 WRITE !,"You don't have CREATE ROLE privileges" }
 ELSEIF SQLCODE=-118 {
 WRITE !,"The role already exists" }
 ELSE {
 WRITE !,"Created a role. Error code is: ",SQLCODE }

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
Main
 &sql(CREATE ROLE BkUser)
 IF SQLCODE=-99 {
 WRITE !,"You don't have CREATE ROLE privileges" }
 ELSEIF SQLCODE=-118 {
 WRITE !,"The role already exists" }
 ELSE {
 WRITE !,"Created a role. Error code is: ",SQLCODE }
Cleanup
 SET toggle=$RANDOM(2)
 IF toggle=0 {
 &sql(DROP ROLE BkUser)
 WRITE !,"DROP USER error code: ",SQLCODE
 }
 ELSE {
 WRITE !,"No drop this time"
 QUIT
 }

(The $RANDOM toggle is provided so that you can execute this example program repeatedly.)

See Also
• SQL statements: DROP ROLE, CREATE USER, DROP USER, GRANT, REVOKE, %CHECKPRIV

• SQL Users, Roles, and Privileges

• SQLCODE error messages

• ObjectScript: $ROLES and $USERNAME special variables

112 InterSystems SQL Reference

SQL Commands

CREATE SCHEMA (SQL)
Creates a schema.

Synopsis

CREATE SCHEMA [IF NOT EXISTS] name

Arguments

DescriptionArgument

The name of the schema being created. The name is an identifier.name

Optional — Suppresses the error that arises if a schema with name already exists.
The schema is not re-created.

IF NOT EXISTS

Description
Creates a schema definition, along with a corresponding package definition. The owner of the schema will be defined as
the user who issues this command. A schema created in this manner will not appear in INFORMA-
TION_SCHEMA.SCHEMATA until a table has been created within the schema.

If IF NOT EXISTS was specified and the schema already exists, this command performs no action. If IF NOT EXISTS
was not specified but a schema with the same name already exists, SQLCODE -476 is returned.

See Also
• DROP SCHEMA

• SQLCODE error messages

InterSystems SQL Reference 113

CREATE SCHEMA (SQL)

CREATE TABLE (SQL)
Creates a table definition.

Synopsis
Basic Table Creation

CREATE TABLE [IF NOT EXISTS] table (column type, column2 type2, ...)
CREATE TABLE [IF NOT EXISTS] table AS SELECT query ...

Column Constraints

CREATE TABLE table (column type NOT NULL, ...)

CREATE TABLE table (column type UNIQUE, ...)
CREATE TABLE table (UNIQUE (column, column2, ...), ...)
CREATE TABLE table (..., CONSTRAINT uniqueName UNIQUE (column, column2, ...))

CREATE TABLE table (column type PRIMARY KEY, ...)
CREATE TABLE table (..., PRIMARY KEY (column, column2, ...))
CREATE TABLE table (..., CONSTRAINT pKeyName PRIMARY KEY (column, column2, ...))
CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (column) REFERENCES refTable (refColumn))
CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (column, column2, ...) REFERENCES refTable
(refColumn, refColumn2, ...))
CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES refTable))
CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES ... ON UPDATE refAction))
CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES ... ON DELETE refAction))
CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES ... NOCHECK))

Special Columns and Column Properties

CREATE TABLE table (column type DEFAULT defaultSpec, ...)
CREATE TABLE table (column type COMPUTECODE [OBJECTSCRIPT | PYTHON] {code}, ...)
CREATE TABLE table (column type COMPUTECODE ... {code} COMPUTEONCHANGE (column, column2, ...), ...)
CREATE TABLE table (column type COMPUTECODE ... {code} CALCULATED, ...)
CREATE TABLE table (column type COMPUTECODE ... {code} TRANSIENT, ...)
CREATE TABLE table (column type ON UPDATE updateSpec, ...)
CREATE TABLE table (column type IDENTITY, ...)

Table Options

CREATE TABLE table ... SHARD
CREATE TABLE table ... SHARD KEY (shardKeyColumn, shardKeyColumn2, ...)
CREATE TABLE table ... SHARD KEY (coshardKeyColumn) COSHARD WITH (coshardTable)
CREATE GLOBAL TEMPORARY TABLE table ...
CREATE TABLE table ... WITH %CLASSPARAMETER pName = pValue, %CLASSPARAMETER pName2 = pValue2, ...

Description
The CREATE TABLE command creates a table definition of the structure specified. CREATE TABLE creates both an
SQL table and the corresponding InterSystems IRIS® class. For more details, see Class Definitions of Created Tables.

Note: These syntaxes do not include keywords that are parsed for compatibility only but perform no operation. For more
details on these keywords, see Options Supported for Compatibility Only.

Basic Table Creation

You can create a table by specifying column definitions and their data types. Alternatively, you can use a CREATE TABLE
AS SELECT query to copy column definitions and data from an existing table.

• CREATE TABLE [IF NOT EXISTS] table (column type, column2 type2, ...) creates a table containing one or more
columns, each of the specified data type.

114 InterSystems SQL Reference

SQL Commands

This statement creates a table with two columns. The first column accepts string values of up to 30 characters. The
second column accepts valid dates.

SQL

CREATE TABLE Sample.Person (
 Name VARCHAR(30),
 DateOfBirth TIMESTAMP)

Example: Create and Populate Table

• CREATE TABLE [IF NOT EXISTS] table AS SELECT query copies column definitions and column data from
an existing table (or tables) into a new table based on the specified SELECT query. The SELECT query can specify
any combination of tables or views. You may also specify a STORAGETYPE, %CLASSPARAMETER, or sharded
table by supplying the relevant clauses.

This statement creates a new table, Sample.YoungPeople, based on a subset of data from the Sample.People
table with a columnar storage type.

CREATE TABLE Sample.YoungPeople
AS SELECT Name,Age
FROM Sample.People
WHERE Age < 21
WITH STORAGETYPE = COLUMNAR

When creating a table, the user has the option to include the IF NOT EXISTS condition. Doing so suppresses the error if
table already exists. For further details, see the following section on methods to check for existing tables.

Column Constraints

Column constraints govern what values are permitted for a column, what the default value is for a column, and whether
the column values must be unique. You can also define primary and foreign key constraints on columns. You can specify
multiple column constraints per column, in any order. Separate column constraints by a space.

NOT NULL Constraint

• CREATE TABLE table (column type NOT NULL, ...) requires all records of the specified column to have a value
defined, that is, not be NULL values.

This statement creates a table where neither column can be null.

SQL

CREATE TABLE Sample.Person (
 Name VARCHAR(30) NOT NULL,
 DateOfBirth TIMESTAMP NOT NULL)

The empty string ('') is not considered a null value. You can input an empty string into a column that accepts character
strings, even if that column is defined with a NOT NULL restriction.

The NULL data constraint keyword (without NOT) explicitly specifies that this column can accept a null value. This
is the default definition for a column.

Default Constraint

• CREATE TABLE table (column type DEFAULT defaultSpec, ...) specifies the default data value that InterSystems
IRIS provides automatically for this column during an INSERT operation if the INSERT does not supply a data value.
If the INSERT operation inserts a NULL value into a column that specifies both a DEFAULT value and a NOT NULL
constraint, the column uses the DEFAULT value. If the column does not define a NOT NULL constraint, then it uses
the NULL value instead of the DEFAULT value.

This statement sets default values for the MembershipStatus and MembershipTerm columns.

InterSystems SQL Reference 115

CREATE TABLE (SQL)

SQL

CREATE TABLE Sample.Member (
 MemberId INT NOT NULL,
 MembershipStatus CHAR(13) NOT NULL DEFAULT 'M',
 MembershipTerm INT NOT NULL DEFAULT 2)

Unique Constraints

Unique constraints require that a column can contain only unique values. To see which columns have the unique constraint
set, see Catalog Details for a Table.

• CREATE TABLE table (column type UNIQUE, ...) constrains the specified column to accept only unique values.
No two records can contain the same value for this column.

This statement sets the unique constraint on the UserName column:

SQL

CREATE TABLE Sample.People (
 UserName VARCHAR(30) UNIQUE NOT NULL,
 FirstName VARCHAR(30),
 LastName VARCHAR(30))

The SQL empty string ('') is considered to be a data value, so with the UNIQUE data constraint applied, no two records
can contain an empty string value for this column. NULL is not considered to be a data value, so the UNIQUE data
constraint does not apply to multiple NULLs. To restrict use of NULL for a column, use the NOT NULL keyword
constraint.

Note: In sharded tables, the unique constraint adds a significant performance cost to inserts and updates. If insert
or update performance is important, avoid this constraint or include a shard key for the table. Note that sharded
tables have additional restrictions on the UNIQUE constraint.

For more details on query performance, see Evaluate Unique Constraints and Querying the Sharded Cluster.

• CREATE TABLE table (UNIQUE (column, column2, ...), ...) requires that all values for a specified group of columns,
when concatenated together, result in a unique value. The individual columns do not need to be unique. You can
specify this constraint at any location within the comma-separated list of columns being defined.

This statement requires that the combination of FirstName and LastName records in the created table are unique,
even though FirstName and LastName records can individually contain duplicates.

SQL

CREATE TABLE Sample.People (
 FirstName VARCHAR(30),
 LastName VARCHAR(30),
 UNIQUE (FirstName,LastName))

• CREATE TABLE table (..., CONSTRAINT uniqueName UNIQUE (column,column2, ...)) specifies a name for
the UNIQUE constraint. If you want to drop a UNIQUE constraint from a table definition, then the ALTER TABLE
command requires this constraint name.

This statement is functionally equivalent to the previous statement and names the constraint FirstLast.

SQL

CREATE TABLE Sample.People (
 FirstName VARCHAR(30),
 LastName VARCHAR(30),
 CONSTRAINT FirstLast UNIQUE (FirstName,LastName))

116 InterSystems SQL Reference

SQL Commands

Primary Key Constraints

The PRIMARY KEY constraint designates a column, or combination of columns, as the primary key, constraining that column
or columns to be unique and not null. Defining a primary key is optional. When you define a table, InterSystems IRIS
automatically creates a generated column, the RowID Column (default name "ID"), which functions as a unique row
identifier. For more details on the primary key, see Defining the Primary Key.

• CREATE TABLE table (column type PRIMARY KEY, ...) designates a single column in the table as the primary
key, constraining it be unique and not null.

This statement creates a table that designates the EmpNum column as the primary key:

SQL

CREATE TABLE Sample.Employee (
 EmpNum INT PRIMARY KEY,
 NameLast CHAR (30) NOT NULL,
 NameFirst CHAR (30) NOT NULL,
 StartDate TIMESTAMP,
 Salary MONEY)

In the Catalog Details section of the Management Portal, the generated primary key name has the form tablePKeyN,
where table is the name of the table and N is the constraint count integer.

• CREATE TABLE table (..., PRIMARY KEY (column, column2, ...)) designates one or more columns as the primary
key. You can specify the PRIMARY KEY clause at any location within the comma-separated list of columns. Speci-
fying a single column in this clause is functionally equivalent to specifying this clause on a specific column by using
the previous syntax. If you specify a comma-separated list of columns in this clause, then each column is defined as
not null but may contain duplicate values, so long as the combination of the column values is a unique value.

This statement designates the combination of the FirstName and LastName columns as the primary key:

SQL

CREATE TABLE Sample.People (
 FirstName VARCHAR(30),
 LastName VARCHAR(30),
 PRIMARY KEY (FirstName,LastName))

• CREATE TABLE table (..., CONSTRAINT pKeyName PRIMARY KEY (column, column2, ...)) enables you to
explicitly name your primary key. You can view the name of the primary key from the Catalog Details section of the
Management Portal.

This statement is functionally equivalent to the first PRIMARY KEY syntax and additionally names the primary key
EmployeePK.

SQL

CREATE TABLE Sample.Employee (
 EmpNum INT,
 NameLast CHAR (30) NOT NULL,
 NameFirst CHAR (30) NOT NULL,
 StartDate TIMESTAMP,
 Salary MONEY,
 CONSTRAINT EmployeePK PRIMARY KEY (EmpNum))

Foreign Key Constraints

The FOREIGN KEY constraint designates a column, or combination of columns, as a reference to another table. The value
stored in the foreign key column uniquely identifies a record in the other table. You can designate more than one foreign
key per table. Each foreign key reference must exist in the referenced table and must be defined as unique. The referenced
column cannot contain duplicate values or NULL. For more details on foreign keys, see Defining a Foreign Key.

InterSystems SQL Reference 117

CREATE TABLE (SQL)

• CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (column) REFERENCES refTable
(refColumn)) designates a column from the table being created as a foreign key that references the refColumn column
of the refTable reference table. The foreign key column and referenced column can have different names but they must
have the same data type and column constraints. fKeyName specifies the name of the foreign key and is required.

This statement creates an Orders table that defines a foreign key named CustomersFK. With this foreign key, the
values of the CustomerNum column are IDs specified in the CustID column of the Customers table.

SQL

CREATE TABLE Orders (
 OrderID INT,
 OrderItem VARCHAR,
 OrderQuantity INT,
 CustomerNum INT,
 CONSTRAINT OrdersPK PRIMARY KEY (OrderID),
 CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers (CustID))

• CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (column, column2, ...) REFERENCES
refTable (refColumn, refColumn2, ...)) designates a combination of columns as the foreign key of the referenced
columns. The foreign key columns and referenced columns must correspond in number of columns and in order listed.

This statement designates the CustomerNum and SalesPersonNum column combination of the Orders as the
foreign key. These column values reference the corresponding CustID and SalespID columns of the Customers
table.

SQL

CREATE TABLE Orders (
 OrderID INT,
 OrderItem VARCHAR,
 OrderQuantity INT,
 CustomerNum INT,
 SalesPersonNum INT,
 CONSTRAINT OrdersPK PRIMARY KEY (OrderID),
 CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum,SalesPersonNum) REFERENCES Customers
(CustID,SalespID))

• CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES refTable)) omits
the reference column name. The foreign key of the column, or combination of columns, defaults to the primary key of
the reference table (if defined), otherwise the IDENTITY column of the reference table (if defined), and otherwise the
RowID column of the reference table.

This statement sets a foreign key in which the CustomerNum column references the primary key of the Customers
table, assuming that this table has the primary key defined.

SQL

CREATE TABLE Orders (
 OrderID INT,
 OrderItem VARCHAR,
 OrderQuantity INT,
 CustomerNum INT,
 SalesPersonNum INT,
 CONSTRAINT OrdersPK PRIMARY KEY (OrderID),
 CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers)

• CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES ... ON UPDATE
refAction)) defines the UPDATE rule for the reference table. When you attempt to change the primary key value of a
row from the reference table, the ON UPDATE clause defines what action to take for the rows in that table. Valid
reference action values are NO ACTION (default), SET DEFAULT, SET NULL, and CASCADE. You can specify
this clause in conjunction with the ON DELETE clause.

This statement creates a table that, when the reference column CustID is updated, the foreign key column
CustomerNum receives the same update.

118 InterSystems SQL Reference

SQL Commands

SQL

CREATE TABLE Orders (
 OrderID INT,
 OrderItem VARCHAR,
 OrderQuantity INT,
 CustomerNum INT,
 CONSTRAINT OrdersPK PRIMARY KEY (OrderID),
 CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers (CustID)
 ON UPDATE CASCADE)

• CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES ... ON DELETE
refAction)) defines the DELETE rule for the reference table. When you attempt to delete a row from the reference
table, the ON DELETE clause defines what action to take for rows in that table. Valid reference action values are NO
ACTION (default), SET DEFAULT, SET NULL, and CASCADE. You can specify this clause in conjunction with
the ON UPDATE clause.

This statement creates a table that cascades updates of reference column values to the foreign key column, but if a
reference column value is deleted, the corresponding foreign key values are set to NULL.

SQL

CREATE TABLE Orders (
 OrderID INT,
 OrderItem VARCHAR,
 OrderQuantity INT,
 CustomerNum INT,
 CONSTRAINT OrdersPK PRIMARY KEY (OrderID),
 CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers (CustID)
 ON UPDATE CASCADE
 ON DELETE SET NULL)

• CREATE TABLE table (..., CONSTRAINT fKeyName FOREIGN KEY (...) REFERENCES ... NOCHECK))
disables checking for referential integrity of the foreign key, meaning that an INSERT or UPDATE operation might
specify a value for a foreign key column that does not correspond to a row in the reference table.

The NOCHECK keyword also prevents the execution of the ON DELETE or ON UPDATE referential actions for the
foreign key, if these actions are specified. The SQL query processor can use foreign keys to optimize joins among
tables. However, if a foreign key is defined as NOCHECK, the SQL query processor does not consider it as defined.
A NOCHECK foreign key is still reported to database driver catalog queries as a foreign key. For more information,
see Using Foreign Keys.

Special Columns and Column Properties

Computed Columns

These syntaxes show how to define columns that are computed on INSERT or UPDATE rather than user-supplied. For
more details on these columns, see Computing a column value on INSERT or UPDATE.

• CREATE TABLE table (column type COMPUTECODE [OBJECTSCRIPT | PYTHON] {code}, ...) defines a
column in which values are computed and stored upon INSERT using the specified ObjectScript or Python code. If
you omit the OBJECTSCRIPT or PYTHON keyword, the code defaults to ObjectScript. The values in computed
columns remain unchanged by subsequent table updates, such as an UPDATE command or trigger code operations.

This statement creates a table that, when a row is inserted, computes the Age column based on the date specified in
the DOB column.

InterSystems SQL Reference 119

CREATE TABLE (SQL)

SQL/ObjectScript

CREATE TABLE MyStudents (
 Name VARCHAR(16) NOT NULL,
 DOB DATE,
 Age VARCHAR(12) COMPUTECODE {
 set bdate = $zdate({DOB}, 8)
 set today = $zdate($horolog,8)
 set {Age} = $select(bdate = "":"", 1:(today - bdate) \ 10000)},
 Grade INT)

SQL/Python

CREATE TABLE MyStudents (
 Name VARCHAR(16) NOT NULL,
 DOB DATE,
 Age VARCHAR(12) COMPUTECODE PYTHON {
 import datetime as d
 iris_date_offset = d.date(1840,12,31).toordinal()
 bdate = d.date.fromordinal(cols.getfield('DOB') + iris_date_offset).strftime("%Y%m%d")
 today = d.date.today().strftime("%Y%m%d")
 return str((int(today) - int(bdate)) // 10000) if bdate else ""},
 Grade INT)

• CREATE TABLE table (column type COMPUTECODE ... {code} COMPUTEONCHANGE (column, column2,
...), ...) recomputes the value of the computed column when any one of the table columns specified in the COMPUTEON-
CHANGE clause changes in a subsequent table update. The recomputed value replaces the previously stored value. If
a column specified in COMPUTEONCHANGE is not part of the table specification, then InterSystems SQL generates
an SQLCODE -31 error.

This statement recomputes the Age column when the DOB column is updated. The Birthday column includes the
timestamp for when the column last changed.

SQL

CREATE TABLE MyStudents (
 Name VARCHAR(20) NOT NULL,
 DOB TIMESTAMP,
 Birthday VARCHAR(40) COMPUTECODE {
 set {Birthday} = $zdate({DOB})
 " changed: "$zdatetime($ztimestamp) }
 COMPUTEONCHANGE (DOB))

COMPUTEONCHANGE defines the SqlComputeOnChange keyword with the %%UPDATE value for the class
property corresponding to the column definition. This property value is initially computed as part of the INSERT
operation and recomputed during an UPDATE operation. For a corresponding Persistent Class definition, see Defining
a Table by Creating a Persistent Class.

• CREATE TABLE table (column type COMPUTECODE ... {code} CALCULATED, ...) specifies that the column
value is not stored in the database but is instead generated each time the column is queried. Calculated columns reduce
the size of the data storage but can slow query performance.

This column defines the Calculated boolean keyword for the class property corresponding to the column definition.
CALCULATED properties cannot be indexed unless the property is also SQLComputed.

This statement calculates the value of the DaysToBirthday column, which changes depending on the current date.
The {*} code is a shortcut syntax for specifying the column being computed, in this case DaysToBirthday.

SQL

CREATE TABLE MyStudents (
 Name VARCHAR(20) NOT NULL,
 DOB TIMESTAMP,
 DaysToBirthday INT COMPUTECODE {
 set {*} = $zdate({DOB},14) - $zdate($horolog,14) } CALCULATED)

• CREATE TABLE table (column type COMPUTECODE ... {code} TRANSIENT, ...) is similar to CALCULATED
and also specifies that the column is not saved to the database.

120 InterSystems SQL Reference

SQL Commands

This column defines the Transient boolean keyword for the class property corresponding to the column definition.
TRANSIENT properties cannot be indexed.

The CALCULATED and TRANSIENT keywords are mutually exclusive and provide similar behavior. TRANSIENT
means that InterSystems IRIS does not store the property. CALCULATED means that InterSystems IRIS does not
allocate any instance memory for the property. Thus when CALCULATED is specified, TRANSIENT is implicitly
set.

• CREATE TABLE table (column type ON UPDATE updateSpec, ...) defines a column that is recomputed whenever
a row is updated in the table, based on the value specified by updateSpec. You cannot specify an ON UPDATE clause
if the column also has a COMPUTECODE data constraint.

This statement creates a table containing a LastUpdated column whose values are updated to the current time any
time the corresponding rows are updated. The timestamp values stored in the table have a precision of two digits.

CREATE TABLE MyStudents (
 Name VARCHAR(20) NOT NULL,
 DOB TIMESTAMP,
 LastUpdated TIMESTAMP DEFAULT CURRENT_TIMESTAMP(2) ON UPDATE CURRENT_TIMESTAMP(2))

• CREATE TABLE table (column type IDENTITY, ...) replaces the system-generated integer RowID column with
the specified named column.

Like the RowID column, this column behaves as a single-column IDKEY index whose values are unique system-
generated integers, where each value serves as a unique record ID for the corresponding table row. Defining an
IDENTITY column prevents the defining of the Primary Key as the IDKEY. You can define only one IDENTITY
column per table. type must be an integer data type. If you omit type, then the data type is defined as BIGINT. The
IDENTITY values cannot be user-specified and cannot be modified in an UPDATE statement.

This statement sets the IdNum column as the IDKEY. This column is returned as part of selection queries such as
SELECT *.

SQL

CREATE TABLE Employee (
 EmpNum INT NOT NULL,
 IdNum IDENTITY NOT NULL,
 Name CHAR(30) NOT NULL,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EmpNum))

For more details about working with the IDENTITY column, see Creating Named RowId Column Using IDENTITY
Keyword.

Counter Columns

InterSystems SQL provides three types of system-generated integer counter columns. These columns are not mutually
exclusive and can be specified together within the same table. The data types of all three columns map to the %Library.BigInt

data type class.

InterSystems SQL Reference 121

CREATE TABLE (SQL)

Sharded
Table
Support

Counter
Reset
by

Columns
of this
type

Duplicate
Values

User-supplied
values

When
User-supplied
value
is

Automatically
Incremented
by

Scope
of
Counter

Counter Type

YesTRUNCATE
TABLE

One
per
table

AllowedAllowed,
does
not
affect
system
counter

NULL
or 0

INSERTPer-tableAUTO_INCREMENT

NoTRUNCATE
TABLE

Multiple
per
table

AllowedAllowed,
may
increment
system
counter

NULL
or 0

INSERTPer-serial
counter
column

SERIAL

NoNot
reset

One
per
table

Not
allowed

Not
allowed

Not
applicable

INSERT
and
UPDATE

Namespace-wideROWVERSION

For more details on these counter columns, see RowVersion, AutoIncrement and Serial Counter Columns.

• CREATE TABLE table (column type AUTO_INCREMENT, ...) creates a counter column that increments upon
each INSERT into the table. You can designate only one AUTO_INCREMENT counter column per table. You must
set the AUTO_INCREMENT keyword after an explicit integer data type. For example:

CREATE TABLE MyStudents (
 Name VARCHAR(16) NOT NULL,
 DOB TIMESTAMP,
 AutoInc BIGINT AUTO_INCREMENT)

Alternatively, you can define an AUTO_INCREMENT column using the %Library.AutoIncrement data type. Thus the
following are also valid column definition syntax: MyAutoInc %AutoIncrement, MyAutoInc %AutoIncrement
AUTO_INCREMENT.

• CREATE TABLE table (column SERIAL, ...) creates a counter column that increments upon each INSERT into the
table. You can designate multiple columns as SERIAL counter columns. Specify the SERIAL keyword in place of an
explicit data type. For example:

SQL

CREATE TABLE MyStudents (
 Name VARCHAR(16) NOT NULL,
 DOB TIMESTAMP,
 Counter SERIAL)

• CREATE TABLE table (column ROWVERSION, ...) creates a counter column that increments upon each INSERT
or UPDATE operation across all tables in the namespace. Specify the ROWVERSION keyword in place of an explicit
data type. For example:

SQL

CREATE TABLE MyStudents (
 Name VARCHAR(16) NOT NULL,
 DOB TIMESTAMP,
 RowVer ROWVERSION)

122 InterSystems SQL Reference

SQL Commands

%DESCRIPTION Keyword

• CREATE TABLE table (..., %DESCRIPTION description) specifies a description for the table being created.
Enclose the description text string in quotes. For example:

SQL

CREATE TABLE Employee (
 %Description 'Employees at XYZ Inc.',
 EmpNum INT PRIMARY KEY,
 NameLast VARCHAR(30) NOT NULL,
 NameFirst VARCHAR(30) NOT NULL,
 StartDate TIMESTAMP)

• CREATE TABLE table (column type %DESCRIPTION description, ...) specifies a description for a column. You
can specify one description per column. Enclose the description text string in quotes. For example:

SQL

CREATE TABLE Employee (
 EmpNum INT PRIMARY KEY,
 NameLast VARCHAR(30) NOT NULL,
 NameFirst VARCHAR(30) NOT NULL,
 StartDate TIMESTAMP %Description 'Format: MM/DD/YYYY')

%PUBLICROWID Keyword

• CREATE TABLE table (%PUBLICROWID, ...) makes the unique, system-generated integer RowID column public.
For example:

SQL

CREATE TABLE Employee (
 %PUBLICROWID,
 EmpNum INT PRIMARY KEY,
 NameLast VARCHAR(30) NOT NULL,
 NameFirst VARCHAR(30) NOT NULL,
 StartDate TIMESTAMP)

This column is named "ID" and is assigned to column 1. The class corresponding to the table is defined with “Not
SqlRowIdPrivate”. ALTER TABLE cannot be used to specify %PUBLICROWID.

If the RowID is public:

– RowID values are displayed by SELECT *.

– The RowID can be used as a foreign key reference.

– If there is no defined primary key, the RowID is treated as an Implicit PRIMARY KEY constraint with the
Constraint Name RowIDField_As_PKey.

– The table cannot be used to copy data into a duplicate table without specifying the column names to be copied.

For more details of the RowID column, see RowID Hidden?.

Collation Property

• CREATE TABLE table (column type COLLATE sqlCollation, ...) sets the collation type used to order and compare
values in the specified column. Valid collation values are %EXACT, %MINUS, %PLUS, %SPACE, %SQLSTRING,
%SQLUPPER, %TRUNCATE, and %MVR.

This statement sorts the UserName column as a case-sensitive string, treating NULL and numeric values in the column
as string characters.

InterSystems SQL Reference 123

CREATE TABLE (SQL)

SQL

CREATE TABLE Sample.People (
 UserName VARCHAR(30) COLLATE %SQLSTRING,
 FirstName VARCHAR(30),
 LastName VARCHAR(30))

Table Options

Sharded Tables

These syntaxes provide the option to define a sharded table, where table rows are automatically horizontally partitioned
across data nodes by using one of its columns as a shard key. A sharded table improves the performance of queries against
that table, especially for tables containing a large number of rows. To improve the performance of queries that join large
tables, you can coshard the tables. Cosharding partitions rows in different tables that have matching shard key values into
the same data nodes. For more details on sharding, see Horizontally Scaling for Data Volume with Sharding.

Note: Not all CREATE TABLE syntaxes support sharded tables. For more details, see Sharded Table Restrictions.

• CREATE TABLE table ... SHARD defines a sharded table and uses the RowID column as the shard key. This is
known as a system-assigned shard key (SASK). If the table has a defined IDENTITY column and no explicit shard
key, InterSystems SQL uses the IDENTITY column as the SASK instead. Using a SASK is the simplest and most
effective way to shard a table. Specify the SHARD keyword after the column definitions.

This statement creates a sharded table that uses the default RowID column as the shard key.

CREATE TABLE Vehicle (
 Make VARCHAR(30) NOT NULL,
 Model VARCHAR(20) NOT NULL,
 Year INT NOT NULL,
 Vin CHAR(17) NOT NULL)
SHARD

• CREATE TABLE table ... SHARD KEY (shardKeyColumn, shardKeyColumn2, ...) specifies a column, or comma-
separated list of columns, to use as the shard key. This is known as a user-defined shard key (UDSK).

This statement creates a table with a shard key composed of two columns.

CREATE TABLE Car (
 Owner VARCHAR(30) NOT NULL,
 Plate VARCHAR(10) NOT NULL,
 State CHAR(2) NOT NULL)
SHARD KEY (Plate, State)

You can also use this syntax to coshard two or more tables that you are defining. Joins on the UDSK columns of
cosharded tables perform much more efficiently than joins on non-UDSK columns, so defining UDSKs on the most
frequently used set of join columns is recommended.

These statements create two tables with defined shard keys on the columns Vin and VehicleNumber.

CREATE TABLE Vehicle (
 Make VARCHAR(30) NOT NULL,
 Model VARCHAR(20) NOT NULL,
 Year INT NOT NULL
 Vin CHAR(17) NOT NULL)
SHARD KEY (Vin)

CREATE TABLE Citation (
 CitationID VARCHAR(8) NOT NULL,
 Date TIMESTAMP NOT NULL,
 LicenseNumber VARCHAR(12) NOT NULL
 Plate VARCHAR(10) NOT NULL,
 VehicleNumber CHAR(17) NOT NULL)
SHARD KEY (VehicleNumber)

124 InterSystems SQL Reference

SQL Commands

These tables benefit from improved JOIN performance when joining on the UDSK column, such as this query that
returns traffic citations associated with a vehicle:

SQL

SELECT * FROM Citation, Vehicle WHERE Citation.VehicleNumber = Vehicle.Vin

For more details on choosing a shard key, see Choose a Shard Key.

• CREATE TABLE table ... SHARD KEY (coshardKeyColumn) COSHARD WITH (coshardTable) creates a table
and sets one of its integer-valued columns as a shard key, coshardKeyColumn. You can use this shard key column in
joins with another sharded table, coshardTable, which must have a system-assigned shard key (SASK) defined using
the SHARD syntax. You can optionally define coshardKeyColumn as a foreign reference to the SASK column of
coshardTable as well. The foreign key reference can be used to enforce referential integrity, while the shard key provides
faster performance for joins with the other table by matching on its SASK column.

This statement creates a table that defines the CustomerID column as the shard key. This key is used in cosharded
joins with the shard key of an existing sharded table, Customer.

CREATE TABLE Order (
 Date TIMESTAMP NOT NULL,
 Amount DECIMAL(10,2) NOT NULL,
 CustomerID CUSTOMER NOT NULL)
SHARD KEY (CustomerID) COSHARD WITH Customer

Temporary Tables

• CREATE GLOBAL TEMPORARY TABLE table ... creates the table as a global temporary table, where the table
definition is available to all processes but the table data (including Stream data) and indexes persist only for the duration
of the process that created the table. This data is stored in process-private globals and is deleted when the process ter-
minates.

This statement creates a temporary table:

SQL

CREATE GLOBAL TEMPORARY TABLE TempEmp (
 EmpNum INT NOT NULL,
 NameLast CHAR(30) NOT NULL,
 NameFirst CHAR(30) NOT NULL,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EmpNum))

Regardless of which process creates a temporary table, the owner of the temporary table is automatically set to _PUBLIC.
This means that all users can access a cached temporary table definition. For example, if a stored procedure creates a
temporary table, the table definition can be accessed by any user that is permitted to invoke the stored procedure. This
applies only to the temporary table definition. The temporary table data is specific to the invocation, and therefore can
only be accessed by the current user process.

The table definition of a global temporary table is the same as a base table. A global temporary table must have a
unique name. Attempting to give it the same name as an existing base table results in an SQLCODE -201 error. The
table persists until it is explicitly deleted (using DROP TABLE). You can alter the table definition using ALTER
TABLE.

You can only define global temporary tables through DDL statements.

Like standard InterSystems IRIS tables, the ClassType=persistent, and the class includes the Final keyword,
indicating that it cannot have subclasses.

InterSystems SQL Reference 125

CREATE TABLE (SQL)

Table Storage

• CREATE TABLE table ... WITH STORAGETYPE = [ROW | COLUMNAR] specifies the layout used to store
the underlying data in the table.

– Specify ROW to store data in rows. Row storage enables efficient transactions, such as when frequently updating
or inserting rows in online transaction processing (OLTP) workflows. If you omit the WITH STORAGETYPE
clause, the created table defaults to row storage.

– Specify COLUMNAR to store data in columns. Columnar storage enables efficient queries, such as when filtering
or aggregating data in specific columns in online analytical processing (OLAP) workflows. Columnar storage is
an experimental feature for 2022.2. In previous InterSystems IRIS versions, all table data is stored in rows.

Note: For performance reasons, unless the collation type is specified explicitly, columnar storage layouts default
to using EXACT collation. Row storage layouts use namespace-default SQLUPPER collation.

For more details on choosing a storage layout, see Choose an SQL Table Storage Layout.

This statement creates a table with a columnar storage layout.

CREATE TABLE Sample.TransactionHistory (
 AccountNumber INTEGER,
 TransactionDate DATE,
 Description VARCHAR(100),
 Amount NUMERIC(10,2),
 Type VARCHAR(10))
WITH STORAGETYPE = COLUMNAR

This statement creates a table with columnar storage by using the CREATE TABLE AS SELECT clause.

CREATE TABLE Sample.TransactionHistory AS
 SELECT AccountNumber, TransactionDate, Description, Amount, Type
 FROM Sample.BankTransaction
WITH STORAGETYPE = COLUMNAR

Tip: You can use CREATE TABLE AS SELECT to experiment with creating tables that have different storage
types and comparing their performance.

• CREATE TABLE table (column type ... WITH STORAGETYPE = [ROW | COLUMNAR], ...) specifies individual
columns as having row or columnar storage. All other columns default to row storage or to the storage type specified
in the WITH STORAGETYPE clause at the end of the table definition.

This statement creates a table with a columnar storage layout only for the Amount column. Because this statement
omits the WITH STORAGETYPE clause at the end of the table definition, the rest of the columns default to a row
storage layout.

CREATE TABLE Sample.BankTransaction (
 AccountNumber INTEGER,
 TransactionDate DATE,
 Description VARCHAR(100),
 Amount NUMERIC(10,2) WITH STORAGETYPE = COLUMNAR,
 Type VARCHAR(10))

Class Parameters

• CREATE TABLE table ... WITH %CLASSPARAMETER pName = pValue, %CLASSPARAMETER pName2
= pValue2, ... specifies one or more %CLASSPARAMETER name-value pairs that define core aspects of the table being
created. Each parameter name, pName, is set to the specified value, pValue.

126 InterSystems SQL Reference

SQL Commands

In this statement, the USEEXTENTSET class parameter disables the use of generated Global names, such as
^EPgS.D8T6.1. These globals are used as IDKEY indexes into the data. The DEFAULTGLOBAL class parameter
specifies ^GL.EMPLOYEE as an explicit Global name for indexes.

CREATE TABLE Employees (
 EmpNum INT NOT NULL,
 NameLast CHAR(30) NOT NULL,
 NameFirst CHAR(30) NOT NULL,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EmpNum)
)
WITH %CLASSPARAMETER USEEXTENTSET = 0,
 %CLASSPARAMETER DEFAULTGLOBAL = '^GL.EMPLOYEE'

You can use DEFAULTGLOBAL to specify an extended global reference, either the full reference (%CLASSPARAMETER
DEFAULTGLOBAL = '^|"USER"|GL.EMPLOYEE'), or just the namespace portion (%CLASSPARAMETER
DEFAULTGLOBAL = '^|"USER"|').

Arguments

table

In a CREATE TABLE command, specify the name of the table you want to create as a valid identifier. A table name can
be qualified or unqualified.

• An unqualified table name has the following syntax: tablename; it omits schema (and the period (.) character). An
unqualified table name takes the default schema name. The initial system-wide default schema name is SQLUser,
which corresponds to the default class package name User. Schema search path values are ignored.

The system-wide default schema name can be configured.

To determine the current system-wide default schema name, use the $SYSTEM.SQL.Schema.Default() method.

• A qualified table name has the following syntax: schema.tablename. It can specify either an existing schema name
or a new schema name. Specifying an existing schema name places the table within that schema. Specifying a new
schema name creates that schema (and associated class package) and places the table within that schema.

Table Name and Schema Name Conventions

Table names and schema names follow SQL identifier naming conventions, subject to additional constraints on the use of
non-alphanumeric characters, uniqueness, and maximum length. Names beginning with a % character are reserved for
system use. By default, schema names and table names are simple identifiers and are not case-sensitive.

InterSystems IRIS uses the table name to generate a corresponding class name. A class name contains only alphanumeric
characters (letters and numbers) and must be unique within the first 96 characters. To generate a class name, InterSystems
IRIS first strips out symbol (non-alphanumeric) characters from the table name, and then generates a unique class name,
imposing uniqueness and maximum length restrictions.

InterSystems IRIS uses the schema name to generate a corresponding class package name. To generate a package name,
first it either strips out or performs special processing of symbol (non-alphanumeric) characters in the schema name.
InterSystems IRIS then generates a unique package name, imposing uniqueness and maximum length restrictions. A schema
name is not case-sensitive but the corresponding class package name is. If you specify a schema name that differs only in
case from an existing class package name, and the package definition is empty (contains no class definitions), InterSystems
IRIS reconciles the two names by changing the case of the class package name.

You can use the same name for a schema and a table, but you cannot use the same name for a table and a view in the same
schema. For more details on how package and class names are generated from schema and table names, see Table Names
and Schema Names.

InterSystems SQL Reference 127

CREATE TABLE (SQL)

Table Name Character Restrictions

InterSystems IRIS supports 16-bit (wide) characters for table and column names. For most locales, accented letters can be
used for table names and the accent marks are included in the generated class name.

Note: The Japanese locale does not support accented letter characters in identifiers. Japanese identifiers can contain (in
addition to Japanese characters) the Latin letter characters A-Z and a-z (65–90 and 97–122), the underscore
character (95), and the Greek capital letter characters (913–929 and 931–937). The nls.Language test uses [
(the Contains operator) rather than = because there are different Japanese locales for different operating system
platforms.

Check for Existing Tables

To determine if a table already exists in the current namespace, use $SYSTEM.SQL.Schema.TableExists("schema.tname").

By default, when you try to create a table that has the same name as an existing table InterSystems IRIS rejects the create
table attempt and issues an SQLCODE -201 error. To determine the current system-wide configuration setting, call
$SYSTEM.SQL.CurrentSettings(), which displays an Allow DDL CREATE TABLE or CREATE VIEW for
existing table or view setting. The default is 0, which is the recommended setting. If this option is set to 1, Inter-
Systems IRIS deletes the class definition associated with the table and then recreates it. This is similar to performing a
DROP TABLE to delete the existing table and then performing CREATE TABLE. In this case, it is strongly recommended
that the $SYSTEM.SQL.CurrentSettings(), Does DDL DROP TABLE delete the table's data? value be set
to 1 (the default). Refer to DROP TABLE for further details.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box. For more information on configuring these settings, consult the SQL Configuration Parameters page.

The behavior of the predicate IF NOT EXISTS takes priority over the settings described above. These settings effectively
overwrite the table and return SQLCODE 0. When IF NOT EXISTS is specified, the command does nothing and returns
SQLCODE 1 along with a message.

column

In a CREATE TABLE command, specify the column name, or a comma-separated list of column names, used to define
the columns of the table you are creating. You can specify the column names in any order, with a space separating the
column name from its associated data type. For example: CREATE TABLE myTable (column1 INT, column2
VARCHAR(10)). By convention, each column definition is usually presented on a separate line and indentation is used.
This is recommended for readability but is not required. Column names are also used to define unique, primary key, and
foreign key constraints.

Enclose column name lists in parentheses.

Rather than defining a column, a column definition can reference an existing embedded serial object that defines multiple
columns (properties). The column name is followed by the package and class name of the serial object. For example:
Office Sample.Address. Do not specify a data type or data constraints, but you can specify a %DESCRIPTION. You
cannot create an embedded serial object using CREATE TABLE.

Column Name Conventions

Column names follow identifier conventions, with the same naming restrictions as table names. Avoid beginning column
names beginning with a % character, though column names beginning with %z or %Z are permitted. A column name should
not exceed 128 characters. By default, column names are simple identifiers. They are not case-sensitive. Attempting to
create a column name that differs only in letter case from another column in the same table generates an SQLCODE -306
error.

InterSystems IRIS uses the column name to generate a corresponding class property name. A property name contains only
alphanumeric characters (letters and numbers) and is a maximum of 96 characters in length. To generate this property name,
InterSystems IRIS first strips punctuation characters from the column name, and then generates a unique identifier of 96

128 InterSystems SQL Reference

SQL Commands

or fewer characters. InterSystems IRIS substitutes an integer, beginning with 0, for the final character of a column name
when this is needed to create a unique property name.

This example shows how InterSystems IRIS handles column names that differ only in punctuation. The corresponding
class properties for these columns are named PatNum, PatNu0, and PatNu1:

SQL

CREATE TABLE MyPatients (
 _PatNum VARCHAR(16),
 %Pat@Num INTEGER,
 Pat_Num VARCHAR(30),
 CONSTRAINT Patient_PK PRIMARY KEY (_PatNum))

The column name, as specified in CREATE TABLE, is shown in the class property as the SqlFieldName keyword value.

During a dynamic SELECT operation, InterSystems IRIS might generate property name aliases to facilitate common letter
case variants. For example, given the column name Home_Street, InterSystems IRIS might assign the property name
aliases home_street, HOME_STREET, and HomeStreet. InterSystems IRIS does not assign an alias if that name would
conflict with the name of another field name, or with an alias assigned to another field name.

type

The data type class of the column name specified by column. A specified data type limits a column’s allowed data values
to the values appropriate for that data type. InterSystems SQL supports most standard SQL data types.

You can specify either an InterSystems SQL data type (for example, VARCHAR(24) or CHARACTER VARYING(24))
or the class that the data type maps to (for example, %Library.String(MAXLEN=24) or %String(MAXLEN=24)).

Specify data type classes when you want to define additional data definition parameters, such as an enumerated list of
permitted data values, pattern matching of permitted data values, maximum and minimum numeric values, and automatic
truncation of data values that exceed the maximum length (MAXLEN).

Note: A data type class parameter default may differ from the InterSystems SQL data type default. For example,
VARCHAR() and CHARACTER VARYING() default to MAXLEN=1; The corresponding data type class
%Library.String defaults to MAXLEN=50.

InterSystems IRIS maps these standard SQL data types to InterSystems IRIS data types by providing an SQL.System-
DataTypes mapping table and an SQL.UserDataTypes mapping table.

To view and modify the current data type mappings, go to the Management Portal, select System Administration, Configu-

ration, SQL and Object Settings, System DDL Mappings. To create additional data type mappings, go to the Management
Portal, select System Administration, Configuration, SQL and Object Settings, User DDL Mappings.

If you specify a data type in SQL for which no corresponding InterSystems IRIS data type exists, the SQL data type name
is used as the data type for the corresponding class property. You must create this user-defined InterSystems IRIS data type
before DDL runtime (SQLExecute).

You may also override data type mappings for a single parameter value. For instance, suppose you did not want VAR-
CHAR(100) to map to the supplied standard mapping %String(MAXLEN=100). You could override this by added a DDL
data type of 'VARCHAR(100)' to the table and then specify its corresponding InterSystems IRIS type. For example:

VARCHAR(100) maps to MyString100(MAXLEN=100)

Data Size

Following a data type, you can present the permissible data size in parentheses. Whitespace between the data type name
and data size parentheses is permitted but not required.

InterSystems SQL Reference 129

CREATE TABLE (SQL)

For a string, data size represents the maximum number of characters. For example:

ProductName VARCHAR (64)

A numeric value that permits fractional numbers is represented as a pair of integers, (p,s). The first integer, p, is the data
type precision. This number is not identical to numerical precision, that is, the number of digits in the number, because the
underlying InterSystems IRIS data type classes do not have a precision. Instead, these classes use this number to calculate
the MAXVAL and MINVAL values. The second integer, s, is the scale, which specifies the maximum number of decimal
digits. For example:

UnitPrice NUMERIC(6,2) /* maximum value 9999.99 */

For more details on how precision and scale work, see Data Types.

query

A SELECT query that supplies the column definitions and column data for a table being created using the CREATE
TABLE AS SELECT syntax. This query can specify a table, a view, or multiple joined tables. However, it cannot contain
any ? parameters like regular SELECT queries.

The data definition of the CREATE TABLE AS SELECT query is as follows:

• CREATE TABLE AS SELECT copies column definitions from the query table. To rename copied columns specify
a column alias in the query.

CREATE TABLE AS SELECT can copy column definitions from multiple tables if the query specifies joined tables.

• CREATE TABLE AS SELECT always defines the RowID as hidden.

– If the source table has a hidden RowID, CREATE TABLE AS SELECT does not copy the source table RowID,
but creates a new RowID column for the created table. Copied rows are assigned new sequential RowID values.

– If the source table has a public (non-hidden) RowID, or if the query explicitly selects a hidden RowID, CREATE
TABLE AS SELECT creates a new RowID column for the table. The source table RowID is copied into the new
table as an ordinary BigInt column that is not hidden, not unique, and not required. If the source table RowID is
named “ID”, the new table’s RowID is named “ID1”.

• If the source table has an IDENTITY column, CREATE TABLE AS SELECT copies it and its current data as an
ordinary BIGINT column for non-zero positive integers that is neither unique nor required.

• CREATE TABLE AS SELECT defines an IDKEY index. It does not copy indexes associated with copied column
definitions.

• CREATE TABLE AS SELECT does not copy any column constraints: it does not copy NULL/NOT NULL, UNIQUE,
Primary Key, or Foreign Key constraints associated with a copied column definition.

• CREATE TABLE AS SELECT does not copy a Default restriction or value associated with a copied column definition.

• CREATE TABLE AS SELECT does not copy a COMPUTECODE data constraint associated with a copied column
definition.

• CREATE TABLE AS SELECT does not copy a %DESCRIPTION string associated with copied table or column
definition.

defaultSpec

The default value of a column, specified in the DEFAULT clause as a literal value or as a keyword option. A string supplied
as a literal default value must be enclosed in single quotes. A numeric default value does not require single quotes. For
example:

130 InterSystems SQL Reference

SQL Commands

SQL

CREATE TABLE membertest (
 MemberId INT NOT NULL,
 Membership_status CHAR(13) DEFAULT 'M',
 Membership_term INT DEFAULT 2)

The DEFAULT value is not validated when creating a table. When defined, a DEFAULT value can ignore data type, data
length, and data constraint restrictions. However, when using INSERT to supply data to the table, the DEFAULT value is
constrained. It is not limited by data type and data length restrictions, but is limited by data constraint restrictions. For
example, a column defined Ordernum INT UNIQUE DEFAULT 'No Number' can take the default once, ignoring the
INT data type restriction. However, this column cannot take the default a second time, as this would violate the UNIQUE
column data constraint.

If no DEFAULT is specified, the implied default is NULL. If a column has a NOT NULL data constraint, you must specify
a value for that column, either explicitly or by DEFAULT. Do not use the SQL zero-length string (empty string) as a NOT
NULL default value. For more details on null values and the empty string, see NULL.

The DEFAULT data constraint accepts these keyword options: NULL, USER, CURRENT_USER, SESSION_USER,
SYSTEM_USER, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, SYSDATE, and OBJECTSCRIPT.

The USER, CURRENT_USER, and SESSION_USER default keywords set the column value to the ObjectScript
$USERNAME special variable.

The CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, GETDATE, GETUTCDATE, and SYSDATE
SQL functions can also be used as DEFAULT values. They are described in their respective reference pages. You can
specify CURRENT_TIME or a timestamp function with or without a precision value when used as a DEFAULT value.
If no precision is specified, InterSystems SQL uses the precision of the SQL configuration setting "Default time precision
for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP", which defaults to 0. The DEFAULT function uses
the time precision setting in effect when the CREATE TABLE statement is prepared and compiled, not at the time of
statement execution.

CURRENT_TIMESTAMP can be specified as the default for a column of data type %Library.PosixTime or
%Library.TimeStamp; the current date and time is stored in the format specified by the column’s data type. CURRENT_TIMES-
TAMP, GETDATE, GETUTCDATE, and SYSDATE can be specified as a default for a %Library.TimeStamp column (data
type TIMESTAMP or DATETIME). InterSystems IRIS converts the date value to the appropriate format for the data type.

SQL

CREATE TABLE mytest (
 TestId INT NOT NULL,
 CREATE_TIMESTAMP DATE DEFAULT CURRENT_TIMESTAMP(2),
 WORK_START TIMESTAMP DEFAULT SYSDATE)

You can use the TO_DATE function as the DEFAULT data constraint for data type DATE. You can use the TO_TIMES-
TAMP function as the DEFAULT data constraint for data type TIMESTAMP.

For a DATE, TIMESTAMP, or TIMESTAMP2 field, the defaultSpec can be written in an ODBC date format; InterSystems
IRIS handles the conversion to the specified column type.

The OBJECTSCRIPT literal keyword phrase enables you to generate a default value by providing a quoted string containing
ObjectScript code, as shown in the following example:

SQL

CREATE TABLE mytest (
 TestId INT NOT NULL,
 CREATE_DATE DATE DEFAULT OBJECTSCRIPT '+$HOROLOG' NOT NULL,
 LOGNUM NUMBER(12,0) DEFAULT OBJECTSCRIPT '$INCREMENT(^LogNumber)')

See the ObjectScript Reference for further information.

InterSystems SQL Reference 131

CREATE TABLE (SQL)

uniqueName

The name of the constraint listed in the CONSTRAINT UNIQUE clause, specified as a valid identifier. If specified as a
delimited identifier, a constraint name can include the ".", "^", ",", and "->" characters. The constraint name uniquely
identifies the constraint and is also used to derive the corresponding index name. This constraint name is required when
using the ALTER TABLE command to drop a constraint from the table definition. Note that ALTER TABLE cannot drop
a column that is listed in CONSTRAINT UNIQUE. Attempting to do so generates an SQLCODE -322 error.

The CONSTRAINT UNIQUE clause has this syntax:

CONSTRAINT uniqueName UNIQUE (column1,column2)

This constraint specifies that the combination of values of columns column1 and column2 must always be unique, even
though either of these columns by itself may take non-unique values. You can specify one or more columns for this constraint.

All of the columns specified in this constraint must be defined in the column definition. Specifying a column that does not
also appear in the column definitions generates an SQLCODE -86 error. The specified columns should be defined as NOT
NULL. None of the specified columns should be defined as UNIQUE, as this would make specifying this constraint
meaningless.

Columns can be specified in any order. The column order dictates the column order for the corresponding index definition.
Duplicate column names are permitted. Although you may specify a single column name in the UNIQUE columns constraint,
this would be functionally identical to specify the UNIQUE data constraint to that column. A single-column constraint does
provide a constraint name for future use.

You can specify multiple unique column constraint statements in a table definition. Constraint statements can be specified
anywhere in the column definition; by convention they are commonly placed at the end of the list of defined columns.

Refer to the Constraints option of Catalog Details for ways to list the columns of a table that are defined with a unique
constraint.

pKeyName

The name of the primary key defined in the PRIMARY KEY constraint clause, specified as a valid identifier. If specified
as a delimited identifier, a constraint name can include the ".", "^", ",", and "->" characters. This optional constraint name
is used in ALTER TABLE to identify a defined constraint.

For more details on defining the primary key of a table, see Defining a Primary Key.

fKeyName

The name of a foreign key defined in the FOREIGN KEY constraint clause, specified as a valid identifier. If specified as
a delimited identifier, a constraint name can include the ".", "^", ",", and "->" characters. This optional constraint name is
used in ALTER TABLE to identify a defined constraint.

For more details on defining a foreign key in a table, see Defining a Foreign Key.

refTable

The name of the table to reference in the FOREIGN KEY clause, specified as a valid identifier. A table name can be qual-
ified (schema.table), or unqualified (table).

refColumn

A column name or a comma-separated list of existing column names defined in the reference table that is specified in the
foreign key constraint. Enclose the referenced columns in parentheses. If you omit refColumn, then CREATE TABLE
assigns a default reference column, as described in Defining a Foreign Key.

To specify an explicit RowID as the reference column, specify refColumn as %ID. For example: FOREIGN KEY
(CustomerNum) REFERENCES Customers (%ID). This value is synonymous with an omitted column name, provided

132 InterSystems SQL Reference

SQL Commands

that the reference table has no primary key or foreign key specified. If the class definition for the table contains SqlRowId-
Name, you can specify this value as the explicit RowID.

refAction

If a table contains a foreign key, a change to one table has an effect on another table. To keep the data consistent, when
you define a foreign key, you also define what effect a change to the record from which the foreign key data comes has on
the foreign key value. In CREATE TABLE, the ON DELETE refAction and ON UPDATE refAction clauses specify
what action to take when a foreign key column specified by refColumn is changed.

• The ON DELETE clause defines the DELETE rule for the reference table. When an attempt to delete a row from the
reference table is made, the ON DELETE clause defines what action to take for the rows in the reference table.

• The ON UPDATE clause defines the UPDATE rule for the reference table. When an attempt to change (update) the
primary key value of a row from the reference table is made, the ON UPDATE clause defines what action to take for
the rows in the reference table.

InterSystems SQL supports these foreign key referential actions:

DescriptionReferential Action

If any row in the foreign key column references the
row being deleted or updated, the delete or update
fails. This constraint does not apply if the foreign key
references itself.

NO ACTION (default)

Set the foreign key columns that reference the row
being deleted or updated to their default values. If the
foreign key column does not have a default value, it
is set to NULL. A row must exist in the referenced
table that contains an entry for the default value.

SET DEFAULT

Set the foreign key columns that reference the row
being deleted or updated to NULL. The foreign key
columns must allow NULL values.

SET NULL

ON DELETE — Also delete the rows of the foreign
key columns that reference the row being deleted.

ON UPDATE — Also update the rows of foreign key
columns that reference the row being updated.

CASCADE

Do not define two foreign keys with different names that reference the same column combination and perform contradictory
referential actions. In accordance with the ANSI standard, InterSystems SQL does not issue an error if such cases (for
example, ON DELETE CASCADE and ON DELETE SET NULL). Instead, InterSystems SQL issues an error when a
DELETE or UPDATE operation encounters these contradictory foreign key definitions. For more information, see Using
Foreign Keys.

code

Lines of code used in the COMPUTECODE data constraint to compute a default value of a column. Specify the code in
curly braces. Whitespace and line returns are permitted before or after the curly braces.

The programming language of the code depends on the value you set in the COMPUTECODE clause:

• COMPUTECODE or COMPUTECODE OBJECTSCRIPT — Specify code as ObjectScript code. Within the code,
you can reference SQL column names with curly brace delimiters, for example, {DOB}. The ObjectScript code can

InterSystems SQL Reference 133

CREATE TABLE (SQL)

contain Embedded SQL. In the projected class, COMPUTECODE specifies the SqlComputeCode column name and
the computation for its value.

• COMPUTECODE PYTHON — Specify code as Python code. Within the code, you can reference SQL column names
by using the cols.getfield method, for example, cols.getfield('DOB'). In the projected class, COMPUTE-
CODE specifies the PropertyComputation class method, which stores the code that computes the column values.
Property is the name of the column being computed. The projected class uses this class method in place of a
SqlComputeCode property keyword.

When you specify a computed field name, either in COMPUTECODE or in the SqlComputeCode property keyword,
you must specify the SQL field name, not the corresponding generated table property name.

A default data value supplied by COMPUTECODE must be in Logical (internal storage) mode. Embedded SQL in compute
code is automatically compiled and run in Logical mode.

The following example defines the Birthday COMPUTECODE column. It uses ObjectScript code to compute its default
value from the DOB column value:

SQL

CREATE TABLE MyStudents (
 Name VARCHAR(16) NOT NULL,
 DOB TIMESTAMP,
 Birthday VARCHAR(12) COMPUTECODE {SET {Birthday}=$PIECE($ZDATE({DOB},9),",")},
 Grade INT)

The COMPUTECODE can contain the pseudo-field reference variables %%CLASSNAME, %%CLASSNAMEQ,
%%OPERATION, %%TABLENAME, and %%ID. These variables are translated into specific values at class compilation
time. The variables are not case-sensitive.

• In ObjectScript compute code, call pseudo-field reference variables by enclosing them in curly braces. For example:
{%%CLASSNAME}

• In Python compute code, call pseudo-field reference variables by using the cols.getfield method. For example:
cols.getfield(%%CLASSNAME)

The COMPUTECODE value is a default. It is returned only if you did not supply a value to the column. The COMPUTE-
CODE value is not limited by data type restrictions. The COMPUTECODE value is limited by the UNIQUE data constraint
and other data constraint restrictions. If you specify both a DEFAULT and a COMPUTECODE, the DEFAULT is always
taken.

COMPUTECODE can optionally take a COMPUTEONCHANGE, CALCULATED, or TRANSIENT keyword.

If an error in the ObjectScript COMPUTECODE code occurs, SQL does not detect this error until the code is executed for
the first time. Therefore, if the value is first computed upon insert, the INSERT operation fails with an SQLCODE -415
error; if the value is first computed upon update, the UPDATE operation fails with an SQLCODE -415 error; if the value
is first computed when queried, the SELECT operation fails with an SQLCODE -350 error.

A COMPUTECODE stored value can be indexed. The application developer is responsible for making sure that computed
column stored values are validated and normalized (numbers in canonical form), based on their data type, especially if you
define (or intend to define) an index for the computed column.

updateSpec

When you create a table and specify a column using the ON UPDATE clause, that column is computed every time a row
is updated in the table. The most common use of this feature is to define a column in a table that contains a timestamp value
for the last time the row was updated.

134 InterSystems SQL Reference

SQL Commands

Available updateSpec options are:

CURRENT_DATE | CURRENT_TIME[(precision)] | CURRENT_TIMESTAMP[(precision)] | GETDATE([prec]) |
GETUTCDATE([prec]) | SYSDATE | USER | CURRENT_USER | SESSION_USER | SYSTEM_USER | NULL | <literal>
| -<number>

The following example sets the RowTS column to the current timestamp value when a row is inserted and each time that
row is updated:

CREATE TABLE mytest (
 Name VARCHAR(48),
 RowTS TIMESTAMP DEFAULT Current_Timestamp(6) ON UPDATE Current_Timestamp(6))

In this example, the DEFAULT keyword sets RowTS to the current timestamp on INSERT if no explicit value is specified
for the RowTS column. If an UPDATE specifies an explicit value for the RowTS column, the ON UPDATE keyword
validates, but ignores, the specified value, and updates RowTS with the current timestamp. If the specified value fails vali-
dation, a SQLCODE -105 error is generated.

The following example sets the HasBeenUpdated column to a boolean value:

CREATE TABLE mytest (
 Name VARCHAR(48),
 HasBeenUpdated TINYINT DEFAULT 0 ON UPDATE 1)

The following example sets the WhoLastUpdated column to the current user name:

CREATE TABLE mytest (
 Name VARCHAR(48),
 WhoLastUpdated VARCHAR(48) DEFAULT CURRENT_USER ON UPDATE CURRENT_USER)

You cannot specify an ON UPDATE clause if the column also has a COMPUTECODE data constraint. Attempting to do
so results in an SQLCODE -1 error at compile or prepare time.

description

InterSystems SQL provides a %DESCRIPTION keyword, which you can use to provide a description for documenting a
table or a column. %DESCRIPTION is followed by text string, description, enclosed in single quotes. This text can be of
any length, and can contain any characters, including blank spaces. (A single-quote character within a description is repre-
sented by two single quotes. For example: 'Joe''s Table'.) A table can have a %DESCRIPTION. Each column of a
table can have its own %DESCRIPTION, specified after the data type. If you specify more than one table-wide
%DESCRIPTION for a table, InterSystems IRIS issues an SQLCODE -82 error. If you specify more than one
%DESCRIPTION for a column, the system retains only the last %DESCRIPTION specified. You cannot use ALTER
TABLE to alter existing descriptions.

In the corresponding persistent class definition, a description appears prefaced by three slashes on the line immediately
before the corresponding class (table) or property (column) syntax. For example: /// Joe's Table. In the Class Reference
for the corresponding persistent class, the table description appears at the top just after the class name and SQL table name;
a column description appears just after the corresponding property syntax.

You can display %DESCRIPTION text using the DESCRIPTION property of INFORMATION.SCHEMA.TABLES or
INFORMATION.SCHEMA.COLUMNS. For example:

SQL

SELECT COLUMN_NAME,DESCRIPTION FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME='MyTable'

sqlCollation

The type of collation used to sort values of a column, specified as one of the following SQL collation types: %EXACT,
%MINUS, %PLUS, %SPACE, %SQLSTRING, %SQLUPPER, %TRUNCATE, or %MVR. Collation keywords are not
case-sensitive. It is recommended that you specify the optional keyword COLLATE before the collation parameter for

InterSystems SQL Reference 135

CREATE TABLE (SQL)

programming clarity, but this keyword is not required. The percent sign (%) prefix to the various collation parameter keywords
is also optional.

The default is the namespace default collation (%SQLUPPER, unless changed). %SQLSTRING, %SQLUPPER, and
%TRUNCATE may be specified with an optional maximum length truncation argument, an integer enclosed in parentheses.
For more information on collation, see Table Field/Property Definition Collation.

%EXACT collation follows the ANSI (or Unicode) character collation sequence. This provides case-sensitive string collation
and recognizes leading and trailing blanks and tab characters.

The %SQLUPPER collation converts all letters to uppercase for the purpose of collation. For further details on not case-
sensitive collation, refer to the %SQLUPPER function.

The %SPACE and %SQLUPPER collations append a blank space to the data. This forces string collation of NULL and
numeric values.

The %SQLSTRING, %SQLUPPER, and %TRUNCATE collations provide an optional maxlen parameter, which must be
enclosed in parentheses. maxlen is a truncation integer that specifies the maximum number of characters to consider when
performing collation. This parameter is useful when creating indexes with columns containing large data values.

The %PLUS and %MINUS collations handle NULL as a zero (0) value.

InterSystems SQL provides functions for most of these collation types. Refer to the %EXACT, %SQLSTRING,
%SQLUPPER, %TRUNCATE functions for further details.

ObjectScript provides the Collation() method of the %SYSTEM.Util class for data collation conversion.

Note: To change the namespace default collation from %SQLUPPER (which is not case-sensitive) to another collation
type, such as %SQLSTRING (which is case-sensitive), use the following command:

ObjectScript

 WRITE $$SetEnvironment^%apiOBJ("collation","%Library.String","SQLSTRING")

After issuing this command, you must purge indexes, recompile all classes, and then rebuild indexes. Do not
rebuild indexes while the table’s data is being accessed by other users. Doing so may result in inaccurate query
results.

shardKeyColumn

The column, or comma-separated list of columns, used as the shard key. Specify shardKeyColumn in the SHARD KEY
clause, immediately after the closing parenthesis of the table column list but before the WITH clause (if specified). Speci-
fying the shard key definition as an element within the table column list is supported for backwards compatibility, but
defining a shard key in both locations generates an SQLCODE -327 error.

You cannot define the RowID column as the shard key. However, if the created table includes an IDENTITY column or
IDKEY, you can define either of those columns as the shard key.

For information on choosing a shard key, see Choose a Shard Key.

coshardKeyColumn

The name of the shard key column that is used in cosharded joins with the shard key of the table defined in coshardTable.
Specify coshardKeyColumn in the COSHARD WITH syntax: SHARD KEY (coshardKeyColumn) COSHARD WITH
coshardTable.

coshardTable

The name of an existing table that the table being created coshards with. The table specified in the COSHARD WITH
clause must be a sharded table with a system-assigned shard key.

136 InterSystems SQL Reference

SQL Commands

When you specify this table, InterSystems IRIS sets the CoshardWith index keyword in the ShardKey index for the sharded
table. This CoshardWith index keyword is equal to the class that projects the table.

To determine which sharded tables specified in a query are cosharded, view the Cosharding comment option.

pName = pValue

A %CLASSPARAMETER name-value pair that sets the class parameter named pName to the value pValue. You can
specify multiple %CLASSPARAMETER clauses using comma-separated name-value pairs. For example: WITH
%CLASSPARAMETER DEFAULTGLOBAL = '^GL.EMPLOYEE', %CLASSPARAMETER MANAGEDEXTENT 0. Separate
the name and value using an equal sign or at least one space. Class parameter values are literal strings and numbers and
must be defined as constant values.

Some of the class parameters currently in use are: ALLOWIDENTITYINSERT, DATALOCATIONGLOBAL,
DEFAULTGLOBAL, DSINTERVAL, DSTIME, EXTENTQUERYSPEC, EXTENTSIZE, GUIDENABLED, MANAGEDEXTENT,
READONLY, ROWLEVELSECURITY, SQLPREVENTFULLSCAN, USEEXTENTSET, VERSIONCLIENTNAME,
VERSIONPROPERTY. Refer to the %Library.Persistent class for descriptions of these class parameters.

You can use the USEEXTENTSET and DEFAULTGLOBAL class parameters to define the global naming strategy for table
data storage and index data storage.

The IDENTIFIEDBY class parameter is deprecated. You must convert IDENTIFIEDBY relationships to proper Parent/Child
relationships to be supported in InterSystems IRIS.

A CREATE TABLE that defines a sharded table cannot define the DEFAULTGLOBAL, DSINTERVAL, DSTIME, or
VERSIONPROPERTY class parameter.

You can specify additional class parameters as needed. For more details, see Class Parameters.

Examples

Create and Populate Table

Use CREATE TABLE to create a table, Employee, with several columns:

• The EmpNum column (containing the employee's company ID number) is an integer value that cannot be NULL;
additionally, it is declared as a primary key for the table and automatically increments each time a row is inserted into
the table.

• The employee's last and first names are stored in character string columns that have a maximum length of 30 and
cannot be NULL.

• The remaining columns are for the employee's start date, accrued vacation time, and accrued sick time, which use the
TIMESTAMP and INT data types.

CREATE TABLE Employee (
 EmpNum INT NOT NULL AUTO_INCREMENT,
 NameLast CHAR(30) NOT NULL,
 NameFirst CHAR(30) NOT NULL,
 StartDate TIMESTAMP,
 AccruedVacation INT,
 AccruedSickLeave INT,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EmpNum))

To modify the table schema, use ALTER TABLE. For example, this statement changes the name of the table from Employee
to Employees.

ALTER TABLE Employee RENAME Employees

To insert rows into a table, use INSERT. For example, this statement inserts a row with only the required columns in the
table. The EmpNum column is also required, but you do not need to specify it because it auto-increments.

InterSystems SQL Reference 137

CREATE TABLE (SQL)

SQL

INSERT INTO Employees (NameLast, NameFirst) VALUES ('Zubik','Jules')

To update inserted rows, use UPDATE. For example, in the inserted row, this statement sets a value in one of the columns
that was missing data.

SQL

UPDATE Employees SET AccruedVacation = 15 WHERE Employees.EmpNum = 1

To delete a row, use DELETE. For example, this statement deletes the inserted row.

SQL

DELETE FROM Employess WHERE EmpNum = 1

To delete an entire table, use DROP TABLE. Be careful using DROP TABLE. Unless you specify the %NODELDATA
keyword, this command deletes both the table and all associated data.

SQL

DROP TABLE Employess

Security and Privileges
The CREATE TABLE command is a privileged operation that requires %CREATE_TABLE administrative privileges.
Executing a CREATE TABLE command without these privileges results in an SQLCODE -99 error. To assign %CRE-
ATE_TABLE privileges to a user or role, use the GRANT command, assuming that you hold appropriate granting privileges.
If you are using the CREATE TABLE AS SELECT syntax, then you must have SELECT privilege on the table specified
in the query. Administrative privileges are namespace-specific. For more details, see Privileges.

By default, CREATE TABLE security privileges are enforced. To configure this privilege requirement system-wide, use
the $SYSTEM.SQL.Util.SetOption() method. For example: SET
status=$SYSTEM.SQL.Util.SetOption("SQLSecurity",0,.oldval). To determine the current setting, call
the $SYSTEM.SQL.CurrentSettings() method, which displays an SQL security enabled setting. The default is 1
(enabled). When SQL security is enabled (recommended), a user can perform actions only on table or views for which they
have privileges. Set this method to 0 to disable SQL security for any new process started after changing this setting. This
means that privilege-based table/view security is suppressed. You can create a table without specifying a user. In this case,
Dynamic SQL assigns “_SYSTEM” as user, and Embedded SQL assigns "" (the empty string) as user. Any user can perform
actions on a table or view even if that user has no privileges to do so.

Embedded SQL does not use SQL privileges. In Embedded SQL, you can use the $SYSTEM.Security.Login() method
to log in as a user with appropriate privileges. You must have the %Service_Login:Use privilege to invoke the
$SYSTEM.Security.Login() method. For example:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 NEW SQLCODE,%msg
 &sql(CREATE TABLE MyTable (col1 INT, col2 INT))
 IF SQLCODE=0 {WRITE !,"Table created"}
 ELSE {WRITE !,"SQLCODE=",SQLCODE,": ",%msg }

For more information, see %SYSTEM.Security.

If CREATE TABLE is used with computed columns that require executing code, the user will need %Development:USE
privileges in addition to %CREATE_TABLE privileges unless the command is used in Embedded SQL.

138 InterSystems SQL Reference

SQL Commands

Users can also avoid privilege checks by creating a command with the %SQL.Statement class and using either the %Prepare()

method with the checkPriv argument set to 0 or the %ExecDirectNoPriv() method.

More About

Class Definitions of Created Tables

When you create an SQL table using CREATE TABLE, InterSystems IRIS® automatically creates a persistent class
corresponding to this table definition, with properties corresponding to the column definitions.

CREATE TABLE defines the corresponding class as DdlAllowed. It does not specify an explicit StorageStrategy in the
corresponding class definition; it uses the default storage %Storage.Persistent. By default, CREATE TABLE specifies
the Final class keyword in the corresponding class definition, indicating that it cannot have subclasses. (The default is 1;
you can change this default system-wide using the $SYSTEM.SQL.Util.SetOption() method SET
status=$SYSTEM.SQL.Util.SetOption("DDLFinal",0,.oldval); to determine the current setting, call the
$SYSTEM.SQL.CurrentSettings() method).

Defining a Primary Key

Defining a primary key is optional. When you define a table, InterSystems IRIS automatically creates a generated column,
the RowID Column (default name "ID") which functions as a unique row identifier. As each record is added to a table,
InterSystems IRIS assigns a unique non-modifiable positive integer to that record’s RowID column. You can optionally
define a primary key that also functions as a unique row identifier. A primary key allows the user to define a row identifier
that is meaningful to the application. For example, a primary key might be an Employee ID column, a Social Security
Number, a Patient Record ID column, or an inventory stock number. You can explicitly define a column or group of columns
as the primary record identifier by using the PRIMARY KEY clause.

A primary key accepts only unique values and does not accept NULL. (The primary key index property is not automatically
defined as Required; however, it effectively is required, since a NULL value cannot be filed or saved for a primary key
column.) The collation type of a primary key is specified in the definition of the column itself.

Refer to the Constraints option of Catalog Details for ways to list the columns of a table that are defined as the primary
key.

For more details, see Primary Key.

Primary Key As IDKEY

By default, the primary key is not the unique IDKEY index. In many cases this is preferable, because it enables you to
update primary key values, set the collation type for the primary key, and so on. There are cases where it is preferable to
define the primary key as the IDKEY index. Be aware that this imposes the IDKEY restrictions on the future use of the
primary key.

If you add a primary key constraint to an existing column, the column may also be automatically defined as an IDKEY
index. This depends on whether data is present and upon a configuration setting established in one of the following ways:

• The SQL SET OPTION PKEY_IS_IDKEY statement.

• The system-wide $SYSTEM.SQL.Util.SetOption() method configuration option DDLPKeyNotIDKey. To determine
the current setting, call $SYSTEM.SQL.CurrentSettings() which displays Are primary keys created through
DDL not ID keys; the default is 1.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View the
current setting of Define primary key as ID key for tables created via DDL.

– If the check box is not selected (the default), the Primary Key does not become the IDKEY index in the class
definition. Access to records using a primary key that is not the IDKEY is significantly less efficient; however,
this type of primary key value can be modified.

InterSystems SQL Reference 139

CREATE TABLE (SQL)

– If the check box is selected, when a Primary Key constraint is specified through DDL, it automatically becomes
the IDKEY index in the class definition. With this option selected, data access is more efficient, but a primary key
value, once set, can never be modified.

However, if an IDENTITY column is defined in the table, the primary key can never be defined as the IDKEY, even when
you have used one of these configuration setting to define the primary key as the IDKEY.

InterSystems IRIS supports properties (columns) that are part of the IDKEY index to be SqlComputed. For example, a
parent reference column. The property must be a triggered computed column. An IDKEY property defined as SqlComputed
is only computed upon the initial save of a new Object or an INSERT operation. UPDATE computation is not supported,
because columns that are part of the IDKEY index cannot be updated.

No Primary Key

In most cases, you should explicitly define a primary key. However, if a primary key is not designated, InterSystems IRIS
attempts to use another column as the primary key for ODBC/JDBC projection, according to the following rules:

1. If there is an IDKEY index on a single column, report the IDKEY column as the SQLPrimaryKey column.

2. Else if the class is defined with SqlRowIdPrivate=0 (the default), report the RowID column as the SQLPrimaryKey
column.

3. Else if there is an IDKEY index, report the IDKEY columns as the SQLPrimaryKey columns.

4. Else do not report an SQLPrimaryKey.

Multiple Primary Keys

You can only define one primary key. By default, InterSystems IRIS rejects an attempt to define a primary key when one
already exists, or to define the same primary key twice, and issues an SQLCODE -307 error. The SQLCODE -307 error is
issued even if the second definition of the primary key is identical to the first definition. To determine the current configu-
ration, call $SYSTEM.SQL.CurrentSettings(), which displays an Allow create primary key through DDL
when key exists setting. The default is 0 (No), which is the recommended configuration setting. If this option is set
to 1 (Yes), InterSystems IRIS drops the existing primary key constraint and establishes the last-specified primary key as
the table's primary key.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

For example, the following CREATE TABLE statement:

SQL

CREATE TABLE MyTable (f1 VARCHAR(16),
CONSTRAINT MyTablePK PRIMARY KEY (f1))

creates the primary key (if none exists). A subsequent ALTER TABLE statement:

SQL

ALTER TABLE MyTable ADD CONSTRAINT MyTablePK PRIMARY KEY (f1)

generates an SQLCODE -307 error.

Defining a Foreign Key

A foreign key is a column that references another table; the value stored in the foreign key column is a value that uniquely
identifies a record in the other table. The simplest form of this reference is shown in the following example, in which the
foreign key explicitly references the primary key column CustID in the Customers table:

140 InterSystems SQL Reference

SQL Commands

SQL

CREATE TABLE Orders (
 OrderID INT UNIQUE NOT NULL,
 OrderItem VARCHAR,
 OrderQuantity INT,
 CustomerNum INT,
 CONSTRAINT OrdersPK PRIMARY KEY (OrderID),
 CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers (CustID))

Most commonly, a foreign key references the primary key column of the other table. However, a foreign key can reference
a RowID (ID) or an IDENTITY column. In every case, the foreign key reference must exist in the referenced table and
must be defined as unique; the referenced column cannot contain duplicate values or NULL.

In a foreign key definition, you can specify:

• One column name: FOREIGN KEY (CustomerNum) REFERENCES Customers (CustID). The foreign key
column (CustomerNum) and referenced column (CustID) may have different names (or the same name), but must have
the same data type and column constraints.

• A comma-separated list of column names: FOREIGN KEY (CustomerNum,SalespersonNum) REFERENCES
Customers (CustID,SalespID). The foreign key columns and referenced columns must correspond in number
of columns and in order listed.

• An omitted column name: FOREIGN KEY (CustomerNum) REFERENCES Customers.

• An explicit RowID column: FOREIGN KEY (CustomerNum) REFERENCES Customers (%ID). Synonymous
with an omitted column name. If the class definition for the table contains SqlRowIdName you can specify this value
as the explicit RowID.

If you define a foreign key and omit the referenced column name, the foreign key defaults as follows:

1. The primary key column defined for the specified table.

2. If the specified table does not have a defined primary key, the foreign key defaults to the IDENTITY column defined
for the specified table.

3. If the specified table does not have either a defined primary key or a defined IDENTITY column, the foreign key
defaults to the RowID. This occurs only if the specified table defines the RowID as public; the specified table definition
can do this explicitly, either by specifying the %PUBLICROWID keyword, or through the corresponding class definition
with SqlRowIdPrivate=0 (the default). If the specified table does not define the RowID as public, InterSystems IRIS
issues an SQLCODE -315 error. You must omit the referenced column name when defining a foreign key on the
RowID; attempting to explicitly specify ID as the referenced column name results in an SQLCODE -316 error.

If none of these defaults apply, InterSystems IRIS issues an SQLCODE -315 error.

Refer to the Constraints option of Catalog Details for ways to list the columns of a table that are defined as foreign key
columns and the generated Constraint Name for a foreign key.

In a class definition, you can specify a Foreign Key that contains a column based on a parent table IDKEY property, as
shown in the following example:

 ForeignKey Claim(CheckWriterPost.Hmo,Id,Claim) References SQLUser.Claim.Claim(DBMSKeyIndex);

Because the parent column defined in a foreign key of a child has to be part of the IDKEY index of the parent class, the
only referential action supported for foreign keys of this type is NO ACTION.

• If a foreign key references a nonexistent table, InterSystems IRIS issues an SQLCODE -310 error, with additional
information provided in %msg.

• If a foreign key references a nonexistent column, InterSystems IRIS issues an SQLCODE -316 error, with additional
information provided in %msg.

InterSystems SQL Reference 141

CREATE TABLE (SQL)

• If a foreign key references a nonunique column, InterSystems IRIS issues an SQLCODE -314 error, with additional
information provided in %msg.

If the foreign key column references a single column, the two columns must have the same data type and column data
constraints.

In a parent/child relationship, there is no defined ordering of the children. Application code must not rely on any particular
ordering.

You can define a foreign key constraint that references a class in a database that is mounted read-only. To define a FOREIGN
KEY, the user must have REFERENCES privilege on the table being referenced or on the columns of the table being ref-
erenced. REFERENCES privilege is required if the CREATE TABLE is executed via Dynamic SQL or a database driver.

Sharded Tables and Foreign Keys

Foreign keys are supported for any combination of sharded and unsharded tables, including: key table sharded, fkey table
unsharded; key table unsharded, fkey table sharded; and both key table and fkey table sharded. The key in the referenced
table can be the shard key or another key. A foreign key can be a single column or multiple columns.

NO ACTION is the only referential action supported for sharded tables.

For more details, see Querying the Sharded Cluster.

Implicit Foreign Key

It is preferable to explicitly define all foreign keys. If there is an explicit foreign key defined, InterSystems IRIS reports
this constraint and the implicit foreign key constraint is not defined.

However, it is possible to project implicit foreign keys to ODBC/JDBC and the Management Portal. These implicit foreign
keys are reported as UPDATE and DELETE referential actions of NO ACTION. This implicit reference foreign key is not
a true foreign key as there are no referential actions enforced. The name of this foreign key reported for the reference is
"IMPLICIT_FKEY_REFERENCE__"_columnname. The reporting of this reference as a foreign key is provided for
interoperability with third-party tools.

Bitmap Extent Index

When you create a table using CREATE TABLE, by default InterSystems IRIS automatically defines a bitmap extent
index for the corresponding class. The SQL MapName of the bitmap extent index is %%DDLBEIndex:

Index DDLBEIndex [Extent, SqlName = "%%DDLBEIndex", Type = bitmap];

This bitmap extent index is not created in any of the following circumstances:

• The table is defined as a global temporary table (CREATE TABLE GLOBAL TEMPORARY TABLE ...).

• The table defines an explicit IDKEY index.

• The table contains a defined IDENTITY column that does not have MINVAL=1.

• The $SYSTEM.SQL.Util.SetOption() method DDLDefineBitmapExtent option is set to 0 to override the default
system-wide. To determine the current setting, call the $SYSTEM.SQL.CurrentSettings() method, which displays
a Do classes created by a DDL CREATE TABLE statement define a bitmap extent index
setting.

If, after creating a bitmap index, the CREATE BITMAPEXTENT INDEX command is run against a table where a bitmap
extent index was automatically defined, the bitmap extent index previously defined is renamed to the name specified by
the CREATE BITMAPEXTENT INDEX statement.

For DDL operations that automatically delete an existing bitmap extent index, refer to ALTER TABLE.

For more details, see Bitmap Extent Index.

142 InterSystems SQL Reference

SQL Commands

Creating Named RowId Column Using IDENTITY Keyword

InterSystems SQL automatically creates a RowID column for each table, which contains a system-generated integer that
serves as a unique record id. The optional IDENTITY keyword allows you to define a named column with the same prop-
erties as a RowID record id column. An IDENTITY column behaves as a single-column IDKEY index, whose value is a
unique system-generated integer.

Defining an IDENTITY column prevents the defining of the Primary Key as the IDKEY.

Just as with any system-generated ID column, an IDENTITY column has the following characteristics:

• You can only define one column per table as an IDENTITY column. Attempting to define more than one IDENTITY
column for a table generates an SQLCODE -308 error.

• The data type of an IDENTITY column must be an integer data type. If you do not specify a data type, its data type is
automatically defined as BIGINT. You can specify any integer data type, such as INTEGER or SMALLINT; BIGINT
is recommended to match the data type of RowID. Any specified column constraints, such as NOT NULL or UNIQUE
are accepted but ignored.

• Data values are system-generated. They consist of unique, nonzero, positive integers.

• By default, IDENTITY column data values cannot be user-specified. By default, an INSERT statement does not, and
cannot, specify an IDENTITY column value. Attempting to do so generates an SQLCODE -111 error. To determine
whether an IDENTITY column value can be specified, call the $SYSTEM.SQL.Util.GetOption("IdentityInsert")
method; the default is 0. To change this setting for the current process, call the $SYSTEM.SQL.Util.SetOption()
method, as follows: SET status=$SYSTEM.SQL.Util.SetOption("IdentityInsert",1,.oldval). You
can also specify %CLASSPARAMETER ALLOWIDENTITYINSERT=1 in the table definition. Specifying
ALLOWIDENTITYINSERT=1 overrides any setting applied using SetOption("IdentityInsert"). For further details,
refer to the INSERT statement.

• IDENTITY column data values cannot be modified in an UPDATE statement. Attempting to do so generates an
SQLCODE -107 error.

• The system automatically projects a primary key on the IDENTITY column to ODBC and JDBC. If a CREATE TABLE
or ALTER TABLE statement defines a primary key constraint or a unique constraint on an IDENTITY column, or on
a set of columns including an IDENTITY column, the constraint definition is ignored and no corresponding primary
key or unique index definition is created.

• A SELECT * statement does return a table's IDENTITY column.

Following an INSERT, UPDATE, or DELETE operation, you can use the LAST_IDENTITY function to return the value
of the IDENTITY column for the most-recently modified record. If no IDENTITY column is defined, LAST_IDENTITY
returns the RowID value of the most recently modified record.

These SQL statements create a table with an IDENTITY column and insert a rows into that table, generating an IDENTITY
column value for the created table:

SQL

CREATE TABLE Employee (
 EmpNum INT NOT NULL,
 MyID IDENTITY NOT NULL,
 Name VARCHAR(30) NOT NULL,
 CONSTRAINT EmployeePK PRIMARY KEY (EmpNum))

SQL

INSERT INTO Employee (EmpNum,Name)
SELECT ID,Name FROM SQLUser.Person WHERE Age >= '25'

InterSystems SQL Reference 143

CREATE TABLE (SQL)

In this case, the primary key, EmpNum, is taken from the ID column of another table. EmpNum values are unique integers,
but because of the WHERE clause, this column might contain gaps in the sequence. The IDENTITY column, MyID, assigns
a user-visible unique sequential integer to each record.

Sharded Table Restrictions

When defining a sharded table, keep these restrictions in mind:

• A sharded table can only be used in a sharded environment; a non-sharded table can be used in a sharded or non-sharded
environment. Not all tables are good candidates for sharding. Optimal performance in a sharded environment is generally
achieved by using a combination of sharded tables (generally very large tables) and non-sharded tables. For more
details, see Evaluating the Benefits of Sharding and Evaluate Existing Tables for Sharding.

• You must define a table as a sharded table either using CREATE TABLE or a persistent class definition. You cannot
use ALTER TABLE to add a shard key to an existing table.

• A UNIQUE column constraint on a sharded table can have a significant negative impact on insert/update performance
unless the shard key is a subset of the unique key. For more details, see Evaluate Unique Constraints in “Horizontally
Scaling InterSystems IRIS for Data Volume with Sharding”.

• Sharding a table that is involved in complex transactions requiring atomicity is not recommended.

• A sharded table cannot contain a ROWVERSION data type or SERIAL (%Library.Counter) data type column.

• A sharded table cannot specify the VERSIONPROPERTY class parameter.

• To specify a shard key, the current namespace must be configured for sharding. If the current namespace is not configured
for sharding, a CREATE TABLE that specifies a shard key fails with an SQLCODE -400 error. For details on config-
uring namespaces for sharding, see Configure the Shard Master Data Server.

• The only referential action supported for sharded tables is NO ACTION. Any other referential action results in an
SQLCODE -400 error.

• A shard key column can only take %EXACT, %SQLSTRING, or %SQLUPPER collation, with no truncation. For
more details, see Querying the Sharded Cluster.

For more details on sharding, see Create Target Sharded Tables.

Legacy Options

%EXTENTSIZE and %NUMROWS Keywords

The %EXTENTSIZE and %NUMROWS keywords provide an option to store the anticipated number of rows in the table
being created. The InterSystems SQL query optimizer uses this value to estimate the cost of query plans. A table can define
one or the other of these values but not both. For example:

SQL

CREATE TABLE Sample.DaysInAYear (
 %EXTENTSIZE 366,
 MonthName VARCHAR(24),
 Day INTEGER)

Starting in 2021.2, the first time you query a table, InterSystems IRIS collects statistics such as the table size automatically.
The SQL query optimizer uses these generated statistics to suggest appropriate query plan, making the %EXTENTSIZE
and %NUMROWS keywords unnecessary. For more details on optimizing tables with table statisticss, see Table Statistics
for Query Optimizer.

%FILE Keyword

The %FILE keyword provides an option to specify a file name that documents the table. For example:

144 InterSystems SQL Reference

SQL Commands

SQL

CREATE TABLE Employee (
 %FILE 'C:\SQL\employee_table_desc.txt',
 EmpNum INT PRIMARY KEY,
 NameLast VARCHAR(30) NOT NULL,
 NameFirst VARCHAR(30) NOT NULL,
 StartDate TIMESTAMP %Description 'MM/DD/YY')

This keyword is not recommended. Instead, document the table by using the %DESCRIPTION keyword.

Shard Key and %CLASSPARAMETER in Column List Parentheses

Old CREATE TABLE code might include the Shard Key definition and %CLASSPARAMETER clauses as comma-separated
elements within the table element parentheses. For example: CREATE TABLE myTable(Name VARCHAR(50), DOB
DATE, %CLASSPARAMETER USEEXTENTSET = 1). The preferred syntax is to specify these clauses after the closing
parenthesis. For example: CREATE TABLE myTable(Name VARCHAR(50), DOB TIMESTAMP) WITH
%CLASSPARAMETER USEEXTENTSET = 1. Specifying duplicates of these clauses generates an SQLCODE -327 error.

Options Supported for Compatibility Only

InterSystems SQL accepts the following CREATE TABLE options for parsing purposes only, to aid in the conversion of
existing SQL code to InterSystems SQL. These options do not provide any actual functionality.

{ON | IN} dbspace-name LOCK MODE [ROW | PAGE] [CLUSTERED | NONCLUSTERED] WITH FILLFACTOR = literal
MATCH [FULL | PARTIAL] CHARACTER SET identifier COLLATE identifier /* But COLLATE keyword is still
used*/ NOT FOR REPLICATION

See Also
• ALTER TABLE, DROP TABLE

• SELECT, JOIN

• INSERT, UPDATE, INSERT OR UPDATE

• GRANT

• Defining Tables

• SQL and Object Settings Pages

• SQLCODE error messages

InterSystems SQL Reference 145

CREATE TABLE (SQL)

CREATE TABLE AS SELECT (SQL)
Copies column definitions and column data from an existing table into a new table.

Synopsis

CREATE TABLE table-name AS query [shard-key] [WITH table-option]

Arguments

The name of the table to be created, specified as a valid identifier. A table name can
be qualified (schema.table), or unqualified (table). An unqualified table name takes the
default schema name.

table-name

A SELECT query that supplies the column definitions and column data for the new
table. This query can specify a table, a view, or multiple joined tables. However, it
cannot contain ? parameters like regular SELECT statements.

query

Optional — the shard key definition, consisting of the SHARD keyword by itself or
followed by additional shard key definition syntax.

shard-key

Optional — A comma-separated list of one or more table options, such as the
%CLASSPARAMETER keyword followed by a name and associated literal.

WITH table-option

Description
The CREATE TABLE AS SELECT command creates a new table by copying the column definitions and column data
from an existing table (or tables), as specified in a SELECT query. The SELECT query can specify any combination of
tables or views.

Note: CREATE TABLE AS SELECT copies from an existing table definition. Use the CREATE TABLE command
to specify a new table definition.

A copy table operation can also be invoked using the QueryToTable() method call:

DO $SYSTEM.SQL.Schema.QueryToTable(query,table-name,0)

Copying Data Definition

• CREATE TABLE AS SELECT copies column definitions from the query table. To rename copied columns specify
a column alias in the query.

CREATE TABLE AS SELECT can copy column definitions from multiple tables if the query specifies joined tables.

• CREATE TABLE AS SELECT always defines the RowID as hidden.

– If the source table has a hidden RowID, CREATE TABLE AS SELECT does not copy source table RowID, but
creates a new RowID column for the created table. Copied rows are assigned new sequential RowID values.

– If the source table has a public (non-hidden) RowID, or if the query explicitly selects a hidden RowID, CREATE
TABLE AS SELECT creates a new RowID column for the table. The source table RowID is copied into the new
table as an ordinary BigInt field that is not hidden, not unique, and not required. If the source table RowID is
named “ID”, the new table’s RowID is named “ID1”.

• If the source table has an IDENTITY field, CREATE TABLE AS SELECT copies it and its current data as an ordinary
BIGINT field for non-zero positive integers that is neither unique nor required.

146 InterSystems SQL Reference

SQL Commands

• CREATE TABLE AS SELECT defines an IDKEY index. It does not copy indexes associated with copied column
definitions.

• CREATE TABLE AS SELECT does not copy any column constraints: it does not copy NULL/NOT NULL, UNIQUE,
Primary Key, or Foreign Key constraints associated with a copied column definition.

• CREATE TABLE AS SELECT does not copy a Default restriction or value associated with a copied column definition.

• CREATE TABLE AS SELECT does not copy a COMPUTECODE data constraint associated with a copied column
definition.

• CREATE TABLE AS SELECT does not copy a %DESCRIPTION string associated with copied table or column
definition.

Privileges

The CREATE TABLE AS SELECT command is a privileged operation. The user must have %CREATE_TABLE
administrative privilege to execute CREATE TABLE AS SELECT. Failing to do so results in an SQLCODE -99 error
with the %msg User 'name' does not have %CREATE_TABLE privileges. You can use the GRANT command
to assign %CREATE_TABLE privileges to a user or role, if you hold appropriate granting privileges. Administrative
privileges are namespace-specific. For further details, refer to Privileges.

The user must have SELECT privilege on the table specified in the query.

Table Name

A table name can be qualified or unqualified.

• An unqualified table name has the following syntax: tablename; it omits schema (and the period (.) character). An
unqualified table name takes the default schema name. The initial system-wide default schema name is SQLUser,
which corresponds to the default class package name User. Schema search path values are ignored.

The default schema name can be configured.

To determine the current system-wide default schema name, use the $SYSTEM.SQL.Schema.Default() method.

• A qualified table name has the following syntax: schema.tablename. It can specify either an existing schema name
or a new schema name. Specifying an existing schema name places the table within that schema. Specifying a new
schema name creates that schema (and associated class package) and places the table within that schema.

Table names and schema names follow SQL identifier naming conventions, subject to additional constraints on the use of
non-alphanumeric characters, uniqueness, and maximum length. Names beginning with a % character are reserved for
system use. By default, schema names and table names are simple identifiers, and are not case-sensitive.

InterSystems IRIS uses the table name to generate a corresponding class name. InterSystems IRIS uses the schema name
is used to generate a corresponding class package name. A class name contains only alphanumeric characters (letters and
numbers) and must be unique within the first 96 characters. To generate a class name, InterSystems IRIS first strips out
symbol (non-alphanumeric) characters from the table name, and then generates a unique class name, imposing uniqueness
and maximum length restrictions. To generate a package name, it then either strips out or performs special processing of
symbol (non-alphanumeric) characters in the schema name. InterSystems IRIS then generates a unique package name,
imposing uniqueness and maximum length restrictions. For further details on how package and class names are generated
from schema and table names, refer to Table Names and Schema Names.

You can use the same name for a schema and a table. You cannot use the same name for a table and a view in the same
schema.

A schema name is not case-sensitive; the corresponding class package name is case-sensitive. If you specify a schema name
that differs only in case from an existing class package name, and the package definition is empty (contains no class defi-
nitions). InterSystems IRIS reconciles the two names by changing the case of the class package name. For further details
on schema names, refer to Table Names and Schema Names.

InterSystems SQL Reference 147

CREATE TABLE AS SELECT (SQL)

InterSystems IRIS supports 16-bit (wide) characters for table and column names. For most locales, accented letters can be
used for table names and the accent marks are included in the generated class name. The following example performs val-
idation tests on an SQL table name:

ObjectScript

TableNameValidation
 SET tname="MyTestTableName"
 SET x=$SYSTEM.SQL.IsValidRegularIdentifier(tname)
 IF x=0 {IF $LENGTH(tname)>200
 {WRITE "Tablename is too long" QUIT}
 ELSEIF $SYSTEM.SQL.IsReservedWord(tname)
 {WRITE "Tablename is reserved word" QUIT}
 ELSE {
 WRITE "Tablename contains invalid characters",!
 SET nls=##class(%SYS.NLS.Locale).%New()
 IF nls.Language ["Japanese" {
 WRITE "Japanese locale cannot use accented letters"
 QUIT }
 QUIT }
 }
 ELSE { WRITE tname," is a valid table name"}

Note: The Japanese locale does not support accented letter characters in identifiers. Japanese identifiers may contain
(in addition to Japanese characters) the Latin letter characters A-Z and a-z (65–90 and 97–122), the underscore
character (95), and the Greek capital letter characters (913–929 and 931–937). The nls.Language test uses [(the
Contains operator) rather than = because there are different Japanese locales for different operating system platforms.

Existing Table

To determine if a table already exists in the current namespace, use $SYSTEM.SQL.Schema.TableExists("schema.tname").

By default, when you try to create a table that has the same name as an existing table InterSystems IRIS rejects the create
table attempt and issues an SQLCODE -201 error. To determine the current system-wide configuration setting, call
$SYSTEM.SQL.CurrentSettings(), which displays a Allow DDL CREATE TABLE or CREATE VIEW for existing
table or view setting. The default is 0; this is the recommended setting for this option. If this option is set to 1, Inter-
Systems IRIS deletes the class definition associated with the table and then recreates it. This is much the same as performing
a DROP TABLE, deleting the existing table and then performing the CREATE TABLE. In this case, it is strongly recom-
mended that the $SYSTEM.SQL.CurrentSettings(), Does DDL DROP TABLE delete the table's data? value
be set to 1 (the default). Refer to DROP TABLE for further details.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

WITH table-option

The optional WITH clause can be specified after the SELECT query. The WITH clause can contain a comma-separated
list of %CLASSPARAMETER clauses.

The %CLASSPARAMETER keyword enables you to define a class parameter as part of the CREATE TABLE AS
SELECT command. A class parameter is always defined as a constant value. The %CLASSPARAMETER keyword is
followed by the class parameter name, an optional equal sign, and the literal value (a string or number) to assign to that
class parameter.

You can specify multiple %CLASSPARAMETER keyword clauses, defining one class parameter per clause. Multiple
%CLASSPARAMETER clauses are separated by commas.

148 InterSystems SQL Reference

SQL Commands

For example, by default CREATE TABLE AS SELECT creates an IDKEY index for the created table with a generated
Global name, such as ^EPgS.D8T6.1; additional indexes use the same global name with a unique integer suffix. The
following example shows how to specify an explicit Global name for the IDKEY index and future additional indexes:

CREATE TABLE Sample.YoungPeople
AS SELECT Name,Age
FROM Sample.People
WHERE Age<21
WITH %CLASSPARAMETER DEFAULTGLOBAL = '^GL.UNDERTWENTYONE'

For further details, refer to WITH Clause and %CLASSPARAMETER Keyword in the CREATE TABLE reference page.

See Also
• CREATE TABLE, ALTER TABLE, DROP TABLE

• SELECT, JOIN

• GRANT

• Defining Tables

• SQL and Object Settings Pages.

• SQLCODE error messages

InterSystems SQL Reference 149

CREATE TABLE AS SELECT (SQL)

CREATE TRIGGER (SQL)
Creates a trigger.

Synopsis

CREATE [OR REPLACE] TRIGGER trigname {BEFORE | AFTER} event [,event]
 [ORDER integer] ON table
 [REFERENCING {OLD | NEW} [ROW] [AS] alias] action

Arguments

DescriptionArgument

The name of the trigger to be created, which is an
identifier. A trigger name may be qualified or unqualified;
if qualified, its schema name must match the table’s
schema name.

trigname

The time (BEFORE or AFTER) the event to execute the
trigger.

The trigger event, or a comma-separated list of trigger
events. Available event list options are INSERT,
DELETE, and UPDATE.

You can specify a single UPDATE OF event. The
UPDATE OF clause is followed by a column name or a
comma-separated list of column names. The UPDATE
OF clause can only be specified when LANGUAGE is
SQL. The UPDATE OF clause cannot be specified in a
comma-separated event list.

BEFORE event

AFTER event

Optional — The order in which triggers should be
executed when there are multiple triggers for a table with
the same time and event. If order is omitted, a trigger is
assigned an order of 0.

ORDER integer

The table the trigger is created for. A table name may
be qualified or unqualified; if qualified, the trigger must
reside in the same schema as the table.

ON table

Optional — A REFERENCING clause can only be used
when LANGUAGE is SQL. A REFERENCING clause
allows you to specify an alias that you can use to
reference a column. REFERENCING OLD ROW allows
you reference the old value of a column during an
UPDATE or DELETE trigger. REFERENCING NEW
ROW allows you to reference the new value of a column
during an INSERT or UPDATE trigger. The ROW AS
keywords are optional. For an UPDATE, you can specify
both OLD and NEW in the same REFERENCING clause,
as follows: REFERENCING OLD oldalias NEW
newalias.

REFERENCING OLD ROW AS alias

REFERENCING NEW ROW AS alias

150 InterSystems SQL Reference

SQL Commands

DescriptionArgument

The program code for the trigger. The action argument
can contain various optional keyword clauses, including
(in order): a FOR EACH clause; a WHEN clause with a
predicate condition governing execution of the triggered
action; and a LANGUAGE clause which specifies either
LANGUAGE SQL or LANGUAGE OBJECTSCRIPT. If
the LANGUAGE clause is omitted, SQL is the default.
Following these clauses, you specify one or more lines
of either SQL trigger code or ObjectScript trigger code
specifying the action to perform when the trigger is
executed.

action

Description
The CREATE TRIGGER command defines a trigger, a block of code to be executed when data in a specific table is
modified. A trigger is executed (“fired” or “pulled”) when a specific triggering event occurs, such as a new row being
inserted into a specified table. A trigger executes user-specified trigger code. You can specify that the trigger should execute
this code before or after the execution of the triggering event. A trigger is specific to a specified table.

• A trigger is fired by a specified event: an INSERT, DELETE, or UPDATE operation. You can specify a comma-
separated list of events to execute the trigger when any one of the specified events occurs on the specified table.

• A trigger is fired by an event either (potentially) multiple times or just once. A row-level trigger is fired once for each
row modified. A statement-level trigger is fired once for an event. This trigger type is specified using the FOR EACH
clause. A row-level trigger is the default trigger type.

• Commonly, firing a trigger code performs an operation on another table or file, such as performing a logging operation
or displaying a message. Firing a trigger cannot modify data in the triggering record. For example, if an update to
Record 7 fires a trigger, that trigger’s code block cannot update or delete Record 7. A trigger can modify the same
table that invoked the trigger, but the triggering event and the trigger code operation must be different to prevent a
recursive trigger infinite loop.

The optional keyword OR REPLACE allows you to modify or replace an existing trigger. CREATE OR REPLACE
TRIGGER has the same effect as invoking DROP TRIGGER to delete the old version of the trigger and then invoking
CREATE TRIGGER. The command DROP TABLE drops all triggers associated with that table.

Privileges and Locking

The CREATE TRIGGER command is a privileged operation. The user must have %CREATE_TRIGGER administrative
privilege to execute CREATE TRIGGER. Failing to do so results in an SQLCODE –99 error with the %msg User
'name' does not have %CREATE_TRIGGER privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not have required
%ALTER privilege needed to create a trigger on table: 'Schema.TableName'.

You can use the GRANT command to assign %CREATE_TRIGGER and %ALTER privileges, if you hold appropriate
granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

InterSystems SQL Reference 151

CREATE TRIGGER (SQL)

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

• CREATE TRIGGER cannot be used on a table projected from a persistent class, unless the table class definition
includes [DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not
enabled for class 'Schema.tablename'.

• CREATE TRIGGER cannot be used on a table projected from a deployed persistent class. This operation fails with
an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The CREATE TRIGGER statement acquires a table-level lock on table. This prevents other processes from modifying
the table’s data. This lock is automatically released at the conclusion of the CREATE TRIGGER operation.

To create a trigger, the table cannot be locked by another process in either EXCLUSIVE MODE or SHARE MODE.
Attempting a CREATE TRIGGER operation on a locked table results in an SQLCODE -110 error, with a %msg such as
the following: Unable to acquire exclusive table lock for table 'Sample.MyTest'.

Other Ways of Defining Triggers

You can define an SQL trigger as a class object as described in Trigger Definitions. The following is an example of an
Object trigger:

Class Member

Trigger SQLJournal [CodeMode = objectgenerator, Event = INSERT/UPDATE, ForEach = ROW/OBJECT, Time =
AFTER]
{ /* ObjectScript trigger code
 that updates a journal file
 after a row is inserted or updated. */
}

Arguments

trigname

A trigger name follows the same identifier requirements as a table name, but not the same uniqueness requirements. A
trigger name should be unique for all tables within a schema. Thus, triggers referencing different tables in a schema should
not have the same name. Violating this uniqueness requirement can result in a DROP TRIGGER error.

A trigger and its associated table must reside in the same schema. You cannot use the same name for a trigger and a table
in the same schema. Violating trigger naming conventions results in an SQLCODE -400 error at CREATE TRIGGER
execution time.

A trigger name may be unqualified or qualified. A qualified trigger name has the form:

schema.trigger

If the trigger name is unqualified, the trigger schema name defaults to the same schema as the specified table schema. If
the table name is unqualified, the table schema name defaults to the same schema as the specified trigger schema. If both
are unqualified, the default schema name is used; schema search paths are not used. If both are qualified, the trigger schema
name must be the same as the table schema name. A schema name mismatch results in an SQLCODE -366 error; this should
only occur when both the trigger name and the table name are qualified and they specify different schema names.

Trigger names follow identifier conventions, subject to the restrictions below. By default, trigger names are simple identifiers.
A trigger name should not exceed 128 characters. Trigger names are not case-sensitive.

InterSystems IRIS uses trigname to generate a corresponding trigger name in the InterSystems IRIS class. The corresponding
class trigger name contains only alphanumeric characters (letters and numbers) and is a maximum of 96 characters in length.
To generate this identifier name, InterSystems IRIS first strips punctuation characters from the trigger name, and then

152 InterSystems SQL Reference

SQL Commands

generates a unique identifier of 96 (or less) characters, substituting a number for the 96th character when needed to create
a unique name. This name generation imposes the following restrictions on the naming of triggers:

• A trigger name must include at least one letter. Either the first character of the trigger name or the first character after
initial punctuation characters must be a letter.

• InterSystems IRIS supports 16-bit (wide) characters for trigger names. A character is a valid letter if it passes the
$ZNAME test.

• Because names generated for an InterSystems IRIS class do not include punctuation characters, it is not advisable
(though possible) to create trigger names that differ only in their punctuation characters.

• A trigger name may be much longer than 96 characters, but trigger names that differ in their first 96 alphanumeric
characters are much easier to work with.

Issuing a CREATE TRIGGER with the name of an existing trigger issues an SQLCODE -365 “Trigger name not unique”
error. Use the optional OR REPLACE keyword or drop the old trigger first with DROP TRIGGER.

If two triggers referencing different tables in a schema have the same name, a DROP TRIGGER may issue an SQLCODE
-365 “Trigger name not unique” error with the message “Trigger 'MyTrigName' found in 2 classes”

event

The time that the trigger is fired is specified by the BEFORE or AFTER keyword; these keywords specify that the trigger
operation should occur either before or after InterSystems IRIS executes the triggering event. A BEFORE trigger is executed
before performing the specified event, but after verifying the event. For example, InterSystems IRIS only executes a
BEFORE DELETE trigger if the DELETE statement is valid for the specified row(s), and the process has the necessary
privileges to perform the DELETE, including any foreign key referential integrity checks. If the process cannot perform
the specified event, InterSystems IRIS issues an error code for the event; it does not execute the BEFORE trigger.

The BEFORE or AFTER keyword is followed by the name of a triggering event, or a comma-separated list of triggering
events. A trigger specified as INSERT is executed when a row is inserted into the specified table. A trigger specified as
DELETE is executed when a row is deleted from the specified table. A trigger specified as UPDATE is executed when a
row is updated in the specified table. You can specify a single trigger event or a comma-separated list of INSERT, UPDATE,
or DELETE trigger events in any order.

A trigger specified as UPDATE OF is executed only when one or more of the specified columns is updated in a row in the
specified table. Column names are specified as a comma-separated list. Column names can be specified in any order. An
UPDATE OF trigger has the following restrictions:

• UPDATE OF is only valid if the trigger code language is SQL (the default); an SQLCODE -50 error is issued if the
trigger code language is OBJECTSCRIPT.

• UPDATE OF cannot be combined with other triggering events; an SQLCODE -1 error is issued if you specify UPDATE
OF in a comma-separated list of triggering events.

• UPDATE OF cannot specify a non-existent field; an SQLCODE -400 error is issued.

• UPDATE OF cannot specify a duplicate field name; an SQLCODE -58 error is issued.

The following are examples of event types:

SQL

CREATE TRIGGER TrigBI BEFORE INSERT ON Sample.Person
 INSERT INTO TLog (Text) VALUES ('before insert')

SQL

CREATE TRIGGER TrigAU AFTER UPDATE ON Sample.Person
 INSERT INTO TLog (Text) VALUES ('after update')

InterSystems SQL Reference 153

CREATE TRIGGER (SQL)

SQL

CREATE TRIGGER TrigBUOF BEFORE UPDATE OF Home_Street,Home_City,Home_State ON Sample.Person
 INSERT INTO TLog (Text) VALUES ('before address update')

CREATE TRIGGER TrigAD AFTER UPDATE,DELETE ON Sample.Person
 INSERT INTO TLog (Text) VALUES ('after update or delete')

ORDER

The ORDER clause determines the order in which triggers are executed when there are multiple triggers for the same table
with the same time and event. For example, two AFTER DELETE triggers. The trigger with the lowest ORDER integer is
executed first, then the next higher integer, and so on. If the ORDER clause is not specified, a trigger is created with an
assigned ORDER number of 0 (zero). Thus, triggers with no ORDER clause are always executed before triggers with
ORDER clauses.

You can assign the same order value to multiple triggers. You can also create multiple triggers with an (implicit or explicit)
order of 0. Multiple triggers with the same time, event, and order are executed together in random order.

Triggers are executed in the sequence: time > order > event. Thus if you have a BEFORE INSERT trigger and a BEFORE
INSERT,UPDATE trigger, the trigger with the lowest ORDER value would be executed first. If you have a BEFORE
INSERT trigger and a BEFORE INSERT,UPDATE trigger with the same ORDER value, the INSERT is executed before
the INSERT,UPDATE. This is because — time and order being the same — a single-event trigger is always executed
before a multi-event trigger. If two (or more) triggers have identical time, order, and event values, the order of execution
is random.

The following examples show how ORDER numbers work. All of these CREATE TRIGGER statements create triggers
that are executed by the same event:

SQL

CREATE TRIGGER TrigA BEFORE DELETE ON doctable
 INSERT INTO TLog (Text) VALUES ('doc deleted')
 /* Assigned ORDER=0 */

SQL

CREATE TRIGGER TrigB BEFORE DELETE ORDER 4 ON doctable
 INSERT INTO TReport (Text) VALUES ('doc deleted')
 /* Specified as ORDER=4 */

SQL

CREATE TRIGGER TrigC BEFORE DELETE ORDER 2 ON doctable
 INSERT INTO Ttemps (Text) VALUES ('doc deleted')
 /* Specified as ORDER=2 */

SQL

CREATE TRIGGER TrigD BEFORE DELETE ON doctable
 INSERT INTO Tflags (Text) VALUES ('doc deleted')
 /* Also assigned ORDER=0 */

These triggers will execute in the sequence: (TrigA, TrigD), TrigC, TrigB. Note that TrigA and TrigD have the same order
number, and thus execute in random sequence.

REFERENCING

The REFERENCING clause can specify an alias for the old value of a row, the new value of a row, or both. The old value
is the row value before the triggered action of an UPDATE or DELETE trigger. The new value is the row value after the

154 InterSystems SQL Reference

SQL Commands

triggered action of an UPDATE or INSERT trigger. For an UPDATE trigger, you can specify aliases for both the before
and after row values, as follows:

REFERENCING OLD ROW AS oldalias NEW ROW AS newalias

The keywords ROW and AS are optional. Therefore, the same clause can also be specified as:

REFERENCING OLD oldalias NEW newalias

It is not meaningful to refer to an OLD value before an INSERT or a NEW value after a DELETE. Attempting to do so
results in an SQLCODE -48 error at compile time.

A REFERENCING clause can only be used when the action program code is SQL. Specifying a REFERENCING clause
with the LANGUAGE OBJECTSCRIPT clause results in an SQLCODE -49 error.

The following is an example of using REFERENCING with an INSERT:

SQL

CREATE TRIGGER TrigA AFTER INSERT ON doctable
 REFERENCING NEW ROW AS new_row
BEGIN
 INSERT INTO Log_Table VALUES ('INSERT into doctable');
 INSERT INTO New_Log_Table VALUES ('INSERT into doctable',new_row.ID);
END

action

A triggered action consists of the following elements:

• An optional FOR EACH clause. The available values are FOR EACH ROW, FOR EACH ROW_AND_OBJECT, and
FOR EACH STATEMENT. The default is FOR EACH ROW:

– FOR EACH ROW — This trigger is fired by each row affected by the triggering statement. Note that row-level
triggers are not supported for TSQL.

– FOR EACH ROW_AND_OBJECT — This trigger is fired by each row affected by the triggering statement or by
changes via object access. Note that row-level triggers are not supported for TSQL.

This option defines a unified trigger, so called because it is fired by data changes that occur via SQL or object
access. (In contrast, with other triggers, if you want to use the same logic when changes occur via object access,
it is necessary to implement callbacks such as %OnDelete().)

– FOR EACH STATEMENT — This trigger is fired once for the whole statement. Statement-level triggers are supported
for both ObjectScript and TSQL triggers.

For the corresponding trigger class options, see FOREACH.

You can list the FOR EACH value for each trigger using the ACTIONORIENTATION property of
INFORMATION.SCHEMA.TRIGGERS.

• An optional WHEN clause, consisting of the WHEN keyword followed by a predicate condition (simple or complex)
enclosed in parentheses. If the predicate condition evaluates to TRUE, the trigger is executed. A WHEN clause can
only be used when LANGUAGE is SQL. The WHEN clause can reference oldalias or newalias values. For further
details on predicate condition expressions and a list of available predicates, refer to the Overview of Predicates page
in this document.

• An optional LANGUAGE clause, either LANGUAGE SQL or LANGUAGE OBJECTSCRIPT. The default is LAN-
GUAGE SQL.

• User-written code that is executed when the trigger is executed.

InterSystems SQL Reference 155

CREATE TRIGGER (SQL)

SQL Trigger Code
If LANGUAGE SQL (the default), the triggered statement is an SQL procedure block, consisting of either one SQL procedure
statement followed by a semicolon, or the keyword BEGIN followed by one or more SQL procedure statements, each followed
by a semicolon, concluding with an END keyword.

A triggered action is atomic, it is either fully applied or not at all, and cannot contain COMMIT or ROLLBACK statements.
The keyword BEGIN ATOMIC is synonymous with the keyword BEGIN.

If LANGUAGE SQL, the CREATE TRIGGER statement can optionally contain a REFERENCING clause, a WHEN
clause, and/or an UPDATE OF clause. An UPDATE OF clause specifies that the trigger should only be executed when an
UPDATE is performed on one or more of the columns specified for this trigger. A CREATE TRIGGER statement with
LANGUAGE OBJECTSCRIPT cannot contain these clauses.

SQL trigger code is executed as embedded SQL. This means that InterSystems IRIS converts SQL trigger code to
ObjectScript; therefore, if you view the class definition corresponding to your SQL trigger code, you will see
Language=objectscript in the trigger definition.

When executing SQL trigger code, the system automatically resets (NEWs) all variable used in the trigger code. After the
execution of each SQL statement, InterSystems IRIS checks SQLCODE. If an error occurs, InterSystems IRIS sets the
%ok variable to 0, aborting and rolling back both the trigger code operation(s) and the associated INSERT, UPDATE, or
DELETE.

ObjectScript Trigger Code
If LANGUAGE OBJECTSCRIPT, the CREATE TRIGGER statement cannot contain a REFERENCING clause, a WHEN
clause, or an UPDATE OF clause. Specifying these SQL-only clauses with LANGUAGE OBJECTSCRIPT results in
compile-time SQLCODE errors -49, -57, or -50, respectively.

If LANGUAGE OBJECTSCRIPT, the triggered statement is a block of one or more ObjectScript statements, enclosed by
curly braces.

Because the code for a trigger is not generated as a procedure, all local variables in a trigger are public variables. This
means all variables in triggers should be explicitly declared with a NEW statement; this protects them from conflicting
with variables in the code that invokes the trigger.

If trigger code contains Macro Preprocessor statements (# commands, ## functions, or $$$macro references), these statements
are compiled before the CREATE TRIGGER DDL code itself.

ObjectScript trigger code can contain Embedded SQL.

You can issue an error from trigger code by setting the %ok variable to 0. This creates a runtime error that aborts and rolls
back execution of the trigger. It generates the appropriate SQLCODE error (for example, SQLCODE -131 “After insert
trigger failed”) and returns the user-specified value of the %msg variable as a string to describe the cause of the trigger code
error. Note that setting %ok to a non-numeric value sets %ok=0.

The system generates trigger code only once, even for a multiple-event trigger.

Field References and Pseudo-field References

Trigger code written in ObjectScript can contain field references, specified as {fieldname}, where fieldname specifies an
existing field in the current table. No blank spaces are permitted within the curly braces.

You can follow the fieldname with *N (new), *O (old), or *C (compare) to specify how to handle an inserted, updated, or
deleted field data value, as follows:

• {fieldname*N}

– For UPDATE, returns the new field value after the specified change is made.

– For INSERT, returns the value inserted.

156 InterSystems SQL Reference

SQL Commands

– For DELETE, returns the value of the field before the delete.

• {fieldname*O}

– For UPDATE, returns the old field value before the specified change is made.

– For INSERT, returns NULL.

– For DELETE, returns the value of the field before the delete.

• {fieldname*C}

– For UPDATE, returns 1 (TRUE) if the new value differs from the old value, otherwise returns 0 (FALSE).

– For INSERT, returns 1 (TRUE) if the inserted value is non-NULL, otherwise returns 0 (FALSE).

– For DELETE, returns 1 (TRUE) if the value being deleted is non-NULL, otherwise returns 0 (FALSE).

For UPDATE, INSERT, or DELETE, {fieldname} returns the same value as {fieldname*N}.

For example, the following trigger returns the Name field value for a new row inserted into Sample.Employee. (You can
perform the INSERT from the SQL Shell to view this result):

CREATE TRIGGER InsertNameTrig AFTER INSERT ON Sample.Employee
 LANGUAGE OBJECTSCRIPT
 {WRITE "The employee ",{Name*N}," was ",{%%OPERATION},"ed on ",{%%TABLENAME},!}

Line returns are not permitted within a statement that sets a field value. For further details, refer to the SqlComputeCode
property keyword in the Class Definition Reference.

You can use the GetAllColumns() method to list the field names defined for a table. For further details, refer to Column
Names and Numbers.

Trigger code written in ObjectScript can also contain the pseudo-field reference variables {%%CLASSNAME},
{%%CLASSNAMEQ}, {%%OPERATION}, {%%TABLENAME}, and {%%ID}. The pseudo-fields are translated into
a specific value at class compilation time. All of these pseudo-field keywords are not case-sensitive.

• {%%CLASSNAME} and {%%CLASSNAMEQ} both translate to the name of the class which projected the SQL
table definition. {%%CLASSNAME} returns an unquoted string and {%%CLASSNAMEQ} returns a quoted string.

• {%%OPERATION} translates to a string literal, either INSERT, UPDATE, or DELETE, depending on the operation
that invoked the trigger.

• {%%TABLENAME} translates to the fully qualified name of the table.

• {%%ID} translates to the RowID name. This reference is useful when you do not know the name of the RowID field.

Referencing Stream Property

When a Stream field/property is referenced in a trigger definition, like {StreamField}, {StreamField*O}, or {StreamField*N},
the value of the {StreamField} reference is the stream's OID (object ID) value.

For a BEFORE INSERT or BEFORE UPDATE trigger, if a new value is specified by the INSERT/UPDATE/ObjectSave,
the {StreamField*N} value will be either the OID of the temporary stream object, or the new literal stream value. For a
BEFORE UPDATE trigger, if a new value is not specified for the stream field/property, {StreamField*O} and {Stream-
Field*N} will both be the OID of the current field/property stream object.

Referencing SQLComputed Property

When a transient SqlComputed field/property (either "Calculated" or explicitly "Transient") is referenced in a trigger defi-
nition, Get()/Set() method overrides are not recognized by the trigger. Use SQLCOMPUTED/SQLCOMPUTONCHANGE,
rather than overriding the property's Get() or Set() method.

InterSystems SQL Reference 157

CREATE TRIGGER (SQL)

Using Get()/Set() method overrides can result in the following erroneous result: The {property*O} value is determined
using SQL and does not use the overridden Get()/Set() methods. Because the property is not stored on disk, {property*O}
uses the SqlComputeCode to "recreate" the old value. However, {property*N} uses the overridden Get()/Set() methods to
access the property's value. As a result, there is a possibility for {property*O} and {property*N} to be different (and thus
{property*C}=1) even though the property did not actually change.

Labels

Trigger code may contain line labels (tags). To specify a label in trigger code, prefix the label line with a colon to indicate
that this line should begin in the first column. InterSystems IRIS strips out the colon and treats the remaining line as a label.
However, because trigger code is generated outside the scope of any procedure blocks, every label must be unique
throughout the class definition. Any other code compiled into the class's routine must not have the same label defined,
including in other triggers, in non-procedure block methods, SqlComputeCode, and other code.

Note: This use of a colon prefix for a label takes precedence over the use of a colon prefix for a host variable reference.
To avoid this conflict, it is recommended that embedded SQL trigger code lines never begin with a host variable
reference. If you must begin a trigger code line with a host variable reference, you can designate it as a host
variable (and not a label) by doubling the colon prefix.

Method Calls

You can call class methods from within trigger code, because class methods do not depend on having an open object. You
must use the ##class(classname).Method() syntax to invoke a method. You cannot use the ..Method() syntax,
because this syntax requires a current open object.

You can pass the value of a field of the current row as an argument of the class method, but the class method itself cannot
use field syntax.

Listing Existing Triggers
You can use the INFORMATION.SCHEMA.TRIGGERS class to list the currently defined triggers. This class lists for each
trigger the name of the trigger, the associated schema and table name, and the trigger creation timestamp. For each trigger
it lists the EVENT_MANIPULATION property (INSERT, UPDATE, DELETE, INSERT/UPDATE,
INSERT/UPDATE/DELETE) and ACTION_TIMING property (BEFORE, AFTER). It also lists the ACTION_STATEMENT,
which is the generated SQL trigger code.

Trigger Runtime Errors
A trigger and its invoking event execute as an atomic operation on a single row basis. That is:

• A failed BEFORE trigger is rolled back, the associated INSERT, UPDATE, or DELETE operation is not executed,
and all locks on the row are released.

• A failed AFTER trigger is rolled back, the associated INSERT, UPDATE, or DELETE operation is rolled back, and
all locks on the row are released.

• A failed INSERT, UPDATE, or DELETE operation is rolled back, the associated BEFORE trigger is rolled back,
and all locks on the row are released.

• A failed INSERT, UPDATE, or DELETE operation is rolled back, the associated AFTER trigger is not executed,
and all locks on the row are released.

Note that integrity is maintained for the current row operation only. Your application program must handle data integrity
issues involving operation on multiple rows by using transaction processing statements.

Because a trigger is an atomic operation, you cannot code transaction statements, such as commits and rollbacks, within
trigger code.

158 InterSystems SQL Reference

SQL Commands

If an INSERT, UPDATE, or DELETE operation causes multiple triggers to execute, the failure of one trigger causes all
remaining triggers to remain unexecuted.

• SQLCODE -415: If there is an error in the trigger code (for example, a reference to a non-existent table or an undefined
variable) execution of the trigger code fails at runtime and InterSystems IRIS issues an SQLCODE -415 error “Fatal
error occurred within the SQL filer”.

• SQLCODE -130 through -135: When a trigger operation fails, InterSystems IRIS issues one of the SQLCODE error
codes -130 through -135 at runtime indicating the type of trigger that failed. You can force a trigger to fail by setting
the %ok variable to 0 in the trigger code. This issues the appropriate SQLCODE error (for example, SQLCODE -131
“After insert trigger failed”) and returns the user-specified value of the %msg variable as a string to describe the cause
of the trigger code error.

Examples
The following example demonstrates CREATE TRIGGER with an ObjectScript DELETE trigger. It assumes that there
is a data table (TestDummy) that contains records. It creates a log table (TestDummyLog) and a DELETE trigger that writes
to the log table when a delete is performed on the data table. The trigger inserts the name of the data table, the RowId of
the deleted row, the current date, and the type of operation performed (the %oper special variable), in this case “DELETE”:

SQL

 CREATE TABLE TestDummyLog
 (TableName VARCHAR(40),
 IDVal INTEGER,
 LogDate DATE,
 Operation VARCHAR(40))

ObjectScript

&sql(CREATE TRIGGER TrigTestDummy AFTER DELETE ON TestDummy
 LANGUAGE OBJECTSCRIPT {
 NEW id
 SET id = {ID}
 &sql(INSERT INTO TestDummyLog (TableName,IDVal,LogDate,Operation)
 VALUES ('TestDummy',:id,+$HOROLOG,:%oper))
 }
)
 WRITE !,"SQL trigger code is: ",SQLCODE

The following examples demonstrate CREATE TRIGGER with an SQL INSERT trigger. The first program creates a table,
an INSERT trigger for that table, and a log table for the trigger's use. The second program issues an INSERT against the
table, which invokes the trigger, which logs an entry in the log table. After displaying the log entry, the program drops both
tables so that this program can be run repeatedly:

SQL

 CREATE TABLE TestDummy (
 testnum INT NOT NULL,
 firstword CHAR (30) NOT NULL,
 lastword CHAR (30) NOT NULL,
 CONSTRAINT TestDummyPK PRIMARY KEY (testnum))
CREATE TABLE TestDummyLog (
 entry CHAR (60) NOT NULL)
)
CREATE TRIGGER TrigTestDummy AFTER INSERT ON TestDummy
 BEGIN
 INSERT INTO TestDummyLog (entry) VALUES
 (CURRENT_TIMESTAMP||' INSERT to TestDummy');
 END

InterSystems SQL Reference 159

CREATE TRIGGER (SQL)

SQL

 INSERT INTO TestDummy (testnum,firstword,lastword) VALUES
 (46639,'hello','goodbye'))
SELECT entry FROM TestDummyLog
DROP TABLE TestDummy
DROP TABLE TestDummyLog

The following example includes a WHEN clause that specifies that the action should only be performed when the predicate
condition in parentheses is met:

SQL

CREATE TRIGGER Trigger_2 AFTER INSERT ON Table_1
 WHEN (f1 %STARTSWITH 'A')
 BEGIN
 INSERT INTO Log_Table VALUES (new_row.Category);
 END

The following example defines a trigger that returns the old Name field value and the new Name field value after a row is
inserted, updated, or deleted in Sample.Employee. (You can perform the triggering event operation from the SQL Shell to
view this result):

CREATE TRIGGER EmployNameTrig AFTER INSERT,UPDATE,DELETE ON Sample.Employee
 LANGUAGE OBJECTSCRIPT
 {WRITE "Employee old name:",{Name*O}," new name:",{Name*N}," ",{%%OPERATION}," on ",{%%TABLENAME},!}

See Also
• DROP TRIGGER

• GRANT

• Using Triggers

• SQLCODE error messages

160 InterSystems SQL Reference

SQL Commands

CREATE USER (SQL)
Creates a user account.

Synopsis

CREATE USER user-name IDENTIFY BY password
CREATE USER user-name IDENTIFIED BY password
CREATE USER user-name [WITH] PASSWORD password

Description
The CREATE USER command creates a user account with the specified password.

A user-name can be any valid identifier of up to 160 characters. A user-name must follow identifier naming conventions.
A user-name can contain Unicode characters. User names are not case-sensitive.

A user-name specified as a delimited identifier can be an SQL reserved word and can contain a comma (,), period (.), caret
(^), and the two-character arrow sequence (->). It may begin with any valid character except the asterisk (*).

The IDENTIFY BY, IDENTIFIED BY, and WITH PASSWORD keywords are synonyms.

A password can be a numeric literal, an identifier, or a quoted string. A numeric literal or an identifier does not have to be
enclosed in quotes. A quoted string is commonly used to include blanks in a password; a quoted password can contain any
combination of characters, with the exception of the quote character itself. A numeric literal must consist of only the char-
acters 0 through 9. An identifier must start with a letter (uppercase or lowercase) or a % (percent symbol); this can be followed
by any combination of letters, numbers, or any of the following symbols: _ (underscore), & (ampersand), $ (dollar sign),
or @ (at sign).

Passwords are case-sensitive. A password must be at least three characters, and less than 33 characters, in length. Specifying
a password that is too long or too short generates an SQLCODE -400 error, with a %msg value of “ERROR #845: Password
does not match length or pattern requirements”.

You cannot use a host variable to specify a user-name or password value.

Creating a user does not create any roles or grant any roles to the user. Instead, the user is given permissions for the database
they are logging in to, and USE permission on the %SQL/Service service if the user holds at least one SQL privilege in the
namespace. To assign privileges or roles to a user, use the GRANT command. To create roles, use the CREATE ROLE
command.

If you invoke CREATE USER to create a user that already exists, SQL issues an SQLCODE -118 error, with a %msg
value of “User named 'name' already exists” . You can determine if a user already exists by invoking the
$SYSTEM.SQL.Security.UserExists() method:

ObjectScript

 WRITE $SYSTEM.SQL.Security.UserExists("Admin"),!
 WRITE $SYSTEM.SQL.Security.UserExists("BertieWooster")

This method returns 1 if the specified user exists, and 0 if the user does not exist. User names are not case-sensitive.

Privileges

The CREATE USER command is a privileged operation. Prior to using CREATE USER in embedded SQL, you must
be logged in as a user with one of the following:

• The %Admin_Secure administrative resource with USE permission

• The %Admin_UserEdit administrative resource with USE permission

• Full security privileges on the system

InterSystems SQL Reference 161

CREATE USER (SQL)

If you are not, the CREATE USER command results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(/* SQL code here */)

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

Arguments

user-name

The name of the user to be created. The name is an identifier with a maximum of 128 characters. It can contain Unicode
letters. user-name is not case-sensitive.

password

The password for this user. A password must be at least 3 characters, and cannot exceed 32 characters. Passwords are case-
sensitive. Passwords can contain Unicode characters.

Example
The following embedded SQL example creates a new user named “BillTest” with a password of “Carl4SHK”. (The
$RANDOM toggle is provided so that you can execute this example program repeatedly.)

ObjectScript

Main
 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 SET x=$SYSTEM.SQL.Security.UserExists("BillTest")
 IF x=0 {&sql(CREATE USER BillTest IDENTIFY BY Carl4SHK)
 IF SQLCODE '= 0 {WRITE "CREATE USER error: ",SQLCODE,!
 QUIT}
 }
 WRITE "User BillTest exists",!
Cleanup
 SET toggle=$RANDOM(2)
 IF toggle=0 {
 &sql(DROP USER BillTest)
 IF SQLCODE '= 0 {WRITE "DROP USER error: ",SQLCODE,!}
 }
 ELSE {WRITE !,"No drop this time",!}
 WRITE "User BillTest exists? ",$SYSTEM.SQL.Security.UserExists("BillTest"),!
 QUIT

See Also
• SQL statements: ALTER USER, DROP USER, GRANT, REVOKE, CREATE ROLE

• SQL Users, Roles, and Privileges

• SQLCODE error messages

• ObjectScript: $ROLES and $USERNAME special variables

162 InterSystems SQL Reference

SQL Commands

CREATE VIEW (SQL)
Creates a view.

Synopsis

CREATE [OR REPLACE] VIEW view-name [(column-commalist)]
 AS select-statement
 [WITH READ ONLY | WITH [level] CHECK OPTION]

Description
The CREATE VIEW command defines the content of a view. The SELECT statement that defines the view can reference
more than one table and can reference other views.

Privileges

The CREATE VIEW command is a privileged operation. The user must have %CREATE_VIEW administrative privilege
to execute CREATE VIEW. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does
not have %CREATE_VIEW privileges. You can use the GRANT command to assign %CREATE_VIEW privileges,
if you hold appropriate granting privileges.

To select from the objects referenced in the SELECT clause of a view being created, it is necessary to have the appropriate
privileges:

• When creating a view using Dynamic SQL or via a database driver, you must have SELECT privileges on all the
columns selected from the underlying tables (or views) referenced by the view. If you do not have SELECT privilege
for a specified table (or view) the CREATE VIEW command will not execute.

However, when compiling a class that projects a defined view, these SELECT privileges are not enforced on the
columns selected from the underlying tables (or views) referenced by the view. For example, if you create a view using
a privileged routine (that has these SELECT privileges), you can later compile the view class, because you are the
owner of the view, regardless of whether you have SELECT privileges for the tables referenced by the view.

• To receive SELECT privilege WITH GRANT OPTION for a view, you must have WITH GRANT OPTION for every
table (or view) referenced by the view.

• To receive INSERT, UPDATE, DELETE, or REFERENCES privilege for a view, you must have the same privilege
for every table (or view) referenced by the view. To receive WITH GRANT OPTION for any of these privileges, you
must hold the privilege WITH GRANT OPTION on the underlying tables.

• If the view is specified WITH READ ONLY, the view is not granted INSERT, UPDATE, or DELETE privileges,
regardless of the privileges you hold for the underlying tables. If the view is later redefined as read/write, these privileges
are added when the class projecting the view is recompiled.

You can determine if the current user has these table-level privileges by invoking the %CHECKPRIV command. You can
determine if a specified user has these table-level privileges by invoking the $SYSTEM.SQL.Security.CheckPrivilege()
method. For privilege assignment, refer to the GRANT command.

The creator (owner) of a view is granted the %ALTER privilege WITH GRANT OPTION when the view is compiled.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

InterSystems SQL Reference 163

CREATE VIEW (SQL)

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

%CREATE_VIEW privileges are assigned using the GRANT command, which requires you to assign this privilege to a
user or role. By default, CREATE VIEW security privileges are enforced. This privileges requirement is configurable
system-wide using the $SYSTEM.SQL.Util.SetOption() method SET
status=$SYSTEM.SQL.Util.SetOption("SQLSecurity",0,.oldval); to determine the current setting, call
the $SYSTEM.SQL.CurrentSettings() method, which displays an SQL security enabled setting.

The default is 1 (enabled). When SQL Security is enabled, a user can only perform actions on a table or view for which
that user has been granted privilege. This is the recommended setting for this option.

If this method is set to 0, SQL Security is disabled for any new process started after changing this setting. This means
privilege-based table/view security is suppressed. You can create a table without specifying a user. In this case, Dynamic
SQL assigns “_SYSTEM” as user, and Embedded SQL assigns "" (the empty string) as user. Any user can perform actions
on a table or view even if that user has no privileges to do so.

View Naming Conventions

A view name has the same naming conventions as a table name, and shares the same name set. Therefore, you cannot use
the same name for a table and a view in the same schema. Attempting to do so results in an SQLCODE -201 error. To
determine if a table already exists in the current namespace, use the $SYSTEM.SQL.Schema.TableExists("schema.tname")
method. A class that projects a table definition and a view definition with the same name also generates an SQLCODE -
201 error.

View names follow identifier conventions, subject to the restrictions below. By default, view names are simple identifiers.
A view name should not exceed 128 characters. View names are not case-sensitive.

InterSystems IRIS uses the view name to generate a corresponding class name. A class name contains only alphanumeric
characters (letters and numbers) and must be unique within the first 96 characters. To generate this class name, InterSystems
IRIS first strips punctuation characters from the view name, and then generates a identifier that is unique within the first
96 characters, substituting an integer (beginning with 0) for the final character when needed to create a unique class name.
InterSystems IRIS generates a unique class name from a valid view name, but this name generation imposes the following
restrictions on the naming of views:

• A view name must include at least one letter. Either the first character of the view name or the first character after
initial punctuation characters must be a letter.

• InterSystems IRIS supports 16-bit (wide) characters for view names. A character is a valid letter if it passes the $ZNAME
test.

• If the first character of the view name is a punctuation character, the second character cannot be a number. This results
in an SQLCODE -400 error, with a %msg value of “ERROR #5053: Class name 'schema.name' is invalid” (without
the punctuation character). For example, specifying the view name %7A generates the %msg “ERROR #5053: Class
name 'User.7A' is invalid”.

• Because generated class names do not include punctuation characters, it is not advisable (though possible) to create a
view name that differs from an existing view or table name only in its punctuation characters. In this case, InterSystems
IRIS substitutes an integer (beginning with 0) for the final character of the name to create a unique class name.

• A view name may be much longer than 96 characters, but view names that differ in their first 96 alphanumeric characters
are much easier to work with.

A view name can be qualified or unqualified.

A qualified view name (schema.viewname) can specify an existing schema or a new schema. If it specifies a new schema,
the system creates that schema.

An unqualified view name (viewname) takes the default schema name.

164 InterSystems SQL Reference

SQL Commands

Existing View

To determine if a specified view already exists in the current namespace, use the
$SYSTEM.SQL.Schema.ViewExists("schema.vname") method.

What happens when you try to create a view that has the same name as an existing view depends on the optional OR
REPLACE keyword and on the configuration setting.

With OR REPLACE

If you specify CREATE OR REPLACE VIEW, the existing view is replaced by the view definition specified in the
SELECT clause and any specified WITH READ ONLY or WITH CHECK OPTION. This is the same as performing the
corresponding ALTER VIEW statement. Any privileges that had been granted to the original view remain. Ownership of
the view transfers to the user who executes the CREATE OR REPLACE VIEW statement.

This keyword phrase provides no functionality not available through ALTER VIEW. It is provided for compatibility with
Oracle SQL code.

Without OR REPLACE

By default, if you specify CREATE VIEW, InterSystems IRIS rejects an attempt to create a view with the name of an
existing view and issues an SQLCODE -201 error. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(),
which displays a Allow DDL CREATE TABLE or CREATE VIEW for existing table or view setting. The
default is 0 (No), which is the recommended setting. If this option is set to 1 (Yes), InterSystems IRIS deletes the class
definition associated with the view and then recreates it. This is the same as performing a DROP VIEW and then performing
a CREATE VIEW. Note that this setting affects both CREATE VIEW and CREATE TABLE.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

Column Names

A view can optionally include a column-commalist list of column names, enclosed in parentheses. These column names,
if specified, are the names used to access and display the data for the columns when using that view.

If you omit the column-commalist, the following apply:

• The column names of the SELECT source table are used to access and display the data when using the view.

• If any of the SELECT source table column names have column aliases, the column aliases are the names used to access
and display the data when using the view.

• If the SELECT source table column names have table aliases, the table aliases are not used in the names used to access
and display the data when using the view.

If you omit the list of column names, you must also omit the parentheses.

If you specify the column-commalist, the following apply:

• A column name list must specify the enclosing parentheses, even when specifying a single field. You must separate
multiple column names with commas. Whitespace and comments are permitted within a column-commalist.

• The number of column names must correspond to the number of columns specified in the SELECT statement. Mismatch
between the number of view columns and query columns results in an SQLCODE -142 error at compile time.

• The names of column names must be valid identifiers. They may be different names than the SELECT column names,
the same names as the SELECT column names, or a combination of both. The specified order of the view column
names corresponds to the order of the SELECT column names. Because it is possible to assign a view column the
name of an unrelated SELECT column, you must exercise caution when assigning view column names.

InterSystems SQL Reference 165

CREATE VIEW (SQL)

• A column name must be unique. Specifying a duplicate column name results in an SQLCODE -97 error. Column
names are converted to corresponding class property names by stripping out punctuation characters; column names
that differ only in punctuation characters are permitted, but discouraged.

The following example shows a CREATE VIEW with matching lists of view columns and query columns:

SQL

CREATE VIEW MyView (ViewCol1, ViewCol2, ViewCol3) AS
 SELECT TableCol1, TableCol2, TableCol3
 FROM MyTable

Alternatively, you can use the AS keyword in the query to specify the view columns as query column / view column pairs,
as shown in the following example:

SQL

CREATE VIEW MyView AS
 SELECT TableCol1 AS ViewCol1,
 TableCol2 AS ViewCol2,
 TableCol3 AS ViewCol3
 FROM MyTable

SELECT Columns and View Columns

• Data from multiple SELECT columns can be concatenated into a single view column. For example:

SQL

CREATE VIEW MyView (fullname) AS SELECT firstname||' '||lastname FROM MyTable

• Multiple view columns can refer to the same SELECT column. For example:

SQL

CREATE VIEW MyView (lname,surname) AS SELECT lastname,lastname FROM MyTable

SELECT Clause Considerations

A view does not have to be a simple subset of the rows and columns of one particular table. A view can be created using
a SELECT clause of any complexity, specifying any combination of tables or views. There are, however, a few restrictions
on the SELECT clause of a view definition:

• Can only include an ORDER BY clause if this clause is paired with a TOP clause. If you wish to include all of the
rows in the view, you can use a TOP ALL clause. You can include a TOP clause without an ORDER BY clause.
However, if you include an ORDER BY clause without a TOP clause, an SQLCODE -143 error is generated. If you
project an SQL view from a view class, the query of which contains an ORDER BY clause, the ORDER BY clause is
ignored in the view projection.

• Cannot contain host variables. If you attempt to reference a host variable in the SELECT clause, the system generates
an SQLCODE -148 error.

• Cannot include the INTO keyword. A view that specifies a SELECT with an INTO clause can be created, but execution
of this view fails with an SQLCODE -25 error.

CREATE VIEW can contain a UNION statement to select columns from the union of two tables. You can specify a
UNION as shown in the following example:

166 InterSystems SQL Reference

SQL Commands

SQL

CREATE VIEW MyView (vname,vstate) AS
 SELECT t1.name,t1.home_state
 FROM Sample.Person AS t1
 UNION
 SELECT t2.name,t2.office_state
 FROM Sample.Employee AS t2

Note that an unqualified view name, such as in the above example, defaults to the default schema name (for example, the
initial schema default SQLUser.MyView), even though the tables referenced by the view are in the Sample schema. Thus
it is usually a good practice to always qualify a view name to ensure that it is stored with its associated table(s).

View ID: %vid

When data is accessed through a view, InterSystems IRIS assigns a sequential integer view ID (%vid) to each row returned
by that view. Like table row ID numbers, these view row ID numbers are system-assigned, unique, non-zero, non-null, and
non-modifiable. This %vid is usually invisible. Unlike a table row ID, it is not displayed when using asterisk syntax; it is
only displayed when explicitly specified in the SELECT. The %vid can be used to further restrict the number of rows
returned by a SELECT accessing a view. For further details on using %vid, refer to Defining and Using Views.

Arguments

view-name

The name for the view being created. A valid identifier, subject to the same additional naming restrictions as a table name.
A view name can be qualified (schema.viewname), or unqualified (viewname). An unqualified view name takes the default
schema name. Note that you cannot use the same name for a table and a view in the same schema.

column-commalist

An optional argument. The column names that compose the view, one or more valid identifiers. If specified, this list is
enclosed in parentheses and items in the list are separated by commas.

AS select-statement

A SELECT statement that defines the view.

WITH READ ONLY

An optional argument specifying that no insert, update, or delete operations can be performed through this view upon the
table on which the view is based. The default is to permit these operations through a view, subject to the constraints described
below.

WITH level CHECK OPTION

An optional argument that specifies how insert, update, or delete operations are performed through this view upon the table
on which the view is based. The level can be the keywords LOCAL or CASCADED. If no level is specified, the WITH
CHECK OPTION default is CASCADED.

Updating Through Views
A view can be used to update the tables on which the view is based. You can INSERT new rows through the view, UPDATE
data in rows seen through the view, and DELETE rows seen through the view. INSERT, UPDATE, and DELETE statements
can be issued for a view, if the CREATE VIEW statement specified this ability. To allow updating through a view, specify
WITH CHECK OPTION (the default) when defining the view.

InterSystems SQL Reference 167

CREATE VIEW (SQL)

Note: If the view is based on a sharded table, you cannot INSERT, UPDATE, or DELETE through a view WITH
CHECK OPTION. Attempting to do so results in an SQLCODE -35 with the %msg INSERT/UPDATE/DELETE
not allowed for view (sample.myview) based on sharded table with check option

conditions.

To prevent updating through a view, specify WITH READ ONLY. Attempting an INSERT, UPDATE, or DELETE
through a view created WITH READ ONLY generates an SQLCODE -35 error.

In order to update through a view, you must have the appropriate privileges for the table or view to be updated, as specified
by the GRANT command.

Updating through views is subject to the following restrictions:

• The view cannot be a class query projected as a view.

• The view’s class cannot contain the class parameter READONLY=1.

• The view’s SELECT statement cannot contain a DISTINCT, TOP, GROUP BY, or HAVING clause, or be part of a
UNION.

• The view’s SELECT statement cannot contain a subquery.

• The view’s SELECT statement can only list value expressions that are column references.

• The view’s SELECT statement can have only one table reference; it cannot contain FROM clause JOIN syntax or
arrow syntax in the select-list or WHERE clause. The table reference must specify either an updateable table or an
updateable view.

The WITH CHECK OPTION clause causes an insert or update operation to validate the resulting row against the WHERE
clause of the view definition. This ensures that the inserted or modified row is part of the derived view table. There are two
available check options:

• WITH LOCAL CHECK OPTION — only the WHERE clause of the view specified in the INSERT or UPDATE
statement is checked.

• WITH CASCADED CHECK OPTION — the WHERE clause of the view specified in the INSERT or UPDATE
statement and all underlying views are checked. This overrides any WITH LOCAL CHECK OPTION clauses in these
underlying views. WITH CASCADED CHECK OPTION is recommended for all updateable views.

If you specify WITH CHECK OPTION, the check option defaults to CASCADED. The keyword CASCADE is a
synonym for CASCADED.

If an INSERT operation fails WITH CHECK OPTION validation (as defined above), InterSystems IRIS issues an SQLCODE
-136 error.

If an UPDATE operation fails WITH CHECK OPTION validation (as defined above), InterSystems IRIS issues an SQL-
CODE -137 error.

Examples
The following example creates a view named "CityPhoneBook" from the PhoneBook table:

SQL

CREATE VIEW CityPhoneBook AS
 SELECT Name FROM PhoneBook WHERE City='Boston'

The following example creates a view named "GuideHistory" from the Guides table. It lists all titles (from the Title column)
and whether or not the person is retired:

168 InterSystems SQL Reference

SQL Commands

SQL

CREATE VIEW GuideHistory AS
 SELECT Guides, Title, Retired, Date_Retired
 FROM Guides

The following example creates the table MyTest, and then creates a view for this table, MyTestView, which selects one
field from MyTest:

SQL

CREATE TABLE Sample.MyTest (
 TestNum INT NOT NULL,
 FirstWord CHAR (30) NOT NULL,
 LastWord CHAR (30) NOT NULL,
 CONSTRAINT MyTestPK PRIMARY KEY (TestNum))

CREATE VIEW Sample.MyTestView AS
 SELECT FirstWord FROM Sample.MyTest
 WITH CASCADED CHECK OPTION

The following example creates a view MyTestView, which selects two fields from MyTest. The SELECT query for this
view contains a TOP clause and an ORDER BY clause:

SQL

CREATE TABLE Sample.MyTest (
 TestNum INT NOT NULL,
 FirstWord CHAR (30) NOT NULL,
 LastWord CHAR (30) NOT NULL,
 CONSTRAINT MyTestPK PRIMARY KEY (TestNum))

CREATE VIEW Sample.MyTestView AS
 SELECT TOP ALL FirstWord,LastWord FROM Sample.MyTest
 ORDER BY LastWord)

The following example creates a view named "StaffWorksDesign" from three tables (Proj, Staff, and Works). The columns
Name, Cost, and Project provide the data.

SQL

CREATE VIEW StaffWorksDesign (Name,Cost,Project)
 AS SELECT EmpName,Hours*2*Grade,PName
 FROM Proj,Staff,Works
 WHERE Staff.EmpNum=Works.EmpNum
 AND Works.PNum=Proj.PNum AND PType='Design'

The following example creates a view named “v_3” by selecting from b.table2 and a.table1 using a UNION:

SQL

CREATE VIEW v_3(fvarchar)
 AS SELECT DISTINCT *
 FROM
 (SELECT fVARCHAR2 FROM b.table2
 UNION ALL
 SELECT fVARCHAR1 FROM a.table1)

See Also
• ALTER VIEW

• DROP VIEW

• CREATE TABLE

• GRANT

• SELECT

InterSystems SQL Reference 169

CREATE VIEW (SQL)

• Defining and Using Views

• SQL and Object Settings Pages

• SQLCODE error messages

170 InterSystems SQL Reference

SQL Commands

DECLARE (SQL)
Declares a cursor.

Synopsis

DECLARE cursor-name CURSOR FOR query

Description
A DECLARE statement declares a cursor used in cursor-based Embedded SQL. After declaring a cursor, you issue an
OPEN statement to open the cursor and then a series of FETCH statements to retrieve individual records. The cursor defines
the SELECT query that is used to select records for retrieval by these FETCH statements. You issue a CLOSE statement
to close (but not delete) the cursor.

As an SQL statement, DECLARE is only supported from Embedded SQL. For Dynamic SQL, use instead either a simple
SELECT statement (with no INTO clause), or a combination of Dynamic SQL and Embedded SQL. Equivalent operations
are supported through ODBC using the ODBC API.

DECLARE declares a forward-only (non-scrollable) cursor. Fetch operations begin with the first record in the query result
set and proceed sequentially through the result set records. A FETCH can only fetch a record once. The next FETCH
fetches the next sequential record in the result set.

Because DECLARE is a declaration, not an executed statement, it does not set or kill the SQLCODE variable.

Cursor Names

Cursor names are case-sensitive.

A cursor name must be unique within the routine and the corresponding class. A cursor name may be of any length, but
must be unique within the first 29 characters. Cursor names are case-sensitive. If a specified cursor has already been declared,
no compilation error is issued; SQL execution uses the most recently declared instance of that cursor.

Cursor names are not namespace-specific. You can DECLARE a cursor in one namespace, and OPEN, FETCH, or
CLOSE this cursor when in another namespace. Embedded SQL is complied when the OPEN command is executed. SQL
tables and local variables are namespace-specific, so the OPEN operation must be invoked in the same namespace (or be
able to access tables in the namespace) where the table(s) specified in the query are located.

The first character of a cursor name must be a letter. The second and subsequent characters of a cursor name must be either
a letter or a number. Unlike SQL identifiers, punctuation characters are not permitted in cursor names.

You can use a delimiter characters (double quotes) to specify an SQL reserved word as a cursor name. A delimited cursor
name is not an SQL delimited identifier; delimited cursor names are still case-sensitive and cannot contain punctuation
characters. In most cases, an SQL reserved word should not be used as a cursor name.

Updating through a Cursor

You can perform record updates and deletes through a declared cursor using an UPDATE or DELETE statement with the
WHERE CURRENT OF clause. In InterSystems SQL a cursor can always be used for UPDATE or DELETE operations
if you have the appropriate privileges on the affected tables and columns; refer to the GRANT statement for assigning
object privileges.

A DECLARE statement can specify a FOR UPDATE or FOR READ ONLY keyword clause following the query. These
clauses are optional and perform no operation. They are provided as a way to document in the code that the process issuing
the query has or does not have the needed update and delete object privileges.

InterSystems SQL Reference 171

DECLARE (SQL)

Arguments

cursor-name

The name of the cursor, which must begin with a letter and contain only letters and numbers. (Cursor names do not follow
SQL identifier conventions). Cursor names are case-sensitive. They are subject to additional naming restrictions, as described
below.

query

A standard SELECT statement that defines the result set of the cursor. This SELECT can include the %NOFPLAN keyword
to specify that InterSystems IRIS should ignore the frozen plan (if any) for this query. This SELECT can include an ORDER
BY clause, with or without a TOP clause. This SELECT can specify a table-valued function in the FROM clause.

Examples
The following Embedded SQL example uses DECLARE to define a cursor for a query that specifies two output host
variables. The cursor is then opened, fetched repeatedly, and closed:

ObjectScript

 SET name="John Doe",state="##"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A'
 FOR READ ONLY)
 WRITE !,"BEFORE: Name=",name," State=",state
 &sql(OPEN EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"DURING: Name=",name," State=",state }
 WRITE !,"FETCH status SQLCODE=",SQLCODE
 WRITE !,"Number of rows fetched=",%ROWCOUNT
 &sql(CLOSE EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}
 WRITE !,"AFTER: Name=",name," State=",state

The following Embedded SQL example uses DECLARE to define a cursor for a query that specifies both output host
variables in the INTO clause and input host variables in the WHERE clause. The cursor is then opened, fetched repeatedly,
and closed:

ObjectScript

 NEW SQLCODE,%ROWCOUNT,%ROWID
 SET EmpZipLow="10000"
 SET EmpZipHigh="19999"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name,Home_Zip
 INTO :name,:zip
 FROM Sample.Employee WHERE Home_Zip BETWEEN :EmpZipLow AND :EmpZipHigh)
 &sql(OPEN EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,name," ",zip }
 &sql(CLOSE EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}

The following Embedded SQL example uses a table-valued function as the FROM clause of the query:

172 InterSystems SQL Reference

SQL Commands

ObjectScript

 SET $NAMESPACE="Samples"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name INTO :name FROM Sample.SP_Sample_By_Name('A')
 FOR READ ONLY)
 &sql(OPEN EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE "Name=",name,! }
 WRITE !,"FETCH status SQLCODE=",SQLCODE
 WRITE !,"Number of rows fetched=",%ROWCOUNT
 &sql(CLOSE EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}

See Also
• CLOSE command

• FETCH command

• OPEN command

• WHERE CURRENT OF clause

• SQL Cursors

InterSystems SQL Reference 173

DECLARE (SQL)

DELETE (SQL)
Removes rows from a table.

Synopsis

DELETE [%keyword] [FROM] table-ref [[AS] t-alias]
 [FROM [optimize-option] select-table [[AS] t-alias]
 {,select-table2 [[AS] t-alias]}]
 [WHERE condition-expression]

DELETE [%keyword] [FROM] table-ref [[AS] t-alias]
 [WHERE CURRENT OF cursor]

Arguments
DescriptionArgument

Optional — One or more of the following keyword options, separated
by spaces: %NOCHECK, %NOFPLAN, %NOINDEX, %NOJOURN,
%NOLOCK, %NOTRIGGER, %PROFILE, %PROFILE_ALL.

%keyword

The table from which you are deleting rows. This is not a FROM
clause; it is a FROM keyword followed by a single table reference.
(The FROM keyword is optional; the table-ref is mandatory.)

A table name (or view name) can be qualified (schema.table), or
unqualified (table). An unqualified name is matched to its schema
using either a schema search path (if provided) or the default schema
name.

Rather than a table reference, you can specify a view through which
table rows can be deleted, or specify a subquery enclosed in paren-
theses. Unlike the SELECT statement FROM clause, you cannot
specify optimize-option keywords here.You cannot specify a table-
valued function or JOIN syntax in this argument.

FROM table-ref

Optional — A FROM clause, specified after the table-ref.This FROM
can be used to specify a select-table table or tables used to select
which rows are to be deleted.

Multiple tables can be specified as a comma-separated list or associ-
ated with ANSI join keywords. Any combination of tables or views
can be specified. If you specify a comma between two select-tables
here, InterSystems IRIS performs a CROSS JOIN on the tables and
retrieves data from the results table of the JOIN operation. If you
specify ANSI join keywords between two select-tables here, InterSys-
tems IRIS performs the specified join operation. For further details,
see JOIN.

You can optionally specify one or more optimize-option keywords to
optimize queryexecution. The available options are: %ALLINDEX,
%FIRSTTABLE tablename, %FULL, %INORDER, %IGNOR-
EINDICES, %NOFLATTEN, %NOMERGE, %NOSVSO,
%NOTOPOPT, %NOUNIONOROPT, %PARALLEL, and %START-
TABLE. See FROM clause for more details.

FROM clause

174 InterSystems SQL Reference

SQL Commands

DescriptionArgument

Optional — An alias for a table or view name. An alias must be a
valid identifier. The AS keyword is optional.

AS t-alias

Optional — Specifies one or more boolean predicates used to limit
which rows are to be deleted.You can specify a WHERE clause or
a WHERE CURRENT OF clause, but not both. If a WHERE clause
(or a WHERE CURRENT OF clause) is not supplied, DELETE
removes all the rows from the table. For further details, see WHERE.

WHERE condition-expression

Optional: Embedded SQL only — Specifies that the DELETE
operation deletes the record at the current position of cursor.You
can specify a WHERE CURRENT OF clause or a WHERE clause,
but not both. If a WHERE CURRENT OF clause (or a WHERE clause)
is not supplied, DELETE removes all the rows from the table. For
further details, see WHERE CURRENT OF.

WHERE CURRENT OF cursor

Description
The DELETE command removes rows from a table that meet the specified conditions. You can delete rows from a table
directly, delete through a view, or delete rows selected using a subquery. Deleting through a view is subject to requirements
and restrictions, as described in CREATE VIEW.

The DELETE operation sets the %ROWCOUNT local variable to the number of deleted rows, and the %ROWID local
variable to the RowID value of the last row deleted. If no rows are deleted, %ROWCOUNT=0 and %ROWID is undefined
or remains set to its previous value.

You must specify a table-ref; the FROM keyword before the table-ref is optional. To delete all rows from a table, you can
simply specify:

SQL

DELETE FROM tablename

or

SQL

DELETE tablename

This deletes all row data from the table, but does not reset the RowID, IDENTITY, stream field OID values, and SERIAL
(%Library.Counter) field counters. The TRUNCATE TABLE command both deletes all row data from a table and resets
these counters. By default, DELETE FROM tablename pulls delete triggers; you can speciy DELETE %NOTRIGGER
FROM tablename to not pull delete triggers. TRUNCATE TABLE does not pull delete triggers.

More commonly, a DELETE specifies the deletion of a specific row (or rows) based on a condition-expression. By default,
a DELETE operation goes through all of the rows of a table and deletes all rows that satisfy the condition-expression. If
no rows satisfy the condition-expression, DELETE completes successfully and sets SQLCODE=100 (No more data).

You can specify a WHERE clause or a WHERE CURRENT OF clause (but not both). If the WHERE CURRENT OF
clause is used, the DELETE operation deletes the record at the current position of the cursor. For an example of DELETE
using WHERE CURRENT OF, see “Embedded SQL and Dynamic SQL Examples” below. For details on positioned
operations, see WHERE CURRENT OF.

By default, DELETE is an all-or-nothing event: either all specified rows are deleted completely, or no deletion is performed.
InterSystems IRIS sets the status variable SQLCODE, indicating the success or failure of the DELETE.

To delete a row from a table:

InterSystems SQL Reference 175

DELETE (SQL)

• The table must exist in the current (or specified) namespace. If the specified table cannot be located, InterSystems IRIS
issues an SQLCODE -30 error.

• The user must have DELETE privilege on the specified table. If the user is the Owner (creator) of the table, the user
is automatically granted DELETE privilege for that table. Otherwise, the user must be granted DELETE privilege for
the table. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' is not privileged
for the operation. You can determine if the current user has DELETE privilege by invoking the %CHECKPRIV
command. You can use the GRANT command to assign DELETE privilege to a specified table. For further details,
refer to Privileges.

• The table cannot be locked IN EXCLUSIVE MODE by another process. Attempting to delete a row from a locked
table results in an SQLCODE -110 error, with a %msg such as the following: Unable to acquire lock for
DELETE of table 'Sample.Person' on row with RowID = '10'. Note that an SQLCODE -110 error
occurs only when the DELETE statement locates the first record to be deleted, then cannot lock it within the timeout
period.

• If the DELETE command’s WHERE clause specifies a non-existent field, an SQLCODE -29 is issued. To list all of
the field names defined for a specified table, refer to Column Names and Numbers. If the field exists but none of the
field values fulfill the DELETE command’s WHERE clause, no rows are affected and SQLCODE 100 (end of data)
is issued.

• The table cannot be defined as READONLY. Attempting to compile a DELETE that references a read-only table
results in an SQLCODE -115 error. Note that this error is now issued at compile time, rather than only occurring at
execution time. See the description of READONLY objects in Other Options for Persistent Classes.

• If deleting through a view, the view cannot be defined as WITH READ ONLY. Attempting to do so results in an
SQLCODE -35 error. If the view is based on a sharded table, you cannot DELETE through a view defined WITH
CHECK OPTION. Attempting to do so results in an SQLCODE -35 with the %msg INSERT/UPDATE/DELETE not
allowed for view (sample.myview) based on sharded table with check option conditions.
See the CREATE VIEW command for further details. Similarly, if you are attempting to delete through a subquery,
the subquery must be updateable; for example, the following subquery results in an SQLCODE -35 error: DELETE
FROM (SELECT COUNT(*) FROM Sample.Person) AS x.

• The row to delete must exist. Usually, attempting to delete a nonexistent row results in an SQLCODE 100 (No more
data) because the specified row could not be located. However, in rare cases, DELETE with %NOLOCK locates a
row to be deleted, but then the row is immediately deleted by another process; this situation results in an SQLCODE
-106 error. The %msg for this error lists the table name and the RowID.

• All of the rows specified for deletion must be available for deletion. By default, if one or more rows cannot be deleted
the DELETE operation fails and no rows are deleted. If a row to be deleted has been locked by another concurrent
process, DELETE issues an SQLCODE -110 error. If deleting one of the specified rows would violate foreign key
referential integrity (and %NOCHECK is not specified), the DELETE issues an SQLCODE -124 error. This default
behavior is modifiable, as described below.

• Certain %SYS namespace system–supplied facilities are protected against deletion. For example, DELETE FROM
Security.Users cannot be used to delete _SYSTEM, _PUBLIC or UnknownUser. Attempting to do so results in
an SQLCODE -134 error.

FROM Syntax
A DELETE command can contain two FROM keywords that specify tables. These two uses of FROM are fundamentally
different:

• FROM before table-ref specifies the table (or view) from which rows are to be deleted. It is a FROM keyword, not a
FROM clause. Only one table may be specified. No join syntax or optimize-option keywords may be specified. The
FROM keyword itself is optional; the table-ref is required.

176 InterSystems SQL Reference

SQL Commands

• FROM after table-ref is an optional FROM clause that can be used to determine which rows should be deleted. It may
specify one or more than one tables. It supports all of the FROM clause syntax available to a SELECT statement,
including join syntax and optimize-option keywords. This FROM clause is commonly (but not always) used with a
WHERE clause.

Thus any of the following are valid syntactical forms:

DELETE FROM table WHERE ... DELETE table WHERE ... DELETE
FROM table FROM table2 WHERE ... DELETE table FROM table2 WHERE ...

This syntax supports complex selection criteria in a manner compatible with Transact-SQL.

The following example shows how the two FROM keywords might be used. It deletes those records from the Employees
table where the same EmpId is also found in the Retirees table:

SQL

DELETE FROM Employees AS Emp
 FROM Retirees AS Rt
 WHERE Emp.EmpId = Rt.EmpId

If the two FROM keywords make reference to the same table, these references may either be to the same table, or to a join
of two instances of the table. This depends on how table aliases are used:

• If neither table reference has an alias, both reference the same table:

 DELETE FROM table1 FROM table1,table2 /* join of 2 tables */

• If both table references have the same alias, both reference the same table:

 DELETE FROM table1 AS x FROM table1 AS x,table2 /* join of 2 tables */

• If both table references have aliases, and the aliases are different, InterSystems IRIS performs a join of two instances
of the table:

 DELETE FROM table1 AS x FROM table1 AS y,table2 /* join of 3 tables */

• If the first table reference has an alias, and the second does not, InterSystems IRIS performs a join of two instances of
the table:

 DELETE FROM table1 AS x FROM table1,table2 /* join of 3 tables */

• If the first table reference does not have an alias, and the second has a single reference to the table with an alias, both
reference the same table, and this table has the specified alias:

 DELETE FROM table1 FROM table1 AS x,table2 /* join of 2 tables */

• If the first table reference does not have an alias, and the second has more than one reference to the table, InterSystems
IRIS considers each aliased instance a separate table and performs a join on these tables:

 DELETE FROM table1 FROM table1,table1 AS x,table2 /* join of 3 tables */
 DELETE FROM table1 FROM table1 AS x,table1 AS y,table2 /* join of 4 tables */

%Keyword Options
Specifying %keyword argument(s) restricts processing as follows:

• %NOCHECK — suppress referential integrity checking for foreign keys that reference the rows being deleted. The
user must have the corresponding %NOCHECK administrative privilege for the current namespace to apply this

InterSystems SQL Reference 177

DELETE (SQL)

restriction. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not have
%NOCHECK privileges.

• %NOFPLAN — the frozen plan (if any) is ignored for this operation; the operation generates a new query plan. The
frozen plan is retained, but not used. For further details, refer to Frozen Plans.

• %NOINDEX — suppresses deleting index entries in all indexes for the rows being deleted. This should be used with
extreme caution, because it leaves orphaned values in the table indexes. The user must have the corresponding
%NOINDEX administrative privilege for the current namespace to apply this restriction. Failing to do so results in an
SQLCODE –99 error with the %msg User 'name' does not have %NOINDEX privileges.

• %NOJOURN — suppress journaling and disable transactions for the duration of the delete operation. None of the
changes made in any of the rows are journaled, including any triggers pulled. If you perform a ROLLBACK after a
statement with %NOJOURN, the changes made by the statement will not be rolled back. The user must have the cor-
responding %NOJOURN administrative privilege for the current namespace to apply this restriction. Failing to do so
results in an SQLCODE –99 error with the %msg User 'name' does not have %NOJOURN privileges.

• %NOLOCK — suppress row locking of the row being deleted. This should only be used when a single user/process
is updating the database. The user must have the corresponding %NOLOCK administrative privilege for the current
namespace to apply this restriction. Failing to do so results in an SQLCODE –99 error with the %msg User 'name'
does not have %NOLOCK privileges.

• %NOTRIGGER — suppress the pulling of base table triggers that are otherwise pulled during DELETE processing.
The user must have the corresponding %NOTRIGGER administrative privilege for the current namespace to apply
this restriction. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not have
%NOTRIGGER privileges.

• %PROFILE or %PROFILE_ALL — if one of these keyword directives is specified, SQLStats collecting code is gen-
erated. This is the same code that would be generated with PTools turned ON. The difference is that SQLStats collecting
code is only generated for this specific statement. All other SQL statements within the routine/class being compiled
will generate code as if PTools is turned OFF. This enables the user to profile/inspect specific problem SQL statements
within an application without collecting irrelevant statistics for SQL statements that are not being investigated. For
further details, refer to SQL Runtime Statistics.

%PROFILE collects SQLStats for the main query module. %PROFILE_ALL collects SQLStats for the main query
module and all of its subquery modules.

You can specify multiple %keyword arguments in any order. Multiple arguments are separated by spaces.

If you specify a %keyword argument when deleting a parent record, the same %keyword argument will be applied when
deleting the corresponding child records.

Referential Integrity

If you do not specify %NOCHECK, InterSystems IRIS uses the system-wide configuration setting to determine whether
to perform foreign key referential integrity checking; the default is to perform foreign key referential integrity checking.
You can set this default system-wide, as described in Foreign Key Referential Integrity Checking. To determine the current
system-wide setting, call $SYSTEM.SQL.CurrentSettings().

During a DELETE operation, for every foreign key reference a shared lock is acquired on the corresponding row in the
referenced table. This row is locked until the end of the transaction. This ensures that the referenced row is not changed
before a potential rollback of the DELETE.

If a series of foreign key references are defined as CASCADE, a DELETE operation could potentially result in a circular
reference. InterSystems IRIS prevents DELETE with CASCADE referential action from performing a circular reference
loop recursion. InterSystems IRIS ends the cascade sequence when it returns to the original table.

If a DELETE operation with %NOLOCK is performed on a foreign key field defined with CASCADE, SET NULL, or
SET DEFAULT, the corresponding referential action changing the foreign key table is also performed with %NOLOCK.

178 InterSystems SQL Reference

SQL Commands

Atomicity

By default, DELETE, UPDATE, INSERT, and TRUNCATE TABLE are atomic operations. A DELETE either completes
successfully or the whole operation is rolled back. If any of the specified rows cannot be deleted, none of the specified
rows are deleted and the database reverts to its state before issuing the DELETE.

You can modify this default for the current process within SQL by invoking SET TRANSACTION %COMMITMODE.
You can modify this default for the current process in ObjectScript by invoking the SetOption() method, as follows SET
status=$SYSTEM.SQL.Util.SetOption("AutoCommit",intval,.oldval). The following intval integer
options are available:

• 1 or IMPLICIT (autocommit on) — The default behavior, as described above. Each DELETE constitutes a separate
transaction.

• 2 or EXPLICIT (autocommit off) — If no transaction is in progress, a DELETE automatically initiates a transaction,
but you must explicitly COMMIT or ROLLBACK to end the transaction. In EXPLICIT mode the number of database
operations per transaction is user-defined.

• 0 or NONE (no auto transaction) — No transaction is initiated when you invoke DELETE. A failed DELETE operation
can leave the database in an inconsistent state, with some of the specified rows deleted and some not deleted. To provide
transaction support in this mode you must use START TRANSACTION to initiate the transaction and COMMIT
or ROLLBACK to end the transaction.

A sharded table is always in no auto transaction mode, which means all inserts, updates, and deletes to sharded tables
are performed outside the scope of a transaction.

You can determine the atomicity setting for the current process using the GetOption("AutoCommit") method, as shown
in the following ObjectScript example:

ObjectScript

 SET stat=$SYSTEM.SQL.Util.SetOption("AutoCommit",$RANDOM(3),.oldval)
 IF stat'=1 {WRITE "SetOption failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET x=$SYSTEM.SQL.Util.GetOption("AutoCommit")
 IF x=1 {
 WRITE "Default atomicity behavior",!
 WRITE "automatic commit or rollback" }
 ELSEIF x=0 {
 WRITE "No transaction initiated, no atomicity:",!
 WRITE "failed DELETE can leave database inconsistent",!
 WRITE "rollback is not supported" }
 ELSE { WRITE "Explicit commit or rollback required" }

Transaction Locking

If you do not specify %NOLOCK, the system automatically performs standard record locking on INSERT, UPDATE,
and DELETE operations. Each affected record (row) is locked for the duration of the current transaction.

The default lock threshold is 1000 locks per table, which means if you delete more than 1000 records from a table during
a transaction, the lock threshold is reached and InterSystems IRIS automatically escalates the locking level from record
locks to a table lock. This permits large-scale deletes during a transaction without overflowing the lock table.

InterSystems IRIS applies one of the two following lock escalation strategies:

• “E”-type lock escalation: InterSystems IRIS uses this type of lock escalation if the following are true: (1) the class
uses %Storage.Persistent (you can determine this from the Catalog Details in the Management Portal SQL schema
display). (2) the class either does not specify an IDKey index, or specifies a single-property IDKey index. “E”-type
lock escalation is described in the LOCK command.

• Traditional SQL lock escalation: The most likely reason why a class would not use “E”-type lock escalation is the
presence of a multi-property IDKey index. In this case, each %Save increments the lock counter. This means if you
do 1001 saves of a single object within a transaction, InterSystems IRIS will attempt to escalate the lock.

InterSystems SQL Reference 179

DELETE (SQL)

For both lock escalation strategies, you can determine the current system-wide lock threshold value using the
$SYSTEM.SQL.Util.GetOption("LockThreshold") method. The default is 1000. This system-wide lock threshold value
is configurable:

• Using the $SYSTEM.SQL.Util.SetOption("LockThreshold") method.

• Using the Management Portal: select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Lock escalation threshold. The default is 1000 locks. If you change this setting, any new
process started after changing it will have the new setting.

You must have USE permission on the %Admin Manage Resource to change the lock threshold. InterSystems IRIS
immediately applies any change made to the lock threshold value to all current processes.

One potential consequence of automatic lock escalation is a deadlock situation that might occur when an attempt to escalate
to a table lock conflicts with another process holding a record lock in that table. There are several possible strategies to
avoid this: (1) increase the lock escalation threshold so that lock escalation is unlikely to occur within a transaction. (2)
substantially lower the lock escalation threshold so that lock escalation occurs almost immediately, thus decreasing the
opportunity for other processes to lock a record in the same table. (3) apply a table lock for the duration of the transaction
and do not perform record locks. This can be done at the start of the transaction by specifying LOCK TABLE, then UNLOCK
TABLE (without the IMMEDIATE keyword, so that the table lock persists until the end of the transaction), then perform
deletes with the %NOLOCK option.

Automatic lock escalation is intended to prevent overflow of the lock table. However, if you perform such a large number
of deletes that a <LOCKTABLEFULL> error occurs, DELETE issues an SQLCODE -110 error.

For further details on transaction locking refer to Transaction Processing.

Examples
The following examples both delete all rows from the TempEmployees table. Note that the FROM keyword is optional:

SQL

DELETE FROM TempEmployees

SQL

DELETE TempEmployees

The following example deletes employee number 234 from the Employees table:

SQL

DELETE
 FROM Employees
 WHERE EmpId = 234

The following example deletes all rows from the ActiveEmployees table in which the CurStatus column is set to "Retired":

SQL

DELETE FROM ActiveEmployees
 WHERE CurStatus = 'Retired'

The following example deletes rows using a subquery:

SQL

DELETE FROM (SELECT Name,Age FROM Sample.Person WHERE Age > 65)

180 InterSystems SQL Reference

SQL Commands

Table Deletion Example

The following example demonstrates the task of deleting rows from a newly-created table and then subsequetly deleting
the table itself.

The first command in this example creates a table named SQLUser.WordPairs with three columns.

SQL

CREATE TABLE SQLUser.WordPairs (
 Lang CHAR(2) NOT NULL,
 Firstword CHAR(30),
 Lastword CHAR(30))

The next few commands insert six records into the table.

SQL

INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('En','hello','goodbye')
INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('Fr','bonjour','au revoir')
INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('It','pronto','ciao')
INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('Fr','oui','non')
INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('En','howdy','see ya')
INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('Es','hola','adios')

The following commands delete all English records using cursor-based Embedded SQL.

ObjectScript

#sqlcompile path=Sample
 NEW %ROWCOUNT,%ROWID
 &sql(DECLARE WPCursor CURSOR FOR
 SELECT Lang FROM WordPairs
 WHERE Lang='En')
 &sql(OPEN WPCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH WPCursor)
 QUIT:SQLCODE
 &sql(DELETE FROM WordPairs
 WHERE CURRENT OF WPCursor)
 IF SQLCODE=0 {
 WRITE !,"Delete succeeded"
 WRITE !,"Row count=",%ROWCOUNT," RowID=",%ROWID }
 ELSE {
 WRITE !,"Delete failed, SQLCODE=",SQLCODE }
 }
 &sql(CLOSE WPCursor)

This command then deletes all French records.

SQL

DELETE FROM WordPairs WHERE Lang='Fr'

The final two commands display the remaining records in the table and delete the table.

SQL

SELECT %ID,* FROM SQLUser.WordPairs
DROP TABLE SQLUser.WordPairs

InterSystems SQL Reference 181

DELETE (SQL)

See Also
• FROM

• TRUNCATE TABLE

• INSERT UPDATE

• CREATE VIEW

• WHERE

• WHERE CURRENT OF

• Modifying the Database

• Defining Tables

• Defining Views

• Transaction Processing

• SQL and Object Settings Pages.

• SQLCODE error messages

182 InterSystems SQL Reference

SQL Commands

DROP AGGREGATE (SQL)
Deletes a user-defined aggregate function.

Synopsis

DROP AGGREGATE [IF EXISTS] name

Description
The DROP AGGREGATE command deletes a user-defined aggregate function (UDAF). A user-defined aggregate function
is created using the CREATE AGGREGATE command.

If you attempt to drop a UDAF that does not exist, SQL issues an SQLCODE -428 error, with a message such as: User
Defined Aggregate Function Sample.SecondHighest does not exist.

Dropping a UDAF automatically purges any cached queries that reference that UDAF.

Arguments

name

The name of the user-defined aggregate function to be deleted. The name can be qualified (schema.aggname), or unqualified
(aggname). An unqualified name takes the default schema name.

See Also
• CREATE AGGREGATE command

• Overview of Aggregate Functions

• SQLCODE error messages

InterSystems SQL Reference 183

DROP AGGREGATE (SQL)

DROP DATABASE (SQL)
Deletes a database (namespace).

Synopsis

DROP DATABASE [IF EXISTS] dbname [RETAIN_FILES]

Description
The DROP DATABASE command deletes a namespace and its associated database.

The specified dbname is the name of the namespace and the directory that contains the corresponding database files.
Specify dbname as an identifier. Namespace names are not case-sensitive. If the specified dbname namespace does not
exist, InterSystems IRIS issues an SQLCODE -340 error.

The DROP DATABASE command is a privileged operation. Prior to using DROP DATABASE, it is necessary to be
logged in as a user with the %Admin_Manage resource. The user must also have READ permission on the resource for the
routines and global's database definitions. Failing to do so results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

DROP DATABASE cannot be used to drop a system namespace, regardless of privileges. Attempting to do so results in
an SQLCODE -342 error.

DROP DATABASE cannot be used to drop the namespace that you are currently using or connected to. Attempting to do
so results in an SQLCODE -344 error.

You can also delete a namespace using the Management Portal. Select System Administration, Configuration, System Con-

figuration, Namespaces to list the existing namespaces. Click the Delete button for the namespace you wish to delete.

RETAIN_FILES

If you specify this option, the physical file structure is retained; the database and its associated namespace is removed.
After performing this operation, a subsequent attempt to use dbname results in the following:

• DROP DATABASE without RETAIN_FILES cannot remove this physical file structure. Instead, it results in an
SQLCODE -340 error (Database not found).

• DROP DATABASE with RETAIN_FILES also results in an SQLCODE -340 error (Database not found).

• CREATE DATABASE cannot create a new database with the same name. Instead, it results in an SQLCODE -341
error (Cannot create database file for database).

• Attempting to use this namespace results in a <NAMESPACE> error.

Server Init and Disconnect Codes

The Server Init Code and Server Disconnect Code can be assigned to a namespace using the
$SYSTEM.SQL.Util.SetOption("ServerInitCode",value) and
$SYSTEM.SQL.Util.SetOption("ServerDisconnectCode",value) methods. The current values can be determined using
the corresponding $SYSTEM.SQL.Util.GetOption() method options.

184 InterSystems SQL Reference

SQL Commands

Deleting a namespace, using DROP DATABASE or other interfaces, deletes these Server Init Code and Server Disconnect
Code values. Therefore, deleting and then re-creating a namespace will require you to re-specify these values.

Arguments

IF EXISTS

An optional argument that, if specified, suppresses the error if the command is executed on a nonexistent database.

dbname

The name of the database (namespace) to be deleted.

RETAIN_FILES

An optional argument that, if specified, the physical database files (IRIS.DAT files) will not be deleted. The default is to
delete the .DAT files along with the namespace and the other database entities.

Example
The following example deletes a namespace and its associated database (in this case 'c:\InterSystems\IRIS\mgr\DocTestDB').
It retains the physical database files:

SQL

CREATE DATABASE DocTestDB ON DIRECTORY 'c:\InterSystems\IRIS142\mgr\DocTestDB'

SQL

DROP DATABASE DocTestDB RETAIN_FILES

See Also
• CREATE DATABASE command

• USE DATABASE command

InterSystems SQL Reference 185

DROP DATABASE (SQL)

DROP FOREIGN SERVER (SQL)
Drops a foreign server.

Synopsis

DROP [FOREIGN] SERVER server-name [RESTRICT | CASCADE]

Arguments
DescriptionArguments

The name of the foreign server to be dropped. This name must be a valid
identifier. A foreign server by this name must exist for the command to execute
successfully.

server-name

Optional — Specifies that the foreign server should be dropped if nothing is
defined on it. This option supplies the default behavior.

RESTRICT

Optional — Specifies that all objects defined within the foreign server, including
tables, are dropped with the foreign server.

CASCADE

Description
The DROP FOREIGN SERVER command deletes a foreign server that was configured to host foreign tables.

By default, this command will only drop a foreign server that has no foreign tables defined on it; you may explicitly apply
this behavior by specifying the RESTRICT keyword. When the RESTRICT keyword has been implicitly or explicitly
specified, attempting to delete a foreign server with at least one table defined on it generates an SQLCODE -321 error.

When the CASCADE is specified, DROP FOREIGN SERVER will successfully delete the foreign server and all of the
tables defined on it.

In order to delete a foreign table, the following conditions must be met:

• The foreign server must exist in the current namespace. Attempting to delete a non-existent foreign server generates
an SQLCODE -30 error.

• You must have the necessary privileges to delete the foreign server. Attempting to delete a foreign server without the
necessary privileges generates an SQLCODE -99 error.

Examples
The following example drops a foreign server that does not have any tables defined on it.

DROP FOREIGN SERVER EmptyServer RESTRICT

The following example drops a foreign server that has tables defined on it. In the process of dropping the foreign server,
the tables associated with it are also dropped.

DROP FOREIGN SERVER FullServer CASCADE

See Also
• CREATE FOREIGN SERVER

• ALTER FOREIGN SERVER

186 InterSystems SQL Reference

SQL Commands

• DROP FOREIGN TABLE

InterSystems SQL Reference 187

DROP FOREIGN SERVER (SQL)

DROP FOREIGN TABLE (SQL)
Drops a foreign table.

Synopsis

DROP FOREIGN TABLE [IF EXISTS] table-name [RESTRICT | CASCADE]

Arguments
DescriptionArguments

Optional — Suppresses the error that arises if a foreign table with table-name
does not exist.

IF EXISTS

The name of the foreign table to be dropped.This name must be a valid identifier.
A foreign table by this name must exist for the command to execute successfully.

table-name

Optional — Specifies that the foreign table should not be dropped if any SQL
objects, such as views, are defined on the foreign table. This option supplies
the default behavior.

RESTRICT

Optional — Specifies that all objects defined on the foreign table, such as views,
are dropped with the foreign table.

CASCADE

Description
The DROP FOREIGN TABLE command deletes a foreign table from a foreign server.

By default, this command will only delete a foreign table if no views are associated with it; you may explicitly apply this
behavior by specifying the RESTRICT keyword. When the RESTRICT keyword has been implicitly or explicitly specified,
attempting to delete a foreign table with associated views generates an SQLCODE -321 error.

When the CASCADE keyword is specified, DROP FOREIGN TABLE will successfully delete the table and any views
associated with it.

In order to delete a foreign table, the following conditions must be met:

• The foreign table must exist on a foreign server in the current namespace. Attempting to delete a non-existent foreign
table generates an SQLCODE -30 error. This error is suppressed by epcifying the IF EXISTS keywords.

• You must have the necessary privileges to delete the foreign table. Attempting to delete a table without the necessary
privileges generates an SQLCODE -99 error.

Examples
The following example deletes a foreign table that does not have any objects defined on it.

DROP FOREIGN TABLE Example.MyTable RESTRICT

The following example deletes a foreign table and any views associated with it.

DROP FOREIGN TABLE Example.MyTable CASCADE

See Also
• CREATE FOREIGN TABLE

188 InterSystems SQL Reference

SQL Commands

• ALTER FOREIGN SERVER

• DROP FOREIGN SERVER

InterSystems SQL Reference 189

DROP FOREIGN TABLE (SQL)

DROP FUNCTION (SQL)
Deletes a function.

Synopsis

DROP FUNCTION [IF EXISTS] name [FROM className]

Description
The DROP FUNCTION command deletes a function. When you drop a function, InterSystems IRIS revokes it from all
users and roles to whom it has been granted and removes it from the database.

In order to drop a function, you must have %DROP_FUNCTION administrative privilege, as specified by the GRANT
command. Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a function if the class definition that contains that function definition is a deployed class. This operation
fails with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed
class: 'classname'.

The following combinations of name and FROM className are supported. Note that the FROM clause specifies the class
package name and function name, not the SQL names. In these examples, the system-wide default schema name is SQLUser,
which corresponds to the User class package:

• DROP FUNCTION BonusCalc FROM funcBonusCalc: drops the function SQLUser.BonusCalc().

• DROP FUNCTION BonusCalc FROM User.funcBonusCalc: drops the function SQLUser.BonusCalc().

• DROP FUNCTION Test.BonusCalc FROM funcBonusCalc: drops the function SQLUser.BonusCalc().

• DROP FUNCTION BonusCalc FROM Employees.funcBonusCalc: drops the function Employees.BonusCalc().

• DROP FUNCTION Test.BonusCalc FROM Employees.funcBonusCalc: drops the function Employees.Bonus-
Calc().

If the specified function does not exist, DROP FUNCTION generates an SQLCODE -362 error. If the specified class does
not exist, DROP FUNCTION generates an SQLCODE -360 error. If the specified function could refer to two or more
functions, DROP FUNCTION generates an SQLCODE -361 error; you must specify a className to resolve this ambiguity.

Arguments

IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent function.

name

The name of the function to be deleted. The name is an identifier. Do not specify the function’s parameter parentheses. A
name can be qualified (schema.name), or unqualified (name). An unqualified function name takes the system-wide default
schema name, unless the FROM className clause is specified.

FROM className

If specified, the FROM className clause deletes the function from the given class. Note that you must specify the className
of a function (funcBonusCalc), not the SQL name (BonusCalc). If the FROM clause is not specified, InterSystems IRIS
searches all classes of the schema for the function, and deletes it. However, if no function of this name is found, or more
than one function of this name is found, an error code is returned. If the deletion of the function results in an empty class,
DROP FUNCTION deletes the class as well

190 InterSystems SQL Reference

SQL Commands

Examples
The following example attempts to delete myfunc from the class User.Employee. (Refer to CREATE TABLE for an
example that creates class User.Employee.)

SQL

DROP FUNCTION myfunc FROM User.Employee

See Also
• CREATE FUNCTION

• SQLCODE error messages

InterSystems SQL Reference 191

DROP FUNCTION (SQL)

DROP INDEX (SQL)
Removes an index.

Synopsis

DROP INDEX [IF EXISTS] [%NOJOURN] index-name [ON [TABLE] table-name]

DROP INDEX [IF EXISTS] table-name.index-name

Description
A DROP INDEX statement deletes an index from a table definition. You can use DROP INDEX to delete a standard
index, bitmap index, or bitslice index. You can use DROP INDEX to delete a unique constraint or a primary key constraint
by deleting the corresponding Unique index. You cannot use DROP INDEX to delete a Bitmap Extent index or a Master
Map (Data/Master) IDKEY index.

You may wish to delete an index for any of the following reasons:

• You intend to perform large numbers of INSERT, UPDATE, or DELETE operations on a table. Rather than accepting
the performance overhead of having each of these operations write to the index, you can use the %NOINDEX option
for the operation. Or, in certain cases, it may be preferable to delete the index, perform the bulk changes to the database,
and then recreate the index and populate it.

• An index exists for a field or combination of fields that are not used for query operations. In this case, the performance
overhead of maintaining the index may not be worthwhile.

• An index exists for a field or combination of fields that now contain large amounts of duplicate data. In this case, the
minimal gain to query performance may not be worthwhile.

You cannot drop an IDKEY index when there is data in the table. Attempting to do so generates an SQLCODE -325 error.

Privileges and Locking

The DROP INDEX command is a privileged operation. The user must have %ALTER_TABLE administrative privilege
to execute DROP INDEX. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not
have %ALTER_TABLE privileges. You can use the GRANT command to assign %ALTER_TABLE privileges to a
user or role, if you hold appropriate granting privileges. Administrative privileges are namespace-specific. For further
details, refer to Privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not have required
%ALTER privilege needed to change the table definition for 'Schema.TableName'. You can
determine if the current user has %ALTER privilege by invoking the %CHECKPRIV command. You can use the GRANT
command to assign %ALTER privilege to a specified table. For further details, refer to Privileges.

• DROP INDEX cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class 'Schema.tablename'.

• DROP INDEX cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The DROP INDEX statement acquires a table-level lock on table-name. This prevents other processes from modifying
the table’s data. This lock is automatically released at the conclusion of the DROP INDEX operation.

192 InterSystems SQL Reference

SQL Commands

Index Name

When specifying an index-name to create an index, the system generates a corresponding class index name by stripping
out any punctuation characters; it retains the index-name you specified in the class as the SqlName value for the index (the
SQL map name). When you specify an index-name to DROP INDEX, you specify the name including the punctuation,
which is listed in the table’s Management Portal SQL Catalog Details as the SQL Map Name. For example, you specify the
generated SQL Map Name for a Unique constraint (MYTABLE_UNIQUE2), not the Index Name (MYTABLEUNIQUE2).
This index-name is not case-sensitive.

Table Name

You can specify the table associated with the index using either DROP INDEX syntax form:

• index-name ON TABLE syntax: specifying the table name is optional. If omitted, InterSystems IRIS searches all of
the classes in the namespace for the corresponding index.

• table-name.index-name syntax: specifying the table name is required.

In either syntax, the table name can be unqualified (table), or qualified (schema.table). If the schema name is omitted, the
default schema name is used.

If DROP INDEX does not specify a table name, InterSystems IRIS searches through all indexes for an index SqlName
matching index-name, or an index name matching index-name for indexes where an SqlName is not specified for the index.
If InterSystems IRIS finds no matching indexes in any class, an SQLCODE -333 error is generated, indicating no such
index exists. If InterSystems IRIS finds more than one matching index, DROP INDEX cannot determine which index to
drop; it issues an SQLCODE -334 error: “Index name is ambiguous. Index found in multiple tables.” Index names in
InterSystems IRIS are not unique per namespace.

Nonexistent Index

By default, if you try to delete a nonexistent index, DROP INDEX issues an SQLCODE -333 error. To determine the
current setting, call $SYSTEM.SQL.CurrentSettings(), which displays an Allow DDL DROP of non-existent
index setting. The default is 0 (“No”). This is the recommended setting. If set to 1 (“Yes”) DROP INDEX for a
nonexistent index performs no operation and issues no error message. For further details, refer to SQL and Object Settings
Pages.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

The behavior of the predicate IF EXISTS takes priority over settings in the Management Portal and the configuration
parameter file (CPF) which also govern DDL statements. These settings return SQLCODE 0 and suppress the error silently.
When IF EXISTS is specified, the command returns SQLCODE 1 along with a message.

Journaling

If you specify the %NOJOURN keyword, then DROP INDEX suppresses journaling and disables transactions for the
duration of the operation. To specify %NOJOURN, you must have %NOJOURN SQL administrative privileges, which
you can set by using the GRANT command.

Table Name

If you specify the optional table-name, it must correspond to an existing table.

• If the specified table-name does not exist, InterSystems IRIS issues an SQLCODE -30 error and sets %msg to Table
'SQLUser.tname' does not exist.

InterSystems SQL Reference 193

DROP INDEX (SQL)

• If the specified table-name exists but does not have an index named index-name, InterSystems IRIS issues an SQLCODE
-333 error and sets %msg to Attempt to DROP INDEX 'MyIndex' on table SQLUSER.TNAME failed
- index not found.

• If the specified table-name is a view, InterSystems IRIS issues an SQLCODE -333 error and sets %msg to Attempt
to DROP INDEX 'EmpSalaryIndex' on view SQLUSER.VNAME failed. Indices only supported

for tables, not views.

Arguments

IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent index. For further details, refer
to the following section on nonexistent indexes.

index-name

The name of the index to be deleted. index-name is the SQL version of the name, which can include underscores and other
punctuation. It is listed in the table’s Management Portal SQL Catalog Details as the SQL Map Name.

ON table-name, ON TABLE table-name

An optional argument specifying the name of the table associated with the index. You can specify the table-name using
either syntax: The first syntax uses the ON clause; the TABLE keyword is optional. The second syntax uses the qualified
name syntax schema-name.table-name.index-name. A table-name can be qualified (schema.table), or unqualified
(table). An unqualified table name takes the default schema name. If you omit the table-name entirely, InterSystems IRIS
deletes the first index found that matches index-name, as described below.

Examples
The first example creates a table named Employee, which is used in all of the examples in this section.

The following example creates an index named "EmpSalaryIndex" and later removes it. Note that here DROP INDEX does
not specify the table associated with the index; it assumes that "EmpSalaryIndex" is a unique index name in this namespace.

SQL

CREATE TABLE Employee (
 EMPNUM INT NOT NULL,
 NAMELAST CHAR(30) NOT NULL,
 NAMEFIRST CHAR(30) NOT NULL,
 STARTDATE TIMESTAMP,
 SALARY MONEY,
 ACCRUEDVACATION INT,
 ACCRUEDSICKLEAVE INT,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EMPNUM))
CREATE INDEX EmpSalaryIndex
 ON TABLE Employee
 (Namelast,Salary)
DROP INDEX EmpSalaryIndex

The following example specifies the table associated with the index to be dropped using an ON TABLE clause:

SQL

CREATE INDEX EmpVacaIndex
 ON TABLE Employee
 (NameLast,AccruedVacation)
DROP INDEX EmpVacaIndex ON TABLE Employee

The following example specifies the table associated with the index to be dropped using qualified name syntax:

194 InterSystems SQL Reference

SQL Commands

SQL

CREATE INDEX EmpSickIndex
 ON TABLE Employee
 (NameLast,AccruedSickLeave)
DROP INDEX Employee.EmpSickIndex

The following command attempts to drop a nonexistent index. It generates an SQLCODE -333 error:

SQL

DROP INDEX PeopleIndex ON TABLE Employee

See Also
• CREATE INDEX

• Defining and Building Indexes

• SQLCODE error messages

InterSystems SQL Reference 195

DROP INDEX (SQL)

DROP METHOD (SQL)
Deletes a method.

Synopsis

DROP METHOD [IF EXISTS] name [FROM className]

Description
The DROP METHOD command deletes a method. When you delete a method, InterSystems IRIS revokes it from all users
and roles to whom it has been granted and removes it from the database.

In order to delete a method, you must have %DROP_METHOD administrative privilege, as specified by the GRANT
command. If you are attempting to delete a method for a class with a defined owner, you must be logged in as the owner
of the class. Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a method if the class definition that contains that method definition is a deployed class. This operation
fails with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed
class: 'classname'.

The following combinations of name and FROM className are supported. Note that the FROM clause specifies the class
package name and method name, not the SQL names. In these examples, the system-wide default schema name is SQLUser,
which corresponds to the User class package:

• DROP METHOD BonusCalc FROM methBonusCalc: drops the method SQLUser.BonusCalc().

• DROP METHOD BonusCalc FROM User.methBonusCalc: drops the method SQLUser.BonusCalc().

• DROP METHOD Test.BonusCalc FROM methBonusCalc: drops the method SQLUser.BonusCalc().

• DROP METHOD BonusCalc FROM Employees.methBonusCalc: drops the method Employees.BonusCalc().

• DROP METHOD Test.BonusCalc FROM Employees.methBonusCalc: drops the method Employees.BonusCalc().

If the specified method does not exist, DROP METHOD generates an SQLCODE -362 error. If the specified className
does not exist, DROP METHOD generates an SQLCODE -360 error. If the specified method could refer to two or more
methods, DROP METHOD generates an SQLCODE -361 error; you must specify a className to resolve this ambiguity.

If a method has been defined with the PROCEDURE characteristic keyword, you can determine if it exists in the current
namespace by invoking the $SYSTEM.SQL.Schema.ProcedureExists() method. A method defined with the PROCEDURE
keyword can be deleted either by DROP METHOD or DROP PROCEDURE.

You can also delete a method by removing the method from the class definition and then recompiling the class, or by
deleting the entire class.

Arguments

IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent method.

name

The name of the method to be deleted. The name is an identifier. Do not specify the method’s parameter parentheses. A
name can be qualified (schema.name), or unqualified (name). An unqualified method name takes the default schema name,
unless the FROM className clause is specified.

196 InterSystems SQL Reference

SQL Commands

FROM className

If specified, the FROM className clause deletes the method from the given class. Note that you must specify the className
of a method (methBonusCalc), not the SQL name (BonusCalc). If this clause is not specified, InterSystems IRIS searches
all classes of the schema for the method, and deletes it. However, if no method of this name is found, or more than one
method of this name is found, an error code is returned. If the deletion of the method results in an empty class, DROP
METHOD deletes the class as well.

Examples
The following example attempts to delete mymeth from the class User.Employee. (Refer to CREATE TABLE for an
example that creates class User.Employee.)

SQL

DROP METHOD mymeth FROM User.Employee

See Also
• CREATE METHOD

• SQLCODE error messages

InterSystems SQL Reference 197

DROP METHOD (SQL)

DROP ML CONFIGURATION (SQL)
Deletes an ML configuration.

Synopsis

DROP ML CONFIGURATION ml-configuration-name

Arguments

The name of the ML configuration to delete.ml-configuration-name

Description
The DROP ML CONFIGURATION command deletes an ML configuration and its corresponding class definition.

Conditions

• The ML configuration must exist in the current namespace. Attempting to delete a non-existent ML configuration
generates an SQLCODE –30 error.

• You cannot delete the system default ML configuration. Attempting to do so results in a SQLCODE –189 error.

Required Security Privileges

Calling DROP ML CONFIGURATION requires %DROP_ML_CONFIGRATION privileges; otherwise, there is a
SQLCODE –99 error (Privilege Violation). To assign %DROP_ML_CONFIGRATION privileges, use the GRANT command.

See Also
• ALTER ML CONFIGURATION, CREATE ML CONFIGURATION

198 InterSystems SQL Reference

SQL Commands

DROP MODEL (SQL)
Deletes a model.

Synopsis

DROP MODEL model-name

Arguments

The name of the model to delete.model-name

Description
The DROP MODEL command deletes a model and its corresponding class definition. It also purges any training runs and
validation runs associated with the model.

Deleting a Non-Existent Model

The model must exist in the current namespace. Attempting to delete a non-existent model generates an SQLCODE —30
error.

Required Security Privileges

Calling DROP MODEL requires %MANAGE_MODEL privileges; otherwise, there is a SQLCODE –99 error (Privilege
Violation). To assign %MANAGE_MODEL privileges, use the GRANT command.

See Also
• ALTER MODEL, CREATE MODEL

InterSystems SQL Reference 199

DROP MODEL (SQL)

DROP PROCEDURE (SQL)
Deletes a procedure.

Synopsis

DROP PROCEDURE [IF EXISTS] procname [FROM className]
DROP PROC procname [FROM className]

Description
The DROP PROCEDURE command deletes a procedure in the current namespace. When you drop a procedure, InterSystems
IRIS revokes it from all users and roles to whom it has been granted and removes it from the database.

In order to drop a procedure, you must have %DROP_PROCEDURE administrative privilege, as specified by the GRANT
command. If you are attempting to delete a procedure for a class with a defined owner, you must be logged in as the owner
of the class. Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a procedure if the class definition that contains that procedure definition is a deployed class. This operation
fails with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed
class: 'classname'.

The procname is not case-sensitive. You must specify procname without parameter parentheses; specifying parameter
parentheses results in an SQLCODE -25 error.

The following combinations of procname and FROM className are supported. Note that the FROM clause specifies the
class package name and procedure name, not the SQL names. In these examples, the system-wide default schema name is
SQLUser, which corresponds to the User class package:

• DROP PROCEDURE BonusCalc FROM procBonusCalc: drops the procedure SQLUser.BonusCalc().

• DROP PROCEDURE BonusCalc FROM User.procBonusCalc: drops the procedure SQLUser.BonusCalc().

• DROP PROCEDURE Test.BonusCalc FROM procBonusCalc: drops the procedure SQLUser.BonusCalc().

• DROP PROCEDURE BonusCalc FROM Employees.procBonusCalc: drops the procedure Employees.BonusCalc().

• DROP PROCEDURE Test.BonusCalc FROM Employees.procBonusCalc: drops the procedure Employ-
ees.BonusCalc().

If the specified procedure does not exist, DROP PROCEDURE generates an SQLCODE -362 error. If the specified class
does not exist, DROP PROCEDURE generates an SQLCODE -360 error. If the specified procedure could refer to two or
more procedures, DROP PROCEDURE generates an SQLCODE -361 error; you must specify a className to resolve
this ambiguity.

To determine if a specified procname exists in the current namespace, use the $SYSTEM.SQL.Schema.ProcedureExists()
method. This method recognizes both procedures and methods defined with the PROCEDURE keyword. A method defined
with the PROCEDURE keyword can be deleted using DROP PROCEDURE.

If you execute a DROP PROCEDURE for a procedure that is an ObjectScript class query procedure, InterSystems IRIS
will also drop the methods related to the procedure, such as myprocExecute(), myprocGetInfo(), myprocFetch(),
myprocFetchRows(), and myprocClose().

You can also delete a procedure by removing the stored procedure from the class definition and then recompiling the class,
or by deleting the entire class.

200 InterSystems SQL Reference

SQL Commands

Arguments

procname

The name of the procedure to be deleted. The name is an identifier. Do not specify the procedure’s parameter parentheses.
A name can be qualified (schema.name), or unqualified (name). An unqualified procedure name takes the default schema
name, unless the FROM className clause is specified.

FROM className

If specified, the FROM className clause deletes the procedure from the given class. If this clause is not specified, Inter-
Systems IRIS searches all classes of the schema for the procedure, and deletes it. However, if no procedure of this name
is found, or more than one procedure of this name is found, an error code is returned. If the deletion of the procedure results
in an empty class, DROP PROCEDURE deletes the class as well.

Examples
The following example attempts to delete myprocSP from the class User.Employee. (Refer to CREATE TABLE for an
example that creates class User.Employee.)

SQL

DROP PROCEDURE myprocSP FROM User.Employee

See Also
• CREATE PROCEDURE

• SQLCODE error messages

InterSystems SQL Reference 201

DROP PROCEDURE (SQL)

DROP QUERY (SQL)
Deletes a query.

Synopsis

DROP QUERY [IF EXISTS] name [FROM className]

Description
The DROP QUERY command deletes a query. When you drop a query, InterSystems IRIS revokes it from all users and
roles to whom it has been granted and removes it from the database.

In order to drop a query, you must have %DROP_QUERY administrative privilege, as specified by the GRANT command.
If you are attempting to delete a query for a class with a defined owner, you must be logged in as the owner of the class.
Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a query if the class definition that contains that query definition is a deployed class. This operation fails
with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The following combinations of name and FROM className are supported. Note that the FROM clause specifies the class
package name and query name, not the SQL names. In these examples, the system-wide default schema name is SQLUser,
which corresponds to the User class package:

• DROP QUERY BonusCalc FROM queryBonusCalc: drops the query SQLUser.BonusCalc().

• DROP QUERY BonusCalc FROM User.queryBonusCalc: drops the query SQLUser.BonusCalc().

• DROP QUERY Test.BonusCalc FROM queryBonusCalc: drops the query SQLUser.BonusCalc().

• DROP QUERY BonusCalc FROM Employees.queryBonusCalc: drops the query Employees.BonusCalc().

• DROP QUERY Test.BonusCalc FROM Employees.queryBonusCalc: drops the query Employees.BonusCalc().

If the specified query does not exist, DROP QUERY generates an SQLCODE -362 error. If the specified class does not
exist, DROP QUERY generates an SQLCODE -360 error. If the specified query could refer to two or more queries, DROP
QUERY generates an SQLCODE -361 error; you must specify a className to resolve this ambiguity.

You can also delete a query by removing the query (projected as a stored procedure) from the class definition and then
recompiling the class, or by deleting the entire class.

Arguments

IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent query.

name

The name of the query to be deleted. The name is an identifier. Do not specify the query’s parameter parentheses. A name
can be qualified (schema.name), or unqualified (name). An unqualified query name takes the system-wide default schema
name, unless the FROM className clause is specified.

FROM className

If specified, the FROM className clause deletes the query from the given class. If this clause is not specified, InterSystems
IRIS searches all classes of the schema for the query, and deletes it. However, if no query of this name is found, or more

202 InterSystems SQL Reference

SQL Commands

than one query of this name is found, an error code is returned. If the deletion of the query results in an empty class, DROP
QUERY deletes the class as well.

Examples
The following example attempts to delete myq from the class User.Employee. (Refer to CREATE TABLE for an example
that creates class User.Employee.)

SQL

DROP QUERY myq FROM User.Employee

See Also
• CREATE QUERY

• SQLCODE error messages

InterSystems SQL Reference 203

DROP QUERY (SQL)

DROP ROLE (SQL)
Deletes a role.

Synopsis

DROP ROLE [IF EXISTS] role-name

Description
The DROP ROLE statement deletes a role. When you drop a role, InterSystems IRIS revokes it from all users and roles
to whom it has been granted and removes it from the database.

You can determine if a role exists by invoking the $SYSTEM.SQL.Security.RoleExists() method. If you attempt to drop
a role that does not exist (or has already been dropped), DROP ROLE issues an SQLCODE -118 error.

Privileges

The DROP ROLE command is a privileged operation. Prior to using DROP ROLE in embedded SQL, it is necessary to
fulfill at least one of the following requirements:

• You are the owner of the role.

• You are logged in with one of the following:

– The %Admin_Secure administrative resource with USE permission

– The %Admin_RoleEdit administrative resource with USE permission

– Full security privileges on the system

• You were granted the role WITH ADMIN OPTION.

Failing to do so results in an SQLCODE –99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

Arguments

IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent role.

role-name

The name of the role to be deleted. The name is an identifier. Role names are not case-sensitive.

Examples
The following example creates a role named BkUser and then deletes it:

204 InterSystems SQL Reference

SQL Commands

SQL

CREATE ROLE BkName
DROP ROLE BkName

See Also
• SQL statements: CREATE ROLE, CREATE USER, DROP USER, GRANT, REVOKE, %CHECKPRIV

• SQL Users, Roles, and Privileges

• SQLCODE error messages

• ObjectScript: $ROLES and $USERNAME special variables

InterSystems SQL Reference 205

DROP ROLE (SQL)

DROP SCHEMA (SQL)
Deletes the schema definition.

Synopsis

DROP SCHEMA [IF EXISTS] name [CASCADE | RESTRICT]

Arguments

DescriptionArgument

The name of the schema to be dropped. The name is an identifier.name

Optional — Suppresses the error that arises if a schema with name does not exist.IF EXISTS

Optional — Specifies that all objects with a schema are dropped, including tables,
views, queries and methods projected as stored procedures, and user-defined
aggregates.

CASCADE

Optional — Specifies that the schema should only be dropped if nothing is defined
within it. This option is assumed if CASCADE has not been specified.

RESTRICT

Description
This command deletes a schema definition. The user that issues the command must either own the schema or have the
%SQLSchemaAdmin resource in order to execute the operation.

If CASCADE is specified, all tables, views, queries and methods projected as stored procedures, and user-defined aggregates
within the schema are dropped.

By default, the RESTRICT option is specified, but you may also specify it manually. When it is specified, the schema will
only be dropped if nothing is defined within it. If DROP SCHEMA is specified without CASCADE and the schema is not
empty, SQLCODE -475 is returned.

DROP SCHEMA provides an implicit %NOJOURN to suppress journaling and disable transactions while the operation is
running. It also provides an implicit %DELDATA to delete data associated with the tables it drops when CASCADE has
been specified.

If you run DROP SCHEMA on a schema that does not exist, SQLCODE -473 is returned.

See Also
• CREATE SCHEMA

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

206 InterSystems SQL Reference

SQL Commands

DROP TABLE (SQL)
Deletes a table and (optionally) its data.

Synopsis

DROP TABLE table [RESTRICT | CASCADE] [%DELDATA | %NODELDATA]

Description
The DROP TABLE command deletes a table and its corresponding persistent class definition. If the table is the last item
in its schema, deleting the table also deletes the schema and its corresponding persistent class package.

By default, DROP TABLE deletes both the table definition and the table’s data (if any exists). The %NODELDATA
keyword allows you to specify deletion of the table definition but not the table’s data.

DROP TABLE deletes all indexes and triggers associated with the table.

In order to delete a table, the following conditions must be met:

• The table must exist in the current namespace. Attempting to delete a non-existent table generates an SQLCODE -30
error.

• The table definition must be modifiable. If the class that projects the table is defined without [DdlAllowed], attempting
to delete the table generates an SQLCODE -300 error.

• The table must not be locked by another concurrent process. If the table is locked, DROP TABLE waits indefinitely
for the lock to be released. If lock contention is a possibility, it is important that you LOCK the table IN EXCLUSIVE
MODE before issuing a DROP TABLE.

• The table must either have no associated views or DROP TABLE must specify the CASCADE keyword. Attempting
to delete a table with associated views without CASCADE generates an SQLCODE -321 error.

• You must have the necessary privileges to delete the table. Attempting to delete a table without the necessary privileges
generates an SQLCODE -99 error.

• You can delete a table even if the corresponding class is defined as a deployed class.

• You cannot delete a table if the persistent class that projects the table has derived classes (subclasses). Attempting to
delete a superclass that would leave a subclass orphaned generates an SQLCODE -300 error with a message: Class
'MySuperClass' has derived classes and therefore cannot be dropped via DDL.

You can use the $SYSTEM.SQL.Schema.DropTable() method to delete a table in the current namespace. You specify
the SQL table name. Unlike DROP TABLE, this method can delete a table that was defined without [DdlAllowed]. The
second argument specifies whether the table data should also be deleted; by default, data is not deleted.

ObjectScript

 DO $SYSTEM.SQL.Schema.DropTable("Sample.MyTable",1,.SQLCODE,.%msg)
 IF SQLCODE '= 0 {WRITE "SQLCODE ",SQLCODE," error: ",%msg}

You can use the $SYSTEM.OBJ.Delete() method to delete one or more tables in the current namespace. You must specify
the persistent class name that projects the table (not the SQL table name). You can specify multiple class names using
wildcards. The second argument specifies whether the table data should also be deleted; by default, data is not deleted.

Privileges

The DROP TABLE command is a privileged operation. The user must have %DROP_TABLE administrative privilege
to execute DROP TABLE. Failing to do so results in an SQLCODE –99 error with the %msg User does not have

InterSystems SQL Reference 207

DROP TABLE (SQL)

%DROP_TABLE privileges. You can use the GRANT command to assign %DROP_TABLE privileges, if you hold
appropriate granting privileges.

It is not necessary for the user to have DELETE object privilege for the specified table, even when the DROP TABLE
operation deletes both the table and the table data.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

DROP TABLE cannot be used on a table created by defining a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class 'Schema.tablename'.

Existing Object Privileges

Deleting a table does not delete the object privileges for that table. For example, the privilege granted to a user to insert,
update, or delete data on that table. This has the following two consequences:

• If a table is deleted, and then another table with the same name is created, users and roles will have the same privileges
on the new table that they had on the old table.

• Once a table is deleted, it is not possible to revoke object privileges for that table.

For these reasons, it is generally recommended that you use the REVOKE command to revoke object privileges from a
table before deleting the table.

Table Containing Data

By default, DROP TABLE deletes the table definition and deletes the table’s data. This table data delete is an atomic
operation; if DROP TABLE encounters data that cannot be deleted (for example, a row with a referential constraint) any
data deletion already performed is automatically rolled back, with the result that no table data is deleted.

You can set the system-wide default for table data deletion using the $SYSTEM.SQL.Util.SetOption() method
DDLDropTabDelData option. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays
the Does DDL DROP TABLE delete the table's data? setting.

The default is 1 (“Yes”). This is the recommended setting for this option. Set this option to 0 (“No”) if you want DROP
TABLE to not delete the table’s data when it deletes the table definition.

The deletion of data can be overridden on a per-table basis. When deleting a table, you can specify DROP TABLE with
the %NODELDATA option to prevent the automatic deletion of the table’s data. If the system-wide default is set to not
delete table data, you can delete data on a per-table basis by specifying DROP TABLE with the %DELDATA option.

In most circumstances DROP TABLE automatically deletes the table’s data using a highly efficient kill extent operation.
The following circumstances prevent the use of kill extent: the table has foreign keys that reference it; the class projecting
the table is a subclass of a persistent class; the class does not use default storage; there is a ForEach = "row/object" trigger;
there is a stream field that references a non-default stream field global location. If any of these apply, DROP TABLE
deletes the table’s data using a less-efficient delete record operation.

You can use the TRUNCATE TABLE command to delete the table’s data without deleting the table definition.

208 InterSystems SQL Reference

SQL Commands

Lock Applied

The DROP TABLE statement acquires an exclusive table-level lock on table. This prevents other processes from modifying
the table definition or the table data while table deletion is in process. This table-level lock is sufficient for deleting both
the table definition and the table data; DROP TABLE does not acquire a lock on each row of the table data. This lock is
automatically released at the end of the DROP TABLE operation.

Foreign Key Constraints

By default, you cannot drop a table if any foreign key constraints are defined on another table that references the table you
are attempting to drop. You must drop all referencing foreign key constraints before dropping the table they reference.
Failing to delete these foreign key constraints before attempting a DROP TABLE operation results in an SQLCODE -320
error.

This default behavior is consistent with the RESTRICT keyword option. The CASCADE keyword option is not supported
for foreign key constraints.

To change this default foreign key constraint behavior, refer to the COMPILEMODE=NOCHECK option of the SET
OPTION command.

Associated Queries

Dropping a table automatically purges any related cached queries and purges query information as generated by
%SYS.PTools.StatsSQL. Dropping a table automatically purges any SQL runtime statistics (SQL Stats) information for
any related query.

Nonexistent Table

To determine if a specified table exists in the current namespace, use the $SYSTEM.SQL.Schema.TableExists() method.

By default, if you try to delete a nonexistent table, DROP TABLE issues an SQLCODE -30 error. This is the recommended
setting. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Allow DDL DROP
of non-existent table or view setting. The default is 0 (“No”). If this option is set to 1 (“Yes”), DROP TABLE
for a nonexistent table performs no operation and does not issue an error message.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

Arguments

table

The name of the table to be deleted. The table name can be qualified (schema.table), or unqualified (table). An unqualified
table name takes the default schema name. Schema search path values are not used.

RESTRICT, CASCADE

An optional argument. RESTRICT only allows a table with no dependent views or integrity constraints to be deleted.
RESTRICT is the default if no keyword is specified. CASCADE allow a table with dependent views or integrity constraints
to be deleted; any referencing views or integrity constraints will also be deleted as part of the table deletion. The CASCADE
keyword option is not supported for foreign key constraints.

%DELDATA, %NODELDATA

These optional keywords specify whether to delete data associated with a table when deleting the table. The default is to
delete table data.

InterSystems SQL Reference 209

DROP TABLE (SQL)

Examples
The following example creates a table named SQLUser.MyEmployees and later deletes it. This example specifies that any
data associated with this table not be deleted when the table is deleted:

SQL

CREATE TABLE SQLUser.MyEmployees (
NAMELAST CHAR (30) NOT NULL,
NAMEFIRST CHAR (30) NOT NULL,
STARTDATE TIMESTAMP,
SALARY MONEY)

DROP TABLE SQLUser.MyEmployees %NODELDATA

See Also
• ALTER TABLE, CREATE TABLE, TRUNCATE TABLE

• Defining Tables

• SQL and Object Settings Pages

• SQLCODE error messages

210 InterSystems SQL Reference

SQL Commands

DROP TRIGGER (SQL)
Deletes a trigger.

Synopsis

DROP TRIGGER [IF EXISTS] name [FROM table]

Description
The DROP TRIGGER command deletes a trigger. If you wish to modify an existing trigger you must invoke DROP
TRIGGER to delete the old version of the trigger before invoking CREATE TRIGGER.

Note: DROP TABLE drops all triggers associated with that table.

Privileges and Locking

The DROP TRIGGER command is a privileged operation. The user must have %DROP_TRIGGER administrative priv-
ilege to execute DROP TRIGGER. Failing to do so results in an SQLCODE –99 error with the %msg User 'name'
does not have %DROP_TRIGGER privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not have required
%ALTER privilege needed to change the table definition for 'Schema.TableName'.

You can use the GRANT command to assign %DROP_TRIGGER and %ALTER privileges, if you hold appropriate
granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

• DROP TRIGGER cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class 'Schema.tablename'.

• DROP TRIGGER cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The DROP TRIGGER statement acquires a table-level lock on table. This prevents other processes from modifying the
table’s data. This lock is automatically released at the conclusion of the DROP TRIGGER operation.

FROM Clause

A trigger and its table must reside in the same schema. If the trigger name is unqualified, the trigger schema name defaults
to the same schema as the table schema, as specified in the FROM clause. If the trigger name is unqualified, and there is
no FROM clause, or the table name is also unqualified, the trigger schema defaults to the default schema name; schema
search paths are not used. If both names are qualified, the trigger schema name must be the same as the table schema name.

InterSystems SQL Reference 211

DROP TRIGGER (SQL)

A schema name mismatch results in an SQLCODE -366 error; this should only occur when both the trigger name and the
table name are qualified and they specify different schema names.

In InterSystems SQL, a trigger name must be unique within its schema for a specific table. Thus it is possible to have more
than one trigger in a schema with the same name. The optional FROM clause is used to determine which trigger to delete:

• If no FROM clause is specified, and InterSystems IRIS locates a unique trigger in the schema that matches the specified
name, InterSystems IRIS deletes the trigger.

• If a FROM clause is specified, and InterSystems IRIS locates a unique trigger in the schema that matches both the
specified name and the FROM table name, InterSystems IRIS deletes the trigger.

• If no FROM clause is specified, and InterSystems IRIS locates more than one trigger that matches the specified name,
InterSystems IRIS issues an SQLCODE -365 error.

• If InterSystems IRIS locates no trigger that matches the specified name, either for the table specified in the FROM
clause or, if there is no FROM clause, for any table in the schema, InterSystems IRIS issues an SQLCODE -363 error.

Arguments

IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent trigger.

name

The name of the trigger to be deleted. A trigger name may be qualified or unqualified; if qualified, its schema name must
match the table’s schema name.

FROM table

An optional argument that specifies the table the trigger is to be deleted from. If the FROM clause is specified, only the
table is searched for the named trigger. If the FROM clause is not specified, the entire schema specified in name is searched
for the named trigger.

Examples
The following example deletes a trigger named Trigger_1 associated with any table in the system-wide default schema.
(The initial default schema is SQLUser):

SQL

DROP TRIGGER Trigger_1

The following example deletes a trigger named Trigger_2 associated with any table in the A schema.

SQL

DROP TRIGGER A.Trigger_2

The following example deletes a trigger named Trigger_3 associated with the Patient table in the system-wide default
schema. If a trigger named Trigger_3 is found, but it is not associated with Patient, InterSystems IRIS issues an SQLCODE
-363 error.

SQL

DROP TRIGGER Trigger_3 FROM Patient

The following examples all delete a trigger named Trigger_4 associated with the Patient table in the Test schema.

212 InterSystems SQL Reference

SQL Commands

SQL

DROP TRIGGER Test.Trigger_4 FROM Patient

SQL

DROP TRIGGER Trigger_4 FROM Test.Patient

SQL

DROP TRIGGER Test.Trigger_4 FROM Test.Patient

See Also
• CREATE TRIGGER

• GRANT

• Using Triggers

• SQLCODE error messages

InterSystems SQL Reference 213

DROP TRIGGER (SQL)

DROP USER (SQL)
Removes a user account.

Synopsis

DROP USER [IF EXISTS] user-name

Description
The DROP USER command removes a user account. This user account was created and the user-name specified using
CREATE USER. If the specified user-name does not correspond to an existing user account, InterSystems IRIS issues an
SQLCODE -118 error. You can determine if a user exists by invoking the $SYSTEM.SQL.Security.UserExists() method.

User names are not case-sensitive.

You can also delete a user by using the Management Portal. Select System Administration, Security, Users to list the existing
users. On this table of user accounts you can click Delete for the user account you wish to delete.

Privileges

The DROP USER command is a privileged operation. Prior to using DROP USER in embedded SQL, you must be logged
in as a user with one of the following:

• The %Admin_Secure administrative resource with USE permission

• The %Admin_UserEdit administrative resource with USE permission

• Full security privileges on the system

If you are not, the DROP USER command results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

Arguments

user-name

An optional argument that suppresses the error if the command is executed on a nonexistent user.

Examples
You can drop PSMITH by issuing the statement:

SQL

DROP USER psmith

See Also
• SQL statements: CREATE USER, ALTER USER, GRANT, REVOKE, %CHECKPRIV

214 InterSystems SQL Reference

SQL Commands

• SQL Users, Roles, and Privileges

• SQLCODE error messages

• ObjectScript: $ROLES and $USERNAME special variables

InterSystems SQL Reference 215

DROP USER (SQL)

DROP VIEW (SQL)
Deletes a view.

Synopsis

DROP VIEW [IF EXISTS] view-name [CASCADE | RESTRICT]

Description
The DROP VIEW command removes a view, but does not remove the underlying tables or data.

A drop view operation can also be invoked using the DropView() method call:

$SYSTEM.SQL.Schema.DropView(viewname,SQLCODE,%msg)

Privileges

The DROP VIEW command is a privileged operation. Prior to using DROP VIEW it is necessary for your process to
have either %DROP_VIEW administrative privilege or a DELETE object privilege for the specified view. Failing to do
so results in an SQLCODE -99 error (Privilege Violation). You can determine if the current user has DELETE privilege
by invoking the %CHECKPRIV command. You can determine if a specified user has DELETE privilege by invoking the
$SYSTEM.SQL.Security.CheckPrivilege() method. You can use the GRANT command to assign %DROP_VIEW
privileges, if you hold appropriate granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

You can delete a view based on a table that is projected from a deployed persistent class.

Nonexistent View

To determine if a specified view exists in the current namespace, use the $SYSTEM.SQL.Schema.ViewExists() method.

By default, if you try to delete a nonexistent view, DROP VIEW issues an SQLCODE -30 error. To determine the current
setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Allow DDL DROP of non-existent table
or view setting. The default is 0 (“No”). This is the recommended setting for this option. If set to 1 (“Yes”) issuing a
DROP VIEW or DROP TABLE for nonexistent views and tables performs no operation and issues no error message.

From the Management Portal, System Administration, Configuration, SQL and Object Settings, SQL you can set this option
(and other similar create, alter, and drop options) system-wide by selecting the Ignore redundant DDL statements check
box.

The behavior of the predicate IF EXISTS takes priority over settings in the Management Portal and the configuration
parameter file (CPF) which also govern DDL statements. These settings return SQLCODE 0 and suppress the error silently.
When IF EXISTS is specified, the command returns SQLCODE 1 along with a message.

VIEW Referenced by Other Views

If you try to delete a view referenced by other views in their queries, DROP VIEW issues an SQLCODE -321 error by
default. This is the RESTRICT keyword behavior.

216 InterSystems SQL Reference

SQL Commands

By specifying the CASCADE keyword, an attempt to delete a view referenced by other views in their queries succeeds.
The DROP VIEW also deletes these other views. If InterSystems IRIS cannot perform all cascade view deletions (for
example, due to an SQLCODE -300 error) no views are deleted.

Associated Queries

Dropping a view automatically purges any related cached queries and purges query information generated by
%SYS.PTools.StatsSQL. Dropping a view automatically purges any SQL runtime statistics (SQL Stats) information for
any related query.

Arguments

IF EXISTS

An optional argument that suppresses the error if the command is executed on a nonexistent view. For further details, refer
to the following section on nonexistent tables.

view-name

The name of the view to be deleted. A view name can be qualified (schema.viewname), or unqualified (viewname). An
unqualified view name takes the default schema name.

CASCADE, RESTRICT

An optional argument. Specify the CASCADE keyword to drop any other view that references view-name. Specify
RESTRICT to issue an SQLCODE -321 error if there is another view that references view-name. The default is RESTRICT.

Examples
The following example creates a view named "CityAddressBook" and later deletes the view. Because it is specified with
the RESTRICT keyword (the default), an SQLCODE -321 error is issued if the view is referenced by other views:

SQL

CREATE VIEW CityAddressBook AS
 SELECT Name,Home_Street FROM Sample.Person
 WHERE Home_City='Boston'
DROP VIEW CityAddressBook RESTRICT)

See Also
• ALTER VIEW, CREATE VIEW, GRANT

• Views

• SQL and Object Settings Pages

• SQLCODE error messages

InterSystems SQL Reference 217

DROP VIEW (SQL)

EXPLAIN (SQL)
Returns the query plan(s) for a specified query.

Synopsis

EXPLAIN [ALT | ALL] [STAT | STATS] [INTO :host-variable] query

Description
The EXPLAIN command returns the query plan for a specified query as an XML-tagged text string. This query plan is
returned as a result set consisting of a single field named Plan.

The query must be a SELECT, DELETE, or UPDATE query. Specifying an INSERT query results in an SQLCODE -
474; using EXPLAIN with any other keyword results in an SQLCODE -51. You can use Show Plan to display a query
plan for other queries, such as for INSERT queries which contain a SELECT clause. All errors are processed and thrown
when the query reference by the EXPLAIN command is executed.

The ALT and STAT keywords can be specified in any order. The INTO keyword must be specified after these keywords.
The optional ALT keyword generates alternate query plans. All of the alternate query plans are returned in the same XML-
tagged text string. The normalized query text (tagged as <sql>) is listed before each query plan. The optional STAT keyword
generates runtime performance statistics for each module in the query plan. The STAT keyword is only supported for
SELECT queries. Runtime statistics are included in the same XML-tagged text string that contains the query plan. The
following statistics are collected for each module:

• <ModuleName>: module name.

• <TimeSpent>: total execution time for the module, in seconds.

• <GlobalRefs>: a count of global references.

• <LinesOfCode>: a count of lines of code executed.

• <DiskWait>: disk wait time in seconds.

• <RowCount>: number of rows in result set.

• <ModuleCount>: number of times this module was executed.

• <Counter>: number of times this program was executed.

These statistics are returned within the text of the query plan(s) in the XML-tagged text string. Performance statistics for
all modules in a query plan are returned before the associated query plan. Embedded SQL cannot generate or return runtime
performance statistics; the STAT keyword is ignored and no error is issued.

The user that issues the EXPLAIN command must have execute privileges for the %SYSTEM.QUERY_PLAN procedure.

The EXPLAIN command returns Show Plan results by invoking the $SYSTEM,SQL.Explain() method, then formatting
the result set as a single field containing an XML-tagged text string. The EXPLAIN ALT command returns the alternate
show plans results by invoking the $SYSTEM,SQL.Explain() method with the all=1 qualifier, then formatting the result
set as a single field containing an XML-tagged text string.

Note: This command is fully supported for use in Embedded SQL, Dynamic SQL, the SQL Shell, the Management
Portal, JDBC, and ODBC interfaces.

Result Set XML Structure

The following is the structure of an XML-tagged text string for EXPLAIN ALT STAT query. Line breaks, indents, and
comment notes are provided here for explanatory purposes:

218 InterSystems SQL Reference

SQL Commands

<plans> /* tag included even if there is only one plan */
 <plan> /* the first query plan */
 <sql> /* the normalzed SELECT statement text */ </sql>
 <cost value="1147000"/>
 /* if STAT, include the following <stats> tags */
 <stats> <ModuleName>MAIN</ModuleName> /* XML-tagged list of stats (above) for MAIN module */ </stats>
 <stats> <ModuleName>FIRST</ModuleName> /* XML-tagged list of stats (above) for FIRST module */ </stats>
 <stats> /* additional modules */ </stats>
 /* text of query plan */
 </plan>
 <plan> /* if ALT, same info for first alternate plan */
 ...
 </plan>
</plans>

The Explain() Method

You can return the same query plan information from ObjectScript using the $SYSTEM.SQL.Explain() method, as shown
in the following example:

 SET myquery=2
 SET myquery(1)="SELECT Name,Age FROM Sample.Person WHERE Name %STARTSWITH 'Q' "
 SET myquery(2)="ORDER BY Age"
 SET status=$SYSTEM.SQL.Explain(.myquery,{"all":0},,.plan)
 IF status'=1 {WRITE "Explain() failed:" DO $System.Status.DisplayError(status) QUIT}
 ZWRITE plan

Arguments

ALT

An optional argument that returns alternate query plans. The default is to return a single query plan.

STAT

(Dynamic SQL only): An optional argument that returns query plan runtime performance statistics. The default is to return
query plan(s) without runtime statistics. This syntax is ignored for Embedded SQL.

INTO :host-variable

(Embedded SQL only): An optional output host variable into which the query plan(s) are placed. This syntax is ignored
for Dynamic SQL.

query

A SELECT, UPDATE, or DELETE query.

Examples
This example returns the query plan as an XML string. It first returns the SQL query text, then the query plan:

EXPLAIN SELECT Name,DOB FROM Sample.Person WHERE Name ['Q'

This example returns the query plan and performance statistics as an XML string. It first returns the SQL query text, then
the performance statistics (by module), then the query plan:

EXPLAIN STAT SELECT Name,DOB FROM Sample.Person WHERE Name ['Q'

This example returns alternate query plans as an XML string. It returns SQL query text before each query plan:

EXPLAIN ALT SELECT Name,DOB FROM Sample.Person WHERE Name ['Q'

InterSystems SQL Reference 219

EXPLAIN (SQL)

This example returns a more complex query plan. Performance statistics appear both before and within the query plan:

EXPLAIN STAT SELECT p.Name AS Person, e.Name AS Employee
FROM Sample.Person AS p, Sample.Employee AS e
WHERE p.Name %STARTSWITH 'Q' GROUP BY e.Name ORDER BY p.Name

The following Embedded SQL example returns the query plan as an XML string. It first returns the SQL query text, then
the query plan:

 #sqlcompile select=Runtime
 &sql(EXPLAIN INTO :qplan SELECT Name,DOB FROM Sample.Person WHERE Name ['Q')
 WRITE qplan

The following Embedded SQL example returns alternative query plans as an XML string. It first returns the SQL query
text, then the first query plan, then the SQL query text, then the second query plan, and so forth:

 #sqlcompile select=Runtime
 &sql(EXPLAIN ALT INTO :qplans SELECT Name,DOB FROM Sample.Person WHERE Name ['Q')
 WRITE qplans

The following Embedded SQL example returns the query plan. The STAT keyword is ignored:

 #sqlcompile select=Runtime
 &sql(EXPLAIN STAT INTO :qplan SELECT Name,DOB FROM Sample.Person WHERE Name ['Q')
 WRITE qplan

See Also
• SELECT

• JOIN

• Show Plan

• Runtime Performance Statistics

• Querying the Database

220 InterSystems SQL Reference

SQL Commands

FETCH (SQL)
Repositions a cursor, and retrieves data from it.

Synopsis

FETCH cursor-name [INTO host-variable-list]

Description
Within an embedded SQL application, a FETCH statement retrieves data from a cursor. The required sequence of actions
is: DECLARE, OPEN, FETCH, CLOSE. Attempting a FETCH on a cursor that is not open results in an SQLCODE -
102 error.

As an SQL statement, this is supported only from within embedded SQL. Equivalent operations are supported through
ODBC using the ODBC API. For further details, refer to Embedded SQL.

An INTO clause can be specified as a clause of the DECLARE statement, as a clause of the FETCH statement, or both.
The INTO clause allows data from the columns of a fetch to be placed into local host variables. Each host variable in the
list, from left to right, is associated with the corresponding column in the cursor result set. The data type of each variable
must either match or be a supported implicit conversion of the data type of the corresponding result set column. The number
of variables must match the number of columns in the cursor select list.

The FETCH operation completes when the cursor advances to the end of the data. This sets SQLCODE=100 (No more
data). It also sets the %ROWCOUNT variable to the number of fetched rows.

Note: The values returned by INTO clause host variables are only reliable while SQLCODE=0. If SQLCODE=100 (No
more data) the host variable values should not be used.

The cursor-name is not namespace-specific. Changing the current namespace has no effect on use of a declared cursor.
The only namespace consideration is that FETCH must occur in the namespace that contains the table(s) being queried.

%ROWID

When a FETCH retrieves a row of an updateable cursor, it sets %ROWID to the RowID value of the fetched row. An
updateable cursor is one in which the top FROM clause contains exactly one element, either a table name or an updateable
view name.

This setting of %ROWID for each row retrieved is subject to the following conditions:

• The DECLARE cursorname CURSOR and OPEN cursorname statements do not initialize %ROWID; the %ROWID
value is unchanged from its prior value. The first successful FETCH sets %ROWID. Each subsequent FETCH that
retrieves a row resets %ROWID to the current RowID. FETCH sets %ROWID if it retrieves a row of an updateable
cursor. If the cursor is not updateable, %ROWID remains unchanged. If no rows matched the query selection criteria,
FETCH does not change the prior the %ROWID value. Upon CLOSE or when FETCH issues an SQLCODE 100
(No Data, or No More Data), %ROWID contains the RowID of the last row retrieved.

• A cursor-based SELECT with a DISTINCT keyword or a GROUP BY clause does not set %ROWID. The %ROWID
value is unchanged from its previous value (if any).

• A cursor-based SELECT that performs only aggregate operations does not set %ROWID. The %ROWID value is
unchanged from its previous value (if any).

An Embedded SQL SELECT with no declared cursor does not set %ROWID. The %ROWID value is unchanged upon
the completion of a simple SELECT statement.

InterSystems SQL Reference 221

FETCH (SQL)

FETCH for UPDATE or DELETE

You can use FETCH to retrieve a row for update or delete. The UPDATE or DELETE must specify the WHERE CURRENT
OF clause. The DECLARE should specify the FOR UPDATE clause. The following example shows a cursor-based delete
that deletes all selected rows:

ObjectScript

 SET $NAMESPACE="Samples"
 &sql(DECLARE MyCursor CURSOR FOR SELECT %ID,Status
 FROM Sample.Quality WHERE Status='Bad' FOR UPDATE)
 &sql(OPEN MyCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 NEW %ROWCOUNT,%ROWID
 FOR {&sql(FETCH MyCursor) QUIT:SQLCODE'=0
 &sql(DELETE FROM Sample.Quality WHERE CURRENT OF MyCursor) }
 WRITE !,"Number of rows updated=",%ROWCOUNT
 &sql(CLOSE MyCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}

Arguments

cursor-name

The name of a currently open cursor. The cursor name was specified in the DECLARE command. Cursor names are case-
sensitive.

INTO host-variable-list

An optional argument that places data from the columns of a fetch into local variables. The host-variable-list specifies a
host variable, or a comma-separated list of host variables, that are targets to contain data associated with the cursor. The
INTO clause is optional. If it is not specified, the FETCH statement positions the cursor only.

Examples
The following Embedded SQL example shows FETCH invoked by an argumentless FOR loop retrieving data from a
cursor named EmpCursor. The INTO clause is specified in the DECLARE statement:

ObjectScript

 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Employee
 WHERE Home_State %STARTSWITH 'M')
 &sql(OPEN EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE'=0
 WRITE "count: ",%ROWCOUNT," RowID: ",%ROWID,!
 WRITE " Name=",name," State=",state,! }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}

The following Embedded SQL example shows FETCH invoked by an argumentless FOR loop retrieving data from a
cursor named EmpCursor. The INTO clause is specified as part of the FETCH statement:

222 InterSystems SQL Reference

SQL Commands

ObjectScript

 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name,Home_State FROM Sample.Employee
 WHERE Home_State %STARTSWITH 'M')
 &sql(OPEN EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 FOR { &sql(FETCH EmpCursor INTO :name,:state)
 QUIT:SQLCODE'=0
 WRITE "count: ",%ROWCOUNT," RowID: ",%ROWID,!
 WRITE " Name=",name," State=",state,! }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}

The following Embedded SQL example shows FETCH invoked using a WHILE loop:

ObjectScript

 &sql(DECLARE C1 CURSOR FOR
 SELECT Name,Home_State INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'M')
 &sql(OPEN C1)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 &sql(FETCH C1)
 WHILE (SQLCODE = 0) {
 WRITE "count: ",%ROWCOUNT," RowID: ",%ROWID,!
 WRITE " Name=",name," State=",state,!
 &sql(FETCH C1) }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE C1)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}

The following Embedded SQL example shows FETCH retrieving aggregate function values. %ROWID is not set:

ObjectScript

 &sql(DECLARE PersonCursor CURSOR FOR
 SELECT COUNT(*),AVG(Age) FROM Sample.Person)
 &sql(OPEN PersonCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 NEW %ROWCOUNT
 FOR { &sql(FETCH PersonCursor INTO :cnt,:avg)
 QUIT:SQLCODE'=0
 WRITE %ROWCOUNT," Num People=",cnt," Average Age=",avg,! }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE PersonCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}

The following Embedded SQL example shows FETCH retrieving DISTINCT values. %ROWID is not set:

ObjectScript

 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT DISTINCT Home_State FROM Sample.Employee
 WHERE Home_State %STARTSWITH 'M'
 ORDER BY Home_State)
 &sql(OPEN EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 NEW %ROWCOUNT
 FOR { &sql(FETCH EmpCursor INTO :state)
 QUIT:SQLCODE'=0
 WRITE %ROWCOUNT," State=",state,! }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE EmpCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}

InterSystems SQL Reference 223

FETCH (SQL)

The following Embedded SQL example shows that a cursor persists across namespaces. This cursor is declared in %SYS,
opened and fetched in USER, and closed in SAMPLES. Note that the OPEN must be executed in the namespace that contains
the table(s) being queried, and the FETCH must able to access the output host variables, which are namespace-specific:

 &sql(USE DATABASE %SYS)
 WRITE $ZNSPACE,!
 &sql(DECLARE NSCursor CURSOR FOR SELECT Name INTO :name FROM Sample.Employee)
 &sql(USE DATABASE "USER")
 WRITE $ZNSPACE,!
 &sql(OPEN NSCursor)
 IF SQLCODE<0 {WRITE "SQL Open Cursor Error:",SQLCODE," ",%msg QUIT}
 NEW SQLCODE,%ROWCOUNT,%ROWID
 FOR { &sql(FETCH NSCursor)
 QUIT:SQLCODE
 WRITE "Name=",name,! }
 &sql(USE DATABASE SAMPLES)
 WRITE $ZNSPACE,!
 &sql(CLOSE NSCursor)
 IF SQLCODE<0 {WRITE "SQL Close Cursor Error:",SQLCODE," ",%msg QUIT}

See Also
• CLOSE, DECLARE, OPEN

• SQL Cursors

• SQLCODE error messages

224 InterSystems SQL Reference

SQL Commands

FREEZE PLANS (SQL)
Freezes one or more query plans.

Synopsis

FREEZE PLANS BY ID statement-hash
FREEZE PLANS BY TABLE table-name
FREEZE PLANS BY SCHEMA schema-name
FREEZE PLANS

Description
The FREEZE PLANS command freezes query plans. To unfreeze frozen query plans use the UNFREEZE PLANS command.

FREEZE PLANS can freeze query plans with the Plan State Unfrozen. It cannot freeze query plans with the Plan State
Unfrozen/Parallel.

FREEZE PLANS provides four syntax forms for freezing query plans:

• A specified query plan: FREEZE PLANS BY ID statement-hash. The statement-hash value must be delimited by
double quotation marks.

• All query plans for a table: FREEZE PLANS BY TABLE table-name. You can specify a table name or a view name.
If a query plan references multiple tables and/or views, specifying any of these tables or views freezes the query plan.

• All query plans for all tables in a schema: FREEZE PLANS BY SCHEMA schema-name.

• All query plans for all tables in the current namespace: FREEZE PLANS.

This command issues SQLCODE 0 if one or more query plans are frozen; it issues SQLCODE 100 if no query plans are
frozen. The Rows Affected (%ROWCOUNT) indicates the number of query plans frozen.

Other Interfaces

You can use the following $SYSTEM.SQL.Statement methods to freeze a single query plan or multiple query plans:
FreezeStatement() for a single plan; FreezeRelation() for all plans for a relation (a table or view referenced in the query
plan); FreezeSchema() for all plans for a schema; FreezeAll() for all plans in the current namespace. There are corresponding
Unfreeze methods.

You can use the Management Portal, to freeze a query plan as described in Frozen Plans Interface.

Arguments

statement-hash

The internal hash representation of the SQL Statement definition for a query plan, enclosed in quotation marks. Occasionally,
what appear to be identical SQL statements may have different statement hash entries. Any difference in settings/options
that require different code generation of the SQL statement result in a different statement hash. This may occur with different
client versions or different platforms that support different internal optimizations. Refer to SQL Statement Details.

table-name

The name of an existing table or view. A table-name can be qualified (schema.table), or unqualified (table). An unqualified
table name takes the default schema name.

schema-name

The name of an existing schema. This command freezes all query plans for all tables in the specified schema.

InterSystems SQL Reference 225

FREEZE PLANS (SQL)

Security and Privileges
The FREEZE PLANS command is a privileged operation that required the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a FREEZE PLANS command without this
privileges will result in a SQLCODE -99 error and the command will fail. There are two exceptions:

• The command is executed via Embedded SQL, which does not perform privilege checks.

• The user explicitly specifies not privilege checking by, for example, calling either %Prepare() with the checkPriv
argument set to 0 or %ExecDirectNoPriv() on a %SQL.Statement.

See Also
• UNFREEZE PLANS command

• Frozen Plans

• Analyze SQL Statements and Statistics

226 InterSystems SQL Reference

SQL Commands

GRANT (SQL)
Grants privileges to a user or role.

Synopsis

GRANT admin-privilege TO grantee [WITH ADMIN OPTION]
GRANT role TO grantee [WITH ADMIN OPTION]

GRANT role TO grantee [WITH ADMIN OPTION]

GRANT object-privilege ON object-list
 TO grantee [WITH GRANT OPTION]

GRANT SELECT ON CUBE[S] object-list
 TO grantee [WITH GRANT OPTION]
GRANT column-privilege (column-list) ON table
 TO grantee [WITH GRANT OPTION]

Description
The GRANT command gives privileges to do specified tasks on specified tables, views, columns, or other entities to one
or more specified users or roles. You can do the following basic operations:

• Grant a privilege to a user.

• Grant a privilege to a role.

• Grant a role to a user.

• Grant a role to a role, creating a hierarchy of roles.

If you grant a privilege to a user, the user can immediately exercise the privilege. If you grant a privilege to a role, users
who have been granted the role can immediately exercise the privilege. If you revoke a privilege, the user immediately
loses the privilege. A privilege is effectively granted to a user only once. Multiple users can grant the same privilege to a
user multiple times, but a single REVOKE removes the privilege.

Privileges are granted on a per-namespace basis.

SQL privileges are only enforced through ODBC, JDBC, and Dynamic SQL (%SQL.Statement).

Because GRANT prepares and executes quickly, and is generally run only once, InterSystems IRIS does not create a cached
query for GRANT in ODBC, JDBC, or Dynamic SQL. The expansion of * is performed when the GRANT command is
executed.

GRANT admin-privilege

SQL administrative (admin) privileges apply to users or roles. Any privilege that is not tied to any particular object (and
thus is a general right for that user or role) is considered an admin privilege. These privileges are granted on a per-namespace
basis for the current namespace.

The %DB_OBJECT_DEFINITION privilege grants all 16 of the data definition privileges. It does not grant
%BUILD_INDEX, %NOCHECK, %NOINDEX, %NOLOCK, and %NOTRIGGER privileges, which must be granted
explicitly.

The %BUILD_INDEX privilege grants use of the BUILD INDEX command. The %NOCHECK, %NOINDEX, %NOLOCK,
and %NOTRIGGER privileges grant use of these options in the restriction clause of an INSERT, UPDATE, INSERT OR
UPDATE, or DELETE statement. They have no effect on the use of the %NOINDEX keyword as a preface to a predicate
condition. Because TRUNCATE TABLE performs a delete of all of the rows from a table with %NOTRIGGER behavior,
you must have %NOTRIGGER privilege in order to run TRUNCATE TABLE. You must have the appropriate %NOCHECK,
%NOINDEX, %NOLOCK, or %NOTRIGGER privilege to use that restriction when preparing an INSERT, UPDATE,
INSERT OR UPDATE, or DELETE statement.

InterSystems SQL Reference 227

GRANT (SQL)

If the specified admin privilege is not a valid privilege name (for example, due to a spelling error), InterSystems IRIS
completes successfully, issuing an SQLCODE 100 (reached end of data); InterSystems IRIS does not check if the specified
user (or role) exists. If the specified admin privilege is valid, but the specified user (or role) does not exist, InterSystems
IRIS issues an SQLCODE -118 error.

GRANT role

This form of GRANT assigns a user to a specified role. You can also assign a role to another role. If the specified role that
receives the assignment does not exist, InterSystems IRIS issues an SQLCODE 100 (reached end of data). If the specified
user (or role) that is assigned to a role does not exist, InterSystems IRIS issues an SQLCODE -118 error. If you are not the
SuperUser, and you are attempting to grant a role that you don't own and don't have ADMIN OPTION for, InterSystems
IRIS issues an SQLCODE -112 error.

Roles are created using the CREATE ROLE statement. If the role name is a delimited identifier, you must enclose it in
quotation marks when assigning to it.

Roles can be granted or revoked via either the SQL GRANT and REVOKE commands, or via InterSystems IRIS System
Security:

• Go to the Management Portal, select System Administration, Security, Users to display the current users. Select the
name of the desired user to display edit options for that user, then select the Roles tab to assign (or unassign) the user
to one or more roles.

• Go to the Management Portal, select System Administration, Security, Roles to display the current roles. Select the
name of the desired role to display edit options for that role, then select the Assigned To tab to assign (or unassign) the
role to one or more roles. Note that the ObjectScript $ROLES special variable does not display roles granted to roles.

GRANT object-privilege

Object privileges give a user or role some right to a particular object. You grant an object-privilege ON an object-list TO
a grantee. An object-list can specify one or more tables, views, stored procedures, or cubes in the current namespace. By
using comma-separated lists, a single GRANT statement can grant multiple object privileges on multiple objects to multiple
users and/or roles.

The following are the available object-privilege values:

• The %ALTER and DELETE privileges grant access to table or view definitions.

• The SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges grant access to table data.

• The EXECUTE privilege grants access to stored procedures. This privilege is required to execute a stored procedure
or to call a user-defined SQL function in a query. For example, SELECT Field1,MyFunc() FROM
SQLUser.MyTable requires SELECT privilege on SQLUser.MyTable and EXECUTE privilege on the
SQLUser.MyFunc procedure.

• The ALL PRIVILEGES privilege grants all table and view privileges; it does not grant the EXECUTE privilege.

You can use the asterisk (*) wildcard as the object-list value to grant the object-privilege to all of the objects in the current
namespace. For example, GRANT SELECT ON * TO Deborah grants this user SELECT privilege for all tables and
views. GRANT EXECUTE ON * TO Deborah grants this user EXECUTE privilege for all non-hidden Stored Procedures.

You can use SCHEMA schema-name as the object-list value to grant the object-privilege to all of the tables, views, and
stored procedures in the named schema, in the current namespace. The following example grants this user SELECT privilege
for all objects in the Sample schema.

GRANT SELECT ON SCHEMA Sample TO Deborah

228 InterSystems SQL Reference

SQL Commands

This includes all objects that will be defined in this schema in the future. You can specify multiple schemas as a comma-
separated list, as in the following example, which grants SELECT privilege for all objects in both the Sample and the
Cinema schemas.

GRANT SELECT ON SCHEMA Sample,Cinema TO Deborah

Cubes are SQL identifiers that are not qualified by a schema name. To specify a cubes object-list, you must specify the
CUBE (or CUBES) keyword. You can only grant SELECT privilege to a cube.

The following example demonstrates the granting of the SELECT and UPDATE privileges to a specific user for a specific
table:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
CreateUser
 SET x=$SYSTEM.SQL.Security.UserExists("DeborahTest")
 IF x=0 {&sql(CREATE USER DeborahTest IDENTIFY BY birdpw)
 IF SQLCODE '= 0 {WRITE "CREATE USER error: ",SQLCODE,!
 QUIT}
 }
 ELSE {WRITE "User DeborahTest exists, not changing privileges",!
 QUIT }
GrantPrivsToUser
 &sql(GRANT SELECT,UPDATE ON SQLUSER.T1 TO DeborahTest)
 WRITE !,"GRANT error code: ",SQLCODE
DropUser
 &sql(DROP USER DeborahTest)
 IF SQLCODE '= 0 {WRITE "DROP USER error: ",SQLCODE,!}

Privileges can only be granted explicitly to a table, view, or stored procedure that already exists. If the specified object
does not exist, InterSystems IRIS issues an SQLCODE -30 error. You can, however, grant privileges to a schema, which
grant privileges both to all existing objects in that schema and to all future objects in that schema that did not exist when
the privilege was granted.

If the owner of a table is _PUBLIC, users do not need to be granted object privileges to access the table.

If the specified user does not exist, InterSystems IRIS issues an SQLCODE -118 error. If the specified object privilege has
already been granted, InterSystems IRIS issues an SQLCODE 100 (reached end of data).

Object privileges can be granted or revoked by any of the following:

• The GRANT and REVOKE commands.

• The $SYSTEM.SQL.Security.GrantPrivilege() and $SYSTEM.SQL.Security.RevokePrivilege() methods. These
methods return a %Status value and set the SQLCODE variable. As with any method or function, always test the
returned value first:

– If %Status=1 and SQLCODE=0: a privilege was granted or revoked.

– If %Status=1 and SQLCODE=100: no privilege was granted or revoked because it already has been granted or
revoked.

– If %Status is not 1 and SQLCODE is not set and may be undefined: no privilege was granted or revoked due to a
method error. The %Status contains an SQLCODE indicating the type of failure: ObjPriv: SQLCODE -60 for an
invalid privilege; ObjList: an ObjList object of the specified Object Type does not exist: SQLCODE -30, -187, -
428, or -473; Type: SQLCODE -400 Object Type of TABLE, VIEW, CUBES, SCHEMA, or STORED PROCE-
DURES expected; User: SQLCODE -118 Unknown or non-unique user or role.

• Via InterSystems IRIS System Security. Go to the Management Portal, select System Administration, Security, Users

(or System Administration, Security, Roles) select the name of the desired user or role, then select the SQL Tables or
SQL Views tab. Select the desired Namespace from the drop-down list. Then select the Add Tables or Add Views button.
In the displayed window, choose a schema, select one or more tables, and assign privileges.

InterSystems SQL Reference 229

GRANT (SQL)

You can determine if the current user has a specified object privilege by invoking the %CHECKPRIV command. You can
determine if a specified user has a specified table-level object privilege by invoking the
$SYSTEM.SQL.Security.CheckPrivilege() method, as shown in the following example:

ObjectScript

 WRITE "SELECT privilege? ",$SYSTEM.SQL.Security.CheckPrivilege("DeborahTest","1,SQLUSER.TestT1","s"),!

 WRITE "UPDATE privilege? ",$SYSTEM.SQL.Security.CheckPrivilege("DeborahTest","1,SQLUSER.TestT1","u"),!

 WRITE "DELETE privilege? ",$SYSTEM.SQL.Security.CheckPrivilege("DeborahTest","1,SQLUSER.TestT1","d"),!

Object Owner Privileges

The owner of a table, view, or procedure always has all SQL privileges implicitly on the SQL object. The owner of the
object has privileges on the object in all namespaces to which the object is mapped.

GRANT column-privilege

Column privileges give a user or role a specified privilege to a specified list of columns on a specified table or view. This
permits you to allow access to some table columns and not to other columns of the same table. This gives more specific
access control than the GRANT object-privilege option, which defines privileges for an entire table or view. When granting
privileges to a grantee, you should grant either table-level privilege or column-level privileges for a table, but not both.
The SELECT, INSERT, UPDATE, and REFERENCES privileges can be used to grant access to data in individual columns.

A user having a SELECT, INSERT, UPDATE, or REFERENCES object-privilege on a table WITH GRANT OPTION
can grant to other users a column-privilege of the same type for columns of that table.

You can specify a single column, or a comma-separated list of columns. The column-list must be enclosed in parentheses.
Column names can be specified in any order, and duplication is permitted. Granting a column privilege to a column that
already has that privilege has no effect.

The following example grants the UPDATE privilege for two columns:

SQL

GRANT UPDATE(Name,FavoriteColors) ON Sample.Person TO Deborah

You can grant column privileges on a table or a view. You can grant column privileges to any type of grantee, including
a list of users, a list of roles, *, and _PUBLIC. However, you cannot use the asterisk (*) wildcard for privileges, field names,
or table names.

If a user inserts a new record into a table, data is inserted into only those fields for which column privileges have been
granted. All other data columns are set to either the defined column default value, or to NULL if there is no defined default
value. You cannot grant column-level INSERT or UPDATE privileges to the RowID and Identity columns. Upon INSERT,
InterSystems SQL automatically provides a RowID and (if needed) an Identity column value.

Column-level privileges can be granted or revoked via either the SQL GRANT and REVOKE commands, or via InterSystems
IRIS System Security. Go to the Management Portal, select System Administration, Security, Users (or System Administration,
Security, Roles), select the name of the desired user or role, then select the SQL Tables or SQL Views tab. Select the desired
Namespace from the drop-down list. Then select the Add Columns button. In the displayed window, choose a schema,
choose a table, select one or more columns, and assign privileges.

Granting Multiple Privileges

You can use a single GRANT statement to specify the following combinations of privileges:

• One or more roles.

230 InterSystems SQL Reference

SQL Commands

• One or more table-level privileges and one or more column-level privileges. To specify multiple table-level and column-
level privileges, the privilege must immediately precede a column-list to grant a column-level privilege. Otherwise, it
grants a table-level privilege.

• One or more admin-privileges. You cannot include admin-privileges and role names or object privileges in the same
GRANT statement. Attempting to do so results in an SQLCODE -1 error.

The following example grants Deborah table-level SELECT and UPDATE privileges, and column-level INSERT privileges:

SQL

GRANT SELECT,UPDATE,INSERT(Name,FavoriteColors) ON Sample.Person TO Deborah

The following example grants Deborah column-level SELECT, INSERT, and UPDATE privileges:

SQL

GRANT SELECT(Name,FavoriteColors),INSERT(Name,FavoriteColors),UPDATE(FavoriteColors) ON Sample.Person
 TO Deborah

The WITH GRANT OPTION Clause

The owner of an object automatically holds all privileges on that object. The GRANT statement’s TO clause specifies the
users or roles to whom to access is being granted. After using the TO option to specify the grantee, you may optionally
specify the WITH GRANT OPTION keyword clause to allow the grantee(s) to also be able to grant the same privileges to
other users. You can use the WITH GRANT OPTION keyword clause with object privileges or column privileges. The
REVOKE command with CASCADE can be used to undo this cascading series of granted privileges.

For instance, you can give the user Chris %ALTER, SELECT, and INSERT privileges on the EMPLOYEES table with
the following command:

SQL

GRANT %ALTER, SELECT, INSERT
 ON EMPLOYEES
 TO Chris

To also give Chris the ability to give these privileges to other users, the GRANT command includes the WITH GRANT
OPTION clause:

SQL

GRANT %ALTER, SELECT, INSERT
 ON EMPLOYEES
 TO Chris WITH GRANT OPTION

You can find out the results of a GRANT statement using the %SQLCatalogPriv.SQLUsers() method call.

Granting privileges to a schema WITH GRANT OPTION allow the grantee(s) to be able to grant the same schema privileges
to other users. However, it does not allow the grantee to grant a privilege on a specified object within that schema, unless
the user has been explicitly granted the privilege on that particular object WITH GRANT OPTION. This is shown in the
following example:

• UserA and UserB start with no privileges.

• You grant UserA SELECT privilege on schema Sample WITH GRANT OPTION.

• UserA can grant SELECT privilege on schema Sample to UserB.

• UserA cannot grant SELECT privilege on table Sample.Person to UserB.

InterSystems SQL Reference 231

GRANT (SQL)

The WITH ADMIN OPTION Clause

The WITH ADMIN OPTION clause grants the grantee the right to grant the same privileges it received to others. To grant
a system privilege, you must have been granted the system privilege WITH ADMIN OPTION.

You may grant a role if either the role has been granted to you WITH ADMIN OPTION, or if you have the
%Admin_Secure:"U" resource.

A grant WITH ADMIN OPTION supersedes a previous grant of the same privilege(s) without this option. Thus, if you
grant a user a privilege without WITH ADMIN OPTION, and then grant the same privilege to the user WITH ADMIN
OPTION, the user has the WITH ADMIN OPTION rights. However, a grant without the WITH ADMIN OPTION does
not supersede a previous grant of the same privilege(s) with this option. To remove WITH ADMIN OPTION rights from
a privilege, you must revoke the privilege and then re-grant the privilege without this clause.

Exporting Privileges

You can export privileges using the $SYSTEM.SQL.Schema.ExportDDL() method. When you specify a table in this
method, InterSystems IRIS exports both all table-level privileges and all column-level privileges granted for that table. For
further details, refer to the InterSystems Class Reference.

InterSystems IRIS Security

Before using GRANT in embedded SQL, it is necessary to be logged in as a user with appropriate privileges. Failing to
do so results in an SQLCODE -99 error (Privilege Violation). Use the $SYSTEM.Security.Login() method to assign a
user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

Enforcement of Privileges

SQL privileges are only enforced through ODBC, JDBC, and Dynamic SQL (%SQL.Statement).

The enforcement of privileges system-wide depends upon the setting of the $SYSTEM.SQL.Util.SetOption("SQLSecurity")
method call. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a SQL Security
ON: setting.

The default is 1 (Yes): a user can only perform actions on tables and views for which that user has been granted privilege.
This is the recommended setting for this option. If this option is set to 0 (No), SQL Security is disabled for any new process
started after changing this setting. This means privilege-based table/view security is suppressed. You can create a table
without specifying a user. In this case, the Management Portal assigns “_SYSTEM” as user, and embedded SQL assigns
"" (the empty string) as user. Any user can perform actions on a table or view even if that user has no privileges to do so.

Arguments

grantee

A comma-separated list of one or more users or roles. Valid values are a list of users, a list of roles, "*", or _PUBLIC. The
asterisk (*) specifies all currently defined users who do not have the %All role. The _PUBLIC keyword specifies all currently
defined and yet-to-be-defined users.

admin-privilege

An administrative-level privilege or a comma-separated list of administrative-level privileges being granted. The list may
consist of one or more of the following in any order:

232 InterSystems SQL Reference

SQL Commands

%CREATE_METHOD, %DROP_METHOD, %CREATE_FUNCTION, %DROP_FUNCTION, %CREATE_PROCEDURE,
%DROP_PROCEDURE, %CREATE_QUERY, %DROP_QUERY, %CREATE_TABLE, %ALTER_TABLE,
%DROP_TABLE, %CREATE_VIEW, %ALTER_VIEW, %DROP_VIEW, %CREATE_TRIGGER, %DROP_TRIGGER

%DB_OBJECT_DEFINITION, which grants all 16 of the above privileges.

%NOCHECK, %NOINDEX, %NOLOCK, %NOTRIGGER privileges for INSERT, UPDATE, and DELETE operations.

%BUILD_INDEX which grants privileges for the BUILD INDEX command.

role

A role or comma-separated list of roles whose privileges are being granted.

object-privilege

A basic-level privilege or comma-separated list of basic-level privileges being granted. The list may consist of one or more
of the following: %ALTER, DELETE, SELECT, INSERT, UPDATE, EXECUTE, and REFERENCES. You can confer
all table and view privileges using either "ALL [PRIVILEGES]" or “*” as the argument value. Note that you can only
grant SELECT privilege to CUBES.

object-list

A comma-separated list of one or more tables, views, stored procedures, or cubes for which the object-privilege(s) are being
granted. You can use the SCHEMA keyword to specify granting the object-privilege to all objects in the specified schema.
You can use “*” to specify granting the object-privilege to all tables, or to all non-hidden Stored Procedures, in the current
namespace. Note that a cubes object-list requires the CUBE (or CUBES) keyword, and can only be granted SELECT
privilege.

column-privilege

A basic-level privilege being granted to one or more listed columns. Available options are SELECT, INSERT, UPDATE,
and REFERENCES.

column-list

A list of one or more column names, separated by commas and enclosed in parentheses.

table

The name of the table or view that contains the column-list columns.

Examples
The following example creates a user, creates a role, and then assigns the role to the user. If the user or role already exists,
it issues SQLCODE -118 error. If the assignment of the privilege or the role has already been done, no error is issued
(SQLCODE = 0).

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
CreateUser
 SET x=$SYSTEM.SQL.Security.UserExists("MarthaTest")
 IF x=0 {&sql(CREATE USER MarthaTest IDENTIFY BY birdpw)
 IF SQLCODE '= 0 {WRITE "CREATE USER error: ",SQLCODE,!
 QUIT}
 }
 ELSE {WRITE "User MarthaTest exists, not changing its roles",!
 QUIT }
CreateRoleAndGrant
 &sql(CREATE ROLE workerbee)
 WRITE !,"CREATE ROLE error code: ",SQLCODE
 &sql(GRANT %CREATE_TABLE TO workerbee)
 WRITE !,"GRANT privilege error code: ",SQLCODE
 &sql(GRANT workerbee TO MarthaTest)
 WRITE !,"GRANT role error code: ",SQLCODE

InterSystems SQL Reference 233

GRANT (SQL)

The following example shows the assignment of multiple privileges. It creates a user and creates two roles. A single GRANT
statement assigns these roles and a list of admin-privileges to the user. If the user or a role already exists, it issues SQLCODE
-118 error. If the assignment of a privilege or a role has already been done, no error is issued (SQLCODE = 0).

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
CreateUser
 SET x=$SYSTEM.SQL.Security.UserExists("NoahTest")
 IF x=0 {&sql(CREATE USER NoahTest IDENTIFY BY birdpw)
 IF SQLCODE '= 0 {WRITE "CREATE USER error: ",SQLCODE,!
 QUIT}
 }
 ELSE {WRITE "User NoahTest exists, not changing its roles",!
 QUIT }
Create2RolesAndGrant
 &sql(CREATE ROLE workerbee)
 WRITE !,"CREATE ROLE 1 error code: ",SQLCODE
 &sql(CREATE ROLE drone)
 WRITE !,"CREATE ROLE 2 error code: ",SQLCODE
 &sql(GRANT workerbee,drone,%CREATE_TABLE,%DROP_TABLE TO NoahTest)
 WRITE !,"GRANT roles & privileges error code: ",SQLCODE

The following example grants all seven basic privileges ON all tables in the current namespace TO all currently defined
users who do not have the %All role:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(GRANT * ON * TO *)

See Also
• %CHECKPRIV REVOKE

• SELECT INSERT DELETE UPDATE

• CREATE USER CREATE ROLE

• SQL Users, Roles, and Privileges

• CREATE FUNCTION CREATE METHOD CREATE PROCEDURE CREATE QUERY

• CREATE TABLE CREATE VIEW CREATE TRIGGER

• SQLCODE error messages

• ObjectScript: $ROLES and $USERNAME special variables

234 InterSystems SQL Reference

SQL Commands

INSERT (SQL)
Adds new rows to a table.

Synopsis
Single Row Inserts

INSERT INTO table (column, column2, ...) VALUES (value, value2, ...)
INSERT INTO table SET column = value, column2 = value2, ...
INSERT INTO table DEFAULT VALUES
INSERT INTO table VALUES (value, value2, ...)
INSERT INTO table VALUES :array()

Multi-Row Inserts

INSERT INTO table query
INSERT INTO table (column, column2, ...) query

Insert Options

INSERT table ...
INSERT %keyword [INTO] table ...

Description
The INSERT command inserts a row into a table or uses the results of a SELECT query to insert multiple rows into a
table. This command inserts data for all specified columns and defaults unspecified column values to either NULL or to
the defined default value. It sets the %ROWCOUNT variable to the number of inserted rows.

If the row being inserted already exists (for example, it fails a UNIQUE check), INSERT generates an error. To update
existing rows in these cases, use INSERT OR UPDATE.

Single Row Inserts

• INSERT INTO table (column, column2, ...) VALUES (value, value2, ...) inserts a row of values into the specified
columns of a table. The values in the VALUES clause must correspond positionally with the column names in the
column list.

By default, an INSERT is an all-or-nothing event: either a row is inserted completely or not at all. InterSystems IRIS®
returns a status variable SQLCODE, indicating the success or failure of the INSERT. To insert a row into a table, the
insert must meet all requirements described in the table, column, and value arguments.

This statement inserts a new row into the Sample.Records table, setting the value of the StatusDate column to
'05/12/22' and the value of the Status column to 'Purged'.

SQL

INSERT INTO Sample.Records (StatusDate,Status) VALUES ('05/12/22','Purged')

Example: Insert Rows into Table Using Specified Values

• INSERT INTO table VALUES (value, value2, ...) inserts the table row of values in column number order. The data
values must correspond positionally to the defined column list. You must specify a value for every specifiable table
column. You cannot use defined default values, but you can specify an empty string as a value. Because the RowID
column is not specifiable, do not include a RowID value in the VALUES list.

This statement inserts a row of four values into the Sample.Address table in order. The statement assumes that the
table contains exactly four columns whose data corresponds to the values being inserted, for example: Street, City,
State, and ZipCode.

InterSystems SQL Reference 235

INSERT (SQL)

SQL

INSERT INTO Sample.Address VALUES ('22 Main St.','Anytown','PA','65342')

Example: Insert Rows into Table Using Specified Values

• INSERT INTO table SET column = value, column2 = value2, ... inserts a row of values by explicitly setting the
values of specific columns.

This statement performs the same operation as in the INSERT INTO table (column, column2, ...) VALUES (value,
value2, ...) syntax.

SQL

INSERT INTO Sample.Records SET StatusDate='05/12/22',Status='Purged'

Example: Insert Rows into Table Using Specified Values

• INSERT INTO table DEFAULT VALUES inserts a row into a table that contains only default column values.

– Columns with a defined default value are set to that value.

– Columns without a defined default value are set to NULL.

This statement inserts a row of default column values into the Sample.Person table.

SQL

INSERT INTO Sample.Person DEFAULT VALUES

Columns defined with the NOT NULL constraint and no defined DEFAULT fail this operation with an SQLCODE -
108.

Columns defined with the UNIQUE constraint can be inserted using this statement. If a column is defined with a
UNIQUE constraint and no DEFAULT value, repeated DEFAULT VALUES class insert multiple rows with this
UNIQUE column set to NULL. If a column is defined with a UNIQUE constraint and a DEFAULT value, you can
use this statement only once. A second call fails with an SQLCODE -119 error.

DEFAULT VALUES inserts a row with a system-generated integer values for counter columns, including the RowID
column, IDENTITY column, SERIAL (%Counter) column, and ROWVERSION column.

• INSERT INTO table VALUES :array() inserts values from an array, specified as a host variable, into the columns
of a table. You can use this syntax with Embedded SQL only. The values in this array must implicitly correspond to
the columns of the row in column number order. You must specify a value for each specifiable column. An INSERT
using column order cannot take defined column default values.

This statement populates the array at runtime, enabling you to delay specifying which columns to insert until runtime.
All other inserts require that you specify which columns are to be inserted when the INSERT is prepared. This syntax
cannot be used with a linked table. Attempting to do so results in an SQLCODE -155 error.

This class method uses embedded SQL to insert an array into the Sample.FullName table. myarray(1) is reserved
for the RowID column and is therefore not specified.

236 InterSystems SQL Reference

SQL Commands

Class Member

ClassMethod EmbeddedSQLInsertHostVarArray()
{
 set myarray(2)="Juanita"
 set myarray(3)="Pybus"
 &sql(INSERT INTO Sample.FullName VALUES :myarray())
 if SQLCODE '= 0 {
 write !, "Insert failed, SQLCODE= ", SQLCODE, ! ,%msg
 quit
 }
 write !,"Insert succeeded" quit
}

For more details on host variables and arrays, see Host Variable as a Subscripted Array.

Examples:

– Insert Data Using Embedded SQL

– Insert Stream Data into Table

Multi-Row Inserts

• INSERT INTO table query inserts rows of data that come from the result set of a SELECT query. The columns in
the result set must match the columns in the table. You can use INSERT with a SELECT to populate a table with
existing data extracted from other tables.

This statement populates a table, Sample.DupTable, with the same values as the source table, Sample.SrcTable.
The two tables must have the same number of columns, the same column names, and the same column order.

SQL

INSERT INTO Sample.DupTable SELECT * FROM Sample.SrcTable

Example: Insert Data from Another Table Using a SELECT Query

• INSERT INTO table (column, column2, ...) query inserts rows of data from the query result set into the specified
columns. The INSERT statement sets unspecified column values in the row to NULL or to their default values.

This statement inserts the query result set data from the Name and DOB columns of Sample.Person into the matching
columns of the Sample.Kids table.

SQL

INSERT INTO Sample.Kids (Name,DOB) SELECT Name,DOB FROM Sample.Person WHERE Age <= 18

Example: Insert Data from Another Table Using a SELECT Query

Insert Options

• INSERT table ... omits the INTO keyword.

• INSERT %keyword [INTO] table ... sets one or more %keyword options, separated by spaces. Valid options are
%NOCHECK, %NOFPLAN, %NOINDEX, %NOJOURN, %NOLOCK, %NOTRIGGER, %PROFILE, and %PRO-
FILE_ALL.

InterSystems SQL Reference 237

INSERT (SQL)

Arguments

table

The name of the table or view on which to perform the insert operation. A table or view name can be qualified (schema.table),
or unqualified (table). An unqualified name is matched to its schema using either a schema search path, if specified, or the
default schema name.

You can also perform INSERT using a subquery in place of the table argument. For example:

SQL

INSERT INTO (SELECT column1 AS c1 FROM MyTable) (c1) VALUES ('test')

To insert a row into a table, you must have appropriate table-level privileges.

column

A column name or comma-separated list of column names that correspond in sequence to the supplied list of values. If
omitted, the list of values is applied to all columns in column-number order.

To insert a row into a table, you must have appropriate column-level privileges.

value

A scalar expression, or comma-separated list of scalar expressions, specified in the VALUES clause that supplies the data
values for the corresponding columns in column. Specifying fewer values than columns generates an SQLCODE -62 error.
Specifying more values than columns generates an SQLCODE -116 error.

To insert a row into a table, the column values specified in value must meet these requirements:

• Each column value must pass data type validation. Attempting to insert a column value inappropriate to the column
data type results in an SQLCODE -104 error. This requirement applies only to an inserted data value. A column that
takes a DEFAULT value does not have to pass data type validation or data size validation. The data type of the column,
not the data type of the inserted data value, determines appropriateness. For example, attempting to insert a string value
into a date column fails unless the string passes date validation for the current mode. However, attempting to insert a
date value into a string column succeeds. INSERT inserts the date into the table as a literal string. To convert data to
the destination data type, use the CONVERT function.

• Each data value must be within the MAXLEN, MAXVAL, and MINVAL for the column. For example, attempting to
insert a string longer than 24 characters into a column defined as VARCHAR(24), or attempting to insert a number
larger than 127 into a column defined as TINYINT, results in an SQLCODE -104 error.

• Supplying an invalid DOUBLE number via ODBC or JDBC results in an SQLCODE -104 error.

• Inserted data values must pass display to logical mode conversion. InterSystems SQL stores data in logical mode format.
For some data types, the logical format might differ from the display format. For example, date data is stored as an
integer count of days, time data is stored as a count of seconds from midnight, and %List data is stored as an encoded
string. Other data types, such as strings and numbers, require no conversion. Attempting to insert a value in a format
that cannot be converted to its logical storage value results in an error. For more details on mode conversions, see Data
Display Options

• Every data value must pass data constraint validation for the column it is being inserted into.

– A column defined as NOT NULL must be provided with a data value. If the column has no DEFAULT value, not
specifying a data value results in an SQLCODE -108 error.

– Data values must obey UNIQUE data constraints defined on a column or group of columns. Attempting to insert
duplicate values into a unique column (such as the primary key column) or a unique column group results in an

238 InterSystems SQL Reference

SQL Commands

SQLCODE -119 error. This error can also occur when you do not specify a value and a second use of the column’s
DEFAULT would supply a duplicate value.

– A column defined as a persistent class property with the VALUELIST parameter can accept only values listed in
VALUELIST or no value (NULL). VALUELIST values are case-sensitive. Specifying a data value that does not
match the VALUELIST values results in an SQLCODE -104 column error.

• Numbers are inserted in canonical form but can be specified with leading and trailing zeros and multiple leading signs.
However, in SQL, two consecutive minus signs are parsed as a single-line comment indicator. Therefore, attempting
to specify a number with two consecutive leading minus signs results in an SQLCODE -12 error.

• By default, an insert cannot specify values for columns for which the value is system-generated, such as the RowID,
IDKey, or IDENTITY column. By default, attempting to insert a non-NULL value for any of these columns results in
an SQLCODE -111 error. Attempting to insert a NULL for one of these columns causes InterSystems IRIS to override
the NULL with a system-generated value, which does not produce an error.

– If the table defines a ROWVERSION column, that column is automatically assigned a system-generated counter
value when a row is inserted. Attempting to insert a value into a ROWVERSION column results in an SQLCODE
-138 error.

– An IDENTITY column can be made to accept user-specified values. By setting the SetOption("IdentityInsert")
method, you can override the IDENTITY column default constraint and allow inserts of unique integer values to
IDENTITY columns. To return the current setting for this constraint, call the GetOption("IdentityInsert")
method. Inserting an IDENTITY column value changes the IDENTITY counter so that subsequent system-generated
values increment from this user-specified value. Attempting to insert a NULL for an IDENTITY column generates
an SQLCODE -108 error.

– IDKey data has the following restriction. Because multiple IDKey columns in an index are delimited using the
“||” (double vertical bar) characters, you cannot insert data values with this character string into IDKey columns.

• Values being inserted must not violate foreign key referential integrity, unless the INSERT command specifies the
%NOCHECK keyword or the foreign key was defined with the NOCHECK keyword. Otherwise, attempting an insert
that violates foreign key referential integrity results in an SQLCODE -121 error. For details on listing a table’s foreign
key constraints and the naming of foreign key constraints, refer to Catalog Details: Constraints.

• A data value cannot be a subquery. Attempting to specify a subquery as a column value results in an SQLCODE -144
error.

Non-Display Character Values

To insert values containing non-display characters, use the CHAR function and the concatenation operator. For example,
this statement inserts a string consisting of the letter “A”, a line feed character, and the letter “B”:

SQL

INSERT INTO MyTable (Text) VALUES ('A'||CHAR(10)||'B')

To concatenate the results of a function, you must use the || concatenation operator, not the _ concatenation operator used
in ObjectScript.

Special Variable Values

You can specify value as one of these special variables:

• A %TABLENAME or %CLASSNAME pseudo-column variable keyword. %TABLENAME returns the current table
name. %CLASSNAME returns the name of the class corresponding to the current table.

InterSystems SQL Reference 239

INSERT (SQL)

• One or more of these ObjectScript special variables, including their abbreviated forms: $HOROLOG, $JOB,
$NAMESPACE, $TLEVEL, $USERNAME, $ZHOROLOG, $ZJOB, $ZNSPACE, $ZPI, $ZTIMESTAMP,
$ZTIMEZONE, $ZVERSION.

List Values

InterSystems IRIS supports the list structure data type, %List, data type class %Library.List. This compressed binary format
does not map to a corresponding native data type for InterSystems SQL. Instead, it corresponds to data type VARBINARY
with a default MAXLEN of 32749. For this reason, Dynamic SQL cannot use INSERT or UPDATE to set a property value
of type %List. For more details, see Data Types.

IDENTITY and Counter Values

InterSystems SQL enables you to define columns that are system-generated, such as the IDENTITY column, or that auto-
matically increment upon each INSERT or UPDATE operation, such as the RowVersion, AutoIncrement, and Serial
Counter columns.

If you insert a value into one of these columns, the INSERT operation might fail, depending on the column type.

INSERT Allowed?Column Type

Not by default.

To configure IDENTITY to accept inserted values, set
the %CLASSPARAMETER ALLOWIDENTITYIN-
SERT=1 value when defining the table. For more
details, see Creating Named RowId Column Using
IDENTITY Keyword.

IDENTITY

No user-specified, calculated, or default value can be
inserted for a ROWVERSION column.

ROWVERSION

Yes.

If you specify a positive integer value, INSERT inserts
the value into the column, overriding the default
counter value.

If you specify no value, 0 (zero), or a nonnumeric
value, INSERT ignores the specified value, increments
this column’s value by 1, and inserts that value into
the column.

SERIAL

AUTO_INCREMENT

Computed Values

You can insert a value into a column with a defined COMPUTECODE under these conditions:

240 InterSystems SQL Reference

SQL Commands

Value BehaviorDefined Column

Value is computed and stored on INSERT. Value is
not changed on UPDATE.

COMPUTECODE with no related compute keywords

Value is computed and stored on INSERT.

Value is recomputed and stored on UPDATE.

COMPUTECODE with COMPUTEONCHANGE

Default value is stored on INSERT.Value is computed
and stored on UPDATE.

COMPUTECODE with DEFAULT and
COMPUTEONCHANGE

If you insert a valid value into a calculated column,
InterSystems IRIS inserts the row and increments
ROWCOUNT. However, because this value is not
stored, it is not inserted.When you query this column,
InterSystems SQL recomputes the value and returns
that value.

If a column of this type is part of a foreign key con-
straint, a value for this column is computed during the
insert in order to perform the referential integrity
check. This computed value is not stored.

COMPUTECODE with CALCULATED or TRANSIENT

If the compute code contains a programming error (for example, divide by zero), the INSERT operation fails with an
SQLCODE -415 error.

For more details, see Computing a field value on INSERT or UPDATE.

query

A SELECT query, the result set of which supplies the data values for the corresponding columns specified in column.

The SELECT query extracts column data from one or more tables and the INSERT command creates corresponding new
rows in its table containing this column data. Corresponding columns can have different column names and column lengths,
so long as the inserted data can fit in the table column. If the corresponding columns do not pass data type and length vali-
dation checks, InterSystems SQL generates an SQLCODE -104 error.

To limit the number of rows inserted, specify a TOP clause in the SELECT statement. To determine which of these top
rows the query selects, use an ORDER BY clause in the SELECT statement.

To insert only unique values of certain columns, specify a GROUP BY clause in the query. By default, GROUP BY converts
values to uppercase for the purpose of grouping. To preserve the letter case of inserted values, specify %EXACT collation
in the query. For example:

SQL

INSERT INTO Sample.UniquePeople (Name,Age)
 SELECT Name,Age FROM Sample.Person
 WHERE Name IS NOT NULL GROUP BY %EXACT Name

An INSERT with SELECT operation sets the %ROWCOUNT variable to the number of rows inserted (either 0 or a pos-
itive integer).

array

A dynamic local array of values specified as a host variable. This value applies to Embedded SQL only.

InterSystems SQL Reference 241

INSERT (SQL)

The lowest subscript level of the array must be unspecified. Thus :myupdates(), :myupdates(5,), and
:myupdates(1,1,) are all valid specifications.

%keyword

Keyword options that configure INSERT processing. You can specify keyword options in any order. Separate multiple
keyword options by spaces.

This table describes the keyword options that you can specify:

242 InterSystems SQL Reference

SQL Commands

DescriptionKeyword Option

InterSystems SQL Reference 243

INSERT (SQL)

DescriptionKeyword Option

Disable unique value checking and foreign key referential integrity checking.
%NOCHECK also disables validation for column data types, maximum column lengths,

%NOCHECK

and column data constraints. When performing an INSERT through a view, the WITH
CHECK OPTION validation is not performed.

Note: %NOCHECK inserts can result in invalid data. If you enable this option, such
as for speeding up bulk inserts or updates, make sure the data is from a reliable
source.

This option requires setting the corresponding %NOCHECK administrative privilege.
Failing to set this privilege generates an SQLCODE -99 error on insert.

To prevent inserts of non-unique data values when specifying %NOCHECK, perform
an EXISTS check prior to INSERT.

To disable foreign key referential integrity checking, use the
$SYSTEM.SQL.SetFilerRefIntegrity() method instead. Alternatively, define a foreign
key on the table by using the NOCHECK keyword so that foreign key referential integrity
checking is never performed. For more details on foreign key referential integrity, see
Foreign Key Referential Integrity Checking.

Ignore any frozen plans for this operation and generate a new query plan. The frozen
plan is retained but not used. For more details, see Frozen Plans.

%NOFPLAN

Disable setting of index maps during INSERT processing. This option requires setting
the corresponding %NOINDEX administrative privilege. Failing to set this privilege
generates an SQLCODE -99 error on insert.

%NOINDEX

To build the index of a table containing rows that were not indexed upon insertion, use
BUILD INDEX.

Suppress journaling and disables transactions for the duration of the insert operation.
None of the changes made in any of the rows are journaled, including any triggers

%NOJOURN

pulled. If you perform a ROLLBACK after a statement with %NOJOURN, the changes
made by the statement are not rolled back.This option requires setting the corresponding
%NOJOURN administrative privilege. Failing to set this privilege generates an
SQLCODE -99 error on insert.

Disable locking of the row upon INSERT. Set this option only when a single user or
process is updating the database. This option requires setting the corresponding

%NOLOCK

%NOLOCK administrative privilege. Failing to set this privilege generates an SQLCODE
-99 error on insert.

Do not pull base table insert triggers during INSERT processing. This option requires
setting the corresponding %NOTRIGGER administrative privilege. Failing to set this
privilege generates an SQLCODE -99 error on insert.

%NOTRIGGER

244 InterSystems SQL Reference

SQL Commands

DescriptionKeyword Option

Generate performance analysis statistics (SQLStats) for the insert statement.

• %PROFILE collects SQLStats for the main query module

• %PROFILE_ALL collects SQLStats for the main query module and all of its subquery
modules

The generated statements are the same generated with the SQL Performance Analysis
Toolkit enabled. This keyword option enables you to profile and inspect individual
statements, leaving statistics disabled for other compiled statements that do not require
investigation. For more details on these statistics, see SQL Runtime Statistics.

%PROFILE

%PROFILE_ALL

Examples

Insert Rows into Table Using Specified Values

This example shows that various ways that you can insert a new row of values into a table.

Create a table containing company data. This table has two required columns: the name of the company, which must be
unique, and the country in which the company headquarters is located. The second column, Revenue, is not required and
has a default value of 0.

SQL

CREATE TABLE Sample.Company (
 Name VARCHAR(20) UNIQUE NOT NULL,
 Revenue INTEGER DEFAULT 0,
 Country VARCHAR(10) NOT NULL)

Insert a row of data into the table. The column values must be specified in the same order as the table’s column order.

SQL

INSERT INTO Sample.Company VALUES ('CompanyA',10000,'BEL')

Insert another row of data, this time specifying the column names to insert data into. Because this statement omits the
Revenue column, InterSystems SQL sets this column value to its default value of 0.

SQL

INSERT INTO Sample.Company (Name,Country) VALUES ('CompanyB','CAN')

Insert a third row of data, this time using the SET column=value syntax. Note that the column=value pairs do not have to
be in table column order.

SQL

INSERT INTO Sample.Company Set Name = 'CompanyC', Country = 'ECU', Revenue = 25000

View the inserted data, ordered by their revenue.

SQL

SELECT * FROM Sample.Company ORDER BY Revenue DESC

InterSystems SQL Reference 245

INSERT (SQL)

CountryRevenueName

ECU25000CompanyC

BEL10000CompanyA

CAN0CompanyB

Delete the table when you are done.

SQL

DROP TABLE Sample.Company

Insert Stream Data into Table

These examples show the different types of data values you can insert into a stream field by using embedded SQL.

For any table, you can insert a string literal or a host variable containing a string literal. For example:

ObjectScript

 set literal="Technique 1"
 &sql(INSERT INTO MyStreamTable (MyStreamField) VALUES (:literal))

You can also insert an object reference (OREF) into a stream object for any non-sharded table. InterSystems IRIS opens
this object and copies its contents into the new stream field. For example:

ObjectScript

 set oref=##class(%Stream.GlobalCharacter).%New()
 do oref.Write("Technique non-shard 1")

 //do the insert; use an actual OREF
 &sql(INSERT INTO MyStreamTable (MyStreamField) VALUES (:oref))

Alternatively, you can insert a string version of an OREF into a stream object:

ObjectScript

 set oref=##class(%Stream.GlobalCharacter).%New()
 do oref.Write("Technique non-shard 2")

 //next line converts OREF to a string OREF
 set string=oref_""

 //do the insert
 &sql(INSERT INTO MyStreamTable (MyStreamField) VALUES (:string))

For a sharded table, you can insert an object ID (OID) using a temporary stream object stored in the ^IRIS.Stream.Shard
global:

ObjectScript

 set clob=##class(%Stream.GlobalCharacter).%New("Shard")
 do clob.Write("Technique Sharded Table 1")
 set sc=clob.%Save() // Handle $$$ISERR(sc)
 set ClobOid=clob.%Oid()

 &sql(INSERT INTO MyStreamTable (MyStreamField) VALUES (:ClobOid))

Attempting to insert an improperly defined stream value results in an SQLCODE -412 error.

For more details and examples, see Inserting Data into Stream Data Fields.

246 InterSystems SQL Reference

SQL Commands

Insert Data Using Embedded SQL

This Embedded SQL example uses a host variable array to insert a row with three column values. Array elements are
numbered in column order. Specified array values must start with the second element, in this case company(2). The first
array element corresponds to the RowID column, which is automatically supplied and cannot be defined:

ObjectScript

 SET company(2)="Company1"
 SET company(3)=15000
 SET company(4)="JPN"
 &sql(INSERT INTO Sample.Company VALUES :company())

This embedded SQL example uses a dynamic local array with an unspecified last subscript to pass an array of values to
INSERT at runtime.

ObjectScript

 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(INSERT INTO Sample.Employee VALUES :emp('profile',))
 WRITE !,"SQL Error code: ",SQLCODE," Row Count: ",%ROWCOUNT

The previous statements causes each column in the inserted "Employee" row to be set to the following, where "col" is the
column’s number in the Sample.Employee table.

emp("profile",col)

Insert Data Using Dynamic SQL

This class method uses Dynamic SQL to insert values into a table based on arguments passed into the method.

Class Member

ClassMethod DynamicSQLInsert(name As %String, revenue As %Integer, country As %String)
{
 set sqltext = "INSERT INTO Sample.Company (Name,Revenue,Country) VALUES (?,?,?)"

 set tStatement = ##class(%SQL.Statement).%New(0,"Sample")
 set qStatus = tStatement.%Prepare(sqltext)
 if qStatus'=1 {write "%Prepare failed:" DO $System.Status.DisplayError(qStatus) quit}
 set rtn = tStatement.%Execute(name,revenue,country)
 if rtn.%SQLCODE=0 {
 write !,"Insert succeeded"
 write !,"Row count=",rtn.%ROWCOUNT
 write !,"Row ID=",rtn.%ROWID }
 elseif rtn.%SQLCODE=-119 {
 write !,"Duplicate record not written",!,rtn.%Message quit }
 else { write !,"Insert failed, SQLCODE=",rtn.%SQLCODE }
}

Insert Data from Another Table Using a SELECT Query

This example shows how to populate a table with data extracted from another table by using an INSERT with SELECT
operation. This example assumes that you have a previously defined Sample.Person table that contains Name, DOB, and
Age columns. You can download such a table from GitHub at https://github.com/intersystems/Samples-Data. For download
instructions, see Downloading Samples for Use with InterSystems Products.

Create a table called MyStudents. This table contains name and date-of-birth columns, both of which are specified, and an
age column, which is calculated from the date-of-birth column.

InterSystems SQL Reference 247

INSERT (SQL)

https://github.com/intersystems/Samples-Data

SQL

CREATE TABLE MyStudents (
 StudentName VARCHAR(32),
 StudentDOB DATE,
 StudentAge INTEGER COMPUTECODE {set {StudentAge} =
 $piece(($piece($horolog,",",1)-{StudentDOB})/365,".",1)}
 CALCULATED)

Insert student data from the Sample.Person table into the MyStudents table. Use a SELECT query that selects the people
that are 21 and under. You can use either of these two queries. Because the column order of the two tables match and only
the first two columns are stored, the column names can be omitted.

SQL

INSERT INTO MyStudents (StudentName,StudentDOB)
 SELECT Name,DOB
 FROM Sample.Person WHERE Age <= 21

SQL

INSERT INTO MyStudents
 SELECT Name,DOB
 FROM Sample.Person WHERE Age <= 21

Display the results, ordered by age.

SQL

SELECT * FROM MyStudents ORDER BY StudentAge

Delete the table when you are done.

SQL

DROP TABLE MyStudents

Another use of INSERT with SELECT is to create a duplicate table from an existing table. You can use this operation to
copy existing data into a redefined table that will accept future column data values that would not have been valid in the
original table. For more details, see Copy Data into a Duplicate Table.

Compatibility
To use INSERT to add data to an InterSystems IRIS table using Microsoft Access, either mark the table RowID column
as private or define a unique index on one or more additional columns.

Security and Privileges

Table-Level Privileges

To insert one or more rows of data into a table, you (or the specified user) must have either table-level privileges or column-
level privileges for that table.

• When inserting any data into a table, you must have INSERT privilege on the table.

• If you are inserting data from another table using a SELECT query, you must have SELECT privilege on that table.

The Owner (creator) of the table is automatically granted all privileges for that table. If you are not the Owner, you must
be granted privileges for the table. Failing to do so results in an SQLCODE -99 error.

To determine if you have the appropriate privileges, use %CHECKPRIV. To assign table privileges to a user, use GRANT.
For more details, see Privileges.

248 InterSystems SQL Reference

SQL Commands

To insert into a sharded table, you must have INSERT privileges for the target tables. Failing to have these privileges results
in an SQLCODE -253 error.

Table-level privileges are equivalent to, but not identical to, having column-level privileges on all columns of the table.

Column-Level Privileges

If you do not have table-level INSERT privilege, to insert a specified value into a column, you must have column-level
INSERT privilege for that column. Only those columns for which you have INSERT privilege receive the value specified
in the INSERT command.

If you do not have column-level INSERT privilege for a specified column, InterSystems SQL inserts the column's default
value (if defined), or NULL (if no default is defined). If you do not have INSERT privilege for a column that has no default
and is defined as NOT NULL, InterSystems IRIS issues an SQLCODE -99 (Privilege Violation) error at Prepare time.

If the INSERT command specifies columns in the WHERE clause of a SELECT subquery, you must have these privileges:

• SELECT privilege for those columns if they are not data insert columns.

• Both SELECT and INSERT privileges for those columns if they are included in the result set.

When a property is defined as ReadOnly, the corresponding table column is also defined as ReadOnly. You can assign a
value to a ReadOnly column only by using InitialExpression or SqlComputed. Attempting to insert a value into column
for which you have column-level ReadOnly (SELECT or REFERENCES) privilege results in an SQLCODE -138 error.

To determine if you have the appropriate privileges, use %CHECKPRIV. To assign column-level privileges to a user, use
GRANT. For more details, see Privileges.

Row-Level Security

InterSystems IRIS row-level security permits INSERT to add a row even if the row security is defined so that you will not
be permitted to subsequently access the row. To ensure that an INSERT does not prevent you from subsequent SELECT
access to the row, perform the INSERT through a view that has a WITH CHECK OPTION. For more details, see CREATE
VIEW.

Fast Insert
When inserting rows in a table using JDBC or ODBC, InterSystems IRIS by default automatically performs highly efficient
Fast Insert operations. Fast Insert moves the normalization and formatting of the data being insert from the server over to
the client. The server can then directly set the whole row of data for a table into the global without manipulation on the
server. This offloads these tasks from the server onto the client and can dramatically improve INSERT performance. Because
the client is assuming the task of formatting the data, there may be an unforeseen usage increase in your client environment.
You can use the FeatureOption property to disable Fast Insert if this is an issue.

Fast Insert must be supported on both the server and the client. To enable or disable Fast Insert in the client, use the Fea-
tureOption property in the definition of the class instance as follows:

Properties p = new Properties();
p.setProperty("FeatureOption","3"); // 2 is fast Insert, 1 is fast Select, 3 is both

If Fast Insert is active, an INSERT executed using a cached query is performed using Fast Insert. This initial INSERT that
generated the cached query is not performed using Fast Insert. This enables you to compare the performance of the initial
insert with subsequent Fast Inserts executed using the cached query. If Fast Insert is not supported (for any of the following
reasons), an ordinary INSERT is performed.

Fast Insert must be performed on a table. It cannot be performed on an updateable view. Fast Insert is not performed when
the table has any of the following characteristics:

• The table uses embedded (nested) storage structure (%SerialObject).

• The table is a linked table.

InterSystems SQL Reference 249

INSERT (SQL)

• The table is a child table.

• The table has an explicitly defined multi-field IDKEY index.

• The table has a SERIAL (%Counter), AUTO INCREMENT, or %RowVersion field.

• The table has a property (field) with a defined VALUELIST parameter.

• The table has a defined insert trigger.

• The table performs LogicalToStorage conversion of field values.

• The table is a Shard Master table.

Fast Insert cannot be performed if the INSERT statement has any of the following characteristics:

• It specifies a stream field (data type %Stream.GlobalCharacter or %Stream.GlobalBinary), a collection field (lists or
arrays), or a ReadOnly field. These types of fields can exist in the table, but cannot be specified in the INSERT.

• It specifies a literal value enclosed with double parentheses that suppresses literal substitution. For example, (('A')).

• It specifies a {ts } timestamp value that omits the date value.

• It includes a DEFAULT VALUES clause.

For SQL Statement auditing events generated through a database driver, an INSERT statement that uses the Fast Insert
interface has a description of SQL fastINSERT Statement. If the Fast Insert interface is used, the Audit event does
not include any parameter data, but includes the message Parameter values are not available for a
fastInsert statement.

ODBC Datatype Handling

When using Fast Insert using ODBC, you may set fields TIMESTAMP or POSIX typed fields using the integer or _int64
data types. The provided number will be treated as a $HOROLOG value.

String values that are converted to doubles will be validated, ensuring that the String represents a numeric value. This val-
idation also accepts, in any case, “INF”, “infinity”, and “NaN” values, which may be preceded by a + or - sign.

Values being converted from Numeric to integer will be truncated, not rounded.

Transaction Considerations

Transaction Atomicity Settings

By default, INSERT, UPDATE, DELETE, and TRUNCATE TABLE are atomic operations. An INSERT either completes
successfully or the whole operation is rolled back. If any of the specified rows cannot be inserted, none of the specified
rows are inserted and the database reverts to its state before issuing the INSERT.

You can modify this default for the current process within SQL by invoking SET TRANSACTION %COMMITMODE.
You can modify this default for the current process in ObjectScript by invoking the SetOption() method, using this syntax:

SET status=$SYSTEM.SQL.Util.SetOption("AutoCommit",intval,.oldval)

The following intval integer options are available:

• 1 or IMPLICIT (autocommit on — default) — Each INSERT constitutes a separate transaction.

• 2 or EXPLICIT (autocommit off) — If no transaction is in progress, INSERT automatically initiates a transaction,
but you must explicitly COMMIT or ROLLBACK to end the transaction. In EXPLICIT mode, the number of database
operations per transaction is user-defined.

• 0 or NONE (no auto transaction) — No transaction is initiated when you invoke INSERT. A failed INSERT operation
can leave the database in an inconsistent state, with some rows inserted and some not inserted. To provide transaction

250 InterSystems SQL Reference

SQL Commands

support in this mode, you must use START TRANSACTION to initiate the transaction and COMMIT or ROLLBACK
to end the transaction.

A sharded table is always in no auto-transaction mode, which means all inserts, updates, and deletes to sharded tables
are performed outside the scope of a transaction.

To determine the atomicity setting for the current process, use the GetOption("AutoCommit") method, as shown in this
ObjectScript example:

ObjectScript

 SET stat=$SYSTEM.SQL.Util.SetOption("AutoCommit",$RANDOM(3),.oldval)
 IF stat'=1 {WRITE "SetOption failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET x=$SYSTEM.SQL.Util.GetOption("AutoCommit")
 IF x=1 {
 WRITE "Default atomicity behavior",!
 WRITE "automatic commit or rollback" }
 ELSEIF x=0 {
 WRITE "No transaction initiated, no atomicity:",!
 WRITE "failed DELETE can leave database inconsistent",!
 WRITE "rollback is not supported" }
 ELSE { WRITE "Explicit commit or rollback required" }

Modify Transaction Lock Threshold

If the %NOLOCK keyword is not specified, the system automatically performs standard record locking on INSERT,
UPDATE, and DELETE operations. Each affected record (row) is locked for the duration of the current transaction.

The default lock threshold is 1000 locks per table. If you insert more than 1000 records from a table during a transaction,
the lock threshold is reached and InterSystems IRIS automatically escalates the locking level from record locks to a table
lock. This permits large-scale inserts during a transaction without overflowing the lock table.

InterSystems IRIS applies one of these lock escalation strategies:

• “E”-type escalation locks — InterSystems IRIS uses this lock escalation if the following are true:

1. The class of the table uses %Storage.Persistent. You can determine this from the Catalog Details in the Management
Portal SQL schema display.

2. The class either does not specify an IDKey index, or specifies a single-property IDKey index.

For details on “E”-type lock escalation, see LOCK.

• Traditional SQL lock escalation — This lock escalation can take place when the class has multi-property IDKey index.
In this case, each %Save increments the lock counter. This means if you do 1001 saves of a single object within a
transaction, InterSystems IRIS attempts to escalate the lock.

For both lock escalation strategies, you can determine the current system-wide lock threshold value using the
$SYSTEM.SQL.Util.GetOption("LockThreshold") method. The default is 1000. You can configure the system-wide
lock threshold using one of these options:

• Call the $SYSTEM.SQL.Util.SetOption("LockThreshold") method.

• In the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. Display and
edit the current setting of Lock escalation threshold. The default is 1000 locks. If you change this setting, any new
process started after changing it will have the new setting.

To change the lock threshold, you must have USE permission on the %Admin Manage Resource. InterSystems IRIS
immediately applies any change made to the lock threshold value to all current processes.

One potential consequence of automatic lock escalation is a deadlock situation that might occur when an attempt to escalate
to a table lock conflicts with another process holding a record lock in that table. There are several possible strategies to
avoid this:

InterSystems SQL Reference 251

INSERT (SQL)

1. Increase the lock escalation threshold so that lock escalation is unlikely to occur within a transaction.

2. Substantially lower the lock escalation threshold so that lock escalation occurs almost immediately, thus decreasing
the opportunity for other processes to lock a record in the same table.

3. Apply a table lock for the duration of the transaction and do not perform record locks. This can be done at the start of
the transaction by specifying LOCK TABLE, then UNLOCK TABLE (without the IMMEDIATE keyword, so that
the table lock persists until the end of the transaction), then perform inserts with the %NOLOCK option.

Automatic lock escalation is intended to prevent overflow of the lock table. However, if you perform such a large number
of inserts that a <LOCKTABLEFULL> error occurs, INSERT issues an SQLCODE -110 error.

For further details on transaction locking, see Transaction Processing.

Child Table Insert

During an INSERT operation on a child table, a shared lock is acquired on the corresponding row in the parent table. This
row is locked while inserting the child table row. The lock is then released (it is not held until the end of the transaction).
This ensures that the referenced parent row is not changed during the insert operation.

More About

Copy Data into a Duplicate Table

You can use INSERT with SELECT * to copy the data from one table into a duplicate table, as long as the column order
matches and the data types are compatible. Use this operation to copy existing data into a redefined table that will accept
future column data values that would not have been valid in the original table. Sample syntax:

SQL

INSERT INTO Sample.DupTable SELECT * FROM Sample.SrcTable

The column names do not have to match, but the data in the source and destination tables must meet these requirements:

• The data type of the source table values must be compatible with the data type of the destination table columns. You
can, for example, insert integer data from an INTEGER column into a VARCHAR column, because the INTEGER
value can be converted to a VARCHAR. If any data value is incompatible, the INSERT fails with an SQLCODE -104
error. To explicitly convert inserted data to the destination data type, you can use the CONVERT function.

• The data type length of the source table values must be compatible with the length of the destination table columns.
The defined column data lengths do not have to match each other, they just have to match the actual data. For example,
suppose SrcTable has a FullName VARCHAR(60) column and DupTable has a corresponding PersonName
VARCHAR(40) column. If no existing FullName value is longer than 40 characters, the INSERT succeeds. If any
FullName is longer than 40 characters, the INSERT fails with an SQLCODE -104 error.

• The two tables must have a compatible column order or the INSERT command fails with an SQLCODE -64 error.
The DDL CREATE TABLE operation lists the columns in the order defined. A persistent class that defines a table
lists the columns in alphabetical order.

• The tables must have a compatible column count, but the destination table can have additional columns beyond the
ones copied. For example, SrcTable can have the columns FullName VARCHAR(60) and Age INTEGER, and
DupTable can have the columns PersonName VARCHAR(60), Years INTEGER, and ShoeSize INTEGER.

• If either the source and destination table defines a public RowID, copying data is restricted, as shown in this table:

252 InterSystems SQL Reference

SQL Commands

Copy Operation BehaviorDestination TableSource Table

You can use INSERT SELECT with SELECT * to copy data
to a duplicate table.

Private RowIDPrivate RowID

You cannot use INSERT SELECT to copy data to a
duplicate table. An SQLCODE -111 error is generated.

Public RowIDPublic RowID

You cannot use INSERT SELECT to copy data to a
duplicate table. An SQLCODE -111 error is generated.

Public RowIDPrivate RowID

You cannot use INSERT SELECT with SELECT * to copy
data to a duplicate table. An SQLCODE -64 error is gener-
ated because of the presence of the RowID in one select
list makes the select lists incompatible.You can use an
INSERT SELECT with a list of all column names (not
including the RowID) to copy data to a duplicate table.
However, if the Source has a foreign key public RowID, the
foreign key relationship is not preserved for the destination
table. The Destination receives new system-generated
RowIDs.

If the source table has a foreign key public RowID, and you
want the destination table to have the same foreign key
relationship, you must define the destination table with the
%CLASSPARAMETER ALLOWIDENTITYINSERT=1 in CREATE
TABLE. If a table is defined as ALLOWIDENTITYIN-
SERT=1, this setting cannot be changed by the
SetOption("IdentityInsert") method.

Private RowIDPublic RowID

The DDL CREATE TABLE operation defines the RowID as private by default. A persistent class that defines a table
defines the RowID as public by default. To make it private, you must specify the SqlRowIdPrivate class keyword when
defining the persistent class. However, a foreign key can only refer to a table with a public RowID.

If the persistent class of a source or destination table defines the Final keyword, this keyword has no effect on copying data
into a duplicate table.

Insert Data into %SerialObject Properties

When inserting data into a %SerialObject, you must insert into the table (persistent class) that references the embedded
%SerialObject. You cannot insert into a %SerialObject directly. For example, consider a persistent class has a property,
PAddress, that references a serial object contain the properties Street, City, and Country, in that order. You can insert values
of this property in these ways:

• Use the referencing field to insert values for multiple %SerialObject properties as a %List structure. For example:

SQL

INSERT INTO MyTable SET PAddress=$LISTBUILD('123 Main St.','Newtown','USA')

SQL

INSERT INTO MyTable (PAddress) VALUES ($LISTBUILD('123 Main St.','Newtown','USA'))

The %List must contain values for the properties of the serial object (or placeholder commas) in the order that these
properties are specified in the serial object.

InterSystems SQL Reference 253

INSERT (SQL)

This type of insert might not perform validation of %SerialObject property values. Therefore, after inserting %Seri-
alObject property values using a %List structure, use the $SYSTEM.SQL.Schema.ValidateTable() method to perform
Table Data Validation.

• Use underscore syntax to insert values for individual %SerialObject properties in any order. For example:

SQL

INSERT INTO MyTable SET PAddress_City='Newtown',PAddress_Street='123 Main St.',PAddress_Country='USA'

Unspecified serial object properties default to NULL.

This type of insert performs validation of %SerialObject property values.

See Also
• INSERT OR UPDATE

• UPDATE

• DELETE

• CREATE TABLE

• JOIN

• SELECT

• VALUES

• Modifying the Database

• Defining Tables

• Defining Views

• Transaction Processing

• SQL and Object Settings Pages

• SQLCODE error messages

254 InterSystems SQL Reference

SQL Commands

INSERT OR UPDATE (SQL)
Adds new rows or updates existing rows in a table.

Synopsis
Single Row Inserts or Updates

INSERT OR UPDATE table (column, column2, ...) VALUES (value, value2, ...)
INSERT OR UPDATE table VALUES (value, value2, ...)
INSERT OR UPDATE table SET column = value, column2 = value2, ...
INSERT OR UPDATE table DEFAULT VALUES
INSERT OR UPDATE table VALUES :array()

Multi-Row Inserts or Updates

INSERT OR UPDATE table query
INSERT OR UPDATE table (column, column2, ...) query

Insert or Update Options

INSERT OR UPDATE INTO table ...
INSERT OR UPDATE %keyword [INTO] table ...

Description
The INSERT OR UPDATE command is an extension of the INSERT command, with these differences:

• If the row being inserted does not exist, INSERT OR UPDATE performs an INSERT operation.

• If the row being inserted already exists, INSERT OR UPDATE performs an UPDATE operation, updating the row
with the specified column values. An update occurs even when the specified data values are identical to the existing
data.

An existing row is one in which the value being inserted already exists in a column that contains a unique constraint.
For more details, see Uniqueness Checks.

INSERT OR UPDATE uses the same syntax and generally has the same features and restrictions as the INSERT statement.
Special considerations for INSERT OR UPDATE are described on this page. Unless otherwise stated, see INSERT for
more details.

Single Row Inserts or Updates

• INSERT OR UPDATE table (column, column2, ...) VALUES (value, value2, ...) inserts or updates a row of values
for the specified columns of a table. The values in the VALUES clause must correspond positionally with the column
names in the column list. The insert or update of a single row sets the %ROWCOUNT variable to 1 and the %ROWID
variable to the inserted or updated row.

This statement first tries inserting a new row of data into the Sample.Records table. If the RecordID column enforces
a UNIQUE constraint and the RecordID being inserted already exists, then INSERT OR UPDATE updates the
existing row instead.

SQL

INSERT OR UPDATE Sample.Records (RecordID,StatusDate,Status) VALUES (105,'05/12/22','Purged')

Example: Insert or Update Rows in a Table

• INSERT OR UPDATE table VALUES (value, value2, ...) inserts or updates the table row of values in column
number order. The data values must correspond positionally to the defined column list. You must specify a value for

InterSystems SQL Reference 255

INSERT OR UPDATE (SQL)

every specifiable table column. You cannot use defined default values, but you can specify an empty string as a value.
Because the RowID column is not specifiable, do not include a RowID value in the VALUES list.

This statement first tries inserting a row of four values into the Sample.Address table in order. If this combination
of columns has a unique constraint, and a value for this key is already defined in the table, then INSERT OR UPDATE
updates the existing row instead.

SQL

INSERT OR UPDATE Sample.Address VALUES ('22 Main St.','Anytown','PA','65342')

• INSERT OR UPDATE table SET column = value, column2 = value2, ... inserts or updates a row of values by
explicitly setting the values of specific columns.

This statement performs the same operation as in the INSERT OR UPDATE table (column, column2, ...) VALUES
(value, value2, ...) syntax.

SQL

INSERT OR UPDATE Sample.Records SET RecordID=105, StatusDate='05/12/22',Status='Purged'

• INSERT OR UPDATE table DEFAULT VALUES inserts or updates a row that contains only default column values.

– Columns with a defined default value are set to that value.

– Columns without a defined default value are set to NULL.

This statement inserts a row of default column values into the Sample.Person table.

SQL

INSERT OR UPDATE Sample.Person DEFAULT VALUES

• INSERT OR UPDATE table VALUES :array() inserts or updates values from an array, specified as a host variable,
into the columns of a table. You can use this syntax with Embedded SQL only. The values in this array must implicitly
correspond to the columns of the row in column number order. You must specify a value for each specifiable column.
An INSERT OR UPDATE using column order cannot take defined column default values.

This class method uses embedded SQL to insert into or update an array for the Sample.FullName table. myarray(1)
is reserved for the RowID column and is therefore not specified.

Class Member

ClassMethod EmbeddedSQLInsertOrUpdateHostVarArray()
{
 set myarray(2)="Juanita"
 set myarray(3)="Pybus"
 &sql(INSERT OR UPDATE Sample.FullName VALUES :myarray())
 if SQLCODE '= 0 {
 write !, "Insert or update failed, SQLCODE= ", SQLCODE, ! ,%msg
 quit
 }
 write !,"Insert or update succeeded" quit
}

For more details on host variables and arrays, see Host Variable as a Subscripted Array.

Multi-Row Inserts or Updates

• INSERT OR UPDATE table query inserts or updates rows of data the come from the result set of a SELECT query.
The columns in the result set must match the columns in the table. You can use INSERT OR UPDATE with a SELECT
to populate a table with existing data extracted from other tables.

256 InterSystems SQL Reference

SQL Commands

This statement inserts the Name row from the Sample.Customer table into the Sample.Person table, or updates
existing rows of Sample.Person with the corresponding Sample.Customer values.

SQL

INSERT OR UPDATE Sample.Person SELECT Name FROM Sample.Customer

• INSERT OR UPDATE table (column, column2, ...) query inserts or updates rows of data from the query result set
into the specified columns.

This statement inserts or updates the query result set data from the Name and DOB columns of Sample.Person into
the matching columns of the Sample.Kids table.

SQL

INSERT OR UPDATE Sample.Kids (Name,DOB) SELECT Name,DOB FROM Sample.Person WHERE Age <= 18

Insert or Update Options

• INSERT OR UPDATE INTO table ... specifies the optional INTO keyword.

• INSERT OR UPDATE %keyword [INTO] table ... sets one or more %keyword options, separated by spaces. Valid
options are %NOCHECK, %NOFPLAN, %NOINDEX, %NOJOURN, %NOLOCK, %NOTRIGGER, %PROFILE,
and %PROFILE_ALL.

Note: Because the %NOCHECK keyword disables unique value checking, INSERT OR UPDATE %NOCHECK
always results in an insert operation and is therefore equivalent to INSERT.

Arguments

table

The name of the table or view on which to perform the insert operation. This argument can also be a subquery.

column

A column name or comma-separated list of column names that correspond in sequence to the supplied list of values. If
omitted, the list of values is applied to all columns in column-number order.

IDKEY column values can be inserted but not updated. For more details on this restriction, see IDKEY Column Values.

value

A scalar expression, or comma-separated list of scalar expressions, specified in the VALUES clause that supplies the data
values for the corresponding columns in column. Specifying fewer values than columns generates an SQLCODE -62 error.
Specifying more values than columns generates an SQLCODE -116 error.

INSERT OR UPDATE has the same value restrictions as INSERT. For more details, see the value argument of the
INSERT command.

array

A dynamic local array of values specified as a host variable. This value applies to Embedded SQL only.

The lowest subscript level of the array must be unspecified. Thus :myupdates(), :myupdates(5,), and
:myupdates(1,1,) are all valid specifications.

InterSystems SQL Reference 257

INSERT OR UPDATE (SQL)

query

A SELECT query, the result set of which supplies the data values for the corresponding columns specified in column.

The SELECT query extracts column data from one or more tables and the INSERT OR UPDATE command creates
corresponding new rows in its table containing this column data. Corresponding columns can have different column names
and column lengths, so long as the inserted data can fit in the table column. If the corresponding columns do not pass data
type and length validation checks, InterSystems SQL generates an SQLCODE -104 error.

An INSERT OR UPDATE with SELECT operation sets the %ROWCOUNT variable to the number of rows inserted or
updated (either 0 or a positive integer).

%keyword

Keyword options that configure INSERT OR UPDATE processing. You can specify keyword options in any order. Sep-
arate multiple keyword options by spaces.

You can specify these keywords:

• %NOCHECK — Disable unique value checking and foreign key referential integrity checking. Disables the update
operation of INSERT OR UPDATE.

• %NOFPLAN — Ignore any frozen plans for this operation and generate a new query plan.

• %NOINDEX — Disable setting of index maps during INSERT OR UPDATE processing.

• %NOJOURN — Suppress journaling and turns off transactions for the duration of the insert operation.

• %NOLOCK — Disable locking of the row upon INSERT OR UPDATE.

• %NOTRIGGER — Do not pull base table insert triggers during INSERT OR UPDATE processing.

• %PROFILE, %PROFILE_ALL — Generate performance analysis statistics (SQLStats) for the INSERT OR UPDATE
statement.

– %PROFILE collects SQLStats for the main query module

– %PROFILE_ALL collects SQLStats for the main query module and all of its subquery modules

For more details on these keywords, see the keyword argument of the INSERT command.

Examples

Insert or Update Rows in a Table

In this example, you create a new table (SQLUser.CaveDwellers), use INSERT to populate the table with data, and then
use INSERT OR UPDATE to add additional rows and update existing rows.

Create a table with a column, Num, that is designated as the primary key. This constraint enforces column values to be
unique and not null.

SQL

CREATE TABLE SQLUser.CaveDwellers (
Num INTEGER PRIMARY KEY,
CaveCluster CHAR(80) NOT NULL,
Troglodyte CHAR(50) NOT NULL)

Insert three rows into the table using an INSERT OR UPDATE statement, then use SELECT * to display the table data.
Because the rows did not previously exist, INSERT OR UPDATE performs an insert operation for all of them.

258 InterSystems SQL Reference

SQL Commands

SQL

INSERT OR UPDATE SQLUser.CaveDwellers (Num,CaveCluster,Troglodyte) VALUES (1,'Bedrock','Flintstone,Fred')

SQL

INSERT OR UPDATE SQLUser.CaveDwellers (Num,CaveCluster,Troglodyte) VALUES (2,'Bedrock','Flintstone,Wilma')

SQL

INSERT OR UPDATE SQLUser.CaveDwellers (Num,CaveCluster,Troglodyte) VALUES
(3,'Bedrock','Flintstone,Pebbles')

SQL

SELECT * FROM SQLUser.CaveDwellers

TroglodyteCaveClusterNum

Flintstone,FredBedrock1

Flintstone,WilmaBedrock2

Flintstone,PebblesBedrock3

Insert or update four additional rows of data.

• For the first three statements, INSERT OR UPDATE performs an insert operation, because the values being inserted
into the primary key column, Num, are not already in the table.

• For the last statements INSERT OR UPDATE performs an update operation, because the Num column value of 3 is
already in the table. INSERT OR UPDATE updates the Troglodyte column with the new value for that row.

SQL

INSERT OR UPDATE SQLUser.CaveDwellers (Num,CaveCluster,Troglodyte) VALUES (4,'Bedrock','Rubble,Barney')

SQL

INSERT OR UPDATE SQLUser.CaveDwellers (Num,CaveCluster,Troglodyte) VALUES (5,'Bedrock','Rubble,Betty')

SQL

INSERT OR UPDATE SQLUser.CaveDwellers (Num,CaveCluster,Troglodyte) VALUES (6,'Bedrock','Rubble,Bamm-Bamm')

SQL

INSERT OR UPDATE SQLUser.CaveDwellers (Num,CaveCluster,Troglodyte) VALUES
(3,'Bedrock','Flintstone-Rubble,Pebbles')

SQL

SELECT * FROM SQLUser.CaveDwellers

InterSystems SQL Reference 259

INSERT OR UPDATE (SQL)

TroglodyteCaveClusterNum

Flintstone,FredBedrock1

Flintstone,WilmaBedrock2

Flintstone-Rubble,PebblesBedrock3

Rubble,BarneyBedrock4

Rubble,BettyBedrock5

Rubble,Bamm-BammBedrock6

Delete the table when you are done.

SQL

DROP TABLE SQLUser.CaveDwellers

Security and Privileges
INSERT OR UPDATE requires both INSERT and UPDATE privileges. You must have these privileges either as table-
level privileges or as column-level privileges. For table-level privileges:

• You must have both INSERT and UPDATE privileges on the specified table, regardless of the operation actually per-
formed.

• When inserting or updating data from another table using a SELECT query, you must have SELECT privilege on that
table.

If you are the Owner (creator) of the table, you are automatically granted all privileges for that table. Otherwise, you must
be granted privileges for the table. Failing to do so results in an SQLCODE –99 error. To determine if you have the
appropriate privileges, use the %CHECKPRIV command. To assign table privileges, use the GRANT command. For more
details, see Privileges.

More About

Uniqueness Checks

INSERT OR UPDATE determines if a row exists by matching UNIQUE column values to the existing data values. If a
UNIQUE constraint violation occurs, INSERT OR UPDATE performs an update operation. The UNIQUE column value
can be explicitly specified in INSERT OR UPDATE or it can be the result of a column default value or a computed value.

When INSERT OR UPDATE is issued against a table that is a subclass and the super class already has the UNIQUE
constraint filled, the command fails with an SQLCODE -119. However, when INSERT OR UPDATE is issued against a
table that is a super class and the subclass already has the UNIQUE constraint filled, the update succeeds and fields present
in both the subclass and the super class will be updated, but fields only found in the subclass will not be updated.

When INSERT OR UPDATE is run against a sharded table, if the shard key is the same as or a subset of the UNIQUE
KEY constraint, INSERT OR UPDATE performs an update operation.

If the INSERT OR UPDATE attempts to perform an update because of any other unique values found (that are not the
shard key), the command fails with an SQLCODE -120 error due to the unique constraint failure.

Counter Columns

When an INSERT OR UPDATE is executed, InterSystems IRIS initially assumes the operation is an insert. Therefore, it
increments by 1 the internal counters used to supply integers to SERIAL (%Library.Counter) columns. An insert uses these
incremented counter values to assign integer values to these columns. If, however, InterSystems IRIS determines that the

260 InterSystems SQL Reference

SQL Commands

operation needs to be an update, INSERT OR UPDATE has already incremented the internal counters, but it does not
assign these incremented integer values to counter columns. If the next operation is an insert, this results in a gap in the
integer sequence for these columns. This is shown in the following example:

1. The internal counter value is 4. INSERT OR UPDATE increments the internal counter, then inserts Row 5: internal
counter = 5, SERIAL column value = 5.

2. INSERT OR UPDATE increments the internal counter, then determines that it must perform an update on an existing
row: internal counter = 6, no change to column counters.

3. INSERT OR UPDATE increments internal counter, then inserts a row: internal counter = 7, SERIAL column value
= 7.

IDENTITY and RowID Columns

The effect of INSERT OR UPDATE on the assignment of RowId values depends on whether an IDENTITY column is
present:

• If no IDENTITY column is defined for the table, an insert operation causes InterSystems IRIS to automatically assign
the next sequential integer value to the ID (RowID) column. Update operations have no effect on subsequent inserts.
Thus, INSERT OR UPDATE performs the same insert operation as INSERT.

• If an IDENTITY column is defined for the table, an INSERT OR UPDATE causes InterSystems IRIS to increment
by 1 the internal counter used to supply integers to the IDENTITY column, before determining if the operation will
be an insert or an update. An insert operation assigns this incremented counter value to the IDENTITY column. If,
however, InterSystems IRIS determines that the INSERT OR UPDATE operation needs to be an update, it has already
incremented the internal counter, but it does not assign these incremented integer value. If the next INSERT OR
UPDATE operation is an insert, this results in a gap in the integer sequence for the IDENTITY column. The RowID
column value is taken from the IDENTITY column value, resulting in a gap in the assignment of ID (RowID) integer
values.

IDKEY Column Values

When using INSERT OR UPDATE, you can only insert IDKEY column values, not update them. If the table has an
IDKEY index and another UNIQUE constraint, INSERT OR UPDATE matches these columns to determine whether to
perform an insert or an update. If the other key constraint fails, this forces INSERT OR UPDATE to perform an update
rather than an insert. However, if the specified IDKEY column values do not match the existing IDKEY column values,
this update fails and generates an SQLCODE -107 error, because the update is attempting to modify the IDKEY columns.

Consider a table with columns A, B, C, and D. The table has a primary key of (A,B) in an environment where the primary
key is the IDKEY, and a UNIQUE constraint on columns (C,D).

SQL

SET OPTION PKEY_IS_IDKEY = TRUE

SQL

CREATE TABLE ABCD (
A INTEGER,
B INTEGER,
C INTEGER,
D INTEGER,
CONSTRAINT AB PRIMARY KEY (A,B),
CONSTRAINT CD UNIQUE (C,D))

The table also has two rows of data:

SQL

INSERT INTO ABCD SET A=1, B=1, C=2, D=2

InterSystems SQL Reference 261

INSERT OR UPDATE (SQL)

SQL

INSERT INTO ABCD SET A=1, B=2, C=3, D=4

Suppose you try to insert this value:

SQL

INSERT OR UPDATE ABCD (A,B,C,D) VALUES (2,2,3,4)

Because the UNIQUE (C,D) constraint failed, this statement cannot perform an insert. Instead, it attempts to update Row
2. The IDKEY for Row 2 is (1,2), so the INSERT OR UPDATE statement attempts to change the column A value from 1
to 2. Because you cannot change an IDKEY value, the update fails with an SQLCODE -107 error.

Reset your environment to the default settings, where the primary key is not the IDKEY.

SQL

SET OPTION PKEY_IS_IDKEY = FALSE

See Also
• CREATE TABLE

• INSERT

• UPDATE

• Modifying the Database

• Defining Tables

• Defining Views

• Transaction Processing

• SQLCODE error messages

262 InterSystems SQL Reference

SQL Commands

%INTRANSACTION (SQL)
Shows transaction state.

Synopsis

%INTRANSACTION
%INTRANS

Description
The %INTRANSACTION statement sets SQLCODE to indicate the transaction state:

• SQLCODE=0 if currently in a transaction.

• SQLCODE=100 if not in a transaction.

%INTRANSACTION returns SQLCODE=0 while a transaction is in progress. This transaction can be an SQL transaction
initiated by START TRANSACTION or SAVEPOINT. It can also be an ObjectScript transaction initiated by TSTART.

Transaction nesting has no effect on %INTRANSACTION. SET TRANSACTION has no effect on %INTRANSACTION.

You can also determine transaction state using $TLEVEL. %INTRANSACTION only indicates whether a transaction is
in progress. $TLEVEL indicates both whether a transaction is in progress and the current number of transaction levels.

Examples
The following embedded SQL example shows how %INTRANSACTION sets SQLCODE:

ObjectScript

 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "Before %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL,!
 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "SetTran %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL,!
 &sql(START TRANSACTION)
 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "StartTran %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL,!
 &sql(SAVEPOINT a)
 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "Savepoint %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL,!
 &sql(ROLLBACK TO SAVEPOINT a)
 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "Rollback to Savepoint %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL,!
 &sql(COMMIT)
 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "After Commit %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL

See Also
• COMMIT ROLLBACK SAVEPOINT SET TRANSACTION START TRANSACTION $TLEVEL

• Transaction Processing

InterSystems SQL Reference 263

%INTRANSACTION (SQL)

JOIN (SQL)
A SELECT subclause that creates a table based on the data in two tables.

Synopsis
Inner Join

SELECT ... FROM table1 INNER JOIN table2 ON condition
SELECT ... FROM table1 INNER JOIN table2 USING (column, column2, ...)
SELECT ... FROM table1 JOIN table2 ...

SELECT ... FROM table1 NATURAL INNER JOIN table2
SELECT ... FROM table1 NATURAL JOIN table2

Left Outer Join

SELECT ... FROM table1 LEFT OUTER JOIN table2 ON condition
SELECT ... FROM table1 LEFT OUTER JOIN table2 USING (column, column2, ...)
SELECT ... FROM table1 LEFT JOIN table2 ...

SELECT ... FROM table1 NATURAL LEFT OUTER JOIN table2
SELECT ... FROM table1 NATURAL LEFT JOIN table2

Right Outer Join

SELECT ... FROM table1 RIGHT OUTER JOIN table2 ON condition
SELECT ... FROM table1 RIGHT OUTER JOIN table2 USING (column, column2, ...)
SELECT ... FROM table1 RIGHT JOIN table2 ...

SELECT ... FROM table1 NATURAL RIGHT OUTER JOIN table2
SELECT ... FROM table1 NATURAL RIGHT JOIN table2

Full Outer Join

SELECT ... FROM table1 FULL OUTER JOIN table2 ON condition
SELECT ... FROM table1 FULL JOIN table2 ON condition

Cross Join

SELECT ... FROM table1 CROSS JOIN table2

Description
The JOIN operation combines matching rows from two tables into a single table. Rows across two tables are considered a
match when they have identical values in one or more specified columns. To further limit the returned rows in the joined
table, you can specify additional restrictions.

Use joins to generate reports and queries that link related data across tables. Specify JOIN operations in a SELECT query
as part of the FROM clause. Within a query, you can specify multiple inner and outer joins in any order.

Inner Join

An INNER JOIN returns the matching rows from the first and second table. For example:

SQL

SELECT Table1.Letter, Table2.Number
FROM Table1
INNER JOIN Table2
ON Table1.ID = Table2.ID

264 InterSystems SQL Reference

SQL Commands

• SELECT ... FROM table1 INNER JOIN table2 ON condition returns the rows from table1 and table2 that match
the condition expression specified in the ON clause. You can specify the ON clause anywhere within a join expression.

This query returns the names of employees and their companies, joining data from the Sample.Employee table
(aliased to E) and Sample.Company table (aliased to C). It returns E.Name and C.Name values only for rows in
which the CompanyID column of both tables have matching values.

SQL

SELECT E.Name, C.Name
FROM Sample.Employee AS E
INNER JOIN Sample.Company AS C
ON E.CompanyID = C.CompanyID

This query additionally restricts the data by returning only rows of employees who are older than 20.

SQL

SELECT E.Name, C.Name
FROM Sample.Employee AS E
INNER JOIN Sample.Company AS C
ON E.CompanyID = C.CompanyID AND E.Age > 20

Example: Join Table Data Using Inner and Outer Joins

• SELECT ... FROM table1 INNER JOIN table2 USING (column, column2, ...) returns the rows from table1 and
table2 that have matching values in the specified columns. The columns specified in the USING clause must appear
in both tables. Use this syntax to express equality conditions more succinctly that the ON syntax, provided that the
columns being linked have the same names in both tables. In multi-join queries, you can specify a USING clause only
for the first join.

This query performs the same join as in the previous syntax, because both columns have a CompanyID column that
they can join on.

SQL

SELECT E.Name, C.Name
FROM Sample.Employee AS E
INNER JOIN Sample.Company AS C
USING (CompanyID)

Example: Join on Identically Named Columns Across Two Tables

• SELECT ... FROM table1 JOIN table2 ... is equivalent to the previous INNER JOIN syntaxes.

• SELECT ... FROM table1 NATURAL INNER JOIN table2 performs an INNER JOIN on all identically named
columns across the two tables. In multi-join queries, you can specify only one NATURAL join and it must be the first
join.

InterSystems SQL Reference 265

JOIN (SQL)

This query performs the same operation as in the previous syntaxes, assuming that CompanyID is the only column
that appears in both tables. If the tables include multiple identically named columns, then the query also joins on those
columns before returning the matching results.

SQL

SELECT E.Name, C.Name
FROM Sample.Employee AS E
NATURAL INNER JOIN Sample.Company AS C

Example: Join on Identically Named Columns Across Two Tables

• SELECT ... FROM table1 NATURAL JOIN table2 is equivalent to the NATURAL INNER JOIN syntax.

Left Outer Join

A LEFT OUTER JOIN returns all rows from the first table and any rows from the second table that match rows from the
first table. In the joined table, non-matching rows of columns from the second table are populated with null values. For
example:

SQL

SELECT Table1.Letter, Table2.Number
FROM Table1
LEFT OUTER JOIN Table2
ON Table1.ID = Table2.ID

• SELECT ... FROM table1 LEFT OUTER JOIN table2 ON condition returns all rows from table1 and joins them
with any rows from table2 that satisfy the condition expression specified in the ON clause.

This query returns the names of employees and their companies, joining data from the Sample.Employee table
(aliased to E) and Sample.Company table (aliased to C). It returns all E.Name values but only C.Name values in
rows where the CompanyID column of both tables have matching values. In non-matching rows, C.Name values are
set to NULL.

SQL

SELECT E.Name, C.Name
FROM Sample.Employee AS E
LEFT OUTER JOIN Sample.Company AS C
ON E.CompanyID = C.CompanyID

266 InterSystems SQL Reference

SQL Commands

Note: Alternatively, instead of using the explicit LEFT OUTER JOIN syntax, you can use the more succinct implicit
join specified by the arrow syntax (–>) in the SELECT statement. For example, this query is equivalent to
the previous query:

SQL

SELECT Name, CompanyID->Name
FROM Sample.Employee

This syntax assumes that the CompanyID column from Sample.Employee references the IDs of rows in
the Sample.Company table, which contains the Name column that is being joined. For more details on
working with implicit joins, see Implicit Joins.

Examples:

– Join Table Data Using Inner and Outer Joins

– Set Additional Restrictions on Joined Data

• SELECT ... FROM table1 LEFT OUTER JOIN table2 USING (column, column2, ...) returns all rows from table1
and any rows from table2 that have matching values in the specified columns. The columns must appear in both tables.

This query performs the same join as in the previous syntax, because both columns have a CompanyID column that
they can join on.

SQL

SELECT E.Name, C.Name
FROM Sample.Employee AS E
LEFT OUTER JOIN Sample.Company AS C
USING (CompanyID)

Example: Join on Identically Named Columns Across Two Tables

• SELECT ... FROM table1 LEFT JOIN table2 ... is equivalent to the LEFT OUTER JOIN syntaxes.

• SELECT ... FROM table1 NATURAL LEFT OUTER JOIN table2 performs a LEFT OUTER JOIN on all identically
named columns across the two tables. If an expression contains multiple joins, specify the NATURAL join first. A
NATURAL join does not merge columns that have the same name.

This query performs the same operation as in the previous syntaxes, assuming that CompanyID is the only column
that appears in both tables. If the tables include multiple identically named columns, then the query performs an additional
join per column.

SQL

SELECT E.Name, C.Name
FROM Sample.Employee AS E
NATURAL LEFT OUTER JOIN Sample.Company AS C

Example: Join on Identically Named Columns Across Two Tables

• SELECT ... FROM table1 NATURAL LEFT JOIN table2 is equivalent to the NATURAL LEFT OUTER JOIN
syntax.

Right Outer Join

A RIGHT OUTER JOIN returns all rows from the second table and any rows from the first table that match rows from the
second table. In the joined table, non-matching rows of columns from the first table are populated with null values. For
example:

InterSystems SQL Reference 267

JOIN (SQL)

SQL

SELECT Table1.Letter, Table2.Number
FROM Table1
RIGHT OUTER JOIN Table2
ON Table1.ID = Table2.ID

• SELECT ... FROM table1 RIGHT OUTER JOIN table2 ON condition returns all rows from table2 and joins them
with any rows from table1 that satisfy the condition expression specified in the ON clause.

This query returns the names of employees and their companies, joining data from the Sample.Employee table
(aliased to E) and Sample.Company table (aliased to C). It returns all C.Name values but only E.Name values in
rows where the CompanyID column of both tables have matching values. In non-matching rows, E.Name values are
set to NULL.

SQL

SELECT E.Name, C.Name
FROM Sample.Employee AS E
LEFT OUTER JOIN Sample.Company AS C
ON E.CompanyID = C.CompanyID

Examples:

– Join Table Data Using Inner and Outer Joins

– Set Additional Restrictions on Joined Data

• SELECT ... FROM table1 RIGHT OUTER JOIN table2 USING (column, column2, ...) returns all rows from table2
and any rows from table1 that have matching values in the specified columns. The columns must appear in both tables.

This query performs the same join as in the previous syntax, because both columns have a CompanyID column that
they can join on.

SQL

SELECT E.Name, C.Name
FROM Sample.Employee AS E
RIGHT OUTER JOIN Sample.Company AS C
USING (CompanyID)

Example: Join on Identically Named Columns Across Two Tables

• SELECT ... FROM table1 RIGHT JOIN table2 ... is equivalent to the RIGHT OUTER JOIN syntaxes.

• SELECT ... FROM table1 NATURAL RIGHT OUTER JOIN table2 performs a RIGHT OUTER JOIN on all
identically named columns across the two tables. If an expression contains multiple joins, specify the NATURAL join
first. A NATURAL join does not merge columns that have the same name.

268 InterSystems SQL Reference

SQL Commands

This query performs the same operation as in previous syntaxes, provided that CompanyID is the only column that
appears in both tables. If the tables include multiple identically named columns, then the query performs one join per
column.

SQL

SELECT E.Name, C.Name
FROM Sample.Employee AS E
NATURAL RIGHT OUTER JOIN Sample.Company AS C

Example: Join on Identically Named Columns Across Two Tables

• SELECT ... FROM table1 NATURAL RIGHT JOIN table2 is equivalent to the NATURAL RIGHT OUTER JOIN
syntax.

Full Outer Join

A FULL OUTER JOIN joins all rows from both tables. In the joined table, non-matching rows of columns from either table
are populated with null values. For example:

SQL

SELECT Table1.Letter, Table2.Number
FROM Table1
FULL OUTER JOIN Table2
ON Table1.ID = Table2.ID

• SELECT ... FROM table1 FULL OUTER JOIN table2 ON condition returns all rows of table1 and table2 that
match the specified condition.

This query returns the names of people and the companies that they work for, joining data from Sample.Person
and Sample.Company. For each row, if the person specified by PersonID is missing either Company or Person
column data, that column value is NULL.

SQL

SELECT P.Name, E.Company
FROM Sample.Person AS P
INNER JOIN Sample.Employee AS E
ON P.PersonID = E.PersonID

Example: Join Table Data Using Inner and Outer Joins

InterSystems SQL Reference 269

JOIN (SQL)

• SELECT ... FROM table1 FULL JOIN table2 ON condition is equivalent to the FULL OUTER JOIN syntax.

Full outer joins do not support the USING or NATURAL syntaxes.

Cross Join

A CROSS JOIN crosses every row of the first table with every row of the second table. For example:

SQL

SELECT Table1.Letter, Table2.Number
FROM Table1
CROSS JOIN Table2

• SELECT ... FROM table1 CROSS JOIN table2 crosses every row of table1 with every row of table2, resulting in
a large, logically comprehensive table with much data duplication. Usually this join is performed by providing a comma-
separated list of tables in the FROM clause, then using the WHERE clause to specify restrictive conditions.

This query returns a row for each combination of rows in Sample.LettersAtoZ and Sample.Numbers1to10.

SELECT * FROM Sample.LettersAtoZ CROSS JOIN Sample.Numbers1to10

This query is equivalent to the previous query.

SQL

SELECT * FROM Sample.LettersAtoZ, Sample.Numbers1to10

Attempting to perform a cross join involving a local table and an external table linked through an ODBC or JDBC gateway
connection (for example, FROM Sample.Person, Mylink.Person) results in an SQLCODE -161 error. To perform
this cross join, you must specify the linked table as a subquery. For example: FROM Sample.Person,(SELECT *
FROM Mylink.Person).

The explicit use of the JOIN keyword has higher precedence than specifying a cross join using comma syntax. InterSystems
IRIS® thus interprets t1,t2 JOIN t3 as t1,(t2 JOIN t3).

Arguments

table1, table2

Names of the tables being joined. Specify the first table, table1, after the FROM keyword. Specify the second table, table2,
after the JOIN keyword.

270 InterSystems SQL Reference

SQL Commands

• In a join with an ON clause, you can specify tables, views, or subqueries for either operand of the join.

• In a NATURAL or USING join, you can specify only simple base table references (not views or subqueries) for either
operand of the join.

Both table1 and table2 support table aliases.

condition

One or more condition expression predicates, specified in the ON clause to restrict the rows being joined. JOIN supports
most of the predicates supported by InterSystems SQL. However, you cannot use the FOR SOME %ELEMENT collection
predicate to limit a join operation.

You can associate multiple condition expressions using AND, OR, and NOT logical operators. AND takes precedence over
OR. To nest and group condition expressions, use parentheses. For example:

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
INNER JOIN Doctor
ON Patient.DocID = Doctor.DocID AND
 NOT (Doctor.State = 'NH' OR Doctor.State = 'MA')

condition has the following restrictions:

• condition can reference only tables explicitly specified in the ANSI keyword JOIN operation. Referencing tables
specified in the FROM clause results in an SQLCODE -23 error.

• condition can reference only columns that are in the operands of the JOIN. Syntax precedence in multiple joins can
cause the ON clause to fail. For example, this query fails because t1 and t3 are not operands of a join. t1 joins with the
result set of t2 JOIN t3.

SQL

SELECT * FROM t1,t2 JOIN t3 ON t1.p1=t3.p3

Either of the following changes in syntax result in the successful execution of this query:

SQL

SELECT * FROM t1 CROSS JOIN t2 JOIN t3 ON t1.p1=t3.p3

SQL

SELECT * FROM t2,t1 JOIN t3 ON t1.p1=t3.p3

• In OUTER JOIN clauses, if all the conditions affecting a table use comparisons that can pass null values, and that table
is itself a target of an outer join, this can result in an SQLCODE -94 error. For example, this LEFT OUTER JOIN
query is invalid:

SQL

SELECT * FROM Table1
LEFT OUTER JOIN Table2 ON Table1.k = Table2.k
LEFT OUTER JOIN Table3 ON COALESCE(Table1.k,Table2.k) = Table3.k

Similar examples using FULL OUTER JOIN or RIGHT OUTER JOIN also have this restriction.

InterSystems SQL Reference 271

JOIN (SQL)

column

A column name, or comma-separated list of columns names, specified in the USING clause to join columns with the same
names in both tables. Enclose the column list in parentheses. Only explicit column names are permitted. You cannot specify
the %ID row that references the auto-generated RowID column. Duplicate column names are ignored. Columns with the
same name are not merged.

Examples

Join Table Data Using Inner and Outer Joins

In this example, you create two sample tables, combine the data into one table using different INNER JOIN, LEFT OUTER
JOIN, and RIGHT OUTER JOIN syntaxes, and compare the different joined results.

Create Tables

This examples uses two tables:

• Sample.HighestPeaks — Elevation (in feet) of mountains with the highest peaks, worldwide.

• Sample.Himalayas — Names of mountains in the Himalayas.

Although not specified in this example, assume that the MountainID and PeakID columns of both tables are foreign key
references to a larger mountain database. Therefore, rows with the same ID column value in both tables refer to the same
mountain.

Create the Sample.HighestPeaks table and insert three rows of data. Display the table.

SQL

CREATE TABLE Sample.HighestPeaks (
 PeakID INTEGER UNIQUE NOT NULL,
 Elevation INTEGER NOT NULL)

SQL

INSERT INTO Sample.HighestPeaks VALUES (1, 29032)

SQL

INSERT INTO Sample.HighestPeaks VALUES (2, 28251)

SQL

INSERT INTO Sample.HighestPeaks VALUES (3, 28169)

SQL

SELECT * FROM Sample.HighestPeaks

ElevationPeakID

290321

282512

281693

Create the Sample.Himalayas table and insert three rows of data. The omitted MountainID of 2 is intentional. Assume
that the mountain with an ID of 2 is not in the Himalayas. Display the table.

272 InterSystems SQL Reference

SQL Commands

SQL

CREATE TABLE Sample.Himalayas (
 MountainID INTEGER UNIQUE NOT NULL,
 Name VARCHAR(30) UNIQUE NOT NULL)

SQL

INSERT INTO Sample.Himalayas VALUES (1, 'Everest')

SQL

INSERT INTO Sample.Himalayas VALUES (3, 'Kangchenjunga')

SQL

INSERT INTO Sample.Himalayas VALUES (4, 'Lhotse')

SQL

SELECT * FROM Sample.Himalayas

NameMountainID

Everest1

Kangchenjunga3

Lhotse4

Perform INNER JOIN

Combine the mountain name and elevation data from the two tables by using an INNER JOIN, joining them on the
MountainID and PeakID columns. The joined table includes data only for the mountains with IDs of 1 and 3, because
these IDs appear in both tables.

SQL

SELECT H.Name, P.Elevation
FROM Sample.Himalayas AS H
INNER JOIN Sample.HighestPeaks as P
ON H.MountainID = P.PeakID

ElevationName

29032Everest

28169Kangchenjunga

Perform LEFT OUTER JOIN

Combine the name and elevation data by using a LEFT OUTER JOIN, joining them on the MountainID and PeakID
columns. The joined table includes all rows from the first table (Sample.Himalayas) but only the rows from the second
table (Sample.HighestPeaks) with PeakID values of 1 and 3, which also appear in the MountainID column of the
first table. The missing elevation of the mountain Lhotse takes a NULL value.

SQL

SELECT H.Name, P.Elevation
FROM Sample.Himalayas AS H
LEFT OUTER JOIN Sample.HighestPeaks as P
ON H.MountainID = P.PeakID

InterSystems SQL Reference 273

JOIN (SQL)

ElevationName

29032Everest

28169Kangchenjunga

Lhotse

Perform RIGHT OUTER JOIN

Combine the name and elevation data by using a RIGHT OUTER JOIN, joining them on the MountainID and PeakID
columns. The joined table includes all rows from the second table (Sample.HighestPeaks) but only the rows from the
first table (Sample.Himalayas) with MountainID values of 1 and 3, which also appear in the PeakID column of the
second table. The missing name of the mountain with an elevation of 28,251 feet akes a NULL value.

SQL

SELECT H.Name, P.Elevation
FROM Sample.Himalayas AS H
RIGHT OUTER JOIN Sample.HighestPeaks as P
ON H.MountainID = P.PeakID

ElevationName

29032Everest

28251

28169Kangchenjunga

Perform FULL OUTER JOIN

Combine the name and elevation data by using a FULL OUTER JOIN, joining them on the MountainID and PeakID
columns. The joined table includes all rows from both tables. The missing mountain names and elevations take NULL
values.

SQL

SELECT H.Name, P.Elevation
FROM Sample.Himalayas AS H
FULL OUTER JOIN Sample.HighestPeaks as P
ON H.MountainID = P.PeakID

ElevationName

29032Everest

28169Kangchenjunga

Lhotse

28251

Delete Tables

Delete the sample tables when you are done.

SQL

DROP TABLE Sample.Himalayas

274 InterSystems SQL Reference

SQL Commands

SQL

DROP TABLE Sample.HighestPeaks

Join on Identically Named Columns Across Two Tables

This example shows the different syntaxes you can use when joining columns that have identical names across the two
tables.

Consider two tables:

• Patient — Contains information about patients, including an ID code for the patient’s primary doctor, DocID.

• Doctor — Contains information about doctors, including their ID code, DocID.

This INNER JOIN returns the patient and doctor names.

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
INNER JOIN Doctor
ON Patient.DocID = Doctor.DocID

Because the joining columns have the same name in both tables (DocID), you can replace the ON clause with a USING
clause. With this syntax, you specify only the column, in parentheses, and omit the table names.

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
INNER JOIN Doctor
USING (DocID)

You can also specify the USING clause with a LEFT OUTER JOIN or RIGHT OUTER JOIN, but the FULL OUTER JOIN
is not supported.

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
RIGHT OUTER JOIN Doctor
USING (DocID)

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
LEFT OUTER JOIN Doctor
USING (DocID)

If DocID is the only identically named column across the two tables, then you can simplify further and use the NATURAL
JOIN syntax.

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
NATURAL INNER JOIN Doctor

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
NATURAL LEFT OUTER JOIN Doctor

InterSystems SQL Reference 275

JOIN (SQL)

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
NATURAL RIGHT OUTER JOIN Doctor

If the two tables contain other identical columns, then NATURAL JOIN also links those columns in the join operation. For
greater specificity over the columns being joined, use the USING or ON clauses. Full outer joins do not support NATURAL
JOINs.

Set Additional Restrictions on Joined Data

This example shows how the setting of additional restrictions can affect the returned data from various joins.

Consider two tables:

• Patient — Contains information about patients, including an ID code for the patient’s primary doctor, DocID.

• Doctor — Contains information about doctors, including their ID code, DocID.

This INNER JOIN returns the patient and doctor names of doctors who are over 45 years old.

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
INNER JOIN Doctor
ON Patient.DocID = Doctor.DocID AND Doctors.Age > 45

Performing a LEFT OUTER JOIN of the same query does not eliminate NULL values in the non-matching rows of the
table being joined. For example, this LEFT OUTER JOIN still returns NULL values in the Doctor.DName column.

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
LEFT OUTER JOIN Doctor
ON Patient.DocID = Doctor.DocID AND Doctors.Age > 45

You can eliminate NULL values by moving the age condition into the WHERE clause, which processes after the join
operation. However, this effectively converts the query into an INNER JOIN. For example, this query is equivalent to the
first query in this example:

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
LEFT OUTER JOIN Doctor
ON Patient.DocID = Doctor.DocID
WHERE Doctors.Age > 45

Adding an IS NULL clause preserves the original LEFT OUTER JOIN behavior but is more verbose than the original
LEFT OUTER JOIN query.

SQL

SELECT Patient.PName, Doctor.DName
FROM Patient
LEFT OUTER JOIN Doctor
ON Patient.DocID = Doctor.DocID
WHERE Doctors.Age > 45 AND Doctors.Age IS NULL

This behavior is similar for RIGHT OUTER JOIN operations. In a FULL OUTER JOIN, specifying conditions does not
affect which rows are returned, because the operation returns all rows from both tables, regardless of matches.

276 InterSystems SQL Reference

SQL Commands

Performance

Query Optimizer Effect on Joins

To maximize performance of join operations, the SQL optimizer might not join tables in the order in which they are specified.
Instead, the optimizer determines the table join order based on statistics it gathers on the table, such as Tune Table.

In most cases, the SQL optimizer strategy provides optimal results. However, to override the default optimization strategy
for a specific query, you can specify Query Optimization Options immediately after the FROM keyword.

• %INORDER, %FIRSTTABLE, and %STARTTABLE — For complex queries containing multiple joins, these options
explicitly set the order in which to join tables. You cannot use these keywords with a cross join or a right outer join
Attempting to do so results in an SQLCODE -34 error.

• %NOFLATTEN — This option disables subquery flattening, which converts certain subqueries to explicit joins. When
the number of subqueries is small, subquery flattening can substantially improve join performance. As the number of
subqueries increases, however, subquery flattening might start to degrade performance and might require disabling
using this keyword.

ON Clause Indexing

Specifying indexes on columns referenced in the ON clause of a join can substantially improve query performance. An ON
clause can use an existing index that satisfies only some of the join conditions. An ON clause specifying conditions on
multiple columns can use an index containing only a subset of those columns as subscripts to partially satisfy the join.
InterSystems IRIS tests the join condition on the remaining columns directly from the table.

The collation type of a field referenced in an ON clause should match the collation type that it has in the corresponding
index. A collation type mismatch can cause an index to not be used. However, if a join condition is on a column with
%EXACT collation, but only an index on the collated column value is available, InterSystems IRIS can use that index to
limit the rows to be checked for the exact value. For more details on collation type matching, see Index Collation.

To disable an index for an ON clause condition, preface it with the %NOINDEX keyword. For more details on indexes
and performance, see Using Indexes in Query Processing and Index Optimization Options.

Alternatives
InterSystems IRIS supports two formats for representing outer joins:

1. (Recommended) The ANSI standard syntax: LEFT OUTER JOIN and RIGHT OUTER JOIN. SQL Standard syntax
puts the outer join in the FROM clause of the SELECT statement, rather than the WHERE clause, as shown in the
following example:

SQL

SELECT table1.columnA, table2.columnB
FROM table1
LEFT OUTER JOIN table2
ON (table1.columnX = table2.columnY)

2. The ODBC Specification outer join extension syntax, using the escape-syntax {oj joinExpression }, where joinExpression
is any ANSI standard join syntax.

A join with an ON clause can use only the ANSI join keyword syntax.

See Also
• SELECT, FROM, ORDER BY, WHERE

• ALTER TABLE, CREATE TABLE, DROP TABLE

InterSystems SQL Reference 277

JOIN (SQL)

• INSERT, UPDATE

• Defining Tables

• Querying the Database

• SQLCODE error messages

278 InterSystems SQL Reference

SQL Commands

LOAD DATA (SQL)
Loads data into a table.

Synopsis
Load from File

LOAD DATA FROM FILE filePath INTO table
LOAD DATA FROM FILE filePath INTO table (column, column2, ...)
LOAD DATA FROM FILE filePath COLUMNS (header type, header2 type2, ...)
 INTO table ...
LOAD DATA FROM FILE filePath COLUMNS (header type, header2 type2, ...)
 INTO table ... VALUES (header, header2, ...)
LOAD DATA FROM FILE filePath INTO table ... USING jsonOptions

Load from JDBC Source

LOAD DATA FROM JDBC CONNECTION jdbcConnection
 TABLE jdbcTable INTO table
LOAD DATA FROM JDBC CONNECTION jdbcConnection
 TABLE jdbcTable INTO table (column,column2, ...)
LOAD DATA FROM JDBC CONNECTION jdbcConnection
 TABLE jdbcTable INTO table ... VALUES (header,header2 ...)
LOAD DATA FROM JDBC URL path TABLE jdbcTable ...

Bulk Loading Options

LOAD BULK DATA FROM ...
LOAD %NOJOURN DATA FROM ...
LOAD BULK %NOJOURN DATA FROM ...
LOAD [load-option] DATA FROM ...

Description
The LOAD DATA command loads data from a source into a previously defined InterSystems IRIS® SQL table. The source
can be a data file or a table accessed using JDBC. Use this command for the rapid population of a table with well-validated
data.

If the table you are loading data into is empty, LOAD DATA populates the table with the source data rows. If the table
already contains data, LOAD DATA inserts the source data rows into the table without overwriting any existing rows.

When you load data, the %ROWCOUNT variable indicates the number of rows successfully loaded. If a row in the input
data contains an error, LOAD DATA skips loading this row and proceeds with loading the next row. SQLCODE does not
report this as an error, but the %SQL_Diag.Result log indicates how many records failed to load. For more details, see
View Diagnostic Logs of Loaded Data.

Note: The LOAD DATA command uses an underlying Java-based engine that requires a Java Virtual Machine (JVM)
installation on your server. If you already have a JVM set up and accessible in your PATH environment variable,
then the first time you use LOAD DATA, InterSystems IRIS automatically uses that JVM to start an External
Language Server. To customize your External Language Server to use a specific JVM, or to use a remote server,
see Managing External Server Connections.

Load from File

Load from File Without Headers

Use these syntaxes if your source file does not contain a header row in the first line of the file. Otherwise, LOAD DATA
loads the header row into the table.

InterSystems SQL Reference 279

LOAD DATA (SQL)

• LOAD DATA FROM FILE filePath INTO table loads the source data from the file specified by filePath into the
target SQL table. By default, LOAD DATA matches the columns from the data source to the target table by position.
LOAD DATA uses the SQL column order (SELECT * column order).

– If the data source has more columns than the input table, then the excess columns are ignored and not loaded into
the table.

– If the data source has fewer columns the input table, none of the data is loaded into the table.

The LOAD DATA command expects that the data type of the loaded data matches the data type of the target table
columns.

This statement loads all the columns from the countries CSV source file into the columns that are in the corresponding
positions of the target Sample.Countries table.

LOAD DATA FROM FILE 'C://mydata/countries.csv'
INTO Sample.Countries

• LOAD DATA FROM FILE filePath ... INTO table (column, column2, ...) loads source data positionally for only
the specified target table columns. If the data source has fewer columns than the input table, then those columns are
empty in the inserted rows.

This statement loads the first three columns from the countries CSV file into the Name, Continent, and Region
columns of the Sample.Countries table. Even if the table stores these columns in a different order, or if there are
columns in between the three shown here, LOAD DATA still loads data only into Name, Continent, and Region.

LOAD DATA FROM FILE 'C://mydata/countries.csv'
INTO Sample.Countries (Name,Continent,Region)

• LOAD DATA FROM FILE filePath COLUMNS (header type, header2 type2, ...) INTO table enables you to load
data from source files that have a different column order than the target table. The COLUMNS clause provides header
names and data types for the columns in the source files. The header names must match the names of columns in the
target table and the data type must be consistent with the data types of those table columns.

– If the INTO table clause specifies target columns, then the columns named in the COLUMNS clause must also
appear in the INTO table clause, but they can be in any order.

– If the INTO table clause does not specify target columns, then LOAD DATA loads the source columns posi-
tionally into the table. The COLUMNS clause must name all columns that appear in the target table.

This statement loads three columns from the countries CSV file into corresponding columns in the
Sample.Countries table. If the Sample.Countries table has a different column order than the source file (for
example, Name, SurfaceArea, Continent instead of Name, Continent, SurfaceArea), the table column order
does not change.

LOAD DATA FROM FILE 'C://mydata/countries.csv'
COLUMNS (
 Name VARCHAR(50),
 Continent VARCHAR(30),
 SurfaceArea Integer)
INTO Sample.Countries (Name,Continent,SurfaceArea)

• LOAD DATA FROM FILE filePath COLUMNS (header type, header2 type2, ...) INTO table ... VALUES (header,
header2, ...) additionally enables you to load a subset of columns from the source file into the target columns. These
column names do not need to match the target table column names.

The VALUES clause specifies the source columns, as named by the headers in the COLUMNS clause, to load into the
target table.

280 InterSystems SQL Reference

SQL Commands

– If the INTO table clause specifies target columns, then LOAD DATA loads the source columns into the target
columns in the order those columns are specified. The number of source column headers in VALUES must match
the number of columns in the INTO table clause.

– If the INTO table clause does not specify target columns, then LOAD DATA loads the source columns posi-
tionally into the table. The number of source headers in VALUES must match the number of columns in the table.

This statement loads three columns from the countries CSV file into corresponding columns in the
Sample.Countries table. The COLUMNS clause includes a header name for an additional column, src_continent,
that is not loaded into the table. This column name is ignored, but it must be included so that LOAD DATA can load
the data from the subsequent columns (src_region and src_surface_area) into the table.

LOAD DATA FROM FILE 'C://mydata/countries.csv'
COLUMNS (
 src_name VARCHAR(50),
 src_continent VARCHAR(30),
 src_region VARCHAR(30),
 src_surface_area INTEGER)
INTO Sample.Countries (Name,SurfaceArea,Region)
VALUES (src_name,src_surface_area,src_region)

If you specify the VALUES clause without the COLUMNS clause, then the VALUES clause is ignored.

Load from File with Headers and Specify Options

Use this syntax if the first line of your source file contains a header row. Using this syntax, you can specify an option to
skip the header row. Other options include changing the default column, skipping additional rows beyond the header, and
changing the default escape character.

• LOAD DATA FROM FILE filePath INTO table ... USING jsonOptions specifies loading options by using a JSON
object or a string containing a JSON object.

This statement uses a JSON object to specify that the file contains a header row, so that LOAD DATA does not include
this row in the table. In this statement, it is assumed that the header names in the countries CSV file match the
header names of the Sample.Countries table columns.

LOAD DATA FROM FILE 'C://mydata/countries.csv'
INTO Sample.Countries
USING {"from":{"file":{"header":true}}}

Note: If the header text does not validate against the field data type, such as an integer field with a header named
"Total", LOAD DATA might omit the header row anyway. However, this method of validation rejection
is unreliable and is not recommend. Omit the header with a USING clause instead.

The statement loads data from three columns in the countries CSV file into the three corresponding columns in the
Sample.Countries table. In this statement, the header names in the countries CSV file do not match the header
names of the Sample.Countries table columns. The VALUES clause specifies the column header names obtained
from the file. Data from these columns is then loaded into the table columns that are in the corresponding position of
the INTO table clause.

LOAD DATA FROM FILE 'C://mydata/countries.csv'
INTO Sample.Countries (Name,Region,SurfaceArea)
VALUES (country_name,region_name,surface_area)
USING {"from":{"file":{"header":true}}}

Load from JDBC Source

• LOAD DATA FROM JDBC CONNECTION connection TABLE jdbcTable INTO table loads data from an
external JDBC data source into the target table. The data source, jdbcTable, is a JDBC-compliant SQL table that you

InterSystems SQL Reference 281

LOAD DATA (SQL)

connect to by using a defined SQL Gateway Connection, connection. For more details, see Connecting the SQL
Gateway via JDBC.

This statement loads all columns from the JDBC source table, countries, into the corresponding columns of the
Sample.Countries table.

LOAD DATA FROM JDBC CONNECTION MyJDBCConnection
TABLE countries
INTO Sample.Countries

• LOAD DATA FROM JDBC CONNECTION connection TABLE jdbcTable (column, column2, ...) loads JDBC
source data positionally for only the specified target table columns. If the JDBC source has fewer columns than the
input table, then those columns are empty in the inserted rows.

This statement loads the first three columns from the JDBC countries table into the Name, Continent, and Region
columns of the Countries table. Even if the table stores these columns in a different order, or if there are columns
in between the three shown here, LOAD DATA still loads data only into Name, Continent, and Region.

LOAD DATA FROM JDBC CONNECTION MyConnection
TABLE countries
INTO Sample.Countries (Name,Continent,Region)

• LOAD DATA FROM JDBC CONNECTION connection TABLE jdbcTable ... INTO table ... VALUES
(header,header2 ...) loads data form the JDBC source for only the columns that have the header names specified in
the VALUES clause. Using this syntax, you can place column data at any position in the JDBC source table into columns
at any position in the target table.

The number of columns in the INTO table clause must match the number of headers in the VALUES clause. If the INTO
table clause does not specify any columns, then the number of headers in the VALUES clause must match the number
of the headers in the table. In this case, the source data is loaded positionally into the table.

This statement loads data from the name, surface_area, and region columns of the JDBC countries table into
the corresponding columns of the Sample.Countries table.

LOAD DATA FROM JDBC CONNECTION MyConnection
TABLE countries
INTO Sample.Countries (Name,SurfaceArea,Region)
VALUES (name,surface_area,region)

The way the VALUES clause matches SQL column names positionally is similar to INSERT command syntax.

• LOAD DATA FROM JDBC URL path TABLE jdbcTable INTO table loads data from an external JDBC data
source into the target table. The data source, defined by path, is located at the connection URL for the data source. For
more details, see Connecting the SQL Gateway via JDBC.

This statement loads all columns from the JDBC source table, countries, into the corresponding columns of the
Sample.Countries table.

LOAD DATA FROM JDBC URL jdbc:oracle:thin:@//oraserver:1521/SID
TABLE countries
INTO Sample.Countries

Bulk Loading Options

These options disable common checks and operations performed when data is inserted into a table. Disabling these options
can significantly speed up the loading of data with a large number of rows.

CAUTION: These bulk loading options can result in the loading of invalid data. Before using these options, make sure
that the data is valid and is from a reliable source.

• LOAD BULK DATA FROM ... loads data with these INSERT %keyword options specified:

282 InterSystems SQL Reference

SQL Commands

– %NOCHECK — Disables unique value checking, foreign key referential integrity checking, NOT NULL constraints
(required field checks), and validation for column data types, maximum column lengths, and column data constraints.

– %NOINDEX — Disables setting of index maps during INSERT processing. During the LOAD BULK DATA
operation, SQL statements run against the target table might be incomplete or return incorrect results.

– %NOLOCK — Disables locking of the row upon INSERT.

To use the BULK keyword, you must have %NOCHECK, %NOINDEX, and %NOLOCK administrative privileges,
which you can set by using the GRANT command.

This statement loads bulk data from a file.

LOAD BULK DATA FROM FILE 'C://mydata/countries.csv'
INTO Sample.Countries

• LOAD %NOJOURN DATA FROM ... loads data with the %NOJOURN INSERT %keyword option specified,
which suppresses journaling and disables transactions for the duration of the insert operations. To use the %NOJOURN
option, you must have %NOJOURN SQL administrative privileges, which you can set by using the GRANT command.

This form of the LOAD DATA command acquires a table-level lock on the target table, but each row is inserted with
%NOLOCK. The table level lock is released when the command completes.

This statement loads data from a table over a JDBC connection and disables journaling.

LOAD %NOJOURN DATA FROM JDBC CONNECTION MyJDBCConnection
TABLE countries
INTO Sample.Countries

• LOAD %NOJOURN BULK DATA FROM ... loads data with the INSERT %keyword options from the previous
syntaxes specified. You can specify %NOJOURN and BULK in either order.

• LOAD [load-option] DATA FROM ... loads data with the load-option hints, which are any combination of
%NOCHECK, %NOINDEX, %NOLOCK, and %NOJOURN. This enables you to employ certain optimizations of a
bulk load as needed. You cannot specify BULK with any of %NOCHECK, %NOINDEX, or %NOLOCK.

Arguments

filePath

The server-side location of a text file containing the data to load, specified as a complete file path enclosed in quotes.

• Each line in the file specifies a separate row to be loaded into the table. Blank lines are ignored.

• Data values in a row are separated by a column separator character. Comma is the default column separator character.
All data fields must be indicated by column separators, including unspecified data indicated by placeholder column
separators. You can define a different column separator character by specifying the columnseparator option in the
USING jsonOptions clause.

• By default, no escape character is defined. To include the column separator character as a literal in a data value, enclose
the data value with quotation marks. To include a quotation mark in a quoted data value, double the quote character
(""). You can define an escape character specifying the escapechar option in the USING jsonOptions clause.

• By default, data values are specified in the order of the fields in the table (or view). You can use the COLUMNS clause
to specify the data in a different order. You can use a view to load a data record to a table by supplying only values
for the fields that are defined in the view.

• All data in a data file record is validated against the table’s data criteria, including the number of data fields in the
record, and the data type and data length of each field. A data file record that fails validation is passed over (not loaded).
No error message is issued. Data loading continues with the next record.

InterSystems SQL Reference 283

LOAD DATA (SQL)

Note: Date or timestamp data should be written in ODBC timestamp format (‘yyyy-mm-dd hh:mm:ss’) to ensure
validation.

table

The table to load the data into. A table name can be qualified (schema.tablename), or unqualified (tablename). An unqual-
ified table name takes the default schema name. You can specify a view to load data in the table accessed through the view.

column

The table columns to load file data into, specified in the order of the columns in the file. This list of column names enables
you to specify selected table columns and to match the order of the data file items to the columns in table. Unspecified
columns that are defined in the table take their default values. If this clause is omitted, all user-defined fields in table must
be represented in the data file.

header

A comma-separated list of header values used to identify columns to load from the data source.

• When loading data from a file source that does not contain a header row, specify headers in the COLUMNS header
type, header2 type2, ...) clause to name the columns.

– If you include a VALUES clause, specify these header names in VALUES (header, header2) to select which
columns to load into the table.

– If you do not include a VALUES clause, then these header names must match the column names in the target table.

• When loading data from a file source that contains a header row, specify headers in the VALUES (header, header2)
clause to identify which headers in the source file to load data from. These header names must exist in the source file.

• When loading data from a JDBC source, specify headers in the VALUES (header, header2) clause to identify
which columns in the JDBC source table to load data from. These header names must exist in the JDBC source table.

type

The data type of the headers specified in the COLUMNS header type, header2 type2, ...) clause. The data type
for each column must be compatible with the table’s data type. The table’s data length, not the COLUMNS data length, is
used to validate the data.

jsonOptions

Loading options, specified in the USING clause as a JSON (JavaScript Object Notation) object or a string containing a
JSON object. These syntaxes are equivalent:

USING {"from":{"file":{"header":true}}}

USING '{"from":{"file":{"header":true}}}'

Use these JSON objects to set loading options that cannot be set using SQL keywords. Specify these objects using nested
key:value pair syntax, as described in JSON Values.

284 InterSystems SQL Reference

SQL Commands

The primary use of this object is to set options of the loaded data that supplements the FROM FILE syntax, although there
are options for parallelizing and permitting errors during the execution of the LOAD DATA. This example shows a sample
JSON object with multiple options specified. The whitespace shown here is optional and is provided for readability only.

USING
{
 "from": {
 "file": {
 "header": true,
 "skip": 2
 "charset": "UTF-8"
 "escapechar": "\\"
 "columnseparator": "\t"
 }
 }
}

This table shows the options that you can specify. Unspecified options use the default values.

InterSystems SQL Reference 285

LOAD DATA (SQL)

ExampleDescriptionOption

286 InterSystems SQL Reference

SQL Commands

ExampleDescriptionOption

{"from":{"file":{"header":true}}}Set to true (1) to indicate that the
first line of the source file is a

from.file.header

header row. Column names in this
header can then be specified and
used in a VALUES clause, if no
COLUMNS clause is specified. For
more details, see Load from File
with Headers and Specify Options.

Default: false (0)

{"from":{"file":{"skip":2}}}Specify the number of lines at the
start of the file to skip. If header is

from.file.skip

set to true, then skip indicates the
number of lines to skip in addition
to the header.

Default: 0

{"from":{"file":{"charset":"UTF-8"}}}Specify the character set used to
parse input data.

from.file.charset

Default: LOAD DATA uses the
character set of the host operating
system.

{"from":{"file":{"escapechar":"\\"}}}Specify the escape character used
for literal values, such as column

from.file.escapechar

separator characters that are used
within a column value.

Default: None

{"from":{"file":{"columnseparator":";"}}}Specify the column separator
character.

from.file.columnseparator

Default: ","

InterSystems SQL Reference 287

LOAD DATA (SQL)

ExampleDescriptionOption

{"into":{"jdbc":{"threads":4}}}Specify the number of threads to
parallelize the JDBC writer across.
This option may be used even
when not loading data from a
JDBC source. Each thread feeds
a single server process performing
INSERT commands. If it is impor-
tant that data is loaded into the
table in the exact order it is defined
in the table, you should specify
“threads”:1. In general, you
should specify a lower value when
multiple LOAD DATA commands
run in parallel.

Default: $System.Util.NumberOfC-
PUs() - 2

into.jdbc.threads

{"maxerrors":5}The maximum number of errors
that may arise during the LOAD
DATA command before the entire
operation is determined to be a
failure, closing a transaction and
rolling back all changes.

Default: 0

maxerrors

jdbcConnection

A defined SQL Gateway Connection name used to load data from a JDBC source. For details on establishing a JDBC
connection, see Connecting the SQL Gateway via JDBC.

jdbcTable

The external SQL data source table accessed over a JDBC connection. For details on establishing a JDBC connection, see
Connecting the SQL Gateway via JDBC.

path

The SQL Gateway Connection URL used to load data from a JDBC source. For details on establishing a JDBC connection,
see Connecting the SQL Gateway via JDBC.

load-option

One or more INSERT %keyword options, separated by a single space character. These options specify certain behaviors
for the LOAD DATA command. For details about these options, see Bulk Loading Options.

Security and Privileges
LOAD DATA is a privileged operation that requires a user to have INSERT privileges to modify the table you are loading
into and to access the JVM on your server.

288 InterSystems SQL Reference

SQL Commands

INSERT Privileges

To execute LOAD DATA on a table, the user must have table-level or column-level privileges for that table. In particular,
the user must have INSERT privilege on the table. The Owner (creator) of the table is automatically granted all privileges
for that table. If you are not the Owner, you must be granted privileges for the table. If you do not have the proper privileges,
InterSystems IRIS raises a SQLCODE -99 error.

Table-level privileges are equivalent, but not identical to, having column-level privileges on all columns of the table. If
you only have column-level privileges on a subset of the table’s columns, you will only be able to load data into those
columns. If you attempt to load data into a column that you do not have permissions for, InterSystems IRIS raises a SQLCODE
-99 error.

To determine if you have the appropriate privileges, use %CHECKPRIV. To assign table privileges to a user, use GRANT.
For more details, see Privileges.

Gateway Privileges

To execute LOAD DATA, the user must have access to the JVM on your server. As with access to any external language
server in InterSystems IRIS, such a connection is privileged. Users need the %Gateway_Object:USE privilege to appropriately
access the JVM.

Transaction Considerations

Atomicity

LOAD DATA is an atomic operation. Like other atomic operations, a LOAD DATA command is completely rolled back
if it is not successful by making use of transactions by default; if the command cannot be completed, no data is inserted
and the database reverts to its state before issuing the LOAD DATA. Unlike other atomic operations, there are notable
exceptions to this rule. These exceptions are as follows:

• LOAD BULK DATA and LOAD %NOJOURN DATA do not start transactions.

• LOAD DATA is unique among atomic operations because it enables the use of jsonoption in a USING clause. With
the maxerrors JSON option, you can specify an upper limit on insertion errors during a LOAD DATA command. If
this limit is reached, the transaction will fail and the database reverts to its state before issuing the LOAD DATA. If
the limit is not reached, the transaction succeeds and the successfully loaded data will appear in the database; however,
data that failed to be loaded in will not appear in the database.

You can modify this default for the current process within SQL by invoking SET TRANSACTION %COMMITMODE.
You can modify this default for the current process in ObjectScript by invoking the SetOption() method, using this syntax:

SET status=$SYSTEM.SQL.Util.SetOption("AutoCommit",intval,.oldval)

The following intval integer options are available:

• 1 or IMPLICIT (autocommit on — default) — Calling LOAD DATA initiates and completes its own transaction.

• 2 or EXPLICIT (autocommit off) — If no transaction is in progress, LOAD DATA automatically initiates a transaction,
but you must explicitly COMMIT or ROLLBACK to end the transaction. In EXPLICIT mode, the number of database
operations per transaction is user-defined.

• 0 or NONE (no auto transaction) — No transaction is initiated when you invoke LOAD DATA. A failed LOAD
DATA operation can leave the database in an inconsistent state, with some rows inserted and some not inserted. To
provide transaction support in this mode, you must use START TRANSACTION to initiate the transaction and
COMMIT or ROLLBACK to end the transaction.

A sharded table is always in no auto-transaction mode, which means all inserts, updates, and deletes to sharded tables
are performed outside the scope of a transaction.

InterSystems SQL Reference 289

LOAD DATA (SQL)

To determine the atomicity setting for the current process, use the GetOption("AutoCommit") method, as shown in this
ObjectScript example:

ObjectScript

 SET stat=$SYSTEM.SQL.Util.SetOption("AutoCommit",$RANDOM(3),.oldval)
 IF stat'=1 {WRITE "SetOption failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET x=$SYSTEM.SQL.Util.GetOption("AutoCommit")
 IF x=1 {
 WRITE "Default atomicity behavior",!
 WRITE "automatic commit or rollback" }
 ELSEIF x=0 {
 WRITE "No transaction initiated, no atomicity:",!
 WRITE "failed DELETE can leave database inconsistent",!
 WRITE "rollback is not supported" }
 ELSE { WRITE "Explicit commit or rollback required" }

Examples

Load Data From CSV File into SQL Tables and Views

This example shows how to load data stored in a comma-separated value (CSV) file into an existing table and view.

Create the table to load data into. This table contains three fields specifying membership data: a member ID, the membership
term length in months, and the US state where the member lives, using the two-character state abbreviation.

SQL

CREATE TABLE Sample.Members (
 MemberId INT PRIMARY KEY,
 MemberTerm INT DEFAULT 12,
 MemberState CHAR(2))

Copy these data records into a text file. Save the file on your local machine and name it members.csv. This file specifies
membership IDs and member state values. The second row is missing a value, as indicated by a placeholder comma inserted
before where the value would be.

6138830,MA
1720936,
4293608,NH

Use LOAD DATA to load the data into the Sample.Members table. Replace the path shown here with the path where
you saved the file.

LOAD DATA FROM FILE 'C://temp/members.csv' INTO Sample.Members (MemberId,MemberState)

Examine the data. The MemberId and MemberState columns have been populated. The source file did not contain data
for the MemberTerm column, so these column values default to 12. The missing row value is loaded in as a NULL value.

SQL

SELECT * FROM Sample.Members

MemberStateMemberTermMemberId

MA126138830

121720936

NH124293608

LOAD DATA does not report an SQLCODE error for the missing data because the overall SQLCODE result of LOAD
DATA is 0 (success). A LOAD DATA operation is considered successful if:

290 InterSystems SQL Reference

SQL Commands

• LOAD DATA can access the source.

• The target table exists.

• The LOAD DATA operation is valid. For example, the operation specifies the correct number of columns and the
column names exist in the target table.

To view the SQLCODE errors for individual rows, along with other information about the LOAD DATA operation, you
can use the %SQL_Diag.Result and %SQL_Diag.Message tables. For more details, see View Diagnostic Logs of Loaded
Data.

View the messages from the most recent LOAD DATA operation. The row with the missing state abbreviation reports an
SQLCODE error of -104. The results shown are truncated for readability.

SQL

SELECT actor,message,severity,sqlcode
FROM %SQL_Diag.Message
WHERE diagResult =
 (SELECT TOP 1 resultId
 FROM %SQL_Diag.Result
 ORDER BY resultId DESC)

sqlcodeseveritymessageactor

0info{"resultid":"1","bufferrowcount":500, ... }server

0completedReader Complete: Total Input file read time: 23

ms,

FileReader

-104error[SQLCODE: <-104>:<Field validation failed in

INSERT>] [%msg: ... (Varchar Value: 'state...'

Length: 5) > maxlen: (2)>]

JdbcWriter

0completedWriter Complete: Total write time: 72 ms,JdbcWriter

If you create a view from a table, you can also load data into the table by using the view. Create a view that shows only
the membership ID and state columns of the Sample.Members table.

SQL

CREATE VIEW Sample.VMem (MId,State) AS SELECT MemberId,MemberState FROM Sample.Members

Copy these additional data records into a text file. Save the file on your local machine and name it members2.csv.

6785674,VT
4564563,RI
4346756,ME

Use LOAD DATA to load this new CSV data into the table by using the view you created.

LOAD DATA FROM FILE 'C://temp/members2.csv' INTO Sample.VMem(MId,State)

View the data returned by the view, which includes the data from both loaded CSV files.

SQL

SELECT * FROM Sample.VMem

InterSystems SQL Reference 291

LOAD DATA (SQL)

StateMId

MA6138830

1720936

NH4293608

VT6785674

RI4564563

ME4346756

View the data in the base table, which includes combined column data from both CSV files. The default value of 12 is
applied to the values in the MemberTerm column for the second loaded CSV file as well.

SQL

SELECT * FROM Sample.Members

MemberStateMemberTermMemberId

MA126138830

121720936

NH124293608

VT126785674

RI124564563

ME124346756

Delete the view and table.

SQL

DROP VIEW Sample.VMem

SQL

DROP TABLE Sample.Members

Troubleshooting

View Diagnostic Logs of Loaded Data

Each call to LOAD DATA generates both an entry in the SQL Diagnostic Logs, which is viewable in the Management
Portal at System Operation > System Logs > SQL Diagnostic Logs, and new row in the %SQL_Diag.Result table. This table
contains diagnostic information about the operation. You can view these rows by using a SELECT query. For example,
this query returns the five most recent LOAD DATA calls.

SQL

SELECT TOP 5 * FROM %SQL_Diag.Result ORDER BY createTime DESC

The returned table has these columns:

• ID — Integer ID of the log entry. This value is the primary key of the table.

292 InterSystems SQL Reference

SQL Commands

• resultId — Same as ID.

• createTime — Timestamp for when the LOAD DATA operation took place and the log entry row was created.
Timestamps are in UTC (Coordinated Universal Time), not local time.

• namespace — Namespace in which the LOAD DATA operation took place.

• processId — Integer ID of the process that performed the LOAD DATA operation.

• user — User who performed the LOAD DATA operation.

• sqlCode — SQLCODE of the overall LOAD DATA operation.

• inputRecordCount — Number of records successfully loaded.

• errorCount — The number of errors that occurred. Includes errors that cause LOAD DATA command and failures
to load or write individual rows of data.

• maxErrorCount — Maximum number of row insertion errors that LOAD DATA tolerates before failing the operation.

• status — Status of the LOAD DATA operation. While LOAD DATA is executing, the status is set to "In
Progress". When the LOAD DATA operation is complete, the status is updated to "Complete". If the LOAD
DATA execution produces an error, the status is updated to "Failed".

• statement — Text of the SQL statement that was executed to produce this %SQL_Diag.Result record.

The %SQL_Diag.Message table provides detailed message data for each LOAD DATA operation logged in the
%SQL_Diag.Result table. The diagResult column of %SQL_Diag.Message is a foreign key reference to the resultId
column of %SQL_Diag.Result table, enabling you to access messages for individuals LOAD DATA operations.

For example, this query returns all error messages associated with the LOAD DATA operation that has a resultId of
29. You can use this data to diagnose which rows of the table failed to load.

SQL

SELECT *
FROM %SQL_Diag.Message
WHERE severity = 'error'
AND diagResult = 29

The returned table has these columns:

• ID — Integer ID of the message. This value is the primary key of the table.

• actor — Entity that reported the message, such as server, FileReader, or JdbcWriter.

• diagResult — Row ID of the LOAD DATA log entry recorded in the %SQL_Diag.Result table.

• message — Message data. For errors, this column includes SQLCODE values and %msg text.

• messageTime — Timestamp of the message in UTC (Coordinated Universal Time), not local time.

• severity — Level of severity of the message. severity is a logical integer that has a correspond display. Valid values
are "completed", "info", "warning", "error", and "abort".

• sqlcode — SQLCODE of the message. Messages with a severity of "completed" or "info"report an SQLCODE
of 0. Messages with a severity of "warning"or "error"report the SQLCODE associated with that message. Messages
with a severity of "abort" report an SQLCODE of -400.

See Also
• INSERT

• CREATE TABLE

InterSystems SQL Reference 293

LOAD DATA (SQL)

• Importing and Exporting SQL Data

• SQLCODE error messages

294 InterSystems SQL Reference

SQL Commands

LOCK (SQL)
Locks a table.

Synopsis

LOCK [TABLE] tablename IN EXCLUSIVE MODE [WAIT seconds]
LOCK [TABLE] tablename IN SHARE MODE [WAIT seconds]

Description
LOCK and LOCK TABLE are synonymous.

The LOCK command explicitly locks an SQL table. This table must be an existing table for which you have the necessary
privileges. If tablename is a nonexistent table, LOCK fails with a compile error. If tablename is a temporary table, the
command completes successfully, but performs no operation. If tablename is a view, the command fails with an SQLCODE
-400 error.

The UNLOCK command reverses the LOCK operation. An explicit LOCK remains in effect until you issue an explicit
UNLOCK for the same mode, or until the process terminates.

You can use LOCK to lock a table multiple times; you must explicitly UNLOCK the table as many times as it was
explicitly locked. Each UNLOCK must specify the same mode as the corresponding LOCK.

Privileges

The LOCK command is a privileged operation. Prior to using LOCK IN SHARE MODE it is necessary for your process
to have SELECT privilege for the specified table. Prior to using LOCK IN EXCLUSIVE MODE it is necessary for your
process to have INSERT, UPDATE, or DELETE privilege for the specified table. For IN EXCLUSIVE MODE, the INSERT
or UPDATE privilege must be on at least one field of the table. Failing to hold sufficient privileges results in an SQLCODE
-99 error (Privilege Violation). You can determine if the current user has the necessary privileges by invoking the
%CHECKPRIV command. You can determine if a specified user has the necessary privileges by invoking the
$SYSTEM.SQL.Security.CheckPrivilege() method. For privilege assignment, refer to the GRANT command.

These privileges are required to acquire the lock; they do not define the nature of the lock. An IN EXCLUSIVE MODE
lock prevents other processes from performing INSERT, UPDATE, or DELETE operations, regardless of whether the lock
holder has the corresponding privilege.

LOCK Modes

LOCK supports two modes: SHARE and EXCLUSIVE. These lock modes are independent of each other. You can apply
both a SHARE lock and an EXCLUSIVE lock to the same table. A lock in EXCLUSIVE mode can only be unlocked by
an UNLOCK in EXCLUSIVE mode. A lock in SHARE mode can only be unlocked by an UNLOCK in SHARE mode.

• LOCK mytable IN SHARE MODE prevents other processes from issuing an EXCLUSIVE lock on mytable, or
invoking a DDL operation, such as DROP TABLE.

• LOCK mytable IN EXCLUSIVE MODE prevents other processes from issuing an EXCLUSIVE lock or a SHARE
lock on mytable, performing an insert, update, or delete operation, or invoking a DDL operation, such as DROP
TABLE.

LOCK permits read access to the table. Neither LOCK mode prevents other processes from performing a SELECT on
the table in READ UNCOMMITTED mode (the default SELECT mode).

Locking Conflicts

• If a table is already locked by another user IN EXCLUSIVE MODE, you cannot lock it in any mode.

InterSystems SQL Reference 295

LOCK (SQL)

• If a table is already locked by another user IN SHARE MODE, you can also lock the table IN SHARE MODE, but
you cannot lock it IN EXCLUSIVE MODE.

These LOCK conflicts generate an SQLCODE -110 error and generates a %msg such as the following: Unable to
acquire shared table-level lock for table 'Sample.Person'.

Lock Timeout

LOCK attempts to acquire the specified SQL table lock until timeout occurs. When timeout occurs, LOCK generates an
SQLCODE -110 error.

• If you have specified WAIT seconds, SQL table lock timeout occurs when that number of seconds elapses.

• Otherwise, SQL table lock timeout occurs when the current process SQL timeout elapses. You can set the lock timeout
for the current process using the ProcessLockTimeout option of the $SYSTEM.SQL.Util.SetOption() method. You
can also set the lock timeout for the current process using the SQL command SET OPTION with the LOCK_TIMEOUT
option. (SET OPTION cannot be used from the SQL Shell.) The current process SQL lock timeout defaults to the
system-wide SQL lock timeout.

• Otherwise, SQL table lock timeout occurs when the system-wide SQL timeout elapses. The system-wide default is 10
seconds. You can set the system-wide lock timeout in two ways:

– Using the LockTimeout option of the $SYSTEM.SQL.Util.SetOption() method. This immediately changes the
system-wide lock timeout default for new processes, and also resets the ProcessLockTimeout for the current process
to this new system-wide value. Setting the system-wide lock timeout has no effect on the ProcessLockTimeout
setting for other currently running processes.

– Using the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View
and edit the current setting of Lock timeout (seconds). This changes the system-wide lock timeout default for new
processes that start after you save the configuration change. It has no effect on currently running processes.

To return the current system-wide lock timeout value call the $SYSTEM.SQL.Util.GetOption("LockTimeout") method.

To return the lock timeout value for the current process call the $SYSTEM.SQL.Util.GetOption("ProcessLockTimeout")
method.

Transaction Processing

A LOCK operation is not part of a transaction. Rolling back a transaction in which a LOCK is issued does not release the
lock. An UNLOCK can be defined as occurring at the conclusion of the current transaction, or occurring immediately.

Other Locking Operations

Many DDL operations, including ALTER TABLE and DELETE TABLE, acquire an exclusive table lock.

The INSERT, UPDATE, and DELETE commands also perform locking. By default they lock at the record level for the
duration of the current transaction; if one of these commands locks a sufficiently large number of records (1000 is the
default setting), the lock is automatically elevated to a table lock. The LOCK command allows you to explicitly set a table
level lock, giving you greater control over the locking of data resources. An INSERT, UPDATE, or DELETE can override
a LOCK by specifying the %NOLOCK keyword.

The InterSystems SQL SET OPTION with the LOCK_TIMEOUT option sets the timeout for the current process for an
INSERT, UPDATE, DELETE, or SELECT operation.

InterSystems SQL supports the CachedQueryLockTimeout option of the $SYSTEM.SQL.Util.SetOption() method.

296 InterSystems SQL Reference

SQL Commands

Arguments

tablename

The name of the table to be locked. tablename must be an existing table. A tablename can be qualified (schema.table), or
unqualified (table). An unqualified table name takes the default schema name. A schema search path is ignored.

IN EXCLUSIVE MODE/IN SHARE MODE

The IN EXCLUSIVE MODE keyword phrase creates a regular InterSystems IRIS lock. The IN SHARE MODE keyword
phrase creates a shared InterSystems IRIS lock.

WAIT seconds

An optional integer specifying the number of seconds to attempt to acquire the lock before timing out. If omitted, the system
default timeout is applied.

Examples
The following examples create a table and then lock it:

SQL

CREATE TABLE mytest (
ID NUMBER(12,0) NOT NULL,
CREATE_DATE DATE DEFAULT CURRENT_TIMESTAMP(2),
WORK_START DATE DEFAULT SYSDATE)

SQL

LOCK mytest IN EXCLUSIVE MODE WAIT 4

SQL programs run from the Management Portal spawn a process that terminates as soon as the program executes. Thus a
lock is almost immediately released. Therefore, to observe a lock conflict, first issue a LOCK mytest IN EXCLUSIVE
MODE command from a Terminal running the SQL Shell in the same namespace. Then run the above code locking program.
Issue an UNLOCK mytest IN EXCLUSIVE MODE from the Terminal SQL Shell. Then rerun the above locking program.

See Also
• UNLOCK

• INSERT, UPDATE, DELETE

• SQL and Object Settings Pages

• SQLCODE error messages

InterSystems SQL Reference 297

LOCK (SQL)

OPEN (SQL)
Opens a cursor.

Synopsis

OPEN cursor-name

Description
An OPEN statement opens a cursor according to the parameters specified in the cursor’s DECLARE statement. Once
opened, a cursor can be fetched. An open cursor must be closed.

• Attempting to open a cursor that is not declared results in an SQLCODE -52 error.

• Attempting to open a cursor that is already open results in an SQLCODE -101 error.

• Attempting to fetch or close a cursor that is not open results in an SQLCODE -102 error.

A successful OPEN sets SQLCODE = 0, even if the result set is empty.

As an SQL statement, this is only supported from embedded SQL. Equivalent operations are supported through ODBC
using the ODBC API.

Arguments

cursor-name

The name of the cursor, which has already been declared. The cursor name was specified in the DECLARE statement.
Cursor names are case-sensitive.

Example
The following embedded SQL example shows a cursor (named EmpCursor) being opened and closed:

ObjectScript

 SET name="LastName,FirstName",state="##"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A')
 WRITE !,"BEFORE: Name=",name," State=",state
 &sql(OPEN EmpCursor)
 IF SQLCODE '= 0 { WRITE "Open error: ",SQLCODE
 QUIT }
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"DURING: Name=",name," State=",state }
 WRITE !,"FETCH status SQLCODE=",SQLCODE
 WRITE !,"Number of rows fetched=",%ROWCOUNT
 &sql(CLOSE EmpCursor)
 WRITE !,"AFTER: Name=",name," State=",state

See Also
• CLOSE, DECLARE, FETCH

• SQL Cursors

• SQLCODE error messages

298 InterSystems SQL Reference

SQL Commands

PURGE CACHED QUERIES (SQL)
Deletes one or more cached queries.

Synopsis

PURGE [CACHED] QUERIES

PURGE [CACHED] QUERIES BY AGE n

PURGE [CACHED] QUERIES BY TABLE table-name

PURGE [CACHED] QUERIES BY NAME class-name [, class-name]

Description
The PURGE CACHED QUERIES command removes defined cached queries within a specified scope:

• PURGE CACHED QUERIES purges all cached queries in the current namespace.

• PURGE CACHED QUERIES BY AGE n purges all cached queries in the current namespace that have not been
used (prepared) within the last n days. Specifying an n value of 0 purges all cached queries in the current namespace.

• PURGE CACHED QUERIES BY TABLE table-name purges all cached queries that reference a specified table. If
a query references several tables, a single cached query is generated and listed for each of these tables. Issuing a
PURGE CACHED QUERIES BY TABLE for any one of these tables purges this cached query from all of these
tables.

• PURGE [CACHED] QUERIES BY NAME class-name purges cached queries specified by cached query class
name. You can specify multiple cached queries as a comma-separated list. Listed cached queries can reference different
tables, but all must be within the current namespace. Cashed query names are case-sensitive.

The CACHED keyword is optional.

If the specified class-name does not exist, or the letter case specified is not correct, that class name is skipped and the
command proceeds to purge the next cached query in the list; for an invalid class name no operation is performed and no
error is generated. If the specified table does not have any associated cached queries, or the table does not exist, no operation
is performed and no error is generated.

Arguments

n

An integer number of days since the cached query was last used, specified as a quoted string.

table-name

The name of an existing table for which there are cached queries. A table-name can be qualified (schema.table), or
unqualified (table). An unqualified table name takes the default schema name.

class-name

A cached query class name or a comma-separated list of cached query class names. Cached query class names are case-
sensitive.

Examples
The following example purges the cached query specified by name:

PURGE CACHED QUERIES BY NAME %sqlcq.USER.cls2

InterSystems SQL Reference 299

PURGE CACHED QUERIES (SQL)

The following example purges all cached queries that have not been used in the last two days:

PURGE CACHED QUERIES BY AGE "2"

See Also
• %SYSTEM.SQL.PurgeCQClass() purges a cached queries when given the name of a cached query class. This function

should be used to purge individual cached queries.

300 InterSystems SQL Reference

SQL Commands

REVOKE (SQL)
Removes privileges from a user or role.

Synopsis
Revoking Privileges

REVOKE admin-privilege FROM grantee

Revoking Roles

REVOKE role FROM grantee

Revoking Object Privileges

REVOKE [GRANT OPTION FOR] object-privilege ON object-list
 FROM grantee [CASCADE | RESTRICT] [AS grantor]
REVOKE [GRANT OPTION FOR] SELECT ON CUBE[S] object-list
 FROM grantee

Revoking Table-level/Column-level Privileges

REVOKE column-privilege (column-list) ON table
 FROM grantee [CASCADE | RESTRICT]

Description
The REVOKE statement revokes privileges that allow a user or role to perform specified tasks on specified tables, views,
columns, or other entities. REVOKE can also revoke a role assignment from a user. REVOKE reverses the actions of the
GRANT command; see that command for more details on privileges generally.

To revoke a privilege you must either:

• Be the user who granted the privilege

• Revoke the privilege through a CASCADE operation.

• Revoke a privilege granted by another user if you are logged in as a user with either the %Admin_Secure administrative
resource with USE permission, or full security privileges on the system.

You can revoke a role or privilege from a specified user, a list of users, or all users (using the * syntax).

Because REVOKE prepares and executes quickly, and is generally run only once, InterSystems IRIS does not create a
cached query for REVOKE in ODBC, JDBC, or Dynamic SQL.

A REVOKE completes successfully, even if no actual revoke can be performed (for example, the specified privilege was
never granted or has already been revoked). However, if an error occurs during the REVOKE operation, SQLCODE is set
to a negative number.

Revoking Roles

Roles can be granted or revoked via either the SQL GRANT and REVOKE commands, or via ^SECURITY InterSystems
IRIS System Security. You can use REVOKE to revoke a role from a user or to revoke a role from another role. You
cannot use InterSystems IRIS System Security to grant or revoke roles to other roles. The $ROLES special variable does
not display roles granted to roles.

REVOKE can specify a single role, or a comma-separated list of roles to revoke. REVOKE can revoke one or more roles
from a specified user (or role), a list of users (or roles), or all users (using the * syntax).

InterSystems SQL Reference 301

REVOKE (SQL)

The GRANT command can grant a non-existent role to a user. You can use REVOKE to revoke a non-existent role from
an existing user. However, the role name must be specified using the same letter case that was used to grant the role.

If you attempt to revoke an existing role from a non-existent user or role, InterSystems IRIS issues an SQLCODE -118
error. If you are not the SuperUser, and you attempt to revoke a role that you don't own and don't have ADMIN OPTION
for, InterSystems IRIS issues an SQLCODE -112 error.

Revoking Object Privileges

Object privileges give a user or role some right to a particular object. You revoke an object-privilege ON an object-list
FROM a grantee. An object-list can specify one or more tables, views, stored procedures, or cubes in the current namespace.
By using comma-separated lists, a single REVOKE statement can revoke multiple object privileges on multiple objects
from multiple users and/or roles.

You can use the asterisk (*) wildcard as the object-list value to revoke the object-privilege from all of the objects in the
current namespace. For example, REVOKE SELECT ON * FROM Deborah revokes this user’s SELECT privilege for
all tables and views. REVOKE EXECUTE ON * FROM Deborah revokes this user’s EXECUTE privilege for all non-
hidden Stored Procedures.

You can use SCHEMA schema-name as the object-list value to revoke the object-privilege for all of the tables, views, and
stored procedures in the named schema, in the current namespace. For example, REVOKE SELECT ON SCHEMA Sample
FROM Deborah revokes this user’s SELECT privilege for all objects in the Sample schema. You can specify multiple
schemas as a comma-separated list; for example, REVOKE SELECT ON SCHEMA Sample,Cinema FROM Deborah
revokes SELECT privilege for all objects in both the Sample and the Cinema schemas.

You can revoke an object privilege from a user or from a role. If you revoke it from a role, a user that only had that privilege
through the role no longer has the privilege. A user that no longer has a privilege can no longer execute an existing cached
query that requires that object privilege.

When REVOKE revokes an object privilege, it completes successfully and sets SQLCODE to 0. If REVOKE does not
perform an actual revoke (for example, the specified object privilege was never granted or has already been revoked), it
completes successfully and sets SQLCODE to 100 (no more data). If an error occurs during the REVOKE operation, it
sets SQLCODE to a negative number.

Cubes are SQL identifiers that are not qualified by a schema name. To specify a cubes object-list, you must specify the
CUBE (or CUBES) keyword. Because cubes can only have SELECT privilege, you can only revoke SELECT privilege
from a cube.

Object privileges can be revoked by any of the following:

• The REVOKE command.

• The $SYSTEM.SQL.Security.RevokePrivilege() method.

• Via InterSystems IRIS System Security. Go to the Management Portal, select System Administration, Security, Users

(or System Administration, Security, Roles) select Edit for the desired user or role, then select the SQL Tables or SQL

Views tab. Select the desired Namespace from the drop-down list. Scroll down to the desired table, then click revoke

to revoke privileges.

You can determine if the current user has a specified object privilege by invoking the %CHECKPRIV command. You can
determine if a specified user has a specified table-level object privilege by invoking the
$SYSTEM.SQL.Security.CheckPrivilege() method.

Revoking Object Owner Privileges

If you revoke the privileges on an SQL object from the owner of the object, the owner will still implicitly have privileges
on the object. In order to completely revoke all privileges on the object from the owner of the object, the object must be
changed to specify a different owner or no owner.

302 InterSystems SQL Reference

SQL Commands

Revoking Table-level and Column-level Privileges

REVOKE can be used to reverse the granting of table-level privileges or column-level privileges. A table-level privilege
provides access to all of the columns in a table. A column-level privilege provides access to every specified column in the
table. Granting a column-level privilege to all of the columns in a table is functionally equivalent to granting a table-level
privilege. However, the two are not functionally identical. A column-level REVOKE can only revoke privileges granted
at the column level. You cannot grant a table-level privilege to the table, then revoke this privilege at the column level for
one or more columns. In this case, the REVOKE statement has no effect on granted privileges.

CASCADE or RESTRICT

InterSystems IRIS supports the optional CASCADE and RESTRICT keywords to specify REVOKE object-privilege
behavior. If neither keyword is specified, the default is RESTRICT.

You can use CASCADE or RESTRICT to specify whether revoking an object-privilege or column-privilege from a user
will also revoke that privilege from any other users that received it via the WITH GRANT OPTION. CASCADE revokes
all such associated privileges. RESTRICT (the default) causes REVOKE to fail when an associated privilege is detected.
Instead it sets the SQLCODE -126 error “REVOKE with RESTRICT failed”.

The use of these keywords is shown by the following example:

SQL

--UserA
 GRANT Select ON MyTable TO UserB WITH GRANT OPTION

SQL

--UserB
 GRANT Select ON MyTable TO UserC

SQL

--UserA
 REVOKE Select ON MyTable FROM UserB
 -- This REVOKE fails with SQLCODE -126

SQL

--UserA
 REVOKE Select ON MyTable FROM UserB CASCADE
 -- This REVOKE succeeds
 -- It revokes this privilege from UserB and UserC

Note that CASCADE and RESTRICT have no effect on a view created by UserB that references MyTable.

Effect on Cached Queries

When you revoke a privilege or role, InterSystems IRIS updates all cached queries on the system to reflect this change in
privileges. However, when a namespace is inaccessible — for example, when an ECP connection to a database server is
down — the REVOKE successfully completes but performs no operation on cached queries in that namespace. This is
because REVOKE cannot update the cached queries in the unreachable namespace to revoke the privileges at the cached
query level. No error is issued.

If the database server later comes up, the privileges for the cached queries in that namespace may be incorrect. It is advised
that you purge cached queries in a namespace if a role or privilege might have been revoked while the namespace was not
accessible.

InterSystems SQL Reference 303

REVOKE (SQL)

InterSystems IRIS Security

The REVOKE command is a privileged operation. Prior to using REVOKE in embedded SQL, you must either be the
grantor of the privilege or be logged in as a user with either the %Admin_Secure administrative resource with USE permission,
or full security privileges on the system. Failing to do so results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

Arguments

admin-privilege

An administrative-level privilege or a comma-separated list of administrative-level privileges previously granted to be
revoked. The available syspriv options include sixteen object definition privileges and four data modification privileges.

The object definition privileges are: %CREATE_FUNCTION, %DROP_FUNCTION, %CREATE_METHOD,
%DROP_METHOD, %CREATE_PROCEDURE, %DROP_PROCEDURE, %CREATE_QUERY, %DROP_QUERY,
%CREATE_TABLE, %ALTER_TABLE, %DROP_TABLE, %CREATE_VIEW, %ALTER_VIEW, %DROP_VIEW,
%CREATE_TRIGGER, %DROP_TRIGGER. Alternatively, you can specify %DB_OBJECT_DEFINITION, which revokes
all 16 object definition privileges.

The data modification privileges are the %NOCHECK, %NOINDEX, %NOLOCK, %NOTRIGGER privileges for INSERT,
UPDATE, and DELETE operations.

grantee

A list of one or more users having SQL System Privileges, SQL Object Privileges, or Roles. Valid values are a comma-
separated list of users or roles, or "*". The asterisk (*) specifies all currently defined users who do not have the %All role.

AS grantor

This clause permits you to revoke a privilege granted by another user by specifying the name of the original grantor. Valid
grantor values are a user name, a comma-separated list of user names, or "*". The asterisk (*) specifies all currently defined
users who are grantors. To use the AS grantor clause, you must have the %All role or the %Admin_Secure resource.

role

A role or comma-separated list of roles whose privileges are being revoked from a user.

object-privilege

A basic-level privilege or comma-separated list of basic-level privileges previously granted to be revoked. The list may
consist of one or more of the following: %ALTER, DELETE, SELECT, INSERT, UPDATE, EXECUTE, and REFERENCES.
To revoke all privileges, use either "ALL [PRIVILEGES]" or "*" as the value for this argument. Note that you can only
revoke SELECT privilege from cubes, because this is the only grantable cubes privilege.

obejct-list

A comma-separated list of one or more tables, views, stored procedures, or cubes for which the object-privilege(s) are being
revoked. You can use the SCHEMA keyword to specify revoking the object-privilege from all objects in the specified
schema. You can use “*” to specify revoking the object-privilege from all objects in the current namespace.

304 InterSystems SQL Reference

SQL Commands

column-privilege

A basic-level privilege being revoked from one or more column-list listed columns. Available options are SELECT, INSERT,
UPDATE, and REFERENCES.

column-list

A list of one or more column names, separated by commas and enclosed in parentheses.

table

The name of the table or view that contains the column-list columns.

Examples
The following embedded SQL example creates two users, creates a role, and assigns the role to the users. It then revokes
the role from all users using the asterisk (*) syntax. If the user or the role already exists, the CREATE statement issues an
SQLCODE -118 error. If the user does not exist, the GRANT or REVOKE statement issues an SQLCODE -118 error. If
the user exists but the role does not, the GRANT or REVOKE statement issues SQLCODE 100. If the user and role exist,
the GRANT or REVOKE statement issues SQLCODE 0. This is true even when the granting or revoking of the role has
already been done, or if you are attempting to revoke a role that was never granted.

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(CREATE USER User1 IDENTIFY BY fredpw)
 &sql(CREATE USER User2 IDENTIFY BY barneypw)
 WRITE !,"CREATE USER error code: ",SQLCODE
 &sql(CREATE ROLE workerbee)
 WRITE !,"CREATE ROLE error code: ",SQLCODE
 &sql(GRANT workerbee TO User1,User2)
 WRITE !,"GRANT role error code: ",SQLCODE
 &sql(REVOKE workerbee FROM *)
 WRITE !,"REVOKE role error code: ",SQLCODE

In the following example, one user (Joe) grants a privilege and a different user (John) revokes that privilege, using the AS
grantor clause:

SQL

 /* User Joe */
 GRANT SELECT ON Sample.Person TO Michael

SQL

 /* User John */
 REVOKE SELECT ON Sample.Person FROM Michael AS Joe

Note that John must have the %All role or the %Admin_Secure resource.

See Also
• SQL statements: CREATE USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT, %CHECKPRIV

• SQL Users, Roles, and Privileges

• SQLCODE error messages

• ObjectScript: $ROLES and $USERNAME special variables

InterSystems SQL Reference 305

REVOKE (SQL)

ROLLBACK (SQL)
Rolls back a transaction.

Synopsis

ROLLBACK [WORK]

ROLLBACK TO SAVEPOINT pointname

Description
A ROLLBACK statement rolls back a transaction, undoing work performed but not committed, decrementing the $TLEVEL
transaction level counter, and releasing locks. ROLLBACK is used to restore the database to a previous consistent state.

• A ROLLBACK rolls back all work completed during the current transaction, resets the $TLEVEL transaction level
counter to zero and releases all locks. This restores the database to its state before the beginning of the transaction.
ROLLBACK and ROLLBACK WORK are equivalent statements; both versions are supported for compatibility.

• A ROLLBACK TO SAVEPOINT pointname rolls back all work done since the specified savepoint and decrements
the $TLEVEL transaction level counter by the number of savepoints undone. When all savepoints have been either
rolled back or committed and the transaction level counter reset to zero, the transaction is completed. If the specified
savepoint does not exist, or has already been rolled back, ROLLBACK issues an SQLCODE -375 error and rolls back
the entire current transaction.

A ROLLBACK TO SAVEPOINT must specify a pointname. Failing to do so results in an SQLCODE -301 error.

For details on establishing savepoints, refer to SAVEPOINT.

An SQLCODE -400 error is issued if a transaction operation fails to complete successfully.

Not Rolled Back

The following items are not affected by a ROLLBACK operation:

• A roll back does not decrement the IDKey counter for a default class. The IDKey is automatically generated by
$INCREMENT (or $SEQUENCE), which maintains a count independent of the SQL transaction.

• A roll back does not reverse the creation, modification, or purging of a cached query. These operations are not treated
as part of a transaction.

• A DDL operation or a Tune Table operation that occur within a transaction may create and run a temporary routine.
This temporary routine is treated the same as a Cached Query. That is, the creation, compilation, and deletion of a
temporary routine are not treated as part of the transaction. The execution of the temporary routine is considered part
of the transaction.

For non-SQL items rolled back or not rolled back, refer to the ObjectScript TROLLBACK command.

Rollback Logging

Messages indicating that a rollback occurred, and errors encountered during the rollback operation are logged in the
messages.log file in the MGR directory. You can use the Management Portal System Operation, System Logs, Messages

Log option to view messages.log.

Transactions Suspended

The TransactionsSuspended() method of the %SYSTEM.Process class can be used to suspend and resume all current
transactions for a process. Suspending transactions suspends journaling of changes. Therefore, if transaction suspension
occurred during the current transaction, ROLLBACK cannot roll back any changes made while transactions were suspended;

306 InterSystems SQL Reference

SQL Commands

however, ROLLBACK rolls back any changes made during the current transaction that occurred before or after the trans-
action suspension was in effect.

For further details, refer to Using ObjectScript for Transaction Processing.

ObjectScript Transaction Commands

ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

Examples

The following Embedded SQL example demonstrates how a ROLLBACK restores the transaction level counter ($TLEVEL)
to 0, the level immediately prior to the START TRANSACTION:

ObjectScript

 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Set transaction mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION)
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT b)
 WRITE !,"Set Savepoint b, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT c)
 WRITE !,"Set Savepoint c, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(ROLLBACK)
 WRITE !,"Rollback transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

The following Embedded SQL example demonstrates how a ROLLBACK TO SAVEPOINT name restores the transaction
level ($TLEVEL) to the level immediately prior to the specified SAVEPOINT:

ObjectScript

 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Set transaction mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION)
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level at a=",$TLEVEL
 &sql(SAVEPOINT b)
 WRITE !,"Set Savepoint b, SQLCODE=",SQLCODE
 WRITE !,"Transaction level at b=",$TLEVEL
 &sql(ROLLBACK TO SAVEPOINT b)
 WRITE !,"Rollback to b, SQLCODE=",SQLCODE
 WRITE !,"Rollback transaction level=",$TLEVEL
 &sql(SAVEPOINT c)
 WRITE !,"Set Savepoint c, SQLCODE=",SQLCODE
 WRITE !,"Transaction level at c=",$TLEVEL
 &sql(SAVEPOINT d)
 WRITE !,"Set Savepoint d, SQLCODE=",SQLCODE
 WRITE !,"Transaction level at d=",$TLEVEL
 &sql(COMMIT)
 WRITE !,"Commit transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

InterSystems SQL Reference 307

ROLLBACK (SQL)

Arguments

pointname

The name of an existing savepoint, specified as an identifier.

See Also
• SQL commands: COMMIT, SAVEPOINT, SET TRANSACTION, START TRANSACTION, $TLEVEL

• Transaction Processing

• SQLCODE error messages

• ObjectScript: TROLLBACK

• ObjectScript: Transaction Processing

308 InterSystems SQL Reference

SQL Commands

SAVEPOINT (SQL)
Marks a point within a transaction.

Synopsis

SAVEPOINT pointname

Description
A SAVEPOINT statement marks a point within a transaction. Establishing a savepoint enables you to perform transaction
roll back to the savepoint, undoing all work done and releasing all locks acquired during that period. In a long-running
transaction, or a transaction with internal control structure, it is often desirable to be able to roll back part of the transaction
without undoing all work submitted during the transaction.

The establishment of a savepoint increments the $TLEVEL transaction level counter. Rolling back to a savepoint decrements
the $TLEVEL transaction level counter to its value immediately prior to the savepoint. You can establish up to 255 savepoints
within a transaction. Exceeding this number of savepoints results in an SQLCODE -400 fatal error, a <TRANSACTION
LEVEL> exception caught during SQL execution. The Terminal prompt displays the current transaction level as a TLn:
prefix to the prompt, where n is an integer between 1 and 255 representing the current $TLEVEL count.

Each savepoint is associated with an savepoint name, a unique identifier. Savepoint names are not case-sensitive. A savepoint
name can be a delimited identifier.

• If you specify a SAVEPOINT with no pointname, or with a pointname that is not a valid identifier or is an SQL
Reserved Word, a runtime SQLCODE -301 error is issued.

• If you specify a SAVEPOINT with a pointname that begins with “SYS”, a runtime SQLCODE -302 error is issued.
These savepoint names are reserved.

Savepoint names are not case-sensitive; therefore resetpt, ResetPt and "RESETPT" are the same pointname. This
duplication is detected during ROLLBACK TO SAVEPOINT, not during SAVEPOINT. When you specify a SAVEPOINT
statement with a duplicate pointname, InterSystems IRIS increments the transaction level counter, just as if the pointname
was unique. However, the most recent pointname overwrites all prior duplicate values in the table of savepoint names.
Therefore, when you specify a ROLLBACK TO SAVEPOINT pointname, InterSystems IRIS rolls back to the most
recently established SAVEPOINT with that pointname, and decrements the transaction level counter appropriately. However,
if you again specify a ROLLBACK TO SAVEPOINT pointname with the same name, an SQLCODE -375 error is gen-
erated, with the %msg: Cannot ROLLBACK to unestablished savepoint 'name', the full transaction is rolled
back and the $TLEVEL count reverts to 0.

Using Savepoints

The SAVEPOINT statement is supported for Embedded SQL, Dynamic SQL, ODBC, and JDBC. In JDBC,
connection.setSavepoint(pointname) sets a savepoint, and connection.rollback(pointname) rolls back
to the named savepoint.

If savepoints have been established:

• A ROLLBACK TO SAVEPOINT pointname rolls back work done since the specified savepoint, deletes that savepoint
and all intermediate savepoints, and decrements the $TLEVEL transaction level counter by the number of savepoints
deleted. If pointname does not exist, or has already been rolled back, this command rolls back the entire transaction,
resets $TLEVEL to 0, and releases all locks.

• A ROLLBACK rolls back all work done during the current transaction, rolling back the work done since START
TRANSACTION. It resets the $TLEVEL transaction level counter to zero and releases all locks. Note that a generic
ROLLBACK ignores savepoints.

InterSystems SQL Reference 309

SAVEPOINT (SQL)

• A COMMIT commits all work done during the current transaction. It resets the $TLEVEL transaction level counter
to zero and releases all locks. Note that a COMMIT ignores savepoints.

Issuing a second START TRANSACTION within a transaction has no effect on savepoints or the $TLEVEL transaction
level counter.

An SQLCODE -400 error is issued if a transaction operation fails to complete successfully.

Arguments

pointname

The name of the savepoint, specified as an identifier.

Examples
The following embedded SQL example creates a transaction with two savepoints:

ObjectScript

 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(START TRANSACTION)
 &sql(DELETE FROM Sample.Person WHERE Name=NULL)
 IF SQLCODE=100 { WRITE !,"No null name records to delete" }
 ELSEIF SQLCODE'=0 {&sql(ROLLBACK)}
 ELSE {WRITE !,%ROWCOUNT," null name records deleted"}
 &sql(SAVEPOINT svpt_age1)
 &sql(DELETE FROM Sample.Person WHERE Age=NULL)
 IF SQLCODE=100 { WRITE !,"No null age records to delete" }
 ELSEIF SQLCODE'=0 {&sql(ROLLBACK TO SAVEPOINT svpt_age1)}
 ELSE {WRITE !,%ROWCOUNT," null age records deleted"}
 &sql(SAVEPOINT svpt_age2)
 &sql(DELETE FROM Sample.Person WHERE Age>65)
 IF SQLCODE=0 { &sql(COMMIT)}
 ELSEIF SQLCODE=100 { &sql(COMMIT)}
 ELSE {
 &sql(ROLLBACK TO SAVEPOINT svpt_age2)
 WRITE !,"retirement age deletes failed"
 }
 &sql(COMMIT)
 &sql(COMMIT)

ObjectScript and SQL Transactions
ObjectScript transaction processing, using TSTART and TCOMMIT, differs from, and is incompatible with, SQL transaction
processing using the SQL statements START TRANSACTION, SAVEPOINT, and COMMIT. Both ObjectScript and
InterSystems SQL provides limited support for nested transactions. ObjectScript transaction processing does not interact
with SQL lock control variables; of particular concern is the SQL lock escalation variable. An application should not attempt
to mix the two types of transaction processing.

If a transaction involves SQL update statements, then the transaction should be started by the SQL START TRANSACTION
statement and committed with the SQL COMMIT statement. Methods that use TSTART/TCOMMIT nesting can be
included in the transaction, as long as they don't initiate the transaction. Methods and stored procedures should not normally
use SQL transaction control statements, unless, by design, they are the main controller of the transaction.

See Also
• SQL commands: COMMIT ROLLBACK SET TRANSACTION START TRANSACTION $TLEVEL

• Transaction Processing

• SQLCODE error messages

• ObjectScript command: TCOMMIT

310 InterSystems SQL Reference

SQL Commands

SELECT (SQL)
Retrieves rows from one or more tables within a database.

Synopsis
Basic Selection

SELECT * FROM table
SELECT selectItem FROM table
SELECT selectItem, selectItem2, ... FROM table
SELECT ... FROM table, table2, ...

Predicate Conditions

SELECT ... FROM ... WHERE condition
SELECT ... FROM ... [WHERE condition] GROUP BY column
SELECT ... FROM ... [WHERE condition][GROUP BY column]
 HAVING condition
SELECT ... FROM ... [WHERE condition][GROUP BY column]
 [HAVING condition] ORDER BY itemOrder [ASC | DESC]

Aliases

SELECT selectItem AS columnAlias FROM ...
SELECT selectItem AS columnAlias, selectItem2 AS columnAlias2, ... FROM ...
SELECT ... FROM table AS tableAlias ...
SELECT ... FROM table AS tableAlias, table2 AS tableAlias2, ...

Selection Criteria

SELECT DISTINCT ... FROM ...
SELECT DISTINCT BY (distinctItem) ... FROM ...
SELECT DISTINCT BY (distinctItem, distinctItem2, ...) ... FROM ...
SELECT TOP numRows ... FROM ...
SELECT DISTINCT TOP ... FROM ...
SELECT TOP ALL ... FROM ...
SELECT ALL ... FROM ...

Embedded SQL Host Variables

SELECT selectItem INTO :var FROM ...
SELECT selectItem, selectItem2, ... INTO :var, :var2, ... FROM ...
SELECT * INTO :var() FROM ...

Keyword Options

SELECT %keyword ... FROM ...

Subqueries and Cached Queries

(SELECT ... FROM ...)

Sample Selection

SELECT ... FROM table WHERE %ID %FIND %SQL.SAMPLE(tablename, percent, seed)

Selection From a Time Series Machine Learning Model

SELECT WITH PREDICTIONS(model-name) ... FROM ...

InterSystems SQL Reference 311

SELECT (SQL)

Description
The SELECT statement performs a query that retrieves data from an InterSystems IRIS® database. In its simplest form,
it retrieves data from one or more columns of a single table. The SELECT selectItem clause specifies the columns to select.
The FROM table clause specifies the table to select from, and the optional WHERE clause supplies one or more condition
elements that determine which rows to return column values for.

In more complex queries, a SELECT statement can retrieve column data, aggregate data, computed column data, and data
from multiple tables using joins. It can also retrieve data using views.

You can use a SELECT statement in these contexts:

• An independent InterSystems SQL query.

• A subquery that supplies values to an enclosing SELECT statement.

• A subset of a UNION. The UNION statement allows you to combine two or more SELECT statements into a single
query.

• Part of a CREATE VIEW defining the data available to the view.

• Part of an INSERT with a SELECT statement. An INSERT statement can use a SELECT to insert data values for
multiple rows into a table, selecting the data from another table. For more details, see Multi-Row Inserts.

• An independent query prepared as a Dynamic SQL query, Embedded SQL query, or Class Query. You can also use
Dynamic SQL to return metadata about a SELECT query, such as the number of columns specified in the query, the
name (or alias) of a column specified in the query, and the data type of a column specified in the query.

• Part of a DECLARE CURSOR used with Embedded SQL.

SELECT returns the results of a query in a result set. The command also sets a status variable, SQLCODE, indicating
success or failure of the query. For more details, see SELECT Status and Return Values.

SELECT clauses must be specified in the order shown in the syntaxes. Specifying SELECT clauses in the incorrect order
generates an SQLCODE -25 error. The SELECT syntax order is not the same as the SELECT clauses semantic processing
order. For further details, refer to SELECT Clause Order of Execution.

Basic Selection

• SELECT * FROM table selects all items from a table. Typically, these items are the columns in the table.

This query selects all columns from the Sample.Person table.

SQL

SELECT * FROM Sample.Person

For more details on this format, see All Column Selections (Asterisk Syntax).

• SELECT selectItem FROM table selects a single item from a table.

This query selects the Name column from the Sample.Person table.

SQL

SELECT Name FROM Sample.Person

• SELECT selectItem, selectItem2, ... FROM table selects multiple items from a table using a comma-separated list
of selectItem values.

This query selects the Name and Age columns from the Sample.Person table.

312 InterSystems SQL Reference

SQL Commands

SQL

SELECT Name,Age FROM Sample.Person

• SELECT ... FROM table, table2, ... selects the items from multiple tables using a comma-separated list of table names.
If you try to select column names that exist in multiple tables without using an alias to specify which table to select
the field from, the system raises a SQLCODE -27.

This query selects the SSN and Mission columns from both the Sample.Person and Sample.Company table.
For each SSN, it returns all Missions:

SQL

SELECT SSN,Mission FROM Sample.Person,Sample.Company

To associate tables in a SELECT statement and select data from the intersection of the tables, use JOIN expressions.

Note: For statements that do not reference table data, such as ones that return data from functions, the FROM clause is
optional. For more details on this clause, see FROM.

Predicate Conditions

• SELECT ... FROM ... WHERE condition returns the rows of the table for which condition, a set of predicates linked
by logical operators, is true. For example, this statement selects only people who are over 40 and live in Massachusetts:

SQL

SELECT Name,Age,Home_State FROM Sample.Person WHERE Age > 40 AND Home_State = 'MA'

The condition argument also limits the values supplied to aggregate functions to the values from those rows. A WHERE
clause predicate does not directly accept aggregate functions. These values must be passed to the WHERE clause from
other clauses. For more details, see WHERE.

Example: Select Subsets of Data Using Predicate Conditions

• SELECT ... FROM ... [WHERE condition] GROUP BY column organizes query result sets into groups, returning
one row for each distinct value retrieved from the specified table columns.

The column argument can be a comma-separated list of column names or a scalar expression that evaluates to a column
name. The GROUP BY clause is often used in conjunction with aggregate functions.

This query returns one row for each distinct state found in the Home_State column, with the computed
COUNT(Home_State) selection returning the count of each state.

SQL

SELECT Home_State, COUNT(Home_State)
FROM Sample.Person
GROUP BY Home_State

For more details on this clause, see GROUP BY .

Example: Select Subsets of Data Using Predicate Conditions

• SELECT ... FROM ... [WHERE condition][GROUP BY column] HAVING condition returns the table rows for
which HAVING condition is true. Unlike the WHERE clause, the HAVING clause operates on groups and is often
used in combination with the GROUP BY clause.

HAVING condition determines which rows are returned, but by default does not limit the values supplied to aggregate
functions to the values from those rows. To override this default, use the %AFTERHAVING keyword.

InterSystems SQL Reference 313

SELECT (SQL)

Unlike WHERE clauses, HAVING clauses can specify aggregate functions.

This query returns rows for which Age is greater than average age of all people in the database.

SQL

SELECT Name,AVG(Age %AFTERHAVING)
FROM Sample.Person
HAVING (Age > AVG(Age))

For more details on this clause, see HAVING.

Example: Select Subsets of Data Using Predicate Conditions

• SELECT ... FROM ... [WHERE condition][GROUP BY column][HAVING condition] ORDER BY itemOrder
[ASC | DESC] specifies the order in which to display the returned rows. Specify itemOrder as a selection item specified
in the SELECT selectItem clause or as a comma-separated list of such items.

Each item can have an optional ASC (ascending order) or DESC (descending order) keyword specifying the order of
the returned values for that item. The default is ascending order.

This query returns the selected columns for all rows in the database in ascending order by age:

SQL

SELECT Home_State, Name, Age
FROM Sample.Person
ORDER BY Age

The SELECT command applies the ORDER BY clause to the results of a query. This clause is frequently paired with
a TOP clause. If you use an ORDER BY clause in a subquery or CREATE VIEW query, then the TOP clause is
required.

An ORDER BY clause can contain a window function, as described in Overview of Window Functions.

For more details on this clause, see ORDER BY.

Example: Select Subsets of Data Using Predicate Conditions

Aliases

• SELECT selectItem AS columnAlias FROM ... sets an alias for the name of a column or other selectItem value. The
columnAlias value is displayed as the column head of the result set. Use aliases to make the returned data easier to
understand. If you do not specify an alias, then the result set uses the column name specified in the select item.

This query returns the Home_State results in a column titled US_State_Abbrev:

SQL

Select Home_State AS US_State_Abbrev FROM Sample.Person

Example: Change Case of Columns in Result Set

• SELECT selectItem AS columnAlias, selectItem2 AS columnAlias2, ... FROM ... sets aliases for multiple select
items.

This query returns the results of Name and Home_State in PersonName and State columns, respectively.

SQL

Select Name AS PersonName,Home_State AS State FROM Sample.Person

Example: Distinguish Between Column Names in Multi-Table Queries

314 InterSystems SQL Reference

SQL Commands

• SELECT ... FROM table AS tableAlias ... sets an alias for the table name. You can use table aliases as the table prefixes
in selectItem values.

• SELECT ... FROM table AS tableAlias, table2 AS tableAlias2, ... sets an alias for multiple tables. You can use table
aliases to indicate which table the selected column belong to. For example:

SQL

SELECT P.Name, E.Name FROM Sample.Person AS P, Sample.Employee AS E

Example: Distinguish Between Column Names in Multi-Table Queries

Selection Criteria

DISTINCT Clause

• SELECT DISTINCT ... FROM ... returns only one row per unique combination of selectItem values. Use this clause
to exclude redundant column values from the result set. You can specify one or more select items.

This query returns one row per unique combination of Home_State and Age values:

SQL

SELECT DISTINCT Home_State,Age FROM Sample.Person

• SELECT DISTINCT BY (distinctItem) ... FROM ... returns one row per unique value of distinctItem, which must
be an item from selectItem. Enclose distinctItem in parentheses. Use DISTINCT BY to return distinct values based
on an item other than the one specified in selectItem. The query SELECT DISTINCT BY (item) item FROM
Sample.Person is equivalent to SELECT DISTINCT item FROM Sample.Person.

This query returns a row with Name and Age values for each unique Age value:

SQL

SELECT DISTINCT BY (Age) Name,Age FROM Sample.Person

• SELECT DISTINCT BY (distinctItem, distinctItem2, ...) ... FROM ... returns one row for each unique combination
of distinctItem values using a comma-separated list.

This query returns a row with Name and Age values for each unique combination of Home_State and Age values:

SQL

SELECT DISTINCT BY (Home_State,Age) Name,Age FROM Sample.Person

TOP Clause

• SELECT TOP numRows ... FROM ... returns the specified number of rows, numRows, that appear at the “top” of
the returned table. The default “top” rows can be unpredictable. For more control over the top rows returned, include
a DISTINCT clause to return only unique values and an ORDER BY clause to order the values based on specific rows.
The SELECT command applies these clauses before selecting the TOP rows.

This query returns the top 10 Name values in alphabetical order.

SQL

SELECT TOP 10 Name FROM Sample.Person ORDER BY Name ASC

For more details, see TOP.

InterSystems SQL Reference 315

SELECT (SQL)

• SELECT DISTINCT TOP ... FROM ... returns the unique “top” number of rows.

• SELECT TOP ALL ... FROM ... selects all rows. This syntax is only meaningful in a subquery or in a CREATE
VIEW statement. It is used to support the use of an ORDER BY clause in these situations, fulfilling the requirement
that an ORDER BY clause must be paired with a TOP clause in a subquery or a query used in a CREATE VIEW
statement. The TOP ALL operation does not restrict the number of rows returned.

ALL Clause

• SELECT ALL ... FROM ... returns all rows that meet the SELECT criteria. This is the default for InterSystems SQL.
The ALL keyword performs no operation and is provided only for SQL compatibility.

Embedded SQL Host Variables

• SELECT selectItem INTO :var FROM ... selects a single column from a table and saves it into host variable var.
You can supply host variables for Embedded SQL queries only.

• SELECT selectItem, selectItem2, ... INTO :var, :var2, ... FROM ... selects multiple columns and saves them to cor-
responding host variables. The number of columns must match the number of host variables. You can also use host
variables in predicate clauses.

This class snippet declares a cursor that selects two fields and stores them in host variables for later fetches. The cursor
sorts and filters the fetched results by storing the class input arguments as separate host variables.

Class Member

ClassMethod AgeThreshold(ageThreshold As %Integer, orderBy As %String = "") As %Status
{
 write "People who are age " _ageThreshold_ " and up:"

 &sql(declare CC cursor for
 SELECT Name,Age
 INTO :name,:age
 FROM Demo.Person
 WHERE (Age >= :ageThreshold)
 ORDER BY :orderBy)

 // ...
}

Example: Select Data from Within ObjectScript Programs Using Embedded SQL and Dynamic SQL

• SELECT * INTO :var() FROM ... selects all columns from a table and saves them to the subscripted variable var.
Columns specified as private in the class definition are not included. To access the host variables, use the syntax
var(colIndex), where colIndex is the column order index as determined by the SqlColumnNumber of the column. For
more details, see Host Variable Subscripted by Column Number.

Keyword Options

• SELECT %keyword ... FROM ... sets one or more %keyword options, separated by spaces. Valid options are %NOFPLAN,
%NOLOCK, %NORUNTIME, %PROFILE, and %PROFILE_ALL. To use a %keyword argument, you must have the corre-
sponding administration privilege for the current namespace. For more details, see GRANT.

Subqueries and Cached Queries

• (SELECT ... FROM ...) generates a separate cached query for each set of parentheses added. Queries in parentheses
are also a requirement for specifying subqueries.

In SELECT statements, you can specify a subquery in the selectItem list, the FROM clause, or in the WHERE clause
with an EXISTS or IN predicate. You can also specify a subquery in an UPDATE or DELETE statement. A subquery
must be enclosed in parentheses.

316 InterSystems SQL Reference

SQL Commands

One or more sets of parentheses are optional for independent SELECT queries, UNION subset SELECT queries,
CREATE VIEW SELECT queries, and DECLARE CURSOR SELECT queries. Enclosing a SELECT query in
parentheses causes it to follow the syntax rules for a subquery. Specifically, you must pair an ORDER BY clause with
a TOP clause.

Parentheses are not permitted for an INSERT ... SELECT statement.

Sample Selection

• SELECT ... FROM table WHERE %ID %FIND %SQL.SAMPLE(tablename, percent, seed) selects a random
sample from the table. The percent argument specifies what percentage of each data block to sample; since the number
of rows stored in a data block is variable, sampling 10% of the table does not necessarily return 10% of all the rows
in the table. table and tablename must be the qualified name of the table you wish to sample from, but table must be
an identifier and tablename must be a string.

Additionally, table cannot refer to a view, must have a bitmap extent index, and must be block-sampling enabled. The
RowID field must be declared or implied to be a positive integer, as is the default behavior.

The seed argument is optional. If it is not provided, the default is the empty string.

Selection From a Time Series Machine Learning Model

• SELECT WITH PREDICTIONS(model-name) ... FROM ... selects the specified columns from a time series model,
appending or pre-pending any predicted rows to the results, depending on the prediction window you specified when
creating the model. You can use a WHERE clause to limit the results to the predicted rows by filtering on column that
the time series was created from.

For more information about IntegratedML, see “Introduction to IntegratedML.”

Arguments

selectItem

selectItem is a mandatory argument for all SELECT statements that specifies an item, or comma-separated list of items to
select from tables. You can specify each selectItem as one of the following:

• The column name of a table specified in the FROM clause. See Table Column Selections.

• A subquery that references table columns or an entire table. See Subquery Selections.

• The column name of a table that is not specified in the FROM clause, using implicit joins (also known as arrow syntax).
See Implicit Join Selections.

• All columns in a table, using the asterisk (*) syntax. See All Column Selections.

• Properties in an embedded serial object, using the underscore (_) syntax. See Embedded Serial Object Selections.

You can also specify selectItem as a function that modifies data selected from table columns or computes new data from
the selection. You can specify these items:

• A SQL function that aggregates selected column data and returns a single value. See Aggregate Function Selections.

• A window function that calculates aggregates, ranking, and other functions for each row, based on a "window frame"
specific to that row. See Window Function Selections.

• An SQL function, ObjectScript class method call, or ObjectScript function call that operates on selected table data.
See Function and Method Call Selections.

InterSystems SQL Reference 317

SELECT (SQL)

Finally, you can use selectItem to generate columns with the same value for all returned rows. You can also insert the same
text or other data into each row of a selected column. These selections do not operate on the table data. See Non-Table
Data Selections.

Table Column Selections

Commonly, a selectItem refers to a column in the table specified in the FROM clause. To specify multiple columns, use
a comma-separated list. For example:

SQL

SELECT Name,Age FROM Sample.Person

Column names are not case-sensitive. However, the label associated with the column in the result set does not use the letter
case specified in selectItem. Instead, it uses the letter case of the corresponding SqlFieldName ObjectScript property, as
specified in the table definition. For more details on letter case resolution, see Change Case of Columns in Result Set
example.

To list all of the column names defined for a specified table, see Column Names and Numbers.

To display the RowID (record ID), you can use the %ID pseudo-field variable alias, which displays the RowID regardless
of what name it is assigned. By default, the name of the RowID is ID, but if the table already includes a column named ID,
then InterSystems IRIS might rename it. By default, RowID is a hidden column.

Running a SELECT query on a stream column returns the OREF (object reference) of the opened stream object. For
example:

SQL

SELECT Name,Picture FROM Sample.Employee WHERE Picture IS NOT NULL

When the FROM clause specifies more than one table or view, you must include the table name as part of the selectItem,
separating the table name and column name with a period. For example:

SQL

SELECT Sample.Person.Name,Sample.Employee.Company
 FROM Sample.Person, Sample.Employee

If you specified a table alias, specify that alias in the selectItem instead. For example:

SQL

SELECT p.Name, e.Company
 FROM Sample.Person AS p, Sample.Employee AS e

If a table name already has an assigned alias, specifying the full table name as part of a selectItem results in an SQLCODE
-23 error.

Subquery Selections

Specifying selectItem as a subquery returns a single column from a specified table. This column can contain the values of
a single table column or of multiple table columns returned as a single column. You can return multiple columns in a single
column by using either concatenation (SELECT Home_City||Home_State) or by specifying a container column (SELECT
Home). A subquery can use implicit joins (arrow syntax). A subquery cannot use asterisk syntax, even when the table cited
in the subquery has only one data column.

You can use subqueries to specify an aggregate function that is not subject to the GROUP BY clause. In the following
example, the GROUP BY clause groups ages by decades (for example, 25 through 34). The AVG(Age) selectItem gives

318 InterSystems SQL Reference

SQL Commands

the average age of each group, as defined by the GROUP BY clause. To get the average age of all records across all groups,
it uses a subquery:

SQL

SELECT Age AS Decade,
 COUNT(Age) AS PeopleInDecade,
 AVG(Age) AS AvgAgeForDecade,
 (SELECT AVG(Age) FROM Sample.Person) AS AvgAgeAllDecades
FROM Sample.Person
GROUP BY ROUND(Age,-1)
ORDER BY Age

Implicit Join Selections (Arrow Syntax)

To access a column from a table other than the FROM clause table, you can specify selectItem as an implicit join by using
the arrow syntax (->). In the following example, the Sample.Employee table contains a Company column, which in
turn contains the RowID for the corresponding company name in the Sample.Company table. The arrow syntax retrieves
the company name from that table:

SQL

SELECT Name,Company->Name AS CompanyName
 FROM Sample.Employee

In this case, you must have SELECT privileges for the referenced table: either table-level SELECT privileges or column-
level SELECT privileges for both the referenced column and the RowID column of the referenced table. For more details
on arrow syntax, see Implicit Joins (Arrow Syntax).

All Column Selections (Asterisk Syntax)

To select all the columns in a table, use the asterisk syntax (*). For example:

SQL

SELECT TOP 5 * FROM Sample.Person

Items are returned in column number order. Asterisk syntax selections include embedded serial object properties, including
properties from a serial object nested within a serial object. A column referencing a serial object is not selected. For
example, the Home_City property from an embedded serial object is selected, but the Home referencing column used to
access the Sample.Address embedded serial class, which contains the City property, is not selected.

Asterisk syntax does not select hidden columns. By default, the RowID is hidden (not displayed by SELECT *). However,
if the table was defined with %PUBLICROWID, then SELECT * returns the RowID column and all non-hidden columns.
By default, the name of this column is ID, but if a user-defined column named ID already exists, InterSystems IRIS might
rename it.

A query with an asterisk and more than one table selects all the columns in all the joined tables. For example, this query
selects all columns for the top 5 rows of both Sample.Company and Sample.Employee.

SQL

SELECT TOP 5 * FROM Sample.Company,Sample.Employee

The asterisk syntax can be qualified or unqualified. If the selectItem is qualified by prefixing a table name (or table name
alias) and period (.) before the asterisk, the selectItem selects all the columns in the specified table. You can combine the
qualified asterisk syntax with other select items for other tables. In this example, selectItem consists of an unqualified
asterisk syntax that selects all columns from the table. Note that you can also specify duplicate column names (in this case
Name) and non-column selectItem elements (in this case {fn NOW}):

InterSystems SQL Reference 319

SELECT (SQL)

SQL

SELECT TOP 5 {fn NOW} AS QueryDate,
 Name AS Client,
 *
FROM Sample.Person

In this example, selectItem consists of the qualified asterisk syntax that selects all columns from one table and a list of
column names from another table.

SQL

SELECT TOP 5 E.Name AS EmpName,
 C.*,
 E.Home_State AS EmpState
FROM Sample.Employee AS E, Sample.Company AS C

Note: SELECT * is a fully supported part of InterSystems SQL that can be extremely convenient during application
development and debugging. However, in production applications, the preferred programming practice is to
explicitly list the selected columns. Explicitly listing columns makes your application clearer and easier to
understand, easier to maintain, and easier to search for columns by name.

Embedded Serial Object Selections (Underscore Syntax)

To select an embedded serial object property (embedded serial class data), specify selectItem using underscore syntax.
Underscore syntax consists of the name of the object property, an underscore, and the property within the embedded object:
for example, Home_City and Home_State. (In other contexts, index tables for example, these are represented using dot
syntax: Home.City.)

Consider this example:

SQL

SELECT Home_City,Home_Phone_AreaCode FROM Sample.Person

For the column name Home_City, the Sample.Person table contains a referencing column Home. This column references
an embedded serial object that defines the property City. For the column name Home_Phone_AreaCode, the table
contains a referencing column Home that references an embedded serial object property Phone that references a nested
embedded serial object that defines the property AreaCode. If you select a referencing column such as Home or
Home_Phone, you receive the values of all of properties in the serial object in %List data type format.

You can use SELECT to directly query a referencing column (such as Home), rather than using the underscore syntax.
Because the data returned is in list format, you can use a $LISTTOSTRING or $LISTGET function to display the data.
For example:

SQL

SELECT $LISTTOSTRING(Home,'^') AS HomeAddress FROM Sample.Person

Aggregate Function Selections

A selectItem can contain one or more SQL aggregate functions. An aggregate function always returns a single value. This
table shows the type of aggregate functions that you can specify.

320 InterSystems SQL Reference

SQL Commands

ExampleAggregate Function Type

SELECT AVG(Age) FROM Sample.PersonA single column name, which computes the
aggregate for all non-null values of the rows
selected by the query.

SELECT SUM(Age) / COUNT(*) FROM Sample.PersonA scalar expression that computes an
aggregate.

SELECT COUNT(*) FROM Sample.PersonAsterisk syntax (*), used with the COUNT
function to compute the number of rows in
the table.

SELECT COUNT(DISTINCT Home_State) FROM

Sample.Person

A SELECT ... DISTINCT function, which
computes the aggregate by eliminating
redundant values.

SELECT Name, COUNT(DISTINCT Home_State) FROM

Sample.Person

A combination of column names and
aggregate functions in a single SELECT
statement (allowed in InterSystems SQL
but not ANSI SQL).

SELECT DISTINCT Home_State, AVG(Age

%FOREACH(Home_State)) FROM Sample.Person

An aggregate function using %FOREACH,
which computes the aggregate for each
distinct value of a column or columns.

SELECT Name,AVG(Age %AFTERHAVING) FROM

Sample.Person HAVING (Age > AVG(Age))

An aggregate function using
%AFTERHAVING.This causes the aggregate
to be computed on a sub-population speci-
fied with the HAVING clause.

In the example shown, the query returns
records where Age is greater than average
age of all people in the database.

Window Function Selections

Specify selectItem as a window function to calculate aggregates, rankings, and other functions for each row, based on a
"window frame" specific to that row. The following syntax is supported:

windowFunction() OVER (
 PARTITION BY partColumn
 ORDER BY orderColumn)

• windowFunction: The following window functions are supported: AVG(), ROW_NUMBER(), RANK(),
PERCENT_RANK(), FIRST_VALUE(column), LAST_VALUE(column), NTH_VALUE(column, n), LAG(column,
offset), LEAD(column, offset), MAX(column), MIN(column), and SUM(column).

• OVER: The OVER keyword followed by parentheses is mandatory. Clauses within these parentheses are optional.

• PARTITION BY partColumn: An optional clause that partitions rows by the specified partColumn. The partColumn
argument can be a single column or a comma-separated list of columns. If specified, PARTITION BY must be spec-
ified before ORDER BY.

• ORDER BY orderColumn: An optional clause that orders rows by the specified orderColumn. The orderColumn can
be a single column or a comma-separated list of columns.

InterSystems SQL Reference 321

SELECT (SQL)

Columns specified in a window function can take a table alias prefix.

A window function can specify a column alias. By default the column is labeled Window_n.

For more details, see Overview of Window Functions.

Function and Method Call Selections

A selectItem can apply additional processing to the column values it selects by using function and method operations. You
can specify these operation types:

• An arithmetic operation. For example, this selection generates a new column by subtracting the average age from the
Age column.

SQL

SELECT Name, Age,Age-AVG(Age) FROM Sample.Person

If a selectItem arithmetic operation includes division, and any column value produces a divisor of 0 or NULL, you
cannot rely on order of testing to avoid division by zero. Instead, use a case statement to suppress the risk.

• An SQL function. For example, this query generates a column for the length of each value in the Name column:

SQL

SELECT Name,$LENGTH(Name) FROM Sample.Person

This query converts the case of the Name column to uppercase and returns it in a new column.

SQL

SELECT Name,UCASE(Name) FROM Sample.Person

• An XMLELEMENT, XMLFOREST, or XMLCONCAT function, which place XML or HTML tags around the
data values retrieved from specified column names. For more details, see XMLELEMENT.

• A collation function, which specifies the sorting and display of a selectItem column. You can supply the collation
function without parentheses (SELECT %SQLUPPER Name) or with parentheses (SELECT %SQLUPPER(Name)). If
the collation function specifies truncation, the parentheses are required (SELECT %SQLUPPER(Name,10)).

• A user-defined class method stored as a procedure. The class method can be an unqualified method name (for example,
RandLetter()) or a qualified method name (for example, Sample.RandLetter()). In this class, the Cube()
class method returns the cube of the input integer:

Class Definition

Class Sample.Person Extends %Persistent [DdlAllowed]
{
/// Find the Cube of a number
ClassMethod Cube(val As %Integer) As %Integer [SqlProc]
 {
 RETURN val * val * val
 }
}

This query calls the Cube class method on the Age column to return the cubed age.

SQL

SELECT Age, Person_Cube(Age) FROM Sample.Person

InterSystems IRIS coverts the method return value from Logical to Display/ODBC format. By default, inputs to
the method are not converted from Display/ODBC to Logical format. However,you can configure input display-

322 InterSystems SQL Reference

SQL Commands

to-logical conversion system-wide using the $SYSTEM.SQL.Util.SetOption("SQLFunctionArgConversion")
method. To determine the current configuration of this option, use
$SYSTEM.SQL.Util.GetOption("SQLFunctionArgConversion").

If the specified method does not exist in the current namespace, the system generates an SQLCODE -359 error. If the
specified method is ambiguous, meaning it could refer to more than one method, the system generates an SQLCODE
-358 error. For more details on class method creation, see CREATE METHOD.

• A user-supplied ObjectScript function call (extrinsic function) operating on a database column. For example:

SQL

SELECT $$REFORMAT(Name)FROM MyTable

To call such functions in an SQL statement, you must configure the Allow extrinsic functions in SQL
statements option system-wide. For more details, see Functions: Intrinsic and Extrinsic. By default, extrinsic
functions are disabled and attempting to call user-supplied functions generates an SQLCODE -372 error.

Trying to use a user-supplied function to call a % routine generates an SQLCODE -373 error.

Non-Table Data Selections

The selectItem argument can return the same value for all records without referencing the table that is in the FROM clause.
When no selectItem elements reference table data, the FROM clause is optional. If you include the FROM clause, the
specified table must exist. For more details, see FROM.

Common uses for this format selection are as follows:

• Arithmetic operations.

SQL

SELECT Name, Age, 9 - 6 FROM Sample.Person

• A string literal or a function operating on a string literal.

SQL

SELECT UCASE('fred') FROM Sample.Person

• A string literal added to produce a more readable output.

SQL

SELECT TOP 10 Name,'was born on',%EXTERNAL(DOB)
FROM Sample.Person

How you specify the numeric literal determines its data type. For example, the string '123' is of data type VARCHAR,
and the numeric value 123 is of data type INTEGER or NUMERIC.

• A %TABLENAME, or %CLASSNAME pseudo-field variable keyword. %TABLENAME returns the current table
name. %CLASSNAME returns the name of the class corresponding to the current table. If the query references multiple
tables, you can prefix the keyword with a table alias. For example, t1.%TABLENAME.

• One of the following ObjectScript special variables (or their abbreviations): $HOROLOG, $JOB, $NAMESPACE,
$TLEVEL, $USERNAME, $ZHOROLOG, $ZJOB, $ZNSPACE, $ZPI, $ZTIMESTAMP, $ZTIMEZONE, $ZVERSION.

table

One or more tables, views, table-valued functions, or subqueries from which data is being retrieved. You can specify any
combination of these table types as a comma-separated list or with the JOIN syntax.

InterSystems SQL Reference 323

SELECT (SQL)

• If you specify a single table name, the specified data is retrieved from that table or view.

• If you specify multiple table names, InterSystems SQL performs a join operation on the tables, merging their data into
a results table from which the specified data is retrieved.

A valid table reference is required for every FROM clause, even if the SELECT makes no reference to that table.

• To determine whether a table or view exists in the current namespace, use the
$SYSTEM.SQL.Schema.TableExists("schema.tname") or $SYSTEM.SQL.Schema.ViewExists("schema.vname")
method.

• To determine if you have SELECT privileges for a table or view, use the $SYSTEM.SQL.Security.CheckPrivilege()
method

table can be either qualified (schema.tablename) or unqualified (tablename). An unqualified table is supplied either the
default schema name or a schema name from the schema search path.

You can optionally assign an alias, tableAlias, to each table.

You can optionally specify one or more optimize-option keywords to optimize query execution. The available options are:
%ALLINDEX, %FIRSTTABLE, %FULL, %INORDER, %IGNOREINDEX, %NOFLATTEN, %NOMERGE, %NOREDUCE, %NOSVSO,
%NOTOPOPT, %NOUNIONOROPT, %PARALLEL, and %STARTTABLE. For more details on these options, see FROM.

condition

Logical tests (predicates) used in WHERE and HAVING clauses to specify the rows of data to retrieve. In SELECT
statements, WHERE condition and HAVING condition return the rows for which condition evaluates to true.

To combine logical predicate conditions, use AND and OR logical operators. To invert a condition, use the NOT unary
logical operator.

This table shows sample predicate conditions.

324 InterSystems SQL Reference

SQL Commands

ExampleDescriptionPredicate

SELECT Name,Age FROM

Sample.Person WHERE Age <

21

Return rows using =, <, >, and
other comparison operators.

Equality Comparisons

SELECT Name,Age FROM

Sample.Person WHERE Age

BETWEEN 18 AND 21

Return rows between certain
values

BETWEEN

SELECT Name, Home_State

FROM Sample.Person WHERE

Home_State IN

('ME','NH,'VT')

Return rows that match items in a
list.

IN and %INLIST

SELECT Name FROM

Sample.Person WHERE Name

%STARTSWITH 'S'

Return rows that match a substringSubstring Comparisons

SELECT Name,Age FROM

Sample.Person WHERE Age IS

NOT NULL

Return rows based on the
detection of undefined values

NULL

SELECT Name FROM

Sample.Person WHERE EXISTS

(SELECT * FROM Employee

WHERE Employee.Number =

Person.Number)

Return rows based on the
existence of at least one row in a
table. Often used with subqueries.

EXISTS

SELECT Name,COUNT(Name)

FROM Sample.Person WHERE

FOR SOME

(Sample.Employee)(Sample.Employee.Name=Sample.Person.Name)

Return rows based on a condition
test of certain column values. Often
used to test whether a value in one
table appears in another table.

FOR SOME

SELECT Name,FavoriteColors

FROM Sample.Person WHERE

FOR SOME

%ELEMENT(FavoriteColors)

(%VALUE='Red')

Return rows that match certain list
element values.

FOR SOME %ELEMENT

SELECT Name FROM

Sample.Person WHERE Name

LIKE '%Mac%'

Match row that fit a specific pattern.LIKE, %MATCHES, and %PAT-
TERN

For more details on these logical predicates, see WHERE.

condition cannot contain aggregate functions. To specify a selection condition using a value returned by an aggregate
function, use a HAVING clause.

In WHERE clauses, condition can specify an explicit join between two tables using the = (inner join) symbolic join oper-
ators. For more details, see JOIN.

A WHERE clause can specify an implicit join between the base table and a column from another table using the arrow
syntax (–>) operator. For more details, see Implicit Joins.

column

A comma-separated list of columns specifying how to organize retrieved data. Valid column values include:

InterSystems SQL Reference 325

SELECT (SQL)

• A column name (GROUP BY City)

• An %ID (returns all rows)

• A scalar function specifying a column name (GROUP BY ROUND(Age,-1))

• A collation function specifying a column name (GROUP BY %EXACT(City))

For more details, see GROUP BY.

itemOrder

A selectItem or a comma-separated list of items that specify the order in which rows are displayed. Each item can have an
optional ASC (ascending order) or DESC (descending order) keyword. The default is ascending order. The ORDER BY
clause operates on the results of a query. An ORDER BY clause in a subquery, such as in a UNION statement, must be
paired with a TOP clause. If no ORDER BY clause is specified, the order of the records returned is unpredictable. An
ORDER BY clause can include window functions. For more details, see ORDER BY.

columnAlias

In SELECT queries, each column in selectItem can have an alias. The column alias is displayed as the column header in
the result set. If you do not specify a column alias, the name of the select item is used as the column name in the result set.
The AS keyword separates the selectItem from the columnAlias. This keyword is optional but recommended for readability.
Therefore, these syntaxes are equivalent and valid:

SELECT Name AS PersonName, DOB AS BirthDate FROM Sample.Person
SELECT Name PersonName, DOB BirthDate FROM Sample.Person

InterSystems SQL displays column aliases with the specified letter case, but aliases are not case-sensitive when referenced
in an ORDER BY clause. The columnAlias name must be a valid identifier, including a delimited identifier. Using a
delimited identifier permits a column alias to contain spaces, other punctuation characters, or to be an SQL reserved name
(for example, SELECT Name AS "Customer Name" or SELECT Home_State AS "From").

SQL does not perform uniqueness checking for column aliases. It is possible (though not desirable) for a column and a
column alias to have the same name, or for two column aliases to be identical. Such non-unique column aliases can cause
an SQLCODE -24 “Ambiguous sort column” error when referenced by an ORDER BY clause. Column aliases, like all
SQL identifiers, are not case-sensitive.

Use of column aliases in other SELECT clauses is governed by query semantic processing order. You can reference a
column by its column alias in an ORDER BY clause.

Referencing a column alias in these places is not allowed:

• Another selectItem in the select list

• DISTINCT BY clause

• WHERE clause

• GROUP BY clause

• HAVING clause

• ON or USING clause of a JOIN operation

You can, however, use a subquery to make a column alias available for use by these other SELECT clauses, as described
in Querying the Database.

In addition to setting column aliases, you can also set aliases for aggregate functions, expressions, or other computed
columns. Computed columns are automatically assigned a column name. If you do not provide an alias, InterSystems SQL
supplies a unique column name, such as Expression_1 or Aggregate_3. The integer suffix refers to the selectItem

326 InterSystems SQL Reference

SQL Commands

position as specified in the SELECT statement (that is, the selectItem column number). These values are not a count of
columns of that type.

The following list shows the automatically assigned column names, where n is an integer. These names are listed in
increasingly inclusive order. For example, adding a plus or minus sign to a number promotes it from a HostVar to an
Expression; concatenating a HostVar and a Literal promotes it to an Expression; specifying a Literal, HostVar,
Aggregate, or Expression in a subquery promotes it to a SubQuery:

• Literal_n: A pseudo-field variable such as %TABLENAME, or the NULL specifier. Note that %ID is not
Literal_n; it is given the column name of the actual RowID column.

• HostVar_n: a host variable. This can be a literal, such as ‘text’, 123, or the empty string (''), an input variable (:myvar),
or a ? input parameter replaced by a literal. Any expression evaluation on a literal, such as appending a sign to a
number, string concatenation, or an arithmetic operation, makes it an Expression_n. A literal value supplied to a ?
parameter is returned unchanged without expression evaluation. For example, supplying 5+7 returns the string '5+7'
as HostVar_n.

• Aggregate_n: An aggregate function, such as AVG(Age) or COUNT(*). A column is named Aggregate_n if the
outermost operation is an aggregate function, even when this aggregate contains an expression. For example,
COUNT(Name)+COUNT(Spouse) is Expression_n, but MAX(COUNT(Name)+COUNT(Spouse)) is Aggregate_n,
-AVG(Age) is Expression_n, but AVG(-Age) is Aggregate_n. In this example, the aggregate column created
by the AVG function is given the column alias AvgAge. Its default name is Aggregate_3 (an aggregate column in
position 3 in the SELECT list).

SQL

SELECT Name, Age, AVG(Age) AS AvgAge FROM Sample.Person

• Expression_n: Any operation in the selectItem list on a literal, a column, or on an Aggregate_n, HostVar_n,
Literal_n, or Subquery_n selectItem changes its column name to Expression_n. This includes unary operations
on numbers (-Age), arithmetic operations (Age+5), concatenation ('USA:'||Home_State), data type CAST
operations, SQL collation functions (%SQLUPPER(Name) or %SQLUPPER Name), SQL scalar functions
($LENGTH(Name)), user-defined class methods, CASE expressions, and special variables (such as CURRENT_DATE
or $ZPI).

• Window_n: The result of a window function. You specify the column alias after the closing parenthesis of the OVER
keyword.

• Subquery_n: The result of a subquery that specifies a single selectItem. The selectItem can be a column, aggregate
function, expression, or literal. Specify the column alias after, not within, the subquery. For example:

SQL

SELECT Name AS PersonName,
 (SELECT Name FROM Sample.Employee) AS EmpName,
 Age AS YearsOld
FROM Sample.Person

tableAlias

In a SELECT statement, you can specify an optional alias for a table or view name (table) as a valid identifier, including
a delimited identifier. The AS keyword separates the table from the tableAlias. This keyword is optional but recommended
for readability. Therefore, these syntaxes are equivalent and valid:

SELECT P.Name FROM Sample.Person AS P
SELECT P.Name FROM Sample.Person P

A tableAlias must be unique among table aliases within the query. A tableAlias, like all identifiers, is not case-sensitive.
Specifying two tableAlias names that differ only in letter case results in an SQLCODE -20 “Name conflict” error.

InterSystems SQL Reference 327

SELECT (SQL)

The table alias is used as a prefix (with a period) to a column name to indicate the table to which the column belongs. For
example:

SQL

SELECT P.Name, E.Name
FROM Sample.Person AS P, Sample.Employee AS E

When a query specifies multiple tables that have the same column name, you must use a table reference prefix. A table
reference prefix can be a tableAlias, as shown in the previous example, or a fully qualified table name, as shown in this
equivalent example:

SQL

SELECT Sample.Person.Name, Sample.Employee.Name
FROM Sample.Person, Sample.Employee

If you assign a tableAlias to a table name, then specifying a full table name as part of a selectItem results in an SQLCODE
-23 error. Table aliases are required or optional depending on the query scenario.

Table AliasScenario

OptionalA query references only one table.

Optional (but recommended)A query references multiple tables and the column
names referenced are unique to each table.

Required

Failing to specify a tableAlias (or fully qualified table
name) prefix results in an SQLCODE -27 “Field %1
is ambiguous among the applicable tables” error.

A query references multiple tables and the column
names referenced are the same in different tables.

You can also optionally use a tableAlias when specifying a subquery like this one:

SQL

SELECT Name,(SELECT Name FROM Sample.Vendor)
FROM Sample.Person

A tableAlias only uniquely identifies a column for query execution. To uniquely identify a column for query result set
display, you must also use a column alias (columnAlias). This query combines the use of table aliases (Per and Emp) and
column aliases (PName and Ename):

SQL

SELECT Per.Name AS PName, Emp.Name AS EName
FROM Sample.Person AS Per, Sample.Employee AS Emp
WHERE Per.Name %STARTSWITH 'G'

You can use the same name for a column, a column alias, and/or a table alias without a naming conflict.

Use the tableAlias prefix to distinguish which table is being referred to. For example:

328 InterSystems SQL Reference

SQL Commands

SQL

SELECT P.%ID As PersonID,
 AVG(P.Age) AS AvgAge,
 Z.%TABLENAME||'=' AS Tablename,
 Z.*
FROM Sample.Person AS P, Sample.USZipCode AS Z
WHERE P.Home_City = Z.City
GROUP BY P.Home_City
ORDER BY Z.City

distinctItem

A comma-separated list of selectItem columns from which you want to exclude redundant rows in the result set. The
distinctItem argument accepts any valid selectItem value. It does not accept the asterisk (*) keyword that selects all items.
It also does not accept column name aliases.

Either type of DISTINCT clause can specify more than one item to test for uniqueness. Listing more than one item retrieves
all rows that are distinct for the combination of both items. DISTINCT does consider NULL a unique value. For more
details, see DISTINCT.

numRows

The number of rows to return, when used in conjunction with a TOP clause, as in TOP numRows. If the query does not
contain an ORDER BY clause, the returned “top” rows is unpredictable. If the query contains an ORDER BY clause, the
top rows are based on the specified order. If the query includes the DISTINCT keyword before TOP, then the query returns
numRows unique values. Specify numRows as either a positive integer or a Dynamic SQL input parameter using the question
mark (?) syntax that resolves to a positive integer. If no TOP keyword is specified, the default is to display all the rows
that meet the SELECT criteria.

var

One or more host variables into which you place selectItem values. Specify multiple host variables as a comma-separated
list or as a single-host variable array. For more details, see INTO.

Specifying an INTO clause in a SELECT query processed via ODBC, JDBC, or Dynamic SQL results in an SQLCODE
-422 error.

%keyword

One or more %keyword arguments, separated by spaces. These keywords affect processing as follows:

• %NOFPLAN — The frozen plan (if any) is ignored for this operation; the operation generates a new query plan. The
frozen plan is retained but not used. For more details, see Frozen Plans.

• %NOLOCK — InterSystems IRIS performs no locking on any of the tables. If you specify this keyword, the query
retrieves data in READ UNCOMMITTED mode, regardless of current transaction’s isolation mode. For more details,
see Transaction Processing.

• %NORUNTIME — Runtime Plan Choice (RTPC) optimization is not used.

• %PROFILE or %PROFILE_ALL — Generate SQLStats collecting code. This is the same code that would be generated
with PTools turned ON. The difference is that SQLStats collecting code is only generated for this specific statement.
All other SQL statements within the routine or class being compiled generate code as if PTools is turned OFF. This
enables you to profile and inspect specific problem SQL statements within an application without collecting irrelevant
statistics for SQL statements that are not being investigated. For further details, see SQL Performance Analysis Toolkit.

%PROFILE collects SQLStats for the main query module. %PROFILE_ALL collects SQLStats for the main query
module and all its subquery modules.

InterSystems SQL Reference 329

SELECT (SQL)

Examples

Select Subsets of Data Using Predicate Conditions

Select subsets of data from a table using different combinations of predicate conditions. The clauses shown in these
examples must be specified in the correct order. In all four examples, you select three columns (Name, Home_State, and
Age) from the Sample.Person table and compute two other columns (AvgAge and AvgMiddleAge).

HAVING and ORDER BY

This query computes the AvgAge column on all records in Sample.Person. The HAVING clause governs the
AvgMiddleAge computed column, calculating the average age of people over 40 from all records in Sample.Person.
Thus, every row has the same value for AvgAge and AvgMiddleAge. The ORDER BY clause sequences the display of
the rows alphabetically by the Home_State column value.

SQL

SELECT Name,Home_State,Age,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgMiddleAge
 FROM Sample.Person
 HAVING Age > 40
 ORDER BY Home_State

WHERE, HAVING, and ORDER BY

In this query, the WHERE clause limits the selection to the seven specified northeastern states. The query computes the
AvgAge column on the records from those states. The HAVING clause governs the AvgMiddleAge computed column,
calculating the average age of those over 40 from the records from the specified Home_State column. Thus, every row
has the same value for AvgAge and AvgMiddleAge. The ORDER BY clause sequences the display of the rows alphabet-
ically by the Home_State column value.

SQL

SELECT Name,Home_State,Age,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgMiddleAge
 FROM Sample.Person
 WHERE Home_State IN ('ME','NH','VT','MA','RI','CT','NY')
 HAVING Age > 40
 ORDER BY Home_State

GROUP BY, HAVING, and ORDER BY

Here, the GROUP BY clause causes the query to compute the AvgAge column for each Home_State group. The GROUP
BY clause also limits the output display to the first record encountered from each Home_State. The HAVING clause
governs the AvgMiddleAge computed column, calculating the average age of those over 40 in each Home_State group.
The ORDER BY clause sequences the display of the rows alphabetically by the Home_State column value.

SQL

SELECT Name,Home_State,Age,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgMiddleAge
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Age > 40
 ORDER BY Home_State

WHERE, GROUP BY, HAVING, and ORDER BY

In this query, the WHERE clause limits the selection to the seven specified northeastern states. The GROUP BY clause
causes the query to compute the AvgAge column separately for each of these seven Home_State groups. The GROUP
BY clause also limits the output display to the first record encountered from each specified Home_State. The HAVING
clause governs the AvgMiddleAge computed column, calculating the average age of those over 40 in each of the seven

330 InterSystems SQL Reference

SQL Commands

Home_State groups. The ORDER BY clause sequences the display of the rows alphabetically by the Home_State
column value.

SQL

SELECT Name,Home_State,Age,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgMiddleAge
 FROM Sample.Person
 WHERE Home_State IN ('ME','NH','VT','MA','RI','CT','NY')
 GROUP BY Home_State
 HAVING Age > 40
 ORDER BY Home_State

Select Data from Within ObjectScript Programs Using Embedded SQL and Dynamic SQL

You can use Embedded SQL and Dynamic SQL to issue a SELECT query from within an ObjectScript program.

The following Embedded SQL program retrieves data values from one record and places them in the output host variables
specified in the INTO clause.

ObjectScript

 NEW SQLCODE,%ROWCOUNT
 &sql(SELECT Home_State,Name,Age
 INTO :a, :b, :c
 FROM Sample.Person)
 IF SQLCODE=0 {
 WRITE !," Name=",b
 WRITE !," Age=",c
 WRITE !," Home Home_State=",a
 WRITE !,"Row count is: ",%ROWCOUNT }
 ELSE {
 WRITE !,"SELECT failed, SQLCODE=",SQLCODE }

This program retrieves at most one row, so the %ROWCOUNT variable is set to either 0 or 1. To retrieve multiple rows, you
must declare a cursor and use the FETCH command. For more details, see Embedded SQL.

The following Dynamic SQL example first tests whether the desired table exists and checks the current user’s SELECT
privilege for that table. It then executes the query and returns a result set. It uses the WHILE loop to repeatedly invoke the
%Next method for the first 10 records of the result set. It displays three column values using %GetData methods that
specify the column position as specified in the SELECT statement:

ObjectScript

 SET tname="Sample.Person"
 IF $SYSTEM.SQL.Schema.TableExists(tname)
 & $SYSTEM.SQL.Security.CheckPrivilege($USERNAME,"1,"_tname,"s")
 {GOTO SpecifyQuery}
 ELSE {WRITE "Table unavailable" QUIT}
SpecifyQuery
 SET myquery = 3
 SET myquery(1) = "SELECT Home_State,Name,SSN,Age"
 SET myquery(2) = "FROM "_tname
 SET myquery(3) = "ORDER BY Name"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 {
 SET x=0
 WHILE x < 10 {
 SET x=x+1
 SET status=rset.%Next()
 WRITE rset.%GetData(2)," " /* Name column */
 WRITE rset.%GetData(1)," " /* Home_State column */
 WRITE rset.%GetData(4),! /* Age column */
 }
 WRITE !,"End of Data"
 WRITE !,"SQLCODE=",rset.%SQLCODE," Row Count=",rset.%ROWCOUNT
 }
 ELSE {
 WRITE !,"SELECT failed, SQLCODE=",rset.%SQLCODE }

InterSystems SQL Reference 331

SELECT (SQL)

For more details, see Dynamic SQL.

Change Case of Columns in Result Set

Column names specified in selectItem are not case-sensitive. However, unless you supply a column alias, the name of a
column in the result set follows the letter case of the SqlFieldName associated with the column property. The letter case
of the SqlFieldName corresponds to the column name as specified in the table definition, not as specified in the selectItem
list. Therefore, SELECT name FROM Sample.Person returns the column label as Name. Using a column alias allows
you to specify the letter case to display. For example, this query displays the Name column in the result set as NAME (all
caps).

SQL

SELECT name AS NAME
FROM Sample.Person

Letter case resolution takes time. To maximize SELECT performance, specify the exact letter case of the column name
as specified in the table definition. However, determining the exact letter case of a column in the table definition is often
inconvenient and prone to error. Instead, you can use a column alias to avoid letter case issues. Note that all references to
the column alias must match in letter case.

The following Dynamic SQL example requires letter case resolution (the SqlFieldNames are “Latitude” and “Longitude”):

ObjectScript

 set query = "SELECT latitude,longitude FROM Sample.USZipCode"
 set statement = ##class(%SQL.Statement).%New()

 set status = statement.%Prepare(query)
 if $$$ISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

 set rset = statement.%Execute()
 if (rset.%SQLCODE '= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
 quit}

 while rset.%Next()
 {
 write rset.latitude," ",rset.longitude,!
 }
 if (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

The following Dynamic SQL example does not require letter case resolution and therefore executes faster:

ObjectScript

 set query = "SELECT latitude AS northsouth,longitude AS eastwest FROM Sample.USZipCode"
 set statement = ##class(%SQL.Statement).%New()

 set status = statement.%Prepare(query)
 if $$$ISERR(status) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(status) quit}

 set rset = statement.%Execute()
 if (rset.%SQLCODE '= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
 quit}

 while rset.%Next()
 {
 write rset.northsouth," ",rset.eastwest,!
 }
 if (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

Distinguish Between Column Names in Multi-Table Queries

The returned result set of SELECT queries do not include the table alias prefix, tableAlias. Therefore, this query returns
two columns named Name:

332 InterSystems SQL Reference

SQL Commands

SQL

SELECT p.Name,e.Name
FROM Sample.Person AS p LEFT JOIN Sample.Employee AS e ON p.Name=e.Name

To distinguish the columns in such queries, specify column aliases. For example, this revised query returns the two columns
as PersonName and EmployeeName:

SQL

SELECT p.Name AS PersonName,e.Name AS EmployeeName
FROM Sample.Person AS p LEFT JOIN Sample.Employee AS e ON p.Name=e.Name

Security and Privileges
To perform a SELECT query on one or more tables, you must have one or more of the following:

• Column-level SELECT privileges for all of the specified selectItem columns

• Table-level SELECT privileges for the specified table tables or views

• SELECT privileges on the schema of the table

A selectItem column specified using a table alias (such as t.Name or "MyAlias".Name) requires only column-level
SELECT privileges, not table-level SELECT privileges.

When using SELECT *, column-level privileges cover all table columns named in the GRANT statement. Table-level
privileges cover all table columns, including columns added after the privilege assignment.

Failing to have the necessary privileges results in an SQLCODE -99 error (Privilege Violation). To determine if the current
user has SELECT privilege by invoking the %CHECKPRIV command. You can determine if a specified user has table-
level SELECT privilege by invoking the $SYSTEM.SQL.Security.CheckPrivilege() method. For more on privilege
assignment, see GRANT.

Note: Having table-level SELECT privileges for a table is not a sufficient test that the table actually exists. If the
specified user has the %All role, then CheckPrivilege() returns 1 even if the specified table or view does not
exist.

A SELECT query that does not have a FROM clause does not require any SELECT privileges. A SELECT query that
contains a FROM clause requires SELECT privileges, even if no column data is accessed by the query.

More About

SELECT Status and Return Values

When you perform a SELECT operation, InterSystems IRIS sets a status variable, SQLCODE, that indicates the success
or failure of the operation. In addition, the SELECT operation sets the %ROWCOUNT local variable to the number of
selected rows. Successful completion of a SELECT operation generally sets SQLCODE=0 and %ROWCOUNT to the number
of rows selected. If embedded SQL code contains a simple SELECT statement, data from (at most) one row is selected,
so SQLCODE=0 and %ROWCOUNT is set to either 0 or 1. If an embedded SQL SELECT statement declares a cursor and
fetches data from multiple rows, the operation completes when the cursor advances to the end of the data (SQLCODE=100).
At that point, %ROWCOUNT is set to the total number of rows selected. For more details, see FETCH.

The values returned from a SELECT query are known as a result set. In Dynamic SQL, SELECT retrieves values into
the %SQL.Statement class. For more details, see Dynamic SQL and the %SQL.Statement class reference page.

SELECT can also be used to return a value from an SQL function, a host variable, or a literal. A SELECT query can
combine returning these non-database values with retrieving values from tables or views. When a SELECT query returns
only non-database values, the FROM clause is optional. For more details, see FROM.

InterSystems SQL Reference 333

SELECT (SQL)

Sharding

Sharding is transparent to SQL queries, and no special query syntax is required. A query does not need to know whether a
table specified in the FROM clause is sharded or non-sharded. The same query can access sharded and non-sharded tables.
A query can include joins between sharded and non-sharded tables.

A sharded table is defined using the CREATE TABLE command. It must be defined in the master namespace on the shard
master data server. This master namespace can also include non-sharded tables.

Transaction Processing

A transaction performing a query is defined as either READ COMMITTED or READ UNCOMMITTED. The default is
READ UNCOMMITTED. A query that is not in a transaction is defined as READ UNCOMMITTED.

• In READ UNCOMMITTED mode, a SELECT statement returns the current state of the data, including changes made
to the data by transactions in progress that have not been committed. These changes can be subsequently rolled back.

• In READ COMMITTED mode, the behavior depends on the contents of the SELECT statement. Normally, a SELECT
statement in read committed mode returns only insert and update changes to data that has been committed. Data rows
deleted by a transaction in progress are not returned, even though these deletes have not been committed and can be
rolled back.

However, if the SELECT statement contains a %NOLOCK keyword, a DISTINCT clause, or a GROUP BY clause, the
SELECT query returns the current state of the data, including changes made to data during the current transaction that
have not been committed. An aggregate function in a SELECT statement also returns the current state of the data for
the specified columns, including uncommitted changes.

For more details, see SET TRANSACTION and START TRANSACTION.

See Also
• SELECT clauses: DISTINCT, FROM, GROUP BY, HAVING, INTO, ORDER BY, TOP, WHERE

• JOIN, UNION

• CREATE VIEW

• CREATE TABLE, ALTER TABLE, DROP TABLE

• CREATE QUERY, DROP QUERY

• INSERT, INSERT OR UPDATE, UPDATE, DELETE

• Querying the Database

• SQL and Object Settings Pages

• SQLCODE error messages

334 InterSystems SQL Reference

SQL Commands

SET ML CONFIGURATION (SQL)
Sets an ML configuration as the default.

Synopsis

SET ML CONFIGURATION ml-configuration-name

Arguments

The name of the ML configuration.ml-configuration-name

Description
The SET ML CONFIGURATION command sets the specified ML configuration as the system default for all ensuing
TRAIN MODEL statements. Only one ML configuration can be set as system default by each SET ML CONFIGURATION
statement.

Required Security Privileges

Calling SET ML CONFIGURATION requires a USE object privilege; otherwise, there is a SQLCODE –99 error (Privilege
Violation). You can determine if the current user has USE privilege by invoking the %CHECKPRIV command or the
$SYSTEM.SQL.Security.CheckPrivilege() method.

Examples

CREATE MODEL H2OMODEL PREDICTING (label) FROM data
SET ML CONFIGURATION %H2O
TRAIN MODEL H2OMODEL

See Also
• ALTER ML CONFIGURATION, CREATE ML CONFIGURATION

InterSystems SQL Reference 335

SET ML CONFIGURATION (SQL)

SET OPTION (SQL)
Sets an execution option.

Synopsis

SET OPTION option_keyword = value

Description
The SET OPTION statement is used to set execution options, such as the compile mode, SQL configuration settings, and
the locale settings governing date, time, and numeric conventions. Only one keyword option can be set by each SET
OPTION statement.

SET OPTION supports the following options:

• AUTO_PARALLEL_THRESHOLD

• COMPILEMODE

• DEFAULT_SCHEMA

• EXACT_DISTINCT

• LOCK_ESCALATION_THRESHOLD

• LOCK_TIMEOUT

• PKEY_IS_IDKEY

• SUPPORT_DELIMITED_IDENTIFIERS

• Locale Options (date, time, and numeric conventions)

SET OPTION can be used in Dynamic SQL (including the SQL Shell) and in Embedded SQL.

Since SET OPTION prepares and executes quickly, and is generally run only once, InterSystems IRIS does not create a
cached query for SET OPTION in ODBC, JDBC, or Dynamic SQL.

The following options are supported by InterSystems IRIS:

AUTO_PARALLEL_THRESHOLD

The AUTO_PARALLEL_THRESHOLD option is set to an integer n that determines whether parallel processing should
be applied to a query when automatic parallel processing is enabled. Because there are performance costs associated with
parallel processing, a threshold needs to be established for when parallel processing is advantageous. The higher n is, the
lower the chance that an InterSystems SQL query executes using parallel processing. The default is 3200. This is a system-
wide setting. The value n corresponds roughly to the minimal number of tuples needed in the visited map for parallel pro-
cessing to occur.

When AutoParallel is disabled, the AUTO_PARALLEL_THRESHOLD option has no effect.

This option can also be set using the $SYSTEM.SQL.Util.SetOption() method AutoParallelThreshold option.

For further details, refer to AutoParallelThreshold.

COMPILEMODE

The COMPILEMODE option sets the compile mode to DEFERRED, IMMEDIATE, INSTALL, or NOCHECK for the
current namespace. The default is IMMEDIATE. Changing from DEFERRED to IMMEDIATE compile mode causes any
classes in the Deferred Compile Queue to be compiled immediately. If all class compilations are successful, InterSystems
IRIS sets SQLCODE to 0. If there are any errors, SQLCODE is set to -400. Class compilation errors are logged in the

336 InterSystems SQL Reference

SQL Commands

^mtemp2 ("Deferred Compile Mode","Error"). If SQLCODE is set to -400, you should view this global structure for more
precise error messages. The INSTALL compile mode is similar to the DEFERRED compile mode, but it should only be
used for DDL installations where there is no data in the tables.

The NOCHECK compile mode is similar to IMMEDIATE, except that it skips checking of the following constraints when
compiling: If a table is dropped, InterSystems IRIS does not check foreign key constraints in other tables that reference the
dropped table. If a foreign key constraint is added, InterSystems IRIS does not check existing data to ensure that it is valid
for this foreign key. If a NOT NULL constraint is added, InterSystems IRIS does not check existing data for NULLs or
assign the field’s default value. If a UNIQUE or Primary Key constraint is deleted, InterSystems IRIS does not check if a
foreign key in this table or another table references the dropped key.

This option can also be set using the $SYSTEM.SQL.Util.SetOption() method CompileMode options.

DEFAULT_SCHEMA

The DEFAULT_SCHEMA option sets the default schema system-wide for all namespaces. This default remains in effect
until explicitly changed. The default schema name is used to supply a schema name for all unqualified table, view, or stored
procedure names.

You can specify a literal schema name or specify _CURRENT_USER. If you specify _CURRENT_USER as the default
schema name, InterSystems IRIS assigns the user name of the currently logged-in process as the default schema name. For
further details, refer to Schema Name.

EXACT_DISTINCT

The EXACT_DISTINCT boolean option specifies whether DISTINCT processing (TRUE) or Fast Distinct processing
(FALSE) should be used system-wide. The system-wide default is to use Fast Distinct processing.

When EXACT_DISTINCT=TRUE, GROUP BY and DISTINCT queries produce original values. When EXACT_DIS-
TINCT=FALSE, Fast Distinct is enabled, causing SQL queries involving DISTINCT or GROUP BY clauses to run more
efficiently by making better use of indexes (if indexes are available). However, the values returned by such queries are
collated in the same way they are stored within the index. This means the results of such queries may be all uppercase. This
may have an effect on case-sensitive applications.

This option can also be set using the $SYSTEM.SQL.Util.SetOption() method FastDistinct boolean option.

For further details, refer to FastDistinct.

LOCK_ESCALATION_THRESHOLD

The LOCK_ESCALATION_THRESHOLD option is set to an integer n that determines when to escalate row locking to
table locking. The default is 1000. The value n is the number of inserts, updates, or deletes for a single table within a single
transaction that will trigger a table-level lock when reached. This is a system-wide setting for all namespaces. For example,

if the lock threshold is 1000 and a process starts a transaction and then inserts 2000 rows, after the 1001st row is inserted
the process will attempt to acquire a table-level lock instead of continue to lock individual rows. This is to help keep the
lock table from becoming too full.

This option can also be set using the $SYSTEM.SQL.Util.SetOption() method LockThreshold option.

For further details, see Modify Transaction Lock Threshold.

LOCK_TIMEOUT

The LOCK_TIMEOUT numeric option lets you set the default lock timeout for the current process. The LOCK_TIMEOUT
value is the number of seconds to wait when trying to establish a lock during SQL execution. This lock timeout is used
when a locking conflict prevents the current process from immediately locking a record, table, or other entity for a LOCK,
INSERT, UPDATE, DELETE, or SELECT operation. InterSystems SQL continues to try to establish the lock until the
timeout expires, at which point an SQLCODE -110 or -114 error is generated.

InterSystems SQL Reference 337

SET OPTION (SQL)

Available values are positive integers and zero. The timeout setting is per process. You can determine the lock timeout
setting for the current process using the $SYSTEM.SQL.Util.GetOption("ProcessLockTimeout") method.

If you do not set the lock timeout for the current process, it defaults to the current system-wide lock timeout setting. If your
ODBC connection disconnects and reconnects, the reconnected process uses the current system-wide lock timeout setting.
The default system-wide lock timeout is 10 seconds.

For further details on locking conflicts and per-process and system-wide SQL lock timeout settings, refer to the LOCK
command.

PKEY_IS_IDKEY

The PKEY_IS_IDKEY boolean option specifies whether primary keys are also ID keys system-wide. Available values are
TRUE and FALSE. If TRUE, and the field does not contain data, the primary key is created as an ID key. That is, the primary
key of the table also becomes the IDKey index in the class definition. If the field does contain data, the IDKey index is not
defined. If the primary key is defined as the IDKey index, data access is more efficient, but a primary key value, once set,
can never be modified. Once set, you cannot change the value assigned to a primary key, nor can you assign a different
key as the primary key. Use of this option also changes the primary key collation default; primary key string values default
to EXACT collation. If FALSE, the primary key and ID key are defined as independent, which is less efficient. However,
primary key values are modifiable, and primary key string values default to the current collation type default, which is
SQLUPPER by default.

To set the PKEY_IS_IDKEY option, you must have the %Admin_Manage:USE privilege. Otherwise, you receive an
SQLCODE -99 error (Privilege Violation). Once set, this option takes effect system-wide for all processes. The system-
wide default for this option can also be set using:

• The system-wide $SYSTEM.SQL.Util.SetOption() method configuration option DDLPKeyNotIDKey. To determine
the current setting, call $SYSTEM.SQL.CurrentSettings() which displays Are primary keys created through
DDL not ID keys; the default is 1.

• A Management Portal configuration setting. Select System Administration, Configuration, SQL and Object Settings,
SQL. View or modify the current setting of Define primary key as ID key for tables created via DDL.

The PKEY_IS_IDKEY setting remains in effect until reset through another SET OPTION PKEY_IS_IDKEY or until the
InterSystems IRIS Configuration is reactivated, which resets this parameter to the InterSystems IRIS System Configuration
setting.

SUPPORT_DELIMITED_IDENTIFIERS

By default, delimited identifiers are supported system-wide. The SUPPORT_DELIMITED_IDENTIFIERS boolean option
allows you to change support for delimited identifiers system-wide. Available values are TRUE and FALSE. If TRUE, a
string delimited by double quotation marks is considered an identifier within an SQL statement. If FALSE, a string delimited
by double quotation marks is considered a string literal within an SQL statement.

To set the SUPPORT_DELIMITED_IDENTIFIERS option, you must have the %Admin_Manage:USE privilege. Otherwise,
you receive an SQLCODE -99 error (Privilege Violation). Once set, this option takes effect system-wide for all processes.
The SUPPORT_DELIMITED_IDENTIFIERS setting remains in effect until reset through another SET OPTION SUP-
PORT_DELIMITED_IDENTIFIERS, or until changed system-wide by the $SYSTEM.SQL.Util.SetOption() method
DelimitedIdentifiers option.

To determine the current setting, call $SYSTEM.SQL.CurrentSettings().

Locale Options

Locale options are keyword options used to set your InterSystems IRIS Locale settings for date, time, and numeric conventions
for the current process. The available keyword options are AM, DATE_FORMAT, DATE_MAXIMUM, DATE_MINIMUM,
DATE_SEPARATOR, DECIMAL_SEPARATOR, MIDNIGHT, MINUS_SIGN, MONTH_ABBR, MONTH_NAME,
NOON, NUMERIC_GROUP_SEPARATOR, NUMERIC_GROUP_SIZE, PM, PLUS_SIGN, TIME_FORMAT,

338 InterSystems SQL Reference

SQL Commands

TIME_PRECISION, TIME_SEPARATOR, WEEKDAY_ABBR, WEEKDAY_NAME, and YEAR_OPTION. All of these
options can be set to a literal, and all take a default (American English conventions). The TIME_PRECISION option is
configurable (see below). If you set any of these options to an invalid value, InterSystems IRIS issues an SQLCODE -129
error (Illegal value for SET OPTION locale property). See the ObjectScript $ZDATETIME function for an explanation
of date and time formats and options.

DescriptionDate/Time Option Keyword

String. Default is 'AM'AM

Integer. Default is 1. Available values are 0 through 15. For
an explanation of these date formats, see the ObjectScript
$ZDATE function.

DATE_FORMAT

Integer. Default is 2980013 (12/31/9999). Can be set to an
earlier date, but not to a later date.

DATE_MAXIMUM

Positive Integer. Default is 0 (12/31/1840). Can be set to a
later date, but not to an earlier date.

DATE_MINIMUM

Character. Default is '/'DATE_SEPARATOR

Character. Default is '.'DECIMAL_SEPARATOR

String. Default is 'MIDNIGHT'MIDNIGHT

Character. Default is '-'MINUS_SIGN

String. Default is ' Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Nov Dec'. (Note that this string begins with a space character,
which is the default separator character.)

MONTH_ABBR

String. Default is ' January February March April May June ...
November December'. (Note that this string begins with a
space character, which is the default separator character.)

MONTH_NAME

String. Default is 'NOON'NOON

Character. Default is ','NUMERIC_GROUP_SEPARATOR

Integer. Default is 3.NUMERIC_GROUP_SIZE

String. Default is 'PM'PM

Character. Default is '+'PLUS_SIGN

Integer. Default is 1. Available values are 1 through 4. For an
explanation of these time formats, see the ObjectScript
$ZTIME function.

TIME_FORMAT

Integer from 0 through 9 (inclusive). Default is 0. The number
of digits of fractional seconds. Configurable, as described
below.

TIME_PRECISION

Character. Default is ':'TIME_SEPARATOR

String. Default is ' Sun Mon Tue Wed Thu Fri Sat'. (Note that
this string begins with a space character, which is the default
separator character.)

WEEKDAY_ABBR

InterSystems SQL Reference 339

SET OPTION (SQL)

DescriptionDate/Time Option Keyword

String. Default is ' Sunday Monday Tuesday Wednesday
Thursday Friday Saturday'. (Note that this string begins with
a space character, which is the default separator character.)

WEEKDAY_NAME

Integer. Default is 0. Available values are 0 through 6. For an
explanation of these ways of representing 2-digit and 4-digit
years, see the ObjectScript $ZDATE function.

YEAR_OPTION

To configure TIME_PRECISION system-wide, go to the Management Portal, select System Administration, Configuration,
SQL and Object Settings, SQL. View and edit the current setting of Default time precision for GETDATE(), CURRENT_TIME,

and CURRENT_TIMESTAMP. This specifies the number of digits of precision for fractional seconds. The default is 0. The
range of allowed values is 0 through 9 digits of precision. The actual number of meaningful digits of fractional seconds is
platform-dependent.

See Also
• SQL date and time functions: CURRENT_TIMESTAMP, DATEPART, DATENAME, GETDATE, NOW

• SQL date functions: DAYNAME, DAYOFWEEK, DAYOFMONTH, DAYOFYEAR, WEEK, MONTH, MONTH-
NAME, QUARTER, YEAR, CURDATE, CURRENT_DATE, TO_DATE

• SQL time functions: HOUR, MINUTE, SECOND, CURTIME, CURRENT_TIME

• SQL and Object Settings Pages

• SQLCODE error messages

• ObjectScript functions: $ZDATE $ZDATETIME $ZTIME

340 InterSystems SQL Reference

SQL Commands

SET TRANSACTION (SQL)
Sets parameters for transactions.

Synopsis

SET TRANSACTION [%COMMITMODE commitmode]
SET TRANSACTION [transactionmodes]

Description
A SET TRANSACTION statement sets parameters that govern SQL transactions for the current process. These parameters
take effect at the beginning of the next transaction and continue in effect for the duration of the current process or until
explicitly reset. They do not automatically reset to defaults at the end of a transaction.

A single SET TRANSACTION statement can be used to set either the commitmode parameter or the transactionmodes
parameters, but not both.

The same parameters can be set using the START TRANSACTION command, which can both set parameters and begin
a new transaction. The parameters can also be set using method calls.

SET TRANSACTION does not begin a transaction, and therefore does not increment the $TLEVEL transaction level
counter.

SET TRANSACTION can be used in Dynamic SQL (including the SQL Shell) and in Embedded SQL.

%COMMITMODE

The %COMMITMODE keyword allows you to specify whether automatic transaction commitment is performed. The
available options are:

• IMPLICIT: automatic transaction commitment is on (the default). SQL automatically initiates a transaction when a
program issues a database modification operation (INSERT, UPDATE, or DELETE). The transaction continues until
either the operation completes successfully and SQL automatically commits the changes, or the operation is unable to
complete successfully on all rows and SQL automatically rolls back the entire operation. Each database operation
(INSERT, UPDATE, or DELETE) constitutes a separate transaction. Successful completion of the database operation
automatically clears the rollback journal, releases locks, and decrements $TLEVEL. No COMMIT statement is needed.
This is the default setting.

• EXPLICIT: automatic transaction commitment is off. SQL automatically initiates a transaction when a program issues
the first database modification operation (INSERT, UPDATE, or DELETE). This transaction continues until it is
explicitly concluded. Upon successful completion you issue a COMMIT statement. If a database modification operation
fails you issue a ROLLBACK statement to revert the database to the point prior to the beginning of the transaction.
In EXPLICIT mode the number of database operations per transaction is user-defined.

• NONE: no automatic transaction processing. A transaction is not initiated unless explicitly invoked by a START
TRANSACTION statement. The transaction must be explicitly concluded by issuing either a COMMIT or
ROLLBACK statement. Thus whether a database operation is included in a transaction, and the number of database
operations in a transaction are both user-defined.

TRUNCATE TABLE does not occur within an automatically initiated transaction. If journaling and rollback of TRUNCATE
TABLE is required, you must explicitly specify a START TRANSACTION and conclude with an explicit COMMIT or
ROLLBACK.

You can determine the %COMMITMODE setting for the current process using the GetOption("AutoCommit") method,
as shown in the following ObjectScript example:

InterSystems SQL Reference 341

SET TRANSACTION (SQL)

ObjectScript

 SET stat=$SYSTEM.SQL.Util.SetOption("AutoCommit",$RANDOM(3),.oldval)
 IF stat'=1 {WRITE "SetOption failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET x=$SYSTEM.SQL.Util.GetOption("AutoCommit")
 IF x=1 {
 WRITE "%COMMITMODE IMPLICIT (default behavior):",!,
 "each database operation is a separate transaction",!,
 "with automatic commit or rollback" }
 ELSEIF x=0 {
 WRITE "%COMMITMODE NONE:",!,
 "No automatic transaction support",!,
 "You must use START TRANSACTION to start a transaction",!,
 "and COMMIT or ROLLBACK to conclude one" }
 ELSE {
 WRITE "%COMMITMODE EXPLICIT:",!,
 "the first database operation automatically",!,
 "starts a transaction; to end the transaction",!,
 "explicit COMMIT or ROLLBACK required" }

The %COMMITMODE can be set in ObjectScript using the SetOption() method, as follows SET
status=$SYSTEM.SQL.Util.SetOption("AutoCommit",intval,.oldval). The available method values are
0 (NONE), 1 (IMPLICIT), and 2 (EXPLICIT).

ISOLATION LEVEL

You specify an ISOLATION LEVEL for a process that is issuing a query. The ISOLATION LEVEL options permit you
to specify whether changes that are in progress should be available for read access by the query. If another concurrent
process is performing inserts or updates to a table and those changes to the table are in a transaction, those changes are in
progress, and could, potentially, be rolled back. By setting the ISOLATION LEVEL for your process that is querying that
table, you can specify whether you wish to include or exclude these changes in progress from the query results.

• READ UNCOMMITTED states that all changes are immediately available for query access. This includes changes
that may subsequently be rolled back. READ UNCOMMITTED ensures that your query will return results without
waiting for a concurrent insert or update process, and will not fail due to a lock timeout error. However, the results of
a READ UNCOMMITTED may include values that are not committed; these values may be internally inconsistent
because the insert or update operation has only partially completed, and these values may be subsequently rolled back.
READ UNCOMMITTED is the default if your query process is not in an explicit transaction, or if the transaction does
not specify an ISOLATION LEVEL. READ UNCOMMITTED is incompatible with READ WRITE access; attempting
to specify both in the same statement results in an SQLCODE -92 error.

• READ VERIFIED states that uncommitted data from other transactions is immediately available, and no locking is
performed. This includes changes that may subsequently be rolled back. However, unlike READ UNCOMMITTED,
a READ VERIFIED transaction will re-check any conditions that could be invalidated by uncommitted or newly
committed data which would result in output that does not satisfy the query conditions. Because of this condition re-
check, READ VERIFIED is more accurate but less efficient than READ UNCOMMITTED and should only be used
when concurrent updates to the data being checked by the conditions is likely to occur. READ VERIFIED is incompat-
ible with READ WRITE access; attempting to specify both in the same statement results in an SQLCODE -92 error.

• READ COMMITTED states that only those changes that have been committed are available for query access. This
ensures that a query is performed on the database in a consistent state, not while a group of changes are being made,
a group of changes which may be subsequently rolled back. If requested data has been changed, but the changes have
not been committed (or rolled back), the query waits for transaction completion. If a lock timeout occurs while waiting
for this data to be available, an SQLCODE -114 error is issued.

READ UNCOMMITTED or READ VERIFIED?

The difference between READ UNCOMMITTED and READ VERIFIED is demonstrated by the following example:

SQL

SELECT Name,SSN FROM Sample.Person WHERE Name >= 'M'

342 InterSystems SQL Reference

SQL Commands

The query optimizer may choose first to collect all RowID's containing Names meeting the >= 'M' condition from a Name
index. Once collected, the Person table is accessed one RowID at a time to retrieve the Name and SSN fields for output.
A concurrently running updating transaction could change the Name field of a Person with RowID 72 from 'Smith' to 'Abel'
in-between the query's collection of RowID's from the index and its row-by-row access to the table. In this case, the collection
of RowID's from the index would contain the RowID for a row that no longer conforms to the Name >= 'M' condition.

READ UNCOMMITTED query processing assumes that the Name >= 'M' condition has been satisfied by the index, and
will output whatever Name is present in the table for each RowID it collected from the index. In this example it would
therefore output a row with a Name of 'Abel', which does not satisfy the condition.

READ VERIFIED query processing notes that it is retrieving a field from a table for output (Name) that participates in a
condition which should have been previously satisfied by the index, and re-checks the condition in case the field value has
changed since the index was examined. Upon re-check, it notes that the row no longer satisfies the condition and omits it
from the output. Only values that are needed for output have their conditions re-checked: SELECT SSN FROM Person
WHERE Name >= 'M' would output the row with RowID 72 in this example.

Exceptions to READ COMMITTED

When ISOLATION LEVEL read committed is in effect, either through setting ISOLATION LEVEL READ COMMITTED
or the SetOption() method, as follows SET
status=$SYSTEM.SQL.Util.SetOption("IsolationMode",1,.oldval). SQL can retrieve only those changes
to the data that have been committed. However, there are significant exceptions to this rule:

• A deleted row is never returned by a query, even when the transaction that deleted the row is in progress and the delete
may be subsequently rolled back. ISOLATION LEVEL READ COMMITTED ensures that inserts and updates are in
a consistent state, but not deletes.

• If you query contains an aggregate function, the aggregate result returns the current state of the data, regardless of the
specified ISOLATION LEVEL. Therefore, inserts and updates are in progress (and may subsequently be rolled back)
are included in aggregate results. Deletes that are in progress (and may subsequently be rolled back) are not included
in aggregate results. This is because an aggregate operation requires access to data from many rows of a table.

• A SELECT query that contains a DISTINCT clause or a GROUP BY clause is unaffected by the ISOLATION LEVEL
setting. A query containing one of these clauses returns the current state of the data, including changes in progress that
may be subsequently rolled back. This is because these query operations require access to data from many rows of a
table.

• A query with the %NOLOCK keyword.

Note: On InterSystems IRIS implementations with ECP (Enterprise Cache Protocol) use of READ COMMITTED may
result in significantly slower performance when compared to READ UNCOMMITTED. Developers should weigh
the superior performance of READ UNCOMMITTED against the greater data accuracy of READ COMMITTED
when defining transactions that involve ECP.

For further details, refer to Transaction Processing.

ISOLATION LEVEL in Effect

You can set the ISOLATION LEVEL for a process using SET TRANSACTION (without starting a transaction), START
TRANSACTION (setting isolation mode and starting a transaction), or a SetOption("IsolationMode") method call.

The specified ISOLATION LEVEL remains in effect until explicitly reset by a SET TRANSACTION, START
TRANSACTION, or a SetOption("IsolationMode") method call. Because COMMIT or ROLLBACK is only meaningful
for changes to the data, not data queries, a COMMIT or ROLLBACK operation has no effect on the ISOLATION LEVEL
setting.

The ISOLATION LEVEL in effect at the start of a query remains in effect for the duration of the query.

InterSystems SQL Reference 343

SET TRANSACTION (SQL)

You can determine the ISOLATION LEVEL for the current process using the GetOption("IsolationMode") method call.
You can also set the isolation mode for the current process using the SetOption("IsolationMode") method call. These
methods specify READ UNCOMMITTED (the default) as 0, READ COMMITTED as 1, and READ VERIFIED as 3.
Specifying any other numeric value leaves the isolation mode unchanged. No error or change occurs if you set the isolation
mode to the current isolation mode. Use of these methods is shown in the following example:

ObjectScript

 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," default",!
 &sql(START TRANSACTION ISOLATION LEVEL READ COMMITTED,READ WRITE)
 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," after START TRANSACTION",!
 DO $SYSTEM.SQL.Util.SetOption("IsolationMode",0,.stat)
 IF stat=1 {
 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," after IsolationMode=0 call",! }
 ELSE { WRITE "Set IsolationMode error" }
 &sql(COMMIT)

The isolation mode and the access mode must always be compatible. Changing the access mode changes the isolation mode,
as shown in the following example:

ObjectScript

 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," default",!
 &sql(SET TRANSACTION ISOLATION LEVEL READ COMMITTED,READ WRITE)
 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," after SET TRANSACTION",!
 &sql(START TRANSACTION READ ONLY)
 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," after changing access mode",!
 &sql(COMMIT)

Arguments

%COMMITMODE commitmode

An optional argument specifying the manner in which transactions are committed to the database. Available values are
EXPLICIT, IMPLICIT, and NONE. The default is IMPLICIT.

transactionmodes

An optional argument that specifies the isolation mode and access mode for the transaction. You can specify a value for
either an isolation mode, an access mode, or for both modes as a comma-separated list.

Valid values for isolation mode are ISOLATION LEVEL READ COMMITTED, ISOLATION LEVEL READ UNCOM-
MITTED, and ISOLATION LEVEL READ VERIFIED. The default is ISOLATION LEVEL READ UNCOMMITTED.

Valid values for access mode are READ ONLY and READ WRITE. Note that only ISOLATION LEVEL READ COM-
MITTED is compatible with access mode READ WRITE.

Examples
The following Embedded SQL example uses two SET TRANSACTION statements to set transaction parameters. Note
that SET TRANSACTION does not increment the transaction level ($TLEVEL). The START TRANSACTION command
initiates a transaction and increments $TLEVEL:

344 InterSystems SQL Reference

SQL Commands

ObjectScript

 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Set transaction commit mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED)
 WRITE !,"Set transaction isolation mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION)
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT)
 WRITE !,"Commit transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

See Also
• COMMIT, ROLLBACK, SAVEPOINT, START TRANSACTION, $TLEVEL

• Transaction Processing

InterSystems SQL Reference 345

SET TRANSACTION (SQL)

START TRANSACTION (SQL)
Begins a transaction.

Synopsis

START TRANSACTION [%COMMITMODE commitmode]
START TRANSACTION [transactionmodes]

Description
A START TRANSACTION statement initiates a transaction. START TRANSACTION immediately initiates a transaction,
regardless of the current commit mode setting. A transaction beginning with START TRANSACTION must be concluded
by issuing an explicit COMMIT or ROLLBACK, regardless of the current commit mode setting.

START TRANSACTION is optional.

• If your process is only querying the data (SELECT statements), you can use SET TRANSACTION to establish the
ISOLATION LEVEL. A START TRANSACTION is not needed.

• If your process is modifying the data, whether you need to explicitly begin an SQL transaction by issuing a START
TRANSACTION depends on the current commit mode setting for the process (also referred to as the AutoCommit
setting). If the commit mode for the current process is IMPLICIT or EXPLICIT, issuing a START TRANSACTION
is optional. If you omit START TRANSACTION, the system automatically initiates a transaction when you invoke
a modify data operation (DELETE, UPDATE, or INSERT). If you specify START TRANSACTION a transaction
is immediately initiated, and must be concluded by an explicit COMMIT or ROLLBACK.

When START TRANSACTION initiates a transaction it increments the $TLEVEL transaction level counter from 0 to 1,
indicating a transaction is in progress. You can also determine if a transaction is in progress by checking the SQLCODE
set by the %INTRANSACTION statement. Issuing a START TRANSACTION when a transaction is in progress has no
effect on $TLEVEL or %INTRANSACTION.

InterSystems SQL does not support nested transactions. Issuing a START TRANSACTION when a transaction is already
in progress does not initiate another transaction and does not return an error code. InterSystems SQL does support savepoints,
allowing a partial rollback of a transaction.

If a transaction is not in progress when you issue a SAVEPOINT statement, SAVEPOINT initiates a transaction. However,
this means of initiating a transaction is not recommended.

An SQLCODE -400 is issued if a transaction operation fails to complete successfully.

Setting Parameters

Optionally, START TRANSACTION can be used to set parameters. The parameter settings you specify take effect
immediately. However, any transaction initiated with a START TRANSACTION must be concluded with an explicit
COMMIT or ROLLBACK, regardless of how you set the commitmode parameter. Parameter settings continue in effect
for the duration of the current process or until explicitly reset. They do not automatically reset to defaults at the end of a
transaction.

A single START TRANSACTION statement can be used to set either the commitmode parameter or the transactionmodes
parameters, but not both. To set both, you may issue a SET TRANSACTION and a START TRANSACTION, or two
START TRANSACTION statements. Only the first START TRANSACTION initiates a transaction.

After issuing a START TRANSACTION, you can change these parameter settings during the transaction by issuing
another START TRANSACTION, a SET TRANSACTION, or a method call. Changing the commitmode parameter does
not remove the requirement to conclude the current transaction with an explicit COMMIT or ROLLBACK.

346 InterSystems SQL Reference

SQL Commands

You can use the SET TRANSACTION statement to set the commitmode or transactionmodes parameters without starting
a transaction. These parameters can also be set using method calls, either outside of a transaction or within a transaction.

%COMMITMODE

The %COMMITMODE keyword allows you to specify automatic transaction initiation and commitment behavior for the
current process. A START TRANSACTION %COMMITMODE changes the commit mode setting for all future transactions
on the current process. It does not affect the transaction initiated by the START TRANSACTION statement. Regardless
of the current or set commit mode, a START TRANSACTION immediately initiates a transaction, and this transaction
must be concluded by issuing an explicit COMMIT or ROLLBACK.

The available %COMMITMODE options are:

• IMPLICIT: automatic transaction commitment is on (the initial process default). SQL automatically initiates a transaction
when a program issues a database modification operation (INSERT, UPDATE, or DELETE). The transaction continues
until either the operation completes successfully and SQL automatically commits the changes, or the operation is
unable to complete successfully on all rows and SQL automatically rolls back the entire operation. Each database
operation (INSERT, UPDATE, or DELETE) constitutes a separate transaction. Successful completion of the database
operation automatically clears the rollback journal, releases locks, and decrements $TLEVEL. No COMMIT statement
is needed.

• EXPLICIT: automatic transaction commitment is off. SQL automatically initiates a transaction when a program issues
the first database modification operation (INSERT, UPDATE, or DELETE). This transaction continues until it is
explicitly concluded. Upon successful completion you issue a COMMIT statement. If a database modification operation
fails you issue a ROLLBACK statement to revert the database to the point prior to the beginning of the transaction.
In EXPLICIT mode multiple database modification operations can constitute a single transaction.

• NONE: no automatic transaction processing. Transactions are not initiated unless explicitly invoked by a START
TRANSACTION. All transactions must be explicitly concluded by issuing either a COMMIT or ROLLBACK
statement. Thus whether a database operation is included in a transaction, and the number of database operations in a
transaction are both user-defined.

TRUNCATE TABLE does not occur within an automatically initiated transaction. If journaling and rollback of TRUNCATE
TABLE is required, you must explicitly specify a START TRANSACTION and conclude with an explicit COMMIT or
ROLLBACK.

You can set the %COMMITMODE in ObjectScript using the SetOption() method, as follows SET
status=$SYSTEM.SQL.Util.SetOption("AutoCommit",intval,.oldval). The available method values are
0 (NONE), 1 (IMPLICIT), and 2 (EXPLICIT).

Note: A sharded table is always in No AutoCommit mode (SetOption("AutoCommit",0)), which means all inserts,
updates, and deletes to sharded tables are performed outside the scope of a transaction.

ISOLATION LEVEL

You specify an ISOLATION LEVEL for a process that is issuing a query. The ISOLATION LEVEL options permit you
to specify whether or not changes that are in progress should be available for read access by the query. If another concurrent
process is performing inserts or updates to a table and those changes to the table are in a transaction, those changes are in
progress, and could, potentially, be rolled back. By setting the ISOLATION LEVEL for your process that is querying that
table, you can specify whether you wish to include or exclude these changes in progress from the query results.

• READ UNCOMMITTED states that all changes are immediately available for query access. This includes changes
that may subsequently be rolled back. READ UNCOMMITTED ensures that your query will return results without
waiting for a concurrent insert or update process, and will not fail due to a lock timeout error. However, the results of
a READ UNCOMMITTED may include values that are not committed; these values may be internally inconsistent
because the insert or update operation has only partially completed, and these values may be subsequently rolled back.
READ UNCOMMITTED is the default if your query process is not in an explicit transaction, or if the transaction does

InterSystems SQL Reference 347

START TRANSACTION (SQL)

not specify an ISOLATION LEVEL. READ UNCOMMITTED is incompatible with READ WRITE access; attempting
to specify both in the same statement results in an SQLCODE -92 error.

• READ VERIFIED states that uncommitted data from other transactions is immediately available, and no locking is
performed. This includes changes that may subsequently be rolled back. However, unlike READ UNCOMMITTED,
a READ VERIFIED transaction will re-check any conditions that could be invalidated by uncommitted or newly
committed data which would result in output that does not satisfy the query conditions. Because of this condition re-
check, READ VERIFIED is more accurate but less efficient than READ UNCOMMITTED and should only be used
when concurrent updates to the data being checked by the conditions is likely to occur. READ VERIFIED is incompat-
ible with READ WRITE access; attempting to specify both in the same statement results in an SQLCODE -92 error.

• READ COMMITTED states that only those changes that have been committed are available for query access. This
ensures that a query is performed on the database in a consistent state, not while a group of changes are being made,
a group of changes which may be subsequently rolled back. If requested data has been changed, but the changes have
not been committed (or rolled back), the query waits for transaction completion. If a lock timeout occurs while waiting
for this data to be available, an SQLCODE -114 error is issued.

READ UNCOMMITTED or READ VERIFIED?

The difference between READ UNCOMMITTED and READ VERIFIED is demonstrated by the following example:

SQL

SELECT Name,SSN FROM Sample.Person WHERE Name >= 'M'

The query optimizer may choose first to collect all RowID's containing Names meeting the >= 'M' condition from a Name
index. Once collected, the Person table is accessed one RowID at a time to retrieve the Name and SSN fields for output.
A concurrently running updating transaction could change the Name field of a Person with RowID 72 from 'Smith' to 'Abel'
in-between the query's collection of RowID's from the index and its row-by-row access to the table. In this case, the collection
of RowID's from the index would contain the RowID for a row that no longer conforms to the Name >= 'M' condition.

READ UNCOMMITTED query processing assumes that the Name >= 'M' condition has been satisfied by the index, and
will output whatever Name is present in the table for each RowID it collected from the index. In this example it would
therefore output a row with a Name of 'Abel', which does not satisfy the condition.

READ VERIFIED query processing notes that it is retrieving a field from a table for output (Name) that participates in a
condition which should have been previously satisfied by the index, and re-checks the condition in case the field value has
changed since the index was examined. Upon re-check, it notes that the row no longer satisfies the condition and omits it
from the output. Only values that are needed for output have their conditions re-checked: SELECT SSN FROM Person
WHERE Name >= 'M' would output the row with RowID 72 in this example.

Exceptions to READ COMMITTED

When ISOLATION LEVEL read committed is in effect, either through setting ISOLATION LEVEL READ COMMITTED
or the SetOption() method, as follows SET
status=$SYSTEM.SQL.Util.SetOption("IsolationMode",1,.oldval). SQL can retrieve only those changes
to the data that have been committed. However, there are significant exceptions to this rule:

• A deleted row is never returned by a query, even when the transaction that deleted the row is in progress and the delete
may be subsequently rolled back. ISOLATION LEVEL READ COMMITTED ensures that inserts and updates are in
a consistent state, but not deletes.

• If your query contains an aggregate function, the aggregate result returns the current state of the data, regardless of the
specified ISOLATION LEVEL. Therefore, inserts and updates in progress (and may subsequently be rolled back) are
included in aggregate results. Deletes that are in progress (and may subsequently be rolled back) are not included in
aggregate results. This is because an aggregate operation requires access to data from many rows of a table.

348 InterSystems SQL Reference

SQL Commands

• A SELECT query that contains a DISTINCT clause or a GROUP BY clause is unaffected by the ISOLATION LEVEL
setting. A query containing one of these clauses returns the current state of the data, including changes in progress that
may be subsequently rolled back. This is because these query operations require access to data from many rows of a
table.

• A query with the %NOLOCK keyword.

Note: On InterSystems IRIS implementations with ECP (Enterprise Cache Protocol) use of READ COMMITTED may
result in significantly slower performance when compared to READ UNCOMMITTED. Developers should weigh
the superior performance of READ UNCOMMITTED against the greater data accuracy of READ COMMITTED
when defining transactions that involve ECP.

For further details, refer to Transaction Processing.

ISOLATION LEVEL in Effect

You can set the ISOLATION LEVEL for a process using SET TRANSACTION (without starting a transaction), START
TRANSACTION (setting isolation mode and starting a transaction), or a SetOption("IsolationMode") method call.

The specified ISOLATION LEVEL remains in effect until explicitly reset by a SET TRANSACTION, START
TRANSACTION, or a SetOption("IsolationMode") method call. Because COMMIT or ROLLBACK is only meaningful
for changes to the data, not data queries, a COMMIT or ROLLBACK operation has no effect on the ISOLATION LEVEL
setting.

The ISOLATION LEVEL in effect at the start of a query remains in effect for the duration of the query.

You can determine the ISOLATION LEVEL for the current process using the GetOption("IsolationMode") method call.
You can also set the isolation mode for the current process using the SetOption("IsolationMode") method call. These
methods specify READ UNCOMMITTED (the default) as 0, READ COMMITTED as 1, and READ VERIFIED as 3.
Specifying any other numeric value leaves the isolation mode unchanged. No error or change occurs if you set the isolation
mode to the current isolation mode. Use of these methods is shown in the following example:

ObjectScript

 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," default",!
 &sql(START TRANSACTION ISOLATION LEVEL READ COMMITTED,READ WRITE)
 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," after START TRANSACTION",!
 DO $SYSTEM.SQL.Util.SetOption("IsolationMode",0,.stat)
 IF stat=1 {
 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," after IsolationMode=0 call",! }
 ELSE { WRITE "Set IsolationMode error" }
 &sql(COMMIT)

The isolation mode and the access mode must always be compatible. Changing the access mode changes the isolation mode,
as shown in the following example:

ObjectScript

 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," default",!
 &sql(SET TRANSACTION ISOLATION LEVEL READ COMMITTED,READ WRITE)
 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," after SET TRANSACTION",!
 &sql(START TRANSACTION READ ONLY)
 WRITE $SYSTEM.SQL.Util.GetOption("IsolationMode")," after changing access mode",!
 &sql(COMMIT)

Arguments

commitmode

An optional argument specifying how future transactions will be committed to the database during the current process.
Valid values are EXPLICIT, IMPLICIT, and NONE. The default is to maintain the existing commit mode; the initial
commit mode default for a process is IMPLICIT.

InterSystems SQL Reference 349

START TRANSACTION (SQL)

transactionmodes

An optional argument that specifies the isolation mode and access mode for the transaction. You can specify a value for
either an isolation mode, an access mode, or for both modes as a comma-separated list.

Valid values for isolation mode are ISOLATION LEVEL READ COMMITTED, ISOLATION LEVEL READ UNCOM-
MITTED, and ISOLATION LEVEL READ VERIFIED. The default is ISOLATION LEVEL READ UNCOMMITTED.

Valid values for access mode are READ ONLY and READ WRITE. Note that only ISOLATION LEVEL READ COM-
MITTED is compatible with access mode READ WRITE.

ObjectScript and SQL Transactions
ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

If a transaction involves SQL data modification statements, the transaction should be started with the SQL START
TRANSACTION statement and committed with the SQL COMMIT statement. (These statements may be explicit or
implicit, depending on the %COMMITMODE setting.) Methods that use TSTART/TCOMMIT nesting can be included
in the transaction, as long as they don't initiate the transaction. Methods and stored procedures should not normally use
SQL transaction control statements, unless, by design, they are the main controller of the transaction. Stored procedures
should not normally use SQL transaction control statements, because these stored procedures are normally called from
ODBC/JDBC, which has its own model of transaction control.

Examples
The following Embedded SQL example uses two START TRANSACTION statements to start a transaction and set its
parameters. Note that the first START TRANSACTION initiates a transaction, setting the commit mode and incrementing
the $TLEVEL transaction level counter. The second START TRANSACTION sets the isolation mode for query read
operations in the current transaction, but does not increment $TLEVEL, because the transaction has already been started.
The SAVEPOINT statement increments $TLEVEL:

ObjectScript

 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Start transaction commit mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION ISOLATION LEVEL READ COMMITTED)
 WRITE !,"Start transaction isolation mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT)
 WRITE !,"Commit transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

See Also
• COMMIT, %INTRANSACTION, ROLLBACK, SAVEPOINT, SET TRANSACTION, $TLEVEL

• Transaction Processing

350 InterSystems SQL Reference

SQL Commands

TRAIN MODEL (SQL)
Trains a machine learning model.

Synopsis

TRAIN MODEL model-name
 [AS preferred-name]
 [NOT DEFAULT]
 [FOR label-column]
 [WITH feature-column-clause]
 [FROM model-source]
 [USING json-object]

Arguments

The name of the machine learning model to train.model-name

Optional — An alternative name to save the trained model as. See details
below.

AS preferred-name

Optional — A clause to train a model without setting it as the default trained
model. See details below.

NOT DEFAULT

Optional — The name of the column being predicted, aka, the label column.
See details below.

FOR label-column

Optional — Inputs to the model, aka the feature columns, as either the name
of a column or as a comma-separated list of the names of columns.

WITH
feature-column-clause

The table or view from which the model is being built.This can be a table, view,
or results of a join. See details below.

FROM model-source

Optional — A JSON string specifying one or more key-value pairs. See details
below.

USING json-object-string

Description
The TRAIN MODEL statement tells a provider to train a model using the specified model definition. The provider is
specified by the ML configuration.

FROM

The FROM clause supplies the data for training your model.

• This clause is required if your CREATE MODEL statement did NOT specify a FROM clause.

• This clause is optional if your CREATE MODEL statement specified a FROM clause.

Examples highlighting acceptable use and omission of FROM:

FROM in TRAIN MODEL

CREATE MODEL model_b PREDICTING (label) WITH (column_1, column_2, column_3)
TRAIN MODEL model_b FROM table

FROM in CREATE MODEL

CREATE MODEL model_a PREDICTING (label) FROM table
TRAIN MODEL model_a

InterSystems SQL Reference 351

TRAIN MODEL (SQL)

Note: Omitting FROM from your TRAIN MODEL statement means that you use the default query from CREATE
MODEL.

WITH

WITH allows you to explicitly match the feature columns in your data to the model definition schema. Each column is a
standard identifier.

FOR

FOR allows you to explicitly match the label column in your data to the model definition schema. For example, if your
label column in your model definition is named column_a but is named column_b in your training data, you can match
the columns as follows:

CREATE MODEL model_a PREDICTING (column_a) FROM table_a
TRAIN MODEL model_a FOR column_b FROM table_b

Naming

AS allows you to explicitly name your trained model.

Model definitions and trained models exist in the same schema. If a trained model is not explicitly named with AS, its name
consists of the model definition name with an appended running integer. We can see the difference by querying the
INFORMATION_SCHEMA.ML_TRAINED_MODELS table:

CREATE MODEL TitanicModel PREDICTING (Survived binary) FROM IntegratedML_dataset_titanic.passenger
TRAIN MODEL TitanicModel
TRAIN MODEL TitanicModel
TRAIN MODEL TitanicModel
TRAIN MODEL TitanicModel AS TrainedTitanic
SELECT MODEL_NAME, TRAINED_MODEL_NAME FROM INFORMATION_SCHEMA.ML_TRAINED_MODELS

TRAINED_MODEL_NAMEMODEL_NAME

TitanicModel_t1TitanicModel

TitanicModel_t2TitanicModel

TitanicModel_t3TitanicModel

TrainedTitanicTitanicModel

Not Default

Each model definition has a default trained model. Without user-specification, the most recently trained model becomes
the default. Using the NOT DEFAULT clause allows you to train a new model without the result becoming the default
trained model:

CREATE MODEL TitanicModel PREDICTING (Survived) FROM IntegratedML_dataset_titanic.passenger
TRAIN MODEL TitanicModel As FirstModel
TRAIN MODEL TitanicModel As SecondModel NOT DEFAULT
SELECT MODEL_NAME, DEFAULT_TRAINED_MODEL_NAME FROM INFORMATION_SCHEMA.ML_MODELS

DEFAULT_TRAINED_MODEL_NAMEMODEL_NAME

FirstModelTitanicModel

Without using NOT DEFAULT, the DEFAULT_TRAINED_MODEL field would otherwise read “SecondModel”

352 InterSystems SQL Reference

SQL Commands

USING Clause Considerations

You can pass provider-specific parameters in a USING clause for a more customized training run. This clause accepts a
JSON string with one or more key-value pairs. The list of parameters that you can use depends on the provider.

For instance, when training with AutoML as your provider you can change the random seed:

TRAIN MODEL IsSpam USING {"seed": 3}

See Providers for information about which parameters you can pass for each provider.

Passing NULL Values

Passing data with NULL values in the label column, in a TRAIN MODEL statement, will result in a trained model with
undefined behavior. Users should carefully screen for NULL values as part of their data preparation process.

Required Security Privileges

Calling TRAIN MODEL requires %MANAGE_MODEL privileges; otherwise, there is a SQLCODE –99 error (Privilege
Violation). To assign %MANAGE_MODEL privileges, use the GRANT command.

Examples

TRAIN MODEL EmailFilter

TRAIN MODEL model_5 AS MyModel USING {"seed": 3}

TRAIN MODEL LoanDefault FROM LoanData

See Also
• CREATE MODEL, VALIDATE MODEL

InterSystems SQL Reference 353

TRAIN MODEL (SQL)

TRUNCATE TABLE (SQL)
Removes all data from a table and resets counters.

Synopsis

TRUNCATE TABLE [restriction] tablename

Description
The TRUNCATE TABLE command removes all rows from a table and resets all table counters.

TRUNCATE TABLE resets the internal counters used for generating RowID field, IDENTITY field, and SERIAL
(%Library.Counter) field sequential integer values. InterSystems IRIS assigns a value of 1 for these fields in the first row
inserted into a table following a TRUNCATE TABLE. Performing a DELETE on all rows of a table does not reset these
internal counters.

TRUNCATE TABLE resets the internal counter used for generating stream field OID values when data is inserted into a
stream field. Performing a DELETE on all rows of a table does not reset this internal counter.

TRUNCATE TABLE always sets the %ROWCOUNT local variable to -1; it does not set %ROWCOUNT to the number
of rows deleted.

TRUNCATE TABLE does not reset the ROWVERSION counter.

TRUNCATE TABLE suppresses the pulling of base table triggers that are otherwise pulled during DELETE processing.
Because TRUNCATE TABLE performs a delete with %NOTRIGGER behavior, the user must have been granted the
%NOTRIGGER privilege (using the GRANT statement) in order to run TRUNCATE TABLE. This aspect of TRUNCATE
TABLE is functionally identical to:

SQL

DELETE %NOTRIGGER FROM tablename

Note: The DELETE command can also be used to delete all rows from a table. DELETE provides more functionality
than TRUNCATE TABLE, including returning the number of rows deleted in %ROWCOUNT. DELETE does
not reset internal counters.

TRUNCATE TABLE provides compatibility for code migration from other database software.

To truncate a table:

• The table must exist in the current (or specified) namespace.

InterSystems IRIS issues an SQLCODE -30 error when the name of a view is specified as the tablename argument, a
subquery is specified as the tablename argument, or is the specified table cannot be located.

• The user must have the %NOTRIGGER administrative privilege, even if no triggers are defined. Failing to have this
privilege results in an SQLCODE –99 error with the %msg User does not have %NOTRIGGER privileges.

• The user must have DELETE privilege for the table. Failing to have this privilege results in an SQLCODE -99 with
the %msg User 'name' is not privileged for the operation. You can determine if the current user
has DELETE privilege by invoking the %CHECKPRIV command. You can determine if a specified user has DELETE
privilege by invoking the $SYSTEM.SQL.Security.CheckPrivilege() method. For privilege assignment, refer to the
GRANT command.

• The table cannot be defined as READONLY. Attempting to compile a TRUNCATE TABLE that references a read-
only table results in an SQLCODE -115 error. Note that this error is now issued at compile time, rather than only
occurring at execution time. See the description of READONLY objects in Other Options for Persistent Classes.

354 InterSystems SQL Reference

SQL Commands

• All of the rows must be available for deletion. By default, if one or more rows cannot be deleted, the TRUNCATE
TABLE operation fails and no rows are deleted.

TRUNCATE TABLE fails if the table is locked by another process in either EXCLUSIVE MODE or SHARE MODE.
Attempting a TRUNCATE TABLE operation on a locked table results in an SQLCODE -110 error, with a %msg
such as the following: Unable to acquire lock for DELETE of table 'Sample.MyStuff' on row
with RowID = '3' (where the specified RowID is the first row in the table).

TRUNCATE TABLE fails if deleting a row would violate foreign key referential integrity. No rows are deleted and
TRUNCATE TABLE issues an SQLCODE -124 error. This default behavior is modifiable, as described below.

Atomicity

TRUNCATE TABLE does not occur within an automatically initiated transaction, and therefore no journaling or rollback
option is provided.

If journaling and the option to rollback TRUNCATE TABLE is required, you must explicitly specify a START
TRANSACTION and conclude with an explicit COMMIT or ROLLBACK.

This is the same as SET TRANSACTION %COMMITMODE= NONE or 0 (no auto transaction) — No transaction is ini-
tiated when you invoke TRUNCATE TABLE. A failed TRUNCATE TABLE operation can leave the database in an
inconsistent state, with some rows deleted and some not deleted. To provide transaction support in this mode you must use
START TRANSACTION to initiate the transaction and COMMIT or ROLLBACK to end the transaction.

TRUNCATE TABLE for a sharded table is always performed using SET TRANSACTION %COMMITMODE NONE,
even when the user has explicitly set SET TRANSACTION %COMMITMODE EXPLICIT.

Restriction Arguments

To use a restriction argument, you must have the corresponding admin-privilege for the current namespace. Refer to GRANT
for further details.

Specifying restriction argument(s) restricts processing as follows:

• %NOCHECK — suppress referential integrity checking for foreign keys that reference the rows being deleted.

• %NOLOCK — suppress row locking of the rows being deleted. This should only be used when a single user/process
is updating the database.

• %NOJOURN — suppress journaling of the rows being deleted and disable transactions for the duration of the deletions.
None of the changes made in any of the rows are journaled, including any triggers fired. If you perform a ROLLBACK
after a statement with %NOJOURN, the changes made by the statement will not be rolled back.

You can specify multiple restriction arguments in any order. Multiple arguments are separated by spaces.

If you specify a restriction argument when deleting a parent record, the same restriction argument will be applied when
deleting the corresponding child records.

TRUNCATE TABLE always performs a delete with implicit %NOTRIGGER behavior, and requires the corresponding
admin-privilege.

Referential Integrity

InterSystems IRIS uses the system-wide configuration setting to determine whether to perform foreign key referential
integrity checking; the default is to perform foreign key referential integrity checking. You can set this default system-wide,
as described in Foreign Key Referential Integrity Checking. To determine the current system-wide setting, call
$SYSTEM.SQL.CurrentSettings().

During a TRUNCATE TABLE operation, for every foreign key reference, a shared lock is acquired on the corresponding
row in the referenced table. This row is locked until the end of the transaction. This ensures that the referenced row is not
changed before a potential rollback of the TRUNCATE TABLE.

InterSystems SQL Reference 355

TRUNCATE TABLE (SQL)

Transaction Locking

InterSystems IRIS performs standard locking on a TRUNCATE TABLE operation. Unique field values are locked for the
duration of the current transaction.

The default lock threshold is 1000 locks per table, which means if you delete more than 1000 unique field values from a
table during a transaction, the lock threshold is reached and InterSystems IRIS automatically elevates the locking level
from unique field value locks to a table lock. This permits large-scale deletes during a transaction without overflowing the
lock table.

You can determine the current system-wide lock threshold value using the
$SYSTEM.SQL.Util.GetOption("LockThreshold") method. This system-wide lock threshold value is configurable:

• Using the $SYSTEM.SQL.Util.SetOption("LockThreshold") method.

• Using the Management Portal. Go to System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Lock escalation threshold.

You must have USE permission on the %Admin Manage Resource to change the lock threshold. InterSystems IRIS
immediately applies any change made to the lock threshold value to all current processes.

For further details on transaction locking refer to Transaction Processing.

Imported SQL Code

The ImportDDL("IRIS") and Run() methods do not support the TRUNCATE TABLE command. A TRUNCATE
TABLE command found in an SQL code file imported by these methods is ignored. These import methods do support the
DELETE command.

Arguments

restriction

An optional argument specifying one or more of the following restriction keywords, separated by spaces: %NOCHECK,
%NOLOCK.

tablename

The table from which you are deleting all rows. A table name can be qualified (schema.table), or unqualified (table). An
unqualified name is matched to its schema using either a schema search path (if provided) or the default schema name.

Examples
The following two Dynamic SQL examples compare DELETE and TRUNCATE TABLE. Each example creates a table,
inserts rows into the table, deletes all the rows in the table, then inserts a single row into the now empty table.

The first example uses DELETE to delete all the records in the table. Note that DELETE does not reset the RowID counter:

ObjectScript

 SET tcreate = "CREATE TABLE SQLUser.MyStudents (StudentName VARCHAR(32),StudentDOB DATE)"
 SET tinsert = "INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB) "_
 "SELECT Name,DOB FROM Sample.Person WHERE Age <= '21'"
 SET tinsert1 = "INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB) VALUES ('Bob Jones',60123)"
 SET tdelete = "DELETE SQLUser.MyStudents"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(tcreate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName,!

 NEW %ROWCOUNT,%ROWID
 SET qStatus = tStatement.%Prepare(tinsert)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()

356 InterSystems SQL Reference

SQL Commands

 WRITE rset.%StatementTypeName," rowcount ",rset.%ROWCOUNT,!

 SET qStatus = tStatement.%Prepare(tdelete)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," rowcount ",rset.%ROWCOUNT,!

 SET qStatus = tStatement.%Prepare(tinsert1)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," rowcount ",rset.%ROWCOUNT," RowID ",rset.%ROWID,!
 &sql(DROP TABLE SQLUser.MyStudents)

The second example uses TRUNCATE TABLE to delete all the records in the table. Note that %StatementTypeName
returns “DELETE” for TRUNCATE TABLE. Note that TRUNCATE TABLE does reset the RowID counter:

ObjectScript

 SET tcreate = "CREATE TABLE SQLUser.MyStudents (StudentName VARCHAR(32),StudentDOB DATE)"
 SET tinsert = "INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB) "_
 "SELECT Name,DOB FROM Sample.Person WHERE Age <= '21'"
 SET tinsert1 = "INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB) VALUES ('Bob Jones',60123)"
 SET ttrunc = "TRUNCATE TABLE SQLUser.MyStudents"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(tcreate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName,!

 NEW %ROWCOUNT,%ROWID
 SET qStatus = tStatement.%Prepare(tinsert)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," rowcount ",rset.%ROWCOUNT,!

 SET qStatus = tStatement.%Prepare(ttrunc)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," (TRUNCATE TABLE) rowcount ",rset.%ROWCOUNT,!

 SET qStatus = tStatement.%Prepare(tinsert1)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," rowcount ",rset.%ROWCOUNT," RowID ",rset.%ROWID,!
 &sql(DROP TABLE SQLUser.MyStudents)

See Also
• DELETE, INSERT, UPDATE

• Defining Tables

• Transaction Processing

• SQL and Object Settings Pages

• SQLCODE error messages

InterSystems SQL Reference 357

TRUNCATE TABLE (SQL)

TUNE TABLE (SQL)
Gathers table statistics based on representative data.

Synopsis

TUNE TABLE tablename [tune_options]

Description
The TUNE TABLE command gathers the statistics of an existing table based on the data currently in the table. This data
should be representative of the data expected when the table is fully populated.

TUNE TABLE calculates and sets the BlockCount and extent size of the table, as well as the selectivity for each field,
based on representative data. Normally, TUNE TABLE sets one or more of these values, and purges all cached queries
that use this persistent class (table) so that queries will use these new values. However, if TUNE TABLE does not change
any of these values (for example, if the data has not changed since the last time TUNE TABLE was run against this table)
cached queries are not purged and the table’s class definition is not flagged for recompile.

TUNE TABLE updates the SQL table definition (and therefore requires privileges to alter the table definition). Commonly,
TUNE TABLE also updates the corresponding persistent class definition. This allows the gathered statistics to be used by
the query optimizer without requiring a class compilation. However, if a class is deployed, TUNE TABLE only updates
the SQL table definition; the query optimizer indirectly uses the gathered statistics from the table definition.

If TUNE TABLE is successful, it sets SQLCODE = 0. If the specified tablename does not exist, TUNE TABLE issues
an SQLCODE -30 error.

Privileges

The TUNE TABLE command is a privileged operation. The user must have %ALTER_TABLE administrative privilege
to execute TUNE TABLE. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not
have %ALTER_TABLE privileges. You can use the GRANT command to assign %ALTER_TABLE privileges to a
user or role, if you hold appropriate granting privileges. Administrative privileges are namespace-specific. For further
details, refer to Privileges.

The user must have %ALTER privilege on the specified table. If the user is the Owner (creator) of the table, the user is
automatically granted %ALTER privilege for that table. Otherwise, the user must be granted %ALTER privilege for the
table. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' is not privileged for
the operation. You can determine if the current user has %ALTER privilege by invoking the %CHECKPRIV command.
You can use the GRANT command to assign %ALTER privilege to a specified table. For further details, refer to Privileges.

TUNE TABLE Options

• %CLEAR_VALUES: if specified the existing SELECTIVITY, EXTENTSIZE, etc. values are cleared from the class
and table definition. Not specifying this option provides the default Tune Table behavior.

• %SAMPLE_PERCENT percentage: specifies the percentage of rows of the table to be used for sampling the data for
the Tune Table utility. This percentage can be specified as '.##' or '##%'; for example, either '.12' or '12%'
will cause the command to use 12% of the rows in the table when sampling the data. Specify percentage with a value
greater than 0 and less than or equal to 100%; a value out of this range issues an SQLCODE -1 error.

This value does not usually need to be specified. Only specify this value when potential outlier values for a field are
not evenly distributed among rows throughout the table. Note, for any table with an extentsize < 1000 rows, the entire
extent will be used by Tune Table regardless of the %SAMPLE_PERCENT value.

358 InterSystems SQL Reference

SQL Commands

• %RECOMPILE_CQ: if specified, instead of just purging cached queries for the table that was tuned, Tune Table will
instead recompile the cached query classes using the new Tune Table statistics. Not specifying this option provides
the default Tune Table behavior.

If the specified tune_options value does not exist, TUNE TABLE issues an SQLCODE -25 error. If the same tune_options
value is specified twice, TUNE TABLE issues an SQLCODE -326 error.

Cached Queries

Executing TUNE TABLE creates a cached query. The Show Plan display indicates that no Query Plan is created. No SQL
Statement is created. The cached query is general to the namespace; it is not listed for the specific table. You can re-run
the same TUNE TABLE statement using the cached query.

Executing TUNE TABLE purges all existing cached queries for the specified table, including the cached query for the
previous execution of TUNE TABLE. You can optionally have TUNE TABLE recompile all of these cached queries with
the new Tune Table values.

If running TUNE TABLE does not change any Tune Table values, cached queries are not purged.

Other Ways to Run Tune Table

There are two other interfaces for running Tune Table:

• Using the Management Portal SQL interface Actions drop-down list, which allows you to run Tune Table on a single
table or on all of the tables in a schema.

• Invoking the $SYSTEM.SQL.Stats.Table.GatherTableStats() method for a single table, or all tables in the current
namespace.

For further details, refer to Tune Table.

Arguments

tablename

The name of an existing table from which to gather statistics. The table name can be qualified (schema.table), or unqualified
(table). An unqualified table name takes the default schema name.

tune_options

If specified, one or more TUNE TABLE options, specified in any order, separated by spaces. These tune_options are not
case sensitive

Examples
The following example gather table statistics by sampling 30% of the Sample.MyTest table:

SQL

TUNE TABLE Sample.MyTest %SAMPLE_PERCENT '30%'

The following example gathers table statistics and recompiles cached query classes based on the newly gathered statistics:

SQL

TUNE TABLE Sample.MyTest %RECOMPILE_CQ

The following example gathers table statistics from a 40% sample of the table:

InterSystems SQL Reference 359

TUNE TABLE (SQL)

SQL

TUNE TABLE Sample.MyTest %SAMPLE_PERCENT '40%'

See Also
• Tune Table

• ExtentSize, Selectivity, and BlockCount

360 InterSystems SQL Reference

SQL Commands

UNFREEZE PLANS (SQL)
Unfreezes one or more frozen query plans.

Synopsis

UNFREEZE PLANS [[FROM] UPGRADE] BY ID statement-hash
UNFREEZE PLANS [[FROM] UPGRADE] BY TABLE table-name
UNFREEZE PLANS [[FROM] UPGRADE] BY SCHEMA schema-name
UNFREEZE PLANS [[FROM] UPGRADE]

Arguments

The internal hash representation of the SQL Statement definition for a query plan,
enclosed in quotation marks. Occasionally, what appear to be identical SQL statements
may have different statement hash entries. Any difference in settings/options that
require different code generation of the SQL statement result in a different statement
hash. This may occur with different client versions or different platforms that support
different internal optimizations. Refer to SQL Statement Details.

statement-hash

The name of an existing table or view. A table-name can be qualified (schema.table),
or unqualified (table). An unqualified table name takes the default schema name.

table-name

The name of an existing schema. This command unfreezes all frozen query plans for
all tables in the specified schema.

schema-name

Description
The UNFREEZE PLANS command unfreezes frozen query plans. To freeze query plans use the FREEZE PLANS command.

UNFREEZE PLANS without the FROM UPGRADE clause unfreezes all query plans with the Plan State
Frozen/Explicit. UNFREEZE PLANS with the FROM UPGRADE clause unfreezes all query plans with the Plan
State Frozen/Upgrade. The FROM keyword in this clause is optional.

UNFREEZE PLANS provides four syntax forms for unfreezing query plans:

• A specified query plan: UNFREEZE PLANS BY ID statement-hash. The statement-hash value must be delimited
by double quotation marks.

• All query plans for a table: UNFREEZE PLANS BY TABLE table-name. You can specify a table name or a view
name. If a query plan references multiple tables and/or views, specifying any of these tables or views unfreezes the
query plan.

• All query plans for all tables in a schema: UNFREEZE PLANS BY SCHEMA schema-name.

• All query plans for all tables in the current namespace: UNFREEZE PLANS.

This command issues SQLCODE 0 if one or more query plans are unfrozen; it issues SQLCODE 100 if no query plans are
unfrozen. The Rows Affected (%ROWCOUNT) indicates the number of query plans unfrozen.

Other Interfaces

You can use the following $SYSTEM.SQL.Statement methods to unfreeze a single query plan or multiple query plans:
UnfreezeStatement() for a single plan; UnfreezeRelation() for all plans for a relation (a table or view referenced in the
query plan); UnfreezeSchema() for all plans for a schema; UnfreezeAll() for all plans in the current namespace. There are
corresponding Freeze methods.

You can use the Management Portal, to unfreeze a query plan, as described in Frozen Plans Interface.

InterSystems SQL Reference 361

UNFREEZE PLANS (SQL)

Security and Privileges
The UNFREEZE PLANS command is a privileged operation that required the user to have %Development:USE permission.
Such permissions can be granted through the Management Portal. Executing a UNFREEZE PLANS command without
this privileges will result in a SQLCODE -99 error and the command will fail. There are two exceptions:

• The command is executed via Embedded SQL, which does not perform privilege checks.

• The user explicitly specifies not privilege checking by, for example, calling either %Prepare() with the checkPriv
argument set to 0 or %ExecDirectNoPriv() on a %SQL.Statement.

See Also
• FREEZE PLANS command

• Frozen Plans

• SQL Statements

362 InterSystems SQL Reference

SQL Commands

UNLOCK (SQL)
Unlocks a table.

Synopsis

UNLOCK [TABLE] tablename IN EXCLUSIVE MODE [IMMEDIATE]

UNLOCK [TABLE] tablename IN SHARE MODE [IMMEDIATE]

Description
The UNLOCK command unlocks an SQL table that was locked by the LOCK command. This table must be an existing
table for which you have the necessary privileges. If tablename is a temporary table, the command completes successfully,
but performs no operation. If tablename is a view, the command fails with an SQLCODE -400 error.

UNLOCK and UNLOCK TABLE are synonymous.

The UNLOCK command reverses the LOCK operation. The UNLOCK command completes successfully even when no
lock is held. You can use LOCK to lock a table multiple times; you must explicitly UNLOCK the table as many times as
it was explicitly locked.

Privileges

The UNLOCK command is a privileged operation. Prior to using UNLOCK IN SHARE MODE it is necessary for your
process to have SELECT privilege for the specified table. Prior to using UNLOCK IN EXCLUSIVE MODE it is necessary
for your process to have INSERT, UPDATE, or DELETE privilege for the specified table. For IN EXCLUSIVE MODE,
the INSERT or UPDATE privilege must be on at least one field of the table. Failing to hold sufficient privileges results in
an SQLCODE -99 error (Privilege Violation). You can determine if the current user has the necessary privileges by
invoking the %CHECKPRIV command. You can determine if a specified user has the necessary table-level privileges by
invoking the $SYSTEM.SQL.Security.CheckPrivilege() method. For privilege assignment, refer to the GRANT command.

Nonexistent Table

If you try to unlock a nonexistent table, UNLOCK fails with a compile error, and the message SQLCODE=-30 : Table
'SQLUser.mytable' not found.

Arguments

tablename

The name of the table to be unlocked. tablename must be an existing table. A tablename can be qualified (schema.table),
or unqualified (table). An unqualified table name takes the default schema name. A schema search path is ignored.

IN EXCLUSIVE MODE / IN SHARE MODE

The IN EXCLUSIVE MODE keyword phrase releases a regular InterSystems IRIS lock. The IN SHARE MODE keyword
phrase releases a shared lock at the InterSystems IRIS level.

IMMEDIATE

An optional argument. If not specified, InterSystems IRIS releases the lock at the end of the current transaction. If specified,
InterSystems IRIS releases the lock immediately.

Examples
The following embedded SQL examples create a table, lock it and then unlock it:

InterSystems SQL Reference 363

UNLOCK (SQL)

ObjectScript

 NEW SQLCODE,%msg
 &sql(CREATE TABLE mytest (
 ID NUMBER(12,0) NOT NULL,
 CREATE_DATE DATE DEFAULT CURRENT_TIMESTAMP(2),
 WORK_START DATE DEFAULT SYSDATE))
 IF SQLCODE=0 { WRITE !,"Table created" }
 ELSE { WRITE !,"CREATE TABLE error: ",SQLCODE
 QUIT }

ObjectScript

 NEW SQLCODE,%msg
 &sql(LOCK mytest IN EXCLUSIVE MODE)
 IF SQLCODE=0 { WRITE !,"Table locked" }
 ELSEIF SQLCODE=-110 { WRITE !,"Table is locked by another process",!,%msg }
 ELSE { WRITE !,"Unexpected LOCK error: ",SQLCODE,!,%msg }
 &sql(UNLOCK mytest IN EXCLUSIVE MODE)
 IF SQLCODE=0 { WRITE !,"Table unlocked" }
 ELSE { WRITE !,"Unexpected UNLOCK error: ",SQLCODE,!,%msg }

See Also
• LOCK

• INSERT UPDATE DELETE

• SQLCODE error messages

364 InterSystems SQL Reference

SQL Commands

UPDATE (SQL)
Sets new values for specified columns in a specified table.

Synopsis

UPDATE [%keyword] table-ref [[AS] t-alias]
 SET column1 = scalar-expression1 {,column2 = scalar-expression2} ...
 [FROM [optimize-option] select-table [[AS] t-alias] {, select-table2 [[AS] t-alias]}]
 [WHERE condition-expression]
UPDATE [%keyword] table-ref [[AS] t-alias]
 [(column1 {,column2} ...)] VALUES (scalar-expression1 {,scalar-expression2} ...)
 [FROM ...] [WHERE ...]
UPDATE [%keyword] table-ref [[AS] t-alias]
 VALUES :array()
 [FROM ...] [WHERE ...]

UPDATE [%keyword] table-ref [[AS] t-alias]
 SET column1 = scalar-expression1{,column2 = scalar-expression2} ...
 [WHERE CURRENT OF cursor]
UPDATE [%keyword] table-ref [[AS] t-alias] [(column1 {,column2} ...)]
 VALUES (scalar-expression1 {,scalar-expression2} ...)
 [WHERE CURRENT OF cursor]
UPDATE [%keyword] table-ref [[AS] t-alias]
 VALUES :array()
 [WHERE CURRENT OF cursor]

Description
An UPDATE command changes existing values for columns in a table. You can update data in a table directly, update
through a view, or update using a subquery enclosed in parentheses. Updating through a view is subject to requirements
and restrictions, as described in CREATE VIEW.

The UPDATE command provides one or more new column values to one or more existing base table rows that contain
those columns. Assignment of data values to columns is done using a value-assignment-statement. By default, a
value-assignment-statement updates all rows in the table.

More commonly, an UPDATE specifies the updating of a specific row (or rows) based on a condition-expression. By
default, an UPDATE operation goes through all of the rows of a table and updates all rows that satisfy the
condition-expression. If no rows satisfy the condition-expression, UPDATE completes successfully and sets SQLCODE=100
(No more data).

You can specify a WHERE clause or a WHERE CURRENT OF clause (but not both). If the WHERE CURRENT OF
clause is used, UPDATE updates the record at the current position of the cursor. For details on positioned operations, see
WHERE CURRENT OF.

The UPDATE operation sets the %ROWCOUNT local variable to the number of updated rows, and the %ROWID local
variable to the RowID value of the last row updated.

By default, the UPDATE operation is an all-or-nothing event. Either all specified rows and columns are updated, or none
are.

For more details regarding the different ways of assigning values to columns, refer to the Value Assignment section below.

INSERT OR UPDATE

The INSERT OR UPDATE statement is a variant of the INSERT statement that performs both insert and update operations.
First it attempts to perform an insert operation. If the insert request fails due to a UNIQUE KEY violation (for the field(s)
of some unique key, there exists a row that already has the same value(s) as the row specified for the insert), then it auto-
matically turns into an update request for that row, and INSERT OR UPDATE uses the specified field values to update
the existing row.

InterSystems SQL Reference 365

UPDATE (SQL)

SQLCODE Errors

By default, a multi-row UPDATE is an atomic operation. If one or more rows cannot be updated, the UPDATE operation
fails and no rows are updated. InterSystems IRIS sets the SQLCODE variable, which indicates the success or failure of the
UPDATE; if the operation failed, IRIS also sets %msg.

To update a table, the update must meet all table, column name, and value requirements, as follows.

Tables:

• The table must exist in the current (or specified) namespace. If the specified table cannot be located, InterSystems IRIS
issues an SQLCODE -30 error.

• The table cannot be defined as READONLY. Attempting to compile an UPDATE that references a read-only table
results in an SQLCODE -115 error. Note that this error is issued at compile time, rather than occurring at execution
time. See the description of READONLY objects in Other Options for Persistent Classes.

• The table cannot be locked IN EXCLUSIVE MODE by another process. Attempting to update a locked table results
in an SQLCODE -110 error, with a %msg such as the following: Unable to acquire lock for UPDATE of
table 'Sample.Person' on row with RowID = '10'. Note that an SQLCODE -110 error occurs only
when the UPDATE statement locates the first record to be updated, then cannot lock it within the timeout period.

• If the UPDATE specifies a non-existent field, an SQLCODE -29 is issued. To list all of the field names defined for a
specified table, refer to Column Names and Numbers. If the field exists but none of the field values fulfill the UPDATE
command’s WHERE clause, no rows are affected and SQLCODE 100 (end of data) is issued.

• In rare cases, UPDATE with %NOLOCK locates a row to be updated, but then the row is immediately deleted by
another process; this situation results in an SQLCODE -109 error: Cannot find the row designated for
UPDATE. The %msg for this error lists the table name and the RowID.

• If updating a table through a view, the view cannot be defined as WITH READ ONLY. Attempting to do so results in
an SQLCODE -35 error. If the view is based on a sharded table, you cannot UPDATE through a view defined WITH
CHECK OPTION. Attempting to do so results in an SQLCODE -35 with the %msg INSERT/UPDATE/DELETE not
allowed for view (sample.myview) based on sharded table with check option conditions.
See the CREATE VIEW command for further details.

Column Names and Values:

• The update cannot include duplicate field names. Attempting an update that specifies two fields with the same name
results in an SQLCODE -377 error.

• You cannot update a field that has been locked by another concurrent process. Attempting to do so results in an SQL-
CODE -110 error. This SQLCODE error can also occur if you are performing such a large number of updates that a
<LOCKTABLEFULL> error occurs.

• You cannot update integer counter fields. These fields are non-modifiable. Attempting to do so generates the following
errors: RowID field (SQLCODE -107); IDENTITY field (SQLCODE -107); SERIAL (%Library.Counter) field (SQL-
CODE -105); ROWVERSION field (SQLCODE -138). The field values for these fields are system-generated and not
user-modifiable. Even when the user can insert an initial value for a counter field, the user cannot update the value.

The one exception is when adding a SERIAL (%Library.Counter) field to a table that has existing data. Existing records
will have NULL for this added counter field. In this case, you can use UPDATE to change a NULL to an integer value.
See the ALTER TABLE command for further details.

• You cannot update a shard key field. Attempting a update a field that is part of a shard key generates an SQLCODE -
154 error.

• You cannot update a field value if the update would violate the field’s uniqueness constraints. Attempting to update
the value of a field (or group of fields) such that the update would violate a uniqueness constraint or a primary key
constraint results in an SQLCODE -120 error. This error is returned if the field has a UNIQUE data constraint, or if

366 InterSystems SQL Reference

SQL Commands

the unique fields constraint has been applied to a group of fields. The SQLCODE -120 %msg string includes both the
field and the value that violate the uniqueness constraint. For example <Table 'Sample.MyTable', Constraint
'MYTABLE_UNIQUE3', Field(s) FullName="Molly Bloom"; failed unique check> or <Table
'Sample.MyTable', Constraint 'MYTABLE_PKEY2', Field(s) FullName="Molly Bloom"; failed

unique check>. For details on listing a table’s unique value and primary key field constraints and the naming of
constraints, refer to Catalog Details: Constraints.

• You cannot update a field value if the update specifies a value that is not listed in its VALUELIST parameter. A
property of a persistent class defined with a VALUELIST parameter can only accept as a valid value one of the values
listed in VALUELIST, or be provided with no value (NULL). VALUELIST valid values are case-sensitive. Attempting
to update with a data value that doesn’t match the VALUELIST values results in an SQLCODE -105 field value failed
validation error.

• Numbers are inserted in canonical form, but can be specified with leading and trailing zeros and multiple leading signs.
However, in SQL, two consecutive minus signs are parsed as a single-line comment indicator. Therefore, attempting
to specify a number with two consecutive leading minus signs results in an SQLCODE -12 error.

• When using a WHERE CURRENT OF clause, you cannot update a field using the current field value to generate an
updated value. For example, SET Salary=Salary+100 or SET Name=UPPER(Name). Attempting to do so results
in an SQLCODE -69 error: SET <field> = <value expression> not allowed with WHERE CURRENT OF <cursor>.

• If updating one of the specified rows would violate foreign key referential integrity (and %NOCHECK is not specified),
the UPDATE fails to update any rows and instead issues an SQLCODE -124 error. This does not apply if the foreign
key was defined with the NOCHECK keyword.

• You cannot update a non-stream field with stream data. This results in an SQLCODE -303 error, as described below.

• Inserted data values must pass display to logical mode conversion. InterSystems SQL stores data in logical mode format.
For some data types, the logical format might differ from the display format. For example, date data is stored as an
integer count of days, time data is stored as a count of seconds from midnight, and %List data is stored as an encoded
string. Other data types, such as strings and numbers, require no conversion. Attempting to insert a value in a format
that cannot be converted to its logical storage value results in an error (SQLCODE -146 for dates, SQLCODE -147
for times). For more details on mode conversions, see Data Display Options.

Arguments

%keyword

An optional argument specifying one or more of the following keyword options, separated by spaces: %NOCHECK,
%NOFPLAN, %NOINDEX, %NOJOURN, %NOLOCK, %NOTRIGGER, %PROFILE, %PROFILE_ALL.

table-ref

The name of an existing table where data is to be updated. You can also specify a view through which to perform the update
on a table. You cannot specify a table-valued function or JOIN syntax in this argument.

A table name (or view name) can be qualified (schema.table), or unqualified (table). An unqualified name is matched to
its schema using either a schema search path (if provided) or the default schema name.

AS t-alias

An optional alias for a table-ref (table or view) name. An alias must be a valid identifier. The AS keyword is optional

FROM select-table

An optional FROM clause used to specify the table or tables used to determine which rows are to be updated.

Multiple tables can be specified as a comma-separated list or associated with ANSI join keywords. Any combination of
tables or views can be specified. If you specify a comma between two select-tables here, InterSystems IRIS performs a

InterSystems SQL Reference 367

UPDATE (SQL)

CROSS JOIN on the tables and retrieves data from the results table of the JOIN operation. If you specify ANSI join keywords
between two select-tables here, InterSystems IRIS performs the specified join operation. For further details, refer to the
JOIN page of this manual.

You can optionally specify one or more optimize-option keywords to optimize query execution. The available options are:
%ALLINDEX, %FIRSTTABLE select-table, %FULL, %INORDER, %IGNOREINDICES, %NOFLATTEN, %NOMERGE,
%NOSVSO, %NOTOPOPT, %NOUNIONOROPT, %PARALLEL, and %STARTTABLE. See the FROM clause for further
details.

WHERE condition-expression

An optional argument that specifies one or more boolean predicates used to determine which rows are to be updated. If a
WHERE clause (or a WHERE CURRENT OF clause) is not supplied, UPDATE updates all the rows in the table. See
the WHERE clause for further details.

WHERE CURRENT OF cursor

An optional argument specifying that the UPDATE operation updates the record at the current position of cursor. You can
specify a WHERE CURRENT OF clause or a WHERE clause, but not both. For further details, see WHERE CURRENT
OF.

column

An optional argument specifying the name of an existing column. Multiple column names are specified as a comma-separated
list. If omitted, all columns are updated.

scalar-expression

A column data value expressed as a scalar expression. Multiple data values are specified as a comma-separated list with
each data value corresponding in sequence to a column.

:array()

Embedded SQL only — An array of values specified as a host variable. The lowest subscript level of the array must be
unspecified. Thus :myupdates(), :myupdates(5,), and :myupdates(1,1,) are all valid specifications.

Value Assignment
You can assign new values to specified columns in a variety of ways.

• Using the SET keyword, specify one or more column = scalar-expression pairs as a comma-separated list. For example:

SET StatusDate='05/12/06',Status='Purged'

• Using the VALUES keyword, specify a list of columns equated to a corresponding scalar-expressions list. For example:

(StatusDate,Status) VALUES ('05/12/06','Purged')

When assigning scalar-expression values to a column list, there must be a scalar-expression for each specified column.

• Using the VALUES keyword without a column list, specify a list of scalar-expressions that implicitly correspond to
the columns of the row in column order. The following example specifies all of the columns in the table, specifying a
literal value to update the Address column:

VALUES (Name,DOB,'22 Main St. Anytown MA 12345',SSN)

When assigning values to an implicit column list, you must supply a value for every updateable field, in the order that
the columns are defined in the DDL. (You do not specify the non-updateable RowID column.) These values can either
be a literal to specify a new value, or the field name to specify the existing value. You cannot specify placeholder
commas or omit trailing fields.

368 InterSystems SQL Reference

SQL Commands

• Using the VALUES keyword without a column list, specify a subscripted array in which the numeric subscripts corre-
spond to the column numbers, including in your column count the non-updateable RowID as column number 1. For
example:

VALUES :myarray()

This value assignment can only be performed from Embedded SQL using a host variable. Unlike all other value
assignments, this usage allows you to delay specifying which columns are to be updated until runtime (by populating
the array at runtime). All other types of update require that the columns to be updated must be specified at compile
time. This syntax cannot be used with a linked table; attempting to do so results in an SQLCODE=-155 error. For
further details, see Host Variable as a Subscripted Array.

For program examples demonstrating each of these types of UPDATE, refer to the Examples section below.

List Structures

InterSystems IRIS supports the list structure data type %List (data type class %Library.List). This is a compressed binary
format, which does not map to a corresponding native data type for InterSystems SQL. It corresponds to data type
VARBINARY with a default MAXLEN of 32749. For this reason, Dynamic SQL cannot use UPDATE or INSERT to set
a property value of type %List. For further details, refer to Data Types.

Stream Values

You can update data values in a stream field as follows:

• For any table: A string literal or a host variable containing a string literal, for example:

ObjectScript

 SET literal="update stream string value"
 //do the update; use a string
 &sql(UPDATE MyStreamTable SET MyStreamField = :literal WHERE %ID=21)

• For a non-sharded table: An object reference (OREF) to a stream object. InterSystems IRIS opens this object and copies
its contents, updating the stream field. For example:

ObjectScript

 SET oref=##class(%Stream.GlobalCharacter).%New()
 DO oref.Write("Update stream string value non-shard 1")
 //do the update; use an actual OREF
 &sql(UPDATE MyStreamTable SET MyStreamField = :oref WHERE %ID=22)

or a string version of an OREF of a stream, for example:

ObjectScript

 SET oref=##class(%Stream.GlobalCharacter).%New()
 DO oref.Write("Update stream string value non-shard 2")
 //next line converts OREF to a string OREF
 set string=oref_""
 //do the update
 &sql(UPDATE MyStreamTable SET MyStreamField = :string WHERE %ID=23)

• For a sharded table: An object ID (OID) using a temporary stream object stored in the ^IRIS.Stream.Shard global:

ObjectScript

 SET clob=##class(%Stream.GlobalCharacter).%New("Shard")
 DO clob.Write("Update sharded table stream string value")
 SET sc=clob.%Save() // Handle $$$ISERR(sc)
 set ClobOid=clob.%Oid()
 //do the update
 &sql(UPDATE MyStreamTable SET MyStreamField = :ClobOid WHERE %ID=24)

InterSystems SQL Reference 369

UPDATE (SQL)

You cannot update a non-Stream field with the contents of a Stream field. This results in an SQLCODE -303 error: “No
implicit conversion of Stream value to non-Stream field in UPDATE assignment is supported”. To update a string field
with Stream data, you must first use the SUBSTRING function to convert the first n characters of the Stream data to a
string, as shown in the following example:

SQL

UPDATE MyTable
 SET MyStringField=SUBSTRING(MyStreamField,1,2000)

Computed Fields

A field defined with COMPUTECODE may recompute its value as part of the UPDATE operation, as follows:

• COMPUTECODE: value is computed and stored upon INSERT, value is not changed upon UPDATE.

• COMPUTECODE with COMPUTEONCHANGE: value is computed and stored upon INSERT, is recomputed and
stored upon UPDATE.

• COMPUTECODE with DEFAULT and COMPUTEONCHANGE: default value is stored upon INSERT, value is
computed and stored upon UPDATE. If the compute code contains a programming error (for example, divide by zero),
the UPDATE operation fails with an SQLCODE -415 error.

• COMPUTECODE with CALCULATED or TRANSIENT: you cannot UPDATE a value for this field because no value
is stored. The value is computed when queried. However, if you attempt to update a value in a calculated field, Inter-
Systems IRIS performs validation on the supplied value and issues an error if the value is invalid. If the value is valid,
InterSystems IRIS performs no update operation, issues no SQLCODE error, and increments ROWCOUNT.

A COMPUTEONCHANGE computed field is not recomputed when no actual update occurs: when the UPDATE operation
new field value is the same as the prior field value.

In most cases, you define a computed field as read-only. This prevents an update operation directly changing a value that
is intended to be the result of a computation involving other field values. In this case, attempting to use UPDATE to
overwrite the value of a computed field results in an SQLCODE -138 error.

However, you may wish to revise a computed field value to reflect an update to one (or more) of its source field values.
You can do this by using an update trigger that recomputes the computed field value after you have updated a specified
source field. For example, an update to the Salary data field might trip a trigger that recalculates the Bonus computed field.
This update trigger recalculates Bonus and completes successfully, even when Bonus is a read-only field. See the CREATE
TRIGGER statement.

You can use the CREATE TABLE ON UPDATE keyword phrase to define a field that is set to a literal or a system variable
(such as the current timestamp) when the record is updated.

For further details, refer to Computing a field value on INSERT or UPDATE.

%SerialObject Properties

When updating data in a %SerialObject, you must update the table (persistent class) that references the embedded %Seri-
alObject; you cannot update a %SerialObject directly. From the referencing table, you can either:

• Use the referencing field to update values for multiple %SerialObject properties as a %List structure. For example, if
the persistent class has a property PAddress that references a serial object contain the properties Street, City, and
Country (in that order), you update SET PAddress=$LISTBUILD('123 Main St.','Newtown','USA') or
(PAddress) VALUES ($LISTBUILD('123 Main St.','Newtown','USA')) or (PAddress) VALUES
(:vallist). The %List must contain values for the properties of the serial object (or placeholder commas) in the
order that these properties are specified in the serial object.

370 InterSystems SQL Reference

SQL Commands

This type of update may not perform validation of %SerialObject property values. Therefore, it is strongly suggested
that you use the $SYSTEM.SQL.Schema.ValidateTable() method to perform Table Data Validation after updating
%SerialObject property values using a %List structure.

• Use underscore syntax to update values for individual %SerialObject properties in any order. For example, if the per-
sistent class has a property PAddress that references a serial object contain the properties Street, City, and Country,
you update SET PAddress_City='Newtown',PAddress_Street='123 Main
St.',PAddress_Country='USA'.

This type of update performs validation of %SerialObject property values.

FROM Clause
An UPDATE command may have no FROM keyword. It may simply specify the table (or view) to update, and select
which rows to update using a WHERE clause.

However, you can also include an optional FROM clause after the value-assignment-statement. This FROM clause specifies
one or more tables used to determine which records are to be updated. The FROM clause is commonly, but not always,
used with a WHERE clause involving multiple tables. A FROM clause can be complex, and can include ANSI join syntax.
Any syntax supported in a SELECT FROM clause is permitted in an UPDATE FROM clause. This UPDATE FROM
clause provides functionality compatibility with Transact-SQL.

The following example shows how this FROM clauses might be used. It updates those records from the Employees table
where the same EmpId is also found in the Retirees table:

SQL

UPDATE Employees AS Emp
 SET retired='Yes'
 FROM Retirees AS Rt
 WHERE Emp.EmpId = Rt.EmpId

If the UPDATE table-ref and the FROM clause make reference to the same table, these references may either be to the
same table, or to a join of two instances of the table. This depends on how table aliases are used:

• If neither table reference has an alias, both reference the same table:

 UPDATE table1 value-assignment FROM table1,table2 /* join of 2 tables */

• If both table references have the same alias, both reference the same table:

 UPDATE table1 AS x value-assignment FROM table1 AS x,table2 /* join of 2 tables */

• If both table references have aliases, and the aliases are different, InterSystems IRIS performs a join of two instances
of the table:

 UPDATE table1 AS x value-assignment FROM table1 AS y,table2 /* join of 3 tables */

• If the first table reference has an alias, and the second does not, InterSystems IRIS performs a join of two instances of
the table:

 UPDATE table1 AS x value-assignment FROM table1,table2 /* join of 3 tables */

• If the first table reference does not have an alias, and the second has a single reference to the table with an alias, both
reference the same table, and this table has the specified alias:

 UPDATE table1 value-assignment FROM table1 AS x,table2 /* join of 2 tables */

InterSystems SQL Reference 371

UPDATE (SQL)

• If the first table reference does not have an alias, and the second has more than one reference to the table, InterSystems
IRIS considers each aliased instance a separate table and performs a join on these tables:

 UPDATE table1 value-assignment FROM table1,table1 AS x,table2 /* join of 3 tables */
 UPDATE table1 value-assignment FROM table1 AS x,table1 AS y,table2 /* join of 4 tables */

%Keyword Arguments
Specifying %keyword argument(s) restricts processing as follows:

• %NOCHECK — Unique value checking and foreign key referential integrity checking are not performed. Column
data validation for data type, maximum length, data constraints, and other validation criteria is also not performed.
The WITH CHECK OPTION validation for a view is not performed when performing an UPDATE through a view.

Note: Because use of %NOCHECK can result in invalid data, this %keyword argument should only be used when
performing bulk inserts or updates from a reliable data source.

The user must have the corresponding %NOCHECK administrative privilege for the current namespace to apply this
restriction. Failing to do so results in an SQLCODE –99 error with the %msg User 'name' does not have
%NOCHECK privileges.

If you wish to prevent updates that result in non-unique data values when specifying %NOCHECK, perform an EXISTS
check prior to UPDATE.

If you wish to disable only foreign key referential integrity checking, use the
$SYSTEM.SQL.Util.SetOption("FilerRefIntegrity") method rather than specifying %NOCHECK. Alternatively,
a foreign key can be defined with the NOCHECK keyword, so that foreign key referential integrity checking is never
performed.

• %NOFPLAN — FROM clause syntax only: the frozen plan (if any) is ignored for this operation; the operation generates
a new query plan. The frozen plan is retained, but not used. For further details, refer to Frozen Plans.

• %NOINDEX — the index maps are not set during UPDATE processing. The user must have the corresponding
%NOINDEX administrative privilege for the current namespace to apply this restriction. Failing to do so results in an
SQLCODE -99 error.

• %NOJOURN — suppress journaling and disable transactions for the duration of the update operation. None of the
changes made in any of the rows are journaled, including any triggers pulled. However, updates are still journaled in
a mirrored environment. If you perform a ROLLBACK after a statement with %NOJOURN, the changes made by
the statement will not be rolled back. The user must have the corresponding %NOJOURN administrative privilege for
the current namespace to apply this restriction. Failing to do so results in an SQLCODE -99 error

• %NOLOCK — the row is not locked upon UPDATE. This should only be used when a single user/process is updating
the database. The user must have the corresponding %NOLOCK administrative privilege for the current namespace
to apply this restriction. Failing to do so results in an SQLCODE -99 error.

• %NOTRIGGER — the base table triggers are not pulled during UPDATE processing. Neither BEFORE nor AFTER
triggers are executed. The user must have the corresponding %NOTRIGGER administrative privilege for the current
namespace to apply this restriction. Failing to do so results in an SQLCODE -99 error.

• %PROFILE or %PROFILE_ALL — if one of these keyword directives is specified, SQLStats collecting code is gen-
erated. This is the same code that would be generated with PTools turned ON. The difference is that SQLStats collecting
code is only generated for this specific statement. All other SQL statements within the routine/class being compiled
will generate code as if PTools is turned OFF. This enables the user to profile/inspect specific problem SQL statements
within an application without collecting irrelevant statistics for SQL statements that are not being investigated. For
further details, refer to SQL Runtime Statistics.

372 InterSystems SQL Reference

SQL Commands

%PROFILE collects SQLStats for the main query module. %PROFILE_ALL collects SQLStats for the main query
module and all of its subquery modules.

You can specify multiple %keyword arguments in any order. Multiple arguments are separated by spaces.

Referential Integrity

If you do not specify %NOCHECK, InterSystems IRIS uses the system-wide configuration setting to determine whether
to perform foreign key referential integrity checking; the default is to perform foreign key referential integrity checking.
You can set this default system-wide, as described in Foreign Key Referential Integrity Checking. To determine the current
system-wide setting, call $SYSTEM.SQL.CurrentSettings().

This setting does not apply to foreign keys that have been defined with the NOCHECK keyword.

During an UPDATE operation, for every foreign key reference which has a field value being updated, a shared lock is
acquired on both the old (pre-update) referenced row and the new (post-update) referenced row in the referenced table(s).
These rows are locked while performing referential integrity checking and updating the row. The lock is then released (it
is not held until the end of the transaction). This ensures that the referenced row is not changed between the referential
integrity check and the completion of the update operation. Locking the old row ensures that the referenced row is not
changed before a potential rollback of the UPDATE. Locking the new row ensures that the referenced row is not changed
between the referential integrity checking and the completion of the update operation.

If an UPDATE operation with %NOLOCK is performed on a foreign key field defined with CASCADE, SET NULL, or
SET DEFAULT, the corresponding referential action changing the foreign key table is also performed with %NOLOCK.

Atomicity

By default, UPDATE, INSERT, DELETE, and TRUNCATE TABLE are atomic operations. An UPDATE either completes
successfully or the whole operation is rolled back. If any of the specified rows cannot be updated, none of the specified
rows are updated and the database reverts to its state before issuing the UPDATE.

You can modify this default for the current process within SQL by invoking SET TRANSACTION %COMMITMODE.
You can modify this default for the current process in ObjectScript by invoking the SetOption() method, as follows SET
status=$SYSTEM.SQL.Util.SetOption("AutoCommit",intval,.oldval). The following intval integer
options are available:

• 1 or IMPLICIT (autocommit on) — The default behavior, as described above. Each UPDATE constitutes a separate
transaction.

• 2 or EXPLICIT (autocommit off) — If no transaction is in progress, an UPDATE automatically initiates a transaction,
but you must explicitly COMMIT or ROLLBACK to end the transaction. In EXPLICIT mode the number of database
operations per transaction is user-defined.

• 0 or NONE (no auto transaction) — No transaction is initiated when you invoke UPDATE. A failed UPDATE operation
can leave the database in an inconsistent state, with some of the specified rows updated and some not updated. To
provide transaction support in this mode you must use START TRANSACTION to initiate the transaction and
COMMIT or ROLLBACK to end the transaction.

A sharded table is always in no auto transaction mode, which means all inserts, updates, and deletes to sharded tables
are performed outside the scope of a transaction.

You can determine the atomicity setting for the current process using the GetOption("AutoCommit") method, as shown
in the following ObjectScript example:

InterSystems SQL Reference 373

UPDATE (SQL)

ObjectScript

 SET stat=$SYSTEM.SQL.Util.SetOption("AutoCommit",$RANDOM(3),.oldval)
 IF stat'=1 {WRITE "SetOption failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET x=$SYSTEM.SQL.Util.GetOption("AutoCommit")
 IF x=1 {
 WRITE "Default atomicity behavior",!
 WRITE "automatic commit or rollback" }
 ELSEIF x=0 {
 WRITE "No transaction initiated, no atomicity:",!
 WRITE "failed DELETE can leave database inconsistent",!
 WRITE "rollback is not supported" }
 ELSE { WRITE "Explicit commit or rollback required" }

Transaction Locking

If you do not specify %NOLOCK, the system automatically performs standard record locking on INSERT, UPDATE,
and DELETE operations. Each affected record (row) is locked for the duration of the current transaction.

The default lock threshold is 1000 locks per table. This means that if you update more than 1000 records from a table during
a transaction, the lock threshold is reached and InterSystems IRIS automatically escalates the locking level from record
locks to a table lock. This permits large-scale updates during a transaction without overflowing the lock table.

InterSystems IRIS applies one of the two following lock escalation strategies:

• “E”-type lock escalation: InterSystems IRIS uses this type of lock escalation if the following are true: (1) the class
uses %Storage.Persistent (you can determine this from the Catalog Details in the Management Portal SQL schema
display). (2) the class either does not specify an IDKey index, or specifies a single-property IDKey index. “E”-type
lock escalation is described in the LOCK command in the ObjectScript Reference.

• Traditional SQL lock escalation: The most likely reason why a class would not use “E”-type lock escalation is the
presence of a multi-property IDKey index. In this case, each %Save increments the lock counter. This means if you
do 1001 saves of a single object within a transaction, InterSystems IRIS will attempt to escalate the lock.

For both lock escalation strategies, you can determine the current system-wide lock threshold value using the
$SYSTEM.SQL.Util.GetOption("LockThreshold") method. The default is 1000. This system-wide lock threshold value
is configurable:

• Using the $SYSTEM.SQL.Util.SetOption("LockThreshold") method.

• Using the Management Portal. Go to System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Lock escalation threshold. The default is 1000 locks. If you change this setting, any new
process started after changing it will have the new setting.

You must have USE permission on the %Admin Manage Resource to change the lock threshold. InterSystems IRIS
immediately applies any change made to the lock threshold value to all current processes.

One potential consequence of automatic lock escalation is a deadlock situation that might occur when an attempt to escalate
to a table lock conflicts with another process holding a record lock in that table. There are several possible strategies to
avoid this: (1) increase the lock escalation threshold so that lock escalation is unlikely to occur within a transaction. (2)
substantially lower the lock escalation threshold so that lock escalation occurs almost immediately, thus decreasing the
opportunity for other processes to lock a record in the same table. (3) apply a table lock for the duration of the transaction
and do not perform record locks. This can be done at the start of the transaction by specifying LOCK TABLE, then UNLOCK
TABLE (without the IMMEDIATE keyword, so that the table lock persists until the end of the transaction), then perform
updates with the %NOLOCK option.

Automatic lock escalation is intended to prevent overflow of the lock table. However, if you perform such a large number
of updates that a <LOCKTABLEFULL> error occurs, UPDATE issues an SQLCODE -110 error.

For further details on transaction locking refer to Transaction Processing.

374 InterSystems SQL Reference

SQL Commands

Counter Incrementing

ROWVERSION Counter Increment

If a table has a field of data type ROWVERSION, performing an update on a row automatically updates the integer value
of this field. The ROWVERSION field takes the next sequential integer from the namespace-wide row version counter.
Attempting to specify an update value to a ROWVERSION field results in an SQLCODE -138 error.

SERIAL (%Counter) Counter Increment

An UPDATE operation has no effect on SERIAL (%Library.Counter) counter field values. However, an update performed
using INSERT OR UPDATE causes a skip in integer sequence for subsequent insert operations for a SERIAL field. Refer
to INSERT OR UPDATE for further details.

Privileges
To perform an update, you must either have table-level UPDATE privilege for the specified table (or view) or column-level
UPDATE privilege for the specified column(s). When updating all fields in a row, note that column-level privileges cover
all table columns named in the GRANT command; table-level privileges cover all table columns, including those added
after the privilege was assigned.

• The user must have UPDATE privilege on the specified table, or column-level UPDATE privilege for all columns in
the update field list.

• The user must have SELECT privilege for fields in a WHERE clause, whether or not those fields are to be updated.
You must have both SELECT and UPDATE privileges for those fields if they are included in the update field list. In
the following example, the Name field must have (at least) column-level SELECT privilege:

SQL

UPDATE Sample.Employee (Salary) VALUES (1000000) WHERE Name='Smith, John'

In the above example, the Salary field requires only column-level UPDATE privilege.

If the user is the Owner (creator) of the table, the user is automatically granted all privileges for that table. Otherwise, the
user must be granted privileges for the table. Failing to do so results in an SQLCODE –99 error with the %msg User
'name' is not privileged for the operation. You can determine if the current user has the appropriate
privileges by invoking the %CHECKPRIV command. You can use the GRANT command to assign the user table privileges.
For further details, refer to Privileges.

When a property is defined as ReadOnly, the corresponding table field is also defined as ReadOnly. A ReadOnly field may
only be assigned a value using InitialExpression or SqlComputed. Attempting to update a value (even a NULL value) for
a field for which you have column-level ReadOnly (SELECT or REFERENCES) privilege results in an SQLCODE -138
error: Cannot INSERT/UPDATE a value for a read only field. When you link a table using the Link Table
Wizard, you have the option of defining fields as Read Only. The field on the source system might not be read only, but if
InterSystems IRIS defines the linked table's field as Read Only, attempting an UPDATE that references this field results
in an SQLCODE -138 error.

Row-Level Security

InterSystems IRIS row-level security permits UPDATE to modify any row that security permits it to access. It allows you
to update a row even if the update creates a row that security will not permit you to subsequently access. To ensure that an
update does not prevent you from subsequent SELECT access to the row, it is recommended that you perform the UPDATE
through a view that has a WITH CHECK OPTION. For further details, refer to CREATE VIEW.

InterSystems SQL Reference 375

UPDATE (SQL)

Examples
The examples in this section update the SQLUser.MyStudents table. The following example creates the SQLUser.MyStudents
table and populates it with data. Because repeated execution of this example would accumulate records with duplicate data,
it uses TRUNCATE TABLE to remove old data before invoking INSERT. Execute this example before invoking the
UPDATE examples:

ObjectScript

CreateStudentTable
 SET stuDDL=5
 SET stuDDL(1)="CREATE TABLE SQLUser.MyStudents ("
 SET stuDDL(2)="StudentName VARCHAR(32),StudentDOB DATE,"
 SET stuDDL(3)="StudentAge INTEGER COMPUTECODE {SET {StudentAge}="
 SET stuDDL(4)="$PIECE(($PIECE($H,"","",1)-{StudentDOB})/365,""."",1)} CALCULATED,"
 SET stuDDL(5)="Q1Grade CHAR,Q2Grade CHAR,Q3Grade CHAR,FinalGrade VARCHAR(2))"
 SET tStatement = ##class(%SQL.Statement).%New(0,"Sample")
 SET qStatus = tStatement.%Prepare(.stuDDL)
 IF qStatus'=1 {WRITE "DDL %Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rtn = tStatement.%Execute()
 IF rtn.%SQLCODE=0 {WRITE !,"Table Create successful"}
 ELSEIF rtn.%SQLCODE=-201 {WRITE "Table already exists, SQLCODE=",rtn.%SQLCODE,!}
 ELSE {WRITE !,"table create failed, SQLCODE=",rtn.%SQLCODE,!
 WRITE rtn.%Message,! }
RemoveOldData
 SET clearit="TRUNCATE TABLE SQLUser.MyStudents"
 SET qStatus = tStatement.%Prepare(clearit)
 IF qStatus'=1 {WRITE "Truncate %Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET truncrtn = tStatement.%Execute()
 IF truncrtn.%SQLCODE=0 {WRITE !,"Table old data removed",!}
 ELSEIF truncrtn.%SQLCODE=100 {WRITE !,"no data to be removed",!}
 ELSE {WRITE !,"truncate failed, SQLCODE=",truncrtn.%SQLCODE," ",truncrtn.%Message,! }
PopulateStudentTable
 SET studentpop=2
 SET studentpop(1)="INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB) "
 SET studentpop(2)="SELECT Name,DOB FROM Sample.Person WHERE Age <= '21'"
 SET qStatus = tStatement.%Prepare(.studentpop)
 IF qStatus'=1 {WRITE "Populate %Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET poprtn = tStatement.%Execute()
 IF poprtn.%SQLCODE=0 {WRITE !,"Table Populate successful",!
 WRITE poprtn.%ROWCOUNT," rows inserted"}
 ELSE {WRITE !,"table populate failed, SQLCODE=",poprtn.%SQLCODE,!
 WRITE poprtn.%Message }

You can use the following query to display the results of these examples:

SQL

SELECT %ID,* FROM SQLUser.MyStudents ORDER BY StudentAge,%ID

Some of the following UPDATE examples depend on field values set by other UPDATE examples; they should be run in
the order specified.

In the following Dynamic SQL example, a SET field=value UPDATE modifies a specified field in selected records.
In the MyStudents table, children under the age of 7 are not given grades:

ObjectScript

 SET studentupdate=3
 SET studentupdate(1)="UPDATE SQLUser.MyStudents "
 SET studentupdate(2)="SET FinalGrade='NA' "
 SET studentupdate(3)="WHERE StudentAge <= 6"
 SET tStatement = ##class(%SQL.Statement).%New(0,"Sample")
 SET qStatus = tStatement.%Prepare(.studentupdate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET uprtn = tStatement.%Execute()
 IF uprtn.%SQLCODE=0 {WRITE !,"Table Update successful"
 WRITE !,"Rows updated=",uprtn.%ROWCOUNT," Final RowID=",uprtn.%ROWID}
 ELSE {WRITE !,"Table update failed, SQLCODE=",uprtn.%SQLCODE," ",uprtn.%Message }

In the following cursor-based Embedded SQL example, a SET field1=value1,field2=value2 UPDATE modifies
several fields in selected records. In the MyStudents table, it updates specified student records with Q1 and Q2 grades:

376 InterSystems SQL Reference

SQL Commands

ObjectScript

 #sqlcompile path=Sample
 NEW %ROWCOUNT,%ROWID
 &sql(DECLARE StuCursor CURSOR FOR
 SELECT * FROM MyStudents
 WHERE %ID IN(10,12,14,16,18,20,22,24) AND StudentAge > 6)
 &sql(OPEN StuCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH StuCursor)
 QUIT:SQLCODE
 &sql(Update MyStudents SET Q1Grade='A',Q2Grade='A'
 WHERE CURRENT OF StuCursor)
 IF SQLCODE=0 {
 WRITE !,"Table Update successful"
 WRITE !,"Row count=",%ROWCOUNT," RowID=",%ROWID }
 ELSE {
 WRITE !,"Table Update failed, SQLCODE=",SQLCODE }
 }
 &sql(CLOSE StuCursor)

In the following Dynamic SQL example, a field-list VALUES value-listUPDATE modifies the values of several
fields in selected records. In the MyStudents table, children who don’t receive a final grade also don’t receive quarterly
grades:

ObjectScript

 SET studentupdate=3
 SET studentupdate(1)="UPDATE SQLUser.MyStudents "
 SET studentupdate(2)="(Q1Grade,Q2Grade,Q3Grade) VALUES ('x','x','x') "
 SET studentupdate(3)="WHERE FinalGrade='NA'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.studentupdate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET uprtn = tStatement.%Execute()
 IF uprtn.%SQLCODE=0 {WRITE !,"Table Update successful"
 WRITE !,"Rows updated=",uprtn.%ROWCOUNT," Final RowID=",uprtn.%ROWID}
 ELSE {WRITE !,"Table Update failed, SQLCODE=",uprtn.%SQLCODE," ",uprtn.%Message,! }

In the following Dynamic SQL example, a VALUES value-list UPDATE modifies all the field values in selected
records. Note that this syntax requires that you specify a value for every field in the record. In the MyStudents table, several
children have been withdrawn from school. Their record IDs and names are retained, with the word WITHDRAWN appended
to the name; all other data is removed and the DOB field is used for the withdrawal date:

ObjectScript

 SET studentupdate=4
 SET studentupdate(1)="UPDATE SQLUser.MyStudents "
 SET studentupdate(2)="VALUES (StudentName||' WITHDRAWN',"
 SET studentupdate(3)="$PIECE($HOROLOG,',',1),00,'-','-','-','XX') "
 SET studentupdate(4)="WHERE %ID IN(7,10,22)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.studentupdate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET uprtn = tStatement.%Execute()
 IF uprtn.%SQLCODE=0 {WRITE !,"Table Update successful"
 WRITE !,"Rows updated=",uprtn.%ROWCOUNT," Final RowID=",uprtn.%ROWID}
 ELSE {WRITE !,"Table Update failed, SQLCODE=",uprtn.%SQLCODE," ",uprtn.%Message,! }

In the following Dynamic SQL example, a subquery UPDATE uses a subquery to select records. It then modifies these
records using SET field=value syntax. Because of the way that StudentAge is calculated from date of birth in
SQLUser.MyStudents, anyone less than a year old has a calculated age of <Null>, and anyone whose date of birth has been
nulled has a very high calculated age. Here the StudentName field is flagged for future confirmation of the date of birth:

InterSystems SQL Reference 377

UPDATE (SQL)

ObjectScript

 SET studentupdate=3
 SET studentupdate(1)="UPDATE (SELECT StudentName FROM SQLUser.MyStudents "
 SET studentupdate(2)="WHERE StudentAge IS NULL OR StudentAge > 21) "
 SET studentupdate(3)="SET StudentName = StudentName||' *** CHECK DOB' "
 SET tStatement = ##class(%SQL.Statement).%New(0,"Sample")
 SET qStatus = tStatement.%Prepare(.studentupdate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET uprtn = tStatement.%Execute()
 IF uprtn.%SQLCODE=0 {WRITE !,"Table Update successful"
 WRITE !,"Rows updated=",uprtn.%ROWCOUNT," Final RowID=",uprtn.%ROWID}
 ELSE {WRITE !,"Table Update failed, SQLCODE=",uprtn.%SQLCODE," ",uprtn.%Message,! }

In the following Embedded SQL example, a VALUES :array() UPDATE modifies the field values specified by column
number in the array in selected records. A VALUES :array() update can only be done in Embedded SQL. Note that this
syntax requires that you specify each value by DDL column number (including in your column count the RowID column
(column 1) but supplying no value to this non-modifiable field). In the MyStudents table, children between 4 and 6 (inclusive)
are given a ‘P’ (for ‘Present’) in their Q1Grade (column 5) and Q2Grade (column 6) fields. All other record data remains
unchanged:

ObjectScript

 SET arry(5)="P"
 SET arry(6)="P"
 &sql(UPDATE SQLUser.MyStudents VALUES :arry()
 WHERE FinalGrade='NA' AND StudentAge > 3)
 IF SQLCODE=0 {WRITE "Table Update successful",!
 WRITE "Rows updated=",%ROWCOUNT," Final RowID=",%ROWID }
 ELSE {WRITE "Table Update failed, SQLCODE=",SQLCODE,! }

See Also
• INSERT

• INSERT OR UPDATE

• DELETE

• SELECT

• VALUES

• FROM

• WHERE

• WHERE CURRENT OF

• CREATE TABLE

• CREATE VIEW

• Modifying the Database

• Defining Tables

• Defining Views

• Transaction Processing

• SQL and Object Settings Pages

• SQLCODE error messages

378 InterSystems SQL Reference

SQL Commands

USE DATABASE (SQL)
Sets the current namespace and database.

Synopsis

USE [DATABASE] dbname

Description
The USE DATABASE command switches the current process to the specified namespace and its associated database. This
allows you to change namespaces within SQL. The DATABASE keyword is optional.

The specified dbname is the name of the desired namespace and corresponding directory that contains the database files.
Specify dbname as an identifier. Namespace names are not case-sensitive. For further information on using namespaces,
see Namespaces and Databases.

Because USER is an SQL Reserved Word, you must use a delimited identifier to specify the USER namespace, as shown
in the following SQL Shell example:

USER>>USE DATABASE Samples
SAMPLES>>USE DATABASE "User"
USER>>

If the specified dbname does not exist, InterSystems IRIS issues an SQLCODE -400 error.

The USE DATABASE command is a privileged operation. Prior to using USE DATABASE, it is necessary to be logged
in as a user with appropriate privileges. Failing to do so results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

ObjectScript

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, see %SYSTEM.Security.

You can also switch to a different namespace using the ObjectScript ZNSPACE command, or the SET $NAMESPACE
statement.

Executing via a Database Driver

When the USE DATABASE command is executed via a database driver, the server process performs a simulated connection
reset. Data structures used by the server process are cleaned up. However, commit mode is not changed. The Read Com-
mitted setting is not changed either. If a transaction is in process, the transaction simply continues and is not committed or
rolled back.

Arguments

dbname

The namespace and corresponding database to be used by the current process as the current namespace.

See Also
• CREATE DATABASE command

• DROP DATABASE command

InterSystems SQL Reference 379

USE DATABASE (SQL)

VALIDATE MODEL (SQL)
Validates a model.

Synopsis

VALIDATE MODEL model-name [AS validation-run-name]
 [USE trained-model-name]
 [WITH feature-column-clause]
 FROM model-source

Arguments

The name of a model to validate.model-name

Optional — A name to save your validation run as. See details below.AS validation-run-name

Optional — The name of a non-default trained model to be validated. See details
below.

USE trained-model-name

Optional — The specific columns from your dataset that you want to use for
validating your model.

WITH
feature-column-clause

The table or view from which the model is being validated. This can be a table,
view, or results of a join. See details below.

FROM model-source

Description
The VALIDATE MODEL command calculates validation metrics for a given trained model, based on its performance on
a specified testing dataset. Each command creates a validation run.

Naming

AS allows you to explicitly name your validation run.

If a validation run is not explicitly named with AS, its name consists of the trained model with an appended running integer.
We can see the difference by querying the INFORMATION_SCHEMA.ML_VALIDATION_RUNS table:

CREATE MODEL TitanicModel PREDICTING (Survived) FROM IntegratedML_dataset_titanic.passenger
TRAIN MODEL TitanicModel
VALIDATE MODEL TitanicModel FROM IntegratedML_dataset_titanic.passenger
VALIDATE MODEL TitanicModel FROM IntegratedML_dataset_titanic.passenger
VALIDATE MODEL TitanicModel FROM IntegratedML_dataset_titanic.passenger
VALIDATE MODEL TitanicModel AS TitanicValidation FROM IntegratedML_dataset_titanic.passenger
SELECT MODEL_NAME, TRAINED_MODEL_NAME, VALIDATION_RUN_NAME FROM INFORMATION_SCHEMA.ML_VALIDATION_RUNS

VALIDATION_RUN_NAMETRAINED_MODEL_NAMEMODEL_NAME

TitanicModel_t1_v1TitanicModel_t1TitanicModel

TitanicModel_t1_v2TitanicModel_t1TitanicModel

TitanicModel_t1_v3TitanicModel_t1TitanicModel

TitanicValidationTitanicModel_t1TitanicModel

USE

USE allows you to specify the trained model to perform validation on. If a trained model is not explicitly named by USE,
the statement validates the default trained model for the specified model definition.

380 InterSystems SQL Reference

SQL Commands

We can see the difference by querying the INFORMATION_SCHEMA.ML_VALIDATION_RUNS table:

CREATE MODEL TitanicModel PREDICTING (Survived) FROM IntegratedML_dataset_titanic.passenger
TRAIN MODEL TitanicModel AS FirstModel
TRAIN MODEL TitanicModel AS SecondModel
TRAIN MODEL TitanicModel AS ThirdModel
VALIDATE MODEL TitanicModel FROM IntegratedML_dataset_titanic.passenger
VALIDATE MODEL TitanicModel FROM IntegratedML_dataset_titanic.passenger
VALIDATE MODEL TitanicModel USE FirstModel FROM IntegratedML_dataset_titanic.passenger
VALIDATE MODEL TitanicModel USE SecondModel FROM IntegratedML_dataset_titanic.passenger
SELECT MODEL_NAME, TRAINED_MODEL_NAME FROM INFORMATION_SCHEMA.ML_VALIDATION_RUNS

TRAINED_MODEL_NAMEMODEL_NAME

ThirdModelTitanicModel

ThirdModelTitanicModel

FirstModelTitanicModel

SecondModelTitanicModel

FROM Considerations

While you used a training set to train your model, you should use other data, a testing data set, to validate your model.
Using your training data to validate a model only evaluates goodness of fit, as opposed to evaluating the model’s predictive
performance on other data.

This data should be of the same schema as your training data, including the feature columns and label column.

Required Security Privileges

Calling VALIDATE MODEL requires %USE_MODEL privileges; otherwise, there is a SQLCODE –99 error (Privilege
Violation). To assign %USE_MODEL privileges, use the GRANT command.

Validation Metrics
The output of VALIDATE MODEL is a set of validation metrics that is viewable in the INFORMA-
TION_SCHEMA.ML_VALIDATION_METRICS table.

For regression models, the following metrics are saved:

• Variance

• R-squared

• Mean squared error

• Root mean squared error

For classification models, the following metrics are saved:

• Precision — This is calculated by dividing the number of true positives by the number of predicted positives (sum of
true positives and false positives).

• Recall — This is calculated by dividing the number of true positives by the number of actual positives (sum of true
positives and false negatives).

• F-Measure — This is calculated by the following expression:

F = 2 * (precision * recall) / (precision + recall)

• Accuracy — This is calculated by dividing the number of true positives and true negatives by the total number of rows
(sum of true positives, false positives, true negatives, and false negatives) across the entire test set.

InterSystems SQL Reference 381

VALIDATE MODEL (SQL)

• ROC-AUC — This is the value of the computed area under the receiver operator characteristic curve. The higher this
value is, the better the model is at recognizing differences between classes.

Examples

VALIDATE MODEL PatientReadmission FROM Patient_test
VALIDATE MODEL PatientReadmission AS PatientValidation USE PatientReadmission_H2OModel FROM Patient_test

See Also
• CREATE MODEL, TRAIN MODEL, PREDICT

382 InterSystems SQL Reference

SQL Commands

SQL Clauses

InterSystems SQL Reference 383

DISTINCT (SQL)
A SELECT clause that specifies to return only distinct values.

Synopsis

SELECT DISTINCT BY (item {,item2}) select-item {,select-item2}

SELECT DISTINCT [ALL] select-item {,select-item2}

Arguments

DescriptionArgument

Optional — Returns rows for which the combined select-item
value(s) are unique.

DISTINCT

Optional — Returns select-item values for rows for which the BY
(item) value(s) are unique.

DISTINCT BY (item {,item2})

Optional — Returns all rows in the result set. The default.ALL

Description
The optional DISTINCT clause appears after the SELECT keyword and before the optional TOP clause and the first
select-item.

The DISTINCT clause is applied to the result set of the SELECT statement. It limits the rows returned to one arbitrary
row for each distinct (unique) value. If no DISTINCT clause is specified, the default is to display all the rows that fulfill
the SELECT criteria. The ALL clause is the same as specifying no DEFAULT clause; if you specify ALL, SELECT
returns all the rows in the table that fulfill the SELECT criteria.

The DISTINCT clause has two forms:

• SELECT DISTINCT: Returns one row for each unique combination of select-item values. You can specify one or
more than one select-items. For example, the following query returns a row with Home_State and Age values for each
unique combination of Home_State and Age values:

SQL

SELECT DISTINCT Home_State,Age FROM Sample.Person

• SELECT DISTINCT BY (item): Returns one row for each unique combination of item values. You can specify a single
item or a comma-separated list of items. The specified item or item list must be enclosed in parentheses. Spaces may
be specified or omitted between the BY keyword and the parentheses. The select-item list may, but does not have to,
include the specified item(s). For example, the following query returns a row with Name and Age values for each
unique combination of Home_State and Age values:

SQL

SELECT DISTINCT BY (Home_State,Age) Name,Age FROM Sample.Person

The item field(s) must be specified by column name. Valid values include the following: a column name (DISTINCT
BY (City)); an %ID (which returns all rows); a scalar function specifying a column name (DISTINCT BY
(ROUND(Age,-1))); a collation function specifying a column name (DISTINCT BY (%EXACT(City))). You
cannot specify a field by column alias; attempting to do so generates an SQLCODE -29 error. You cannot specify a
field by column number; this is interpreted as a literal and returns one row. Specifying a literal as the item value in a

384 InterSystems SQL Reference

SQL Clauses

DISTINCT clause returns 1 row; which row is returned is indeterminate. Thus, specifying 7, 'Chicago', '', 0, or NULL
all return 1 row. However, if you specify a literal as an item value in a comma-separated list, the literal is ignored and
DISTINCT selects one arbitrary row for each unique combination of the specified field names.

The DISTINCT clause is applied before the TOP clause. If both are specified, the SELECT returns only rows with unique
values, the number of unique value rows specified in the TOP clause.

If the column specified in the DISTINCT clause has rows that are NULL (contain no value), DISTINCT returns one row
with NULL as a distinct (unique) value, as shown in the following examples:

SQL

SELECT DISTINCT FavoriteColors FROM Sample.Person

SQL

SELECT DISTINCT BY (FavoriteColors) Name,FavoriteColors FROM Sample.Person
ORDER BY FavoriteColors

A DISTINCT clause is not meaningful in an Embedded SQL simple query, because in this type of Embedded SQL a
SELECT always returns only one row of data. However, an Embedded SQL cursor–based query can return multiple rows
of data; in a cursor-based query, a DISTINCT clause returns only unique value rows.

DISTINCT and ORDER BY

The DISTINCT clause is applied before the ORDER BY clause. Therefore, the combination of DISTINCT and ORDER
BY will first select an arbitrary row that satisfies the DISTINCT clause, then order those rows based on the ORDER BY
clause.

DISTINCT and GROUP BY

DISTINCT and GROUP BY both group records by a specified field (or fields) and return one record for each unique value
of that field. One significant difference between them is that DISTINCT calculates aggregate functions before grouping.
GROUP BY calculates aggregate functions after grouping. This difference is shown in the following examples:

SQL

SELECT DISTINCT BY (ROUND(Age,-1)) Age,AVG(Age) AS AvgAge FROM Sample.Person
 /* AVG(Age) returns average of all ages in table */

SQL

SELECT Age,AVG(Age) AS AvgAge FROM Sample.Person GROUP BY ROUND(Age,-1)
 /* AVG(Age) returns an average age for each age group */

A DISTINCT clause can be specified with one or more aggregate function fields, though this is rarely meaningful because
an aggregate function returns a single value. Thus the following example returns a single row:

SQL

SELECT DISTINCT BY (AVG(Age)) Name,Age,AVG(Age) FROM Sample.Person

CAUTION: If a DISTINCT clause contains aggregate functions as the only item or select-item is used with a GROUP
BY clause, the DISTINCT clause is ignored. The intended combination of DISTINCT, aggregate function,
and GROUP BY can be achieved using a subquery. For further details and program examples, refer to the
GROUP BY clause reference page.

InterSystems SQL Reference 385

DISTINCT (SQL)

Letter Case and DISTINCT Optimization

DISTINCT groups together string values based on the collation type defined for the field. By default, string data type fields
are defined with SQLUPPER collation, which is not case-sensitive. You can define the string collation default for the current
namespace and specify a non-default field collation type when defining a field/property.

If the field/property collation type is SQLUPPER, grouped field values are returned in all uppercase letters. To group values
by original letter case, or to display the returned values for a grouped field in their original letter case, use the %EXACT
collation function. This is shown in the following examples, which assume that the Home_City field is defined with collation
type SQLUPPER and contains the values ‘New York’ and ‘new york’:

SQL

SELECT DISTINCT BY (Home_City) Name,Home_City FROM Sample.Person
/* groups together Home_City values by their uppercase letter values
 returns the name of each grouped city in uppercase letters.
 Thus, 'NEW YORK' is returned. */

SQL

SELECT DISTINCT BY (Home_City) Name,%EXACT(Home_City) FROM Sample.Person
/* groups together Home_City values by their uppercase letter values
 returns the name of each grouped city in original letter case.
 Thus, 'New York' or 'new york' may be returned, but not both. */

SQL

SELECT DISTINCT BY (%EXACT(Home_City)) Name,Home_City FROM Sample.Person
/* groups together Home_City values by their original letter case
 returns the name of each grouped city in original letter case.
 Thus, both 'New York' and 'new york' are returned.
 Optimization is not used. */

You can optimize query performance for queries that contain a DISTINCT clause by using the Management Portal. Select
System Administration, Configuration, SQL and Object Settings, SQL. View and edit the GROUP BY and DISTINCT queries

must produce original values option. (This optimization also works for the GROUP BY clause.) The default is “No”.

This default groups alphabetic values by their uppercase letter collation. This optimization takes advantage of indexes for
the selected field(s). It is therefore only meaningful if an index exists for one or more of the selected fields. It collates field
values as they are stored in the index; alphabetic strings are returned in all uppercase letters. You can set this system-wide
option, then override it for specific queries by using the %EXACT collation function to preserve letter case.

For further details, refer to the SQL and Object Settings Pages listed in System Administration Guide.

You can also set this option system-wide using the $SYSTEM.SQL.Util.SetOption() method FastDistinct option.
To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays the DISTINCT optimization
turned on setting; the default is 1.

Other Uses of DISTINCT

• Stream Field: DISTINCT operates on the OID of a stream field, not its actual data. Because all stream field OIDs are
unique values, DISTINCT has no effect on actual stream field duplicate data values. DISTINCT BY (StreamField)
reduces the number records where the stream field is NULL to one NULL record. For further details, see Storing and
Using Stream Data (BLOBs and CLOBs).

• Asterisk Syntax: The syntax DISTINCT * is legal, but not meaningful, because all rows, by definition, contain some
distinct unique identifier. The syntax DISTINCT BY (*) is not legal.

• Subquery: The use of a DISTINCT clause in a subquery is legal, but not meaningful, because a subquery returns a
single value.

• No Row Data Selected: The DISTINCT clause can be used with a SELECT that does not access any table data. If the
SELECT contains a FROM clause, specifying DISTINCT results in one row contain these non-table values; if you

386 InterSystems SQL Reference

SQL Clauses

do not specify DISTINCT (or TOP) the SELECT results in as many rows with identical values as the number of rows
in the FROM clause table. If the SELECT does not contain a FROM clause, DISTINCT is legal but not meaningful.
See FROM clause for more details.

• Aggregate Function: A DISTINCT clause can be used within an aggregate function to select only distinct (unique)
field values for inclusion in the aggregate. Unlike the SELECT DISTINCT clause, DISTINCT within an aggregate
function does not include NULL as a distinct (unique) value. Note that the MAX and MIN aggregate functions parse
DISTINCT clause syntax without error, but this syntax performs no operation.

DISTINCT and %ROWID

Specifying the DISTINCT keyword causes a cursor-based Embedded SQL query to not set the %ROWID variable. %ROWID
is not set even when DISTINCT does not limit the rows returned. This is shown in the following example:

ObjectScript

 SET %ROWID=999
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT DISTINCT Name, Home_State
 INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'M')
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"RowID: ",%ROWID," row count: ",%ROWCOUNT
 WRITE " Name=",name," State=",state
 }
 &sql(CLOSE EmpCursor)

This change of query behavior only applies to cursor-based Embedded SQL SELECT queries. Dynamic SQL SELECT
queries and non-cursor Embedded SQL SELECT queries never set %ROWID.

DISTINCT and Transaction Processing

Specifying the DISTINCT keyword causes a query to retrieve all current data, including data that has not yet been committed
by the current transaction. The transaction’s READ COMMITTED isolation mode parameter (if set) is ignored; all data is
retrieved in READ UNCOMMITTED mode. For further details, refer to Transaction Processing.

Examples
The following query returns one row for each distinct Home_State value:

SQL

SELECT DISTINCT Home_State FROM Sample.Person
ORDER BY Home_State

The following query returns one row for each distinct Home_State value, but returns additional fields for that row. The
row that is retrieved is not predictable:

SQL

SELECT DISTINCT BY (Home_State) %ID,Name,Home_State,Office_State FROM Sample.Person
ORDER BY Home_State

The following query returns one row for each distinct combination of Home_State and Office_State values. Depending on
the data, it will either return more rows or the same number of rows as the previous example:

SQL

SELECT DISTINCT BY (Home_State,Office_State) %ID,Name,Home_State,Office_State FROM Sample.Person
ORDER BY Home_State,Office_State

InterSystems SQL Reference 387

DISTINCT (SQL)

The following query uses DISTINCT BY to return one row for each distinct Name length:

SQL

SELECT DISTINCT BY ($LENGTH(Name)) Name,$LENGTH(Name) AS lname
FROM Sample.Person
ORDER BY lname

The following query uses DISTINCT BY to return one row for each distinct first element of FavoriteColors %List values.
It lists one distinct row with FavoriteColors NULL:

SQL

SELECT DISTINCT BY ($LIST(FavoriteColors,1)) Name,FavoriteColors,$LIST(FavoriteColors,1) AS FirstColor
FROM Sample.Person

The following query returns the first 20 distinct Home_State values retrieved from Sample.Person in ascending collation
sequence order. The “top” rows reflect the ORDER BY clause sequencing of all of the rows in Sample.Person.

SQL

SELECT DISTINCT TOP 20 Home_State FROM Sample.Person ORDER BY Home_State

The following query uses DISTINCT in both the main query and in a WHERE clause subquery. It returns the first 20 distinct
Home_State values in Sample.Person that are also in Sample.Employee. If the subquery DISTINCT was not provided, it
would retrieve the distinct Home_State values in Sample.Person that match a random selection of Home_State values in
Sample.Employee:

SQL

SELECT DISTINCT TOP 20 Home_State FROM Sample.Person
WHERE Home_State IN(SELECT DISTINCT TOP 20 Home_State FROM Sample.Employee)
ORDER BY Home_State

The following query returns the first 20 distinct FavoriteColor values. This reflects the ORDER BY clause sequencing of
all of the rows in Sample.Person. The FavoriteColors field is known to have NULLs, so one distinct row with FavoriteColors
NULL appears at the top of the collation sequence.

SQL

SELECT DISTINCT BY (FavoriteColors) TOP 20 FavoriteColors,Name FROM Sample.Person
 ORDER BY FavoriteColors

Also note in the preceding example that because FavoriteColors is a list field, the collation sequence includes the element
length byte. Thus distinct list values beginning with a three-letter element (RED) are listed before list values beginning
with a four-letter element (BLUE).

See Also
• SELECT statement

• GROUP BY clause

• ORDER BY clause

• TOP clause

• Aggregate Functions

• Querying the Database

• Collation

388 InterSystems SQL Reference

SQL Clauses

FROM (SQL)
A SELECT clause that specifies one or more tables to query.

Synopsis

SELECT ... FROM [optimize-option] table-ref
 [[AS] t-alias]
 [, [LATERAL] table-ref [[AS] t-alias]] [,...]

Arguments

DescriptionArgument

Optional — A single keyword, or a series of keywords
separated by spaces, that specify query optimization options.
See Specify Optimization Hints in Queries for more
information.

optimize-hint

One or more tables, views, table-valued functions, or
subqueries from which data is being retrieved, specified as
a comma-separated list or with JOIN syntax. Some restrictions
apply on using views with JOIN syntax.You can specify a
subquery, enclosed in parentheses.

table-ref

Optional — An alias for the table name. Must be a valid
identifier.

AS t-alias

Optional — Enables lateral references to earlier tables in the
FROM clause. See LATERAL Keyword for more information.

LATERAL

Description
The FROM clause specifies one or more tables (or views, or subqueries) from which data is queried within a SELECT
statement. If no table data is being queried, the FROM clause is optional, as described below.

Multiple tables are specified as a comma-separated list, or a list separated by other JOIN syntax. Each table name can
optionally be supplied an alias.

Table name aliases are used when specifying field names for multiple tables in the SELECT statement. If two (or more)
tables are specified in the FROM clause, you indicate which table’s field you want by specifying tablename.fieldname
for each field in the SELECT select-item clause. Because table names are often long names, a short table name alias is
useful in this context (t-alias.fieldname).

The following example show the use of table name aliases:

SQL

SELECT e.Name,c.Name
FROM Sample.Company AS c,Sample.Employee AS e

The AS keyword can be omitted. It is provided for compatibility and clarity.

Supplying a Schema Name to a Table Reference

A table-ref name is either qualified (schema.tablename) or unqualified (tablename). The schema name for an unqualified
table name (or view name) is supplied using a schema search path or the system-wide default schema name:

InterSystems SQL Reference 389

FROM (SQL)

1. If a schema search path is provided, InterSystems IRIS searches the specifiedschemas for a matching table name.

2. If a schema search path is not provided, or the schema search path does not produce a match, InterSystems IRIS uses
the system-wide default schema name.

Table Joins

When you specify multiple table names in a FROM clause, InterSystems SQL performs join operations on those tables.
The type of join performed is specified by a join keyword phrase or symbol between each pair of table names. When two
table names are separated by a comma, a cross join is performed. For further details on the different types of joins and their
syntax, refer to JOIN.

The sequence in which joins are performed is automatically determined by the SQL query optimizer and is not based on
the sequence that the tables are listed in the query. If desired, you can control the sequence in which joins are performed
by specifying a query optimization option.

The first two SELECT statements show the row counts for two individual tables, and the third example shows the row
count for a SELECT specifying both tables. This latter results in a much larger table, a Cartesian product, where every
row in the first table is matched with every row of the second table, an operation known as a Cross Join.

SQL

SELECT COUNT(*)
FROM Sample.Company

SQL

SELECT COUNT(*)
FROM Sample.Vendor

SQL

SELECT COUNT(*)
FROM Sample.Company,Sample.Vendor

You can perform the same operation using explicit CROSS JOIN syntax:

SQL

SELECT COUNT(*)
FROM Sample.Company CROSS JOIN Sample.Vendor

In most cases, the extensive data duplication of a cross join is not desirable, and some other type of join is preferable.

If you specify a WHERE clause in the SELECT statement, the cross join is performed, then the WHERE clause predicate(s)
determine the result set. This is equivalent to performing an INNER JOIN with an ON clause. Thus the following two
examples return identical results:

SQL

SELECT p.Name,p.Home_State,em.Name,em.Office_State
FROM Sample.Person AS p, Sample.Employee AS em
WHERE p.Name %STARTSWITH 'E' AND em.Name %STARTSWITH 'E'

SQL

SELECT p.Name,p.Home_State,em.Name,em.Office_State
FROM Sample.Person AS p INNER JOIN Sample.Employee AS em
ON p.Name %STARTSWITH 'E' AND em.Name %STARTSWITH 'E'

You can specify explicit join syntax (rather than using commas) in the FROM table-ref list to perform other types of join
operations. For further details, refer to JOIN.

390 InterSystems SQL Reference

SQL Clauses

Query Optimization Options
By default, the InterSystems SQL query optimizer uses sophisticated and flexible algorithms to optimize the performance
of complex queries involving join operations and/or multiple indexes. In most cases, these defaults provide optimal perfor-
mance. However, after consultation with the InterSystems Worldwide Resource Center (WRC), you may be instructed to
give “hints” to the query optimizer, specifying one or more aspects of query optimization. The optimize-hint argument in
the FROM is used to specify these hints. You can specify multiple optimization hints in any order, separated by blank
spaces. For further details, refer to Specify Optimization Hints in Queries.

You can use optimize-hint FROM clause keywords in a simple SELECT statement, in a CREATE VIEW view definition
SELECT statement, or in a subquery SELECT statement within the FROM clause.

Table-Valued Functions in the FROM Clause

SQL

SELECT Name,DOB FROM Sample.SP_Sample_By_Name('A')

The following Dynamic SQL example specifies the same table-valued function. It uses the %Execute() method to supply
parameter values to the ? input parameter:

ObjectScript

 SET myquery="SELECT Name,DOB FROM Sample.SP_Sample_By_Name(?)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute("A")
 DO rset.%Display()
 WRITE !,"End of A data",!!
 SET rset = tStatement.%Execute("B")
 DO rset.%Display()
 WRITE !,"End of B data"

A table-valued function can only be used in the FROM clause of either a SELECT statement or a DECLARE statement.
A table-valued function name can be qualified with a schema name or unqualified (without a schema name); an unqualified
name uses the default schema. In a SELECT statement FROM clause, a table-valued function can be used wherever a table
name can be used. It can be used in a view or a subquery, and can be joined to other table-ref items using a comma-separated
list or explicit JOIN syntax.

A table-valued function cannot be directly used in an INSERT, UPDATE, or DELETE statement. You can, however,
specify a subquery for these commands that specifies a table-valued function.

InterSystems SQL does not define the EXTENTSIZE for a table-valued function, or the SELECTIVITY for table-valued
function columns.

Subqueries in the FROM Clause
You can specify a subquery in the FROM clause. This is known as a streamed subquery. The subquery is treated the same
as a table, including its use in JOIN syntax and the optional assignment of an alias using the AS keyword. A FROM clause
can contain multiple tables, views, and subqueries in any combination, subject to the restrictions of the JOIN syntax, as
described in JOIN.

A subquery is enclosed in parentheses. The following example shows a subquery in a FROM clause:

SQL

SELECT name,region
FROM (SELECT t1.name,t1.state,t2.region
 FROM Employees AS t1 LEFT OUTER JOIN Regions AS t2
 ON t1.state=t2.state)
GROUP BY region

InterSystems SQL Reference 391

FROM (SQL)

A subquery can specify a TOP clause. A subquery can contain an ORDER BY clause when paired with a TOP clause.

A subquery can use SELECT * syntax, subject to the following restriction: because a FROM clause results in a value
expression, a subquery containing SELECT * must yield only one column.

A join within a subquery cannot be a NATURAL join or take a USING clause.

FROM Subqueries and %VID

When a FROM subquery is invoked, it returns a %VID for each subquery row returned. A %VID is an integer counter
field; its values are system-assigned, unique, non-null, non-zero, and non-modifiable. The %VID is only returned when
explicitly specified. It is returned as data type INTEGER. Because %VID values are sequential integers, they are far more
meaningful if the subquery returns ordered data; a subquery can only use an ORDER BY clause when it is paired with a
TOP clause.

Because the %VID is a sequential integer, it can be used to determine the ranking of items in a subquery with an ORDER
BY clause. In the following example, the 10 newest records are listed in Name order, but their timestamp ranking is easily
seen using the %VID values:

SQL

SELECT Name,%VID,TimeStamp FROM
 (SELECT TOP 10 * FROM MyTable ORDER BY TimeStamp DESC)
ORDER BY Name

One common use of the %VID is to “window” the result set, dividing execution into sequential subsets that fit the number
of lines available in a display window. For example, display 20 records, then wait for the user to press Enter, then display
the next 20 records.

The following example uses %VID to “window” the results into subsets of 10 records:

SQL

SELECT %VID,* FROM
 (SELECT TOP 60 Name, Age FROM Sample.Person WHERE Age > 55 ORDER BY Name)
WHERE %VID BETWEEN ? AND ?

For details on using %VID, refer to Defining and Using Views.

LATERAL Keyword
The LATERAL keyword can be used to have more explicit control over the FROM processing order by allowing views
and table-valued functions to reference field values from tables listed earlier in the FROM clause. These lateral references
affect the rows that the subquery or table valued-function generate.

Within the subquery or the table-valued function that the LATERAL keyword is specified on, the laterally referenced fields
are treated as given values. Laterally referenced fields always come from earlier FROM items in the same FROM clause.

When used to precede a FROM subquery, the LATERAL keyword indicates that the subquery may reference fields in
FROM items that semantically precede it in the query. These laterally referenced fields will be processed before the FROM
subquery that LATERAL was specified on.

When used to precede a table-valued function, the LATERAL keyword indicates that fields from the previous FROM items
can be used within the table-valued function. In this context, the keyword is optional, and the lateral join will be applied
implicitly if such references are used within the table-valued function.

Optional FROM Clause
If no table data is referenced (directly or indirectly) by the SELECT item list, the FROM clause is optional. This kind of
SELECT may be used to return data from functions, operator expressions, constants, or host variables. For a query that
references no table data:

392 InterSystems SQL Reference

SQL Clauses

• If the FROM clause is omitted, a maximum of one row of data is returned, regardless of the TOP keyword value; TOP
0 returns no data. The DISTINCT clause is ignored. No privileges are required.

• If the FROM clause is specified, it must specify an existing table in the current namespace. You must have SELECT
privilege for that table, even though the table is not referenced. The number of identical rows of data returned is equal
to the number of rows in the specified table, unless you specify a TOP or DISTINCT clause, or limit it with a WHERE
or HAVING clause. Specifying a DISTINCT clause limits the output to a single row of data. The TOP keyword limits
the output to the number of rows specified by the TOP value; TOP 0 returns no data.

With or without a FROM clause, subsequent clauses (WHERE, GROUP BY, HAVING or ORDER BY) may be specified.
A WHERE or HAVING clause may be used to determine whether or not to return results, or how many identical rows of
results to return. These clauses may reference a table, even if no FROM clause is specified. A GROUP BY or ORDER BY
clause may be specified, but these clauses are not meaningful.

The following are examples of SELECT statements that reference no table data. Both examples return one row of information.

The following example omits the FROM clause. The DISTINCT keyword is not needed, but may be specified. No SELECT
clauses are permitted.

SQL

SELECT 3+4 AS Arith,
 {fn NOW} AS NowDateTime,
 {fn DAYNAME({fn NOW})} AS NowDayName,
 UPPER('MixEd cASe EXPreSSioN') AS UpCase,
 {fn PI} AS PiConstant

The following example includes a FROM clause. The DISTINCT keyword is used to return a single row of data. The FROM
clause table reference must be a valid table. The ORDER BY clause is permitted here, but is meaningless. Note that the
ORDER BY clause must specify a valid select item alias:

SQL

SELECT DISTINCT 3+4 AS Arith,
 {fn NOW} AS NowDateTime,
 {fn DAYNAME({fn NOW})} AS NowDayName,
 UPPER('MixEd cASe EXPreSSioN') AS UpCase,
 {fn PI} AS PiConstant
FROM Sample.Person
ORDER BY NowDateTime

The following examples both use a WHERE clause to determine whether or not to return results. The first includes a FROM
clause and uses the DISTINCT keyword is to return a single row of data. The second omits the FROM clause, and therefore
returns at most a single row of data. In both cases, the WHERE clause table reference must be a valid table for which you
have SELECT privilege:

SQL

SELECT DISTINCT
 {fn NOW} AS DataOKDate
FROM Sample.Person
WHERE FOR SOME (Sample.Person)(Name %STARTSWITH 'A')

SQL

SELECT {fn NOW} AS DataOKDate
WHERE FOR SOME (Sample.Person)(Name %STARTSWITH 'A')

See Also
• SELECT

• JOIN

InterSystems SQL Reference 393

FROM (SQL)

• Querying the Database

• Defining Tables

• Optimizing SQL Queries

• Analyze SQL Statements and Statistics

• SQLCODE error messages

394 InterSystems SQL Reference

SQL Clauses

GROUP BY (SQL)
A SELECT clause that groups the resulting rows of a query according to one or more columns.

Synopsis

SELECT ...
GROUP BY field {,field2}

Description
GROUP BY is a clause of the SELECT command. The optional GROUP BY clause appears after the FROM clause and
the optional WHERE clause, and before the optional HAVING and ORDER BY clauses.

The GROUP BY clause takes the resulting rows of a query and breaks them up into individual groups according to one or
more database columns. When you use SELECT in conjunction with GROUP BY, one row is retrieved for each distinct
value of the GROUP BY fields. GROUP BY treats fields with NULL (no specified value) as a separate distinct value
group.

The GROUP BY clause is conceptually similar to the InterSystems IRIS aggregate function extension keyword %FOREACH,
but GROUP BY operates on an entire query, while %FOREACH allows selection of aggregates on sub-populations without
restricting the entire query population.

GROUP BY can be used in the SELECT clause of an INSERT command. GROUP BY cannot be used in an UPDATE
or DELETE command.

Specifying a Field

The simplest form of a GROUP BY clause specifies a single field, such as GROUP BY City. This selects one arbitrary
row for each unique City value. You can also specify a comma-separated list of fields, the combined value of which is
treated as a single grouping term. It selects one arbitrary row for each unique combination of City and Age values. Therefore,
GROUP BY City,Age returns the same results as GROUP BY Age,City.

The field(s) must be specified by column name. Valid field values include the following: a column name (GROUP BY
City); an %ID (which returns all rows); a scalar function specifying a column name (GROUP BY ROUND(Age,-1)); a
collation function specifying a column name (GROUP BY %EXACT(City)).

You cannot specify a field by column alias; attempting to do so generates an SQLCODE -29 error. You cannot specify a
field by column number; this is interpreted as a literal and returns one row. You cannot specify an aggregate field;
attempting to do so generates an SQLCODE -19 error. You cannot specify a subquery; this is interpreted as a literal and
returns one row.

GROUP BY StreamField operates on the OID of a stream field, not its actual data. Because all stream field OIDs are
unique values, GROUP BY has no effect on actual stream field duplicate data values. GROUP BY StreamField reduces
the number records where the stream field is NULL to one record. For further details, see Storing and Using Stream Data
(BLOBs and CLOBs).

A GROUP BY clause can use the arrow syntax (–>) operator to specify a field in a table that is not the base table. For
example: GROUP BY Company->Name. For further details, refer to Implicit Joins (Arrow Syntax).

Specifying a literal as the field value in a GROUP BY clause returns 1 row; which row is returned is indeterminate. Thus,
specifying 7, 'Chicago', '', 0, or NULL all return 1 row. However, if you specify a literal as a field value in a comma-separated
list, the literal is ignored and GROUP BY selects one arbitrary row for each unique combination of the specified field
names.

InterSystems SQL Reference 395

GROUP BY (SQL)

Aggregate Functions with GROUP BY and DISTINCT BY

The GROUP BY clause is applied before aggregate functions are calculated. In the following example, the COUNT
aggregate function counts the number of rows in each GROUP BY group:

SQL

SELECT Home_State,COUNT(Home_State)
FROM Sample.Person
GROUP BY Home_State

The DISTINCT BY clause is applied after aggregate functions are calculated. In the following example, the COUNT
aggregate function counts the number of rows in the entire table:

SQL

SELECT DISTINCT BY(Home_State) Home_State,COUNT(Home_State)
FROM Sample.Person

In order to calculate an aggregate function for the entire table, rather than a GROUP BY group, you can specify a select-item
subquery:

SQL

SELECT Home_State,(SELECT COUNT(Home_State) FROM Sample.Person)
FROM Sample.Person
GROUP BY Home_State

A GROUP BY clause should not be used with a DISTINCT clause when the select list consists of an aggregate field. For
example, the following query is intended to return the distinct numbers of people who share the same Home_State:

SQL

/* This query DOES NOT apply the DISTINCT keyword */
/* It is provided as a cautionary example */
SELECT DISTINCT COUNT(*) AS mynum
FROM Sample.Person
GROUP BY Home_State
ORDER BY mynum

This query did not return the expected results because it did not apply the DISTINCT keyword. To apply both a DISTINCT
aggregate and a GROUP BY clause, use a subquery as shown in the following example:

SQL

SELECT DISTINCT *
FROM (SELECT COUNT(*) AS mynum
 FROM Sample.Person
 GROUP BY Home_State) AS Sub
ORDER BY Sub.mynum

This example successfully returns the distinct numbers of people who share the same Home_State. For instance, if any
Home_State is shared by 8 people, the query returns an 8.

If a query consist only of aggregate functions and does not return any data from the table, it returns %ROWCOUNT=1
with an empty string (or 0) value for the aggregate functions. For example:

SQL

SELECT AVG(Age) FROM Sample.Person WHERE Name %STARTSWITH 'ZZZZ'

However, if this type of query contains a GROUP BY clause, it returns %ROWCOUNT=0 and the aggregate function
values remains undefined.

396 InterSystems SQL Reference

SQL Clauses

Collation, Letter Case, and Optimization

This section describes how GROUP BY handles data values that differ only in letter case.

• Group Lettercase Variants Together (return uppercase):

By default, GROUP BY groups together string values based on the collation specified for the field when it was created.
InterSystems IRIS has a default string collation, which can be set for each namespace; the initial string collation default
for all namespaces is SQLUPPER. Therefore, commonly, GROUP BY collation is not case-sensitive unless otherwise
specified.

GROUP BY groups together the values of a field with SQLUPPER collation based on their uppercase letter collation.
Field values that differ only in letter case are grouped together. Grouped field values are returned in all uppercase letters.
This has the performance advantage of allowing GROUP BY to use the index for the field, rather than accessing the
actual field values. It is therefore only meaningful if an index exists for one or more of the selected fields. It has the
consequence that the GROUP BY field value is returned in all uppercase letters, even if none of the actual data values
are in all uppercase letters.

• Group Lettercase Variants Together (return actual lettercase):

GROUP BY can group together values that differ in lettercase and return grouped field values with an actual field
lettercase value (randomly selecting). This has the advantage that the returned value is an actual value, showing the
lettercase of at least one value in the data. It has the performance disadvantage of not being able to use the field’s index.
You can specify this for an individual query by applying the %EXACT collation function to the select-item field.

• Do Not Group Lettercase Variants Together (return actual lettercase):

GROUP BY can perform case-sensitive grouping of values by applying the %EXACT collation function to the GROUP
BY field. This has the advantage of returning every lettercase variant as a separate group. It has the performance dis-
advantage of not being able to use the field’s index.

You can configure this behavior system-wide for all queries that contain a GROUP BY clause by using the Management
Portal. Select System Administration, Configuration, SQL and Object Settings, SQL. View and edit the GROUP BY and DISTINCT

queries must produce original values check box. By default, this check box is not selected. This default groups alphabetic
values by their uppercase letter collation. (This optimization also works for the DISTINCT clause.) For further details,
refer to SQL and Object Settings Pages.

You can also set this option system-wide using the $SYSTEM.SQL.Util.SetOption() method FastDistinct option.
To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays the DISTINCT optimization
turned on setting; the default is 1.

This optimization takes advantage of indexes for the selected field(s). It is therefore only meaningful if an index exists for
one or more of the selected fields. It collates field values as they are stored in the index; alphabetic strings are returned in
all uppercase letters. You can set this system-wide option, then override it for specific queries by using the %EXACT col-
lation function to preserve letter case.

The following examples show these behaviors. These examples assume that Sample.Person contains records with a
Home_City field with SQLUPPER collation and values of ‘New York’ and ‘new york’:

SQL

SELECT Home_City FROM Sample.Person GROUP BY Home_City
/* groups together Home_City values by their uppercase letter values
 returns the name of each grouped city in uppercase letters.
 Thus, 'NEW YORK' is returned. */

SQL

SELECT %EXACT(Home_City) FROM Sample.Person GROUP BY Home_City
/* groups together Home_City values by their uppercase letter values
 returns the name of a grouped city in original letter case.
 Thus, 'New York' or 'new york' may be returned, but not both. */

InterSystems SQL Reference 397

GROUP BY (SQL)

SQL

SELECT Home_City FROM Sample.Person GROUP BY %EXACT(Home_City)
/* groups together Home_City values by their original letter case
 returns the name of each grouped city in original letter case.
 Thus, both 'New York' and 'new york' are returned as separate groups. */

%ROWID

Specifying a GROUP BY clause causes a cursor-based Embedded SQL query to not set the %ROWID variable. %ROWID
is not set even when GROUP BY does not limit the rows returned. This is shown in the following example:

ObjectScript

 SET %ROWID=999
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'M'
 GROUP BY Home_State)
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"RowID: ",%ROWID," row count: ",%ROWCOUNT
 WRITE " Name=",name," State=",state
 }
 &sql(CLOSE EmpCursor)

This change of query behavior only applies to cursor-based Embedded SQL SELECT queries. Dynamic SQL SELECT
queries and non-cursor Embedded SQL SELECT queries never set %ROWID.

Transaction Committed Changes

A query containing a GROUP BY clause does not support READ COMMITTED isolation level. In a transaction defined
as READ COMMITTED, a SELECT statement without a GROUP BY clause returns only data modifications that have
been committed; in other words, it returns the state of the data before the current transaction. A SELECT statement with
a GROUP BY clause returns all data modifications made, whether or not they have been committed.

Arguments

field

One or more fields from which data is being retrieved. Either a single field name or a comma-separated list of field names.

Example
The following example groups names by their initial letter. It returns the initial letter, the count of names sharing that initial
letter, and an example of a one of the name values. Names are grouped using their SQLUPPER collation, regardless of the
letter case of the actual values. Note that the Name select-item contains the uppercase initial letter; %EXACT collation is
used to display an actual name value:

SQL

SELECT Name AS Initial,COUNT(Name) AS SameInitial,%EXACT(Name) AS Example
FROM Sample.Person GROUP BY %SQLUPPER(Name,2)

See Also
• SELECT

• DISTINCT clause

• JOIN

398 InterSystems SQL Reference

SQL Clauses

HAVING (SQL)
A SELECT clause that specifies one or more restrictive conditions on a group of data values.

Synopsis

SELECT field
 FROM table GROUP BY field
 HAVING condition-expression

SELECT aggregatefunc(field %AFTERHAVING)
 FROM table [GROUP BY field]
 HAVING condition-expression

Description
The optional HAVING clause appears after the FROM clause and the optional WHERE and GROUP BY clauses, and
before the optional ORDER BY clause.

The HAVING clause of a SELECT statement qualifies or disqualifies specific rows from the query selection. The rows
that qualify are those for which the condition-expression is true. The condition-expression is a series of logical tests
(predicates) which can be linked by the AND and OR logical operators. For further details, see the WHERE clause.

The HAVING clause is like a WHERE clause that can operate on groups, rather than on the full data set. Thus, in most
cases, the HAVING clause is used either with an aggregate function using the %AFTERHAVING keyword, or in combi-
nation with a GROUP BY clause, or both.

A HAVING clause condition-expression can also specify an aggregate function. A WHERE clause condition-expression
cannot specify an aggregate function. This is shown in the following example:

SQL

SELECT Name,Age,AVG(Age) AS AvgAge
FROM Sample.Person
HAVING Age > AVG(Age)
ORDER BY Age

A HAVING clause often serves to compare aggregates of sub-populations against aggregates for an entire population.

Specifying a Field

A field specified in a HAVING clause condition-expression or an %AFTERHAVING keyword expression must be specified
as a field name or an aggregate function. You cannot specify a field or aggregate function by column number. You cannot
specify a field or aggregate function by column alias; attempting to do so generates an SQLCODE -29 error. However, you
can use a subquery to define a column alias, then use this alias in the HAVING clause. For example:

SQL

SELECT Y AS TeenYear,AVG(Y %AFTERHAVING) AS AvgTeenAge FROM
 (SELECT Age AS Y FROM Sample.Person WHERE Age<20)
HAVING Y > 12 ORDER BY Y

Aggregate Functions in the select-item List

The HAVING clause selects which rows to return. By default, this row selection does not determine the value of aggregate
functions in the select-item list because the HAVING clause is parsed after aggregate functions in the select-item list.

In the following example, only those rows with Age > 65 are returned. But the AVG(Age) is calculated based on all rows,
not just those selected by the HAVING clause:

InterSystems SQL Reference 399

HAVING (SQL)

SQL

SELECT Name,Age,AVG(Age) AS AvgAge FROM Sample.Person
HAVING Age > 65
 ORDER BY Age

Compare this to a WHERE clause, which selects both which rows to return and which row values to include in aggregate
functions in the select-item list:

SQL

SELECT Name,Age,AVG(Age) AS AvgAge FROM Sample.Person
WHERE Age > 65
ORDER BY Age

A HAVING clause can be used in a query that only returns aggregate values:

• Aggregate Threshold: The HAVING clause uses an aggregate threshold to determine whether to return 1 row (containing
the query aggregate values) or 0 rows. Thus you can use a HAVING clause to only return an aggregate calculation
when an aggregate threshold is achieved. The following example only returns an average of the Age values for all rows
in the table when there are at least 100 rows in the table. If there are less than 100 rows, the average of the Age values
for all rows might not be deemed meaningful, and therefore should not be returned:

SQL

SELECT AVG(Age) FROM Sample.Person HAVING COUNT(*)>99

• Multiple Rows: A HAVING clause with an aggregate function and no GROUP BY clause returns the number of rows
that fulfill the HAVING clause condition. The aggregate function value is calculated based on all of the rows in the
table:

SQL

SELECT AVG(Age) FROM Sample.Person HAVING %ID<10

This is in contrast to a WHERE clause with an aggregate function, which returns one row. The aggregate function
value is calculated based on rows that fulfill the WHERE clause condition:

SQL

SELECT AVG(Age) FROM Sample.Person WHERE %ID<10

%AFTERHAVING

The %AFTERHAVING keyword can be used with an aggregate function in the select-item list to specify that the aggregate
operation is to be performed after the HAVING clause condition is applied.

SQL

SELECT Name,Age,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgMiddleAge
 FROM Sample.Person
 HAVING Age > 40 AND Age < 65
 ORDER BY Age

The %AFTERHAVING keyword only gives meaningful results if both of the following considerations are met:

• The select-item list must contain at least one item that is a non-aggregate field reference. This field reference may be
to any field in any table specified in the FROM clause, a field referenced using an implicit join (arrow syntax), the
%ID alias, or an asterisk (*).

400 InterSystems SQL Reference

SQL Clauses

• The HAVING clause condition must apply at least one non-aggregate condition. Therefore, HAVING Age>50, HAVING
Age>AVG(Age), or HAVING Age>50 AND MAX(Age)>75 are valid conditions, but HAVING Age>50 OR
MAX(Age)>75 is not a valid condition.

The following example uses a HAVING clause with a GROUP BY clause to return the state average age, and the state
average age for people that are older than the average age for all rows in the table. It also uses a subquery to return the
average age for all rows in the table:

SQL

SELECT Home_State,(SELECT AVG(Age) FROM Sample.Person) AS AvgAgeAllRecs,
 AVG(Age) AS AvgAgeByState,AVG(Age %AFTERHAVING) AS AvgOlderByState
FROM Sample.Person
GROUP BY Home_State
HAVING Age > AVG(Age)
ORDER BY Home_State

Arguments

condition-expression

An expression consisting of one or more boolean predicates governing which data values are to be retrieved.

Logical Predicates
The SQL predicates fall into the following categories:

• Equality Comparison Predicates

• BETWEEN Predicate

• IN and %INLIST Predicates

• %STARTSWITH Predicate

• Contains Operator ([)

• FOR SOME Predicate

• NULL Predicate

• EXISTS Predicate

• LIKE, %MATCHES, and %PATTERN Predicates

• %INSET and %FIND Predicates

Note: You cannot use the FOR SOME %ELEMENT collection predicate in a HAVING clause. This predicate can
only be used in a WHERE clause.

Predicate Case-Sensitivity

A predicate uses the collation type defined for the field. By default, string data type fields are defined with SQLUPPER
collation, which is not case-sensitive. You can define the string collation default for the current namespace and specify a
non-default field collation type when defining a field/property.

The %INLIST, Contains operator ([), %MATCHES, and %PATTERN predicates do not use the field’s default collation.
They always uses EXACT collation, which is case-sensitive.

A predicate comparison of two literal strings is always case-sensitive.

InterSystems SQL Reference 401

HAVING (SQL)

Predicate Conditions and %NOINDEX

You can preface a predicate condition with the %NOINDEX keyword to prevent the query optimizer using an index on
that condition. This is most useful when specifying a range condition that is satisfied by the vast majority of the rows. For
example, HAVING %NOINDEX Age >= 1. For further details, refer to Index Optimization Options.

Equality Comparison Predicates

The following are the available comparison predicates:

Table C–1: SQL Equality Comparison Predicates

OperationPredicate

Equals=

Does not equal<>

Does not equal!=

Is greater than>

Is less than<

Is greater than or equal to>=

Is less than or equal to<=

The following example uses a comparison predicate. It returns one record for each Age less than 21:

SQL

SELECT Name, Age FROM Sample.Person
GROUP BY Age
HAVING Age < 21
ORDER BY Age

Note that SQL defines comparison operations in terms of collation: the order in which values are sorted. Two values are
equal if they collate in exactly the same way. A value is greater than another value if it collates after the second value.
String data type field collation is based on the field’s default collation. By default, it is not case-sensitive. Thus, a compar-
ison of two string field values or a comparison of a string field value with a string literal is (by default) not case-sensitive.
For example, if Home_State field values are uppercase two-letter strings:

ValueExpression

TRUE for values MA.'MA' = Home_State

TRUE for values MA.'ma' = Home_State

TRUE for values VT, WA, WI, WV, WY.'VA' < Home_State

TRUE for values AK, AL, AR.'ar' >= Home_State

Note, however, that a comparison of two literal strings is case-sensitive: WHERE 'ma'='MA' is always FALSE.

BETWEEN Predicate

The following example uses a BETWEEN predicate, which is equivalent to a paired greater than or equal to and less than
or equal to. It returns one record for each Age between 18 and 35, inclusive of 18 and 35:

402 InterSystems SQL Reference

SQL Clauses

SQL

SELECT Name, Age FROM Sample.Person
GROUP BY Age
HAVING Age BETWEEN 18 AND 35
ORDER BY Age

For further details, refer to BETWEEN.

IN and %INLIST Predicates

The IN predicate is used for matching a value to an unstructured series of items.

The %INLIST predicate is an InterSystems IRIS extension for matching a value to the elements of a list structure.

With either predicate you can perform equality comparisons and subquery comparisons.

IN has two formats. The first serves as shorthand for the use of multiple equality comparisons linked together with the OR
operator. For instance:

SQL

SELECT Name, Home_State FROM Sample.Person
GROUP BY Home_State
HAVING Home_State IN ('ME','NH','VT','MA','RI','CT')

evaluates true if Home_State equals any of the values inside the parenthetical list. The list elements can be constants or
expressions. Collation applies to the IN comparison as it applies to an equality test. By default, IN comparisons use the
collation type of the field definition; by default string fields are defined as SQLUPPER, which is not case-sensitive.

When dates or times are used for IN predicate equality comparisons, the appropriate data type conversions are automatically
performed. If the HAVING clause field is type TimeStamp, values of type Date or Time are converted to Timestamp. If
the HAVING clause field is type Date, values of type TimeStamp or String are converted to Date. If the HAVING clause
field is type Time, values of type TimeStamp or String are converted to Time.

The following examples both perform the same equality comparisons and return the same data. The GROUP BY field
specifies to return only one record for each successful equality comparison. The DOB field is of data type Date:

SQL

SELECT Name,DOB FROM Sample.Person
GROUP BY DOB
HAVING DOB IN ({d '1951-02-02'},{d '1987-02-28'})

SQL

SELECT Name,DOB FROM Sample.Person
GROUP BY DOB
HAVING DOB IN ({ts '1951-02-02 02:37:00'},{ts '1987-02-28 16:58:10'})

For further details refer to Date and Time Constructs.

The %INLIST predicate can be used to perform an equality comparison on the elements of a list structure. %INLIST
uses EXACT collation. Therefore, by default, %INLIST string comparisons are case-sensitive. For further details on list
structures, see the SQL $LIST function.

The following example uses %INLIST to match a string value to the elements of the FavoriteColors list field:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
HAVING 'Red' %INLIST FavoriteColors

It returns all records where FavoriteColors includes the element “Red”.

InterSystems SQL Reference 403

HAVING (SQL)

The following example matches Home_State column values to the elements of the northne (northern New England states)
list:

SQL

SELECT Name,Home_State
FROM Sample.Person
HAVING Home_State %INLIST $LISTBUILD("VT","NH","ME")

You can also use IN or %INLIST with a subquery to test whether a column value (or any other expression) equals any of
the subquery row values. For example:

SQL

SELECT Name,Home_State FROM Sample.Person
HAVING Name IN
 (SELECT Name FROM Sample.Employee
 HAVING Salary < 50000)

Note that the subquery must have exactly one item in the SELECT list.

For further details, refer to IN and %INLIST.

%STARTSWITH Predicate

The InterSystems IRIS %STARTSWITH comparison operator permits you to perform partial matching on the initial
characters of a string or numeric. The following example uses %STARTSWITH. It selects by age, then returns a record
for each Name that begins with “S”:

SQL

SELECT Name,Age FROM Sample.Person
WHERE Age > 30
HAVING Name %STARTSWITH 'S'
ORDER BY Name

Like other string field comparisons, %STARTSWITH comparisons are not case-sensitive. For further details, refer to
%STARTSWITH.

Contains Operator ([)

The Contains operator is the open bracket symbol: [. It permits you to match a substring (string or numeric) to any part of
a field value. The comparison is always case-sensitive. The following example uses the Contains operator in a HAVING
clause to select those records in which the Home_State value contains a “K”, and then do an %AFTERHAVING count on
those states:

SQL

SELECT Home_State,COUNT(Home_State) AS States,
 COUNT(Home_State %AFTERHAVING) AS KStates
 FROM Sample.Person
 HAVING Home_State ['K'

FOR SOME Predicate

The FOR SOME predicate of the HAVING clause determines whether or not to return a result set based on a condition test
of one or more field values. This predicate has the following syntax:

FOR SOME (table[AS t-alias]) (fieldcondition)

FOR SOME specifies that fieldcondition must evaluate to true; at least one of the field values must match the specified
condition. table can be a single table or a comma-separated list of tables, and can optionally take a table alias. fieldcondition

404 InterSystems SQL Reference

SQL Clauses

specifies one or more conditions for one or more fields within the specified table. Both the table argument and the
fieldcondition argument must be delimited by parentheses.

The following example shows the use of the FOR SOME predicate:

SQL

SELECT Name,Age
FROM Sample.Person
HAVING FOR SOME (Sample.Person)(Age>20)
ORDER BY Age

In the above example, if at least one field contains an Age value greater than 20, all of the records are returned. Otherwise,
no records are returned.

For further details, refer to FOR SOME.

NULL Predicate

This detects undefined values. You can detect all null values, or all non-null values:

SQL

SELECT Name, FavoriteColors FROM Sample.Person
HAVING FavoriteColors IS NULL

SQL

SELECT Name, FavoriteColors FROM Sample.Person
HAVING FavoriteColors IS NOT NULL
ORDER BY FavoriteColors

Using the GROUP BY clause, you can return one record for each non-null value for a specified field:

SQL

SELECT Name, FavoriteColors FROM Sample.Person
GROUP BY FavoriteColors
HAVING FavoriteColors IS NOT NULL
ORDER BY FavoriteColors

For further details, refer to NULL.

EXISTS Predicate

This operates with subqueries to test whether a subquery evaluates to the empty set.

SQL

SELECT t1.disease FROM illness_tab t1 WHERE EXISTS
 (SELECT t2.disease FROM disease_registry t2
 WHERE t1.disease = t2.disease
 HAVING COUNT(t2.disease) > 100)

For further details, refer to EXISTS.

LIKE, %MATCHES, and %PATTERN Predicates

These three predicates allow you to perform pattern matching.

• LIKE allows you to pattern match using literals and wildcards. Use LIKE when you wish to return data values that
contain a known substring of literal characters, or contain several known substrings in a known sequence. LIKE uses
the collation of its target for letter case comparisons.

InterSystems SQL Reference 405

HAVING (SQL)

• %MATCHES allows you to pattern match using literals, wildcards, and lists and ranges. Use %MATCHES when you
wish to return data values that contain a known substring of literal characters, or contain one or more literal characters
that fall within a list or range of possible characters, or contain several such substrings in a known sequence.
%MATCHES uses EXACT collation for letter case comparisons.

• %PATTERN allows you to specify a pattern of character types. For example, '1U4L1",".A' (1 uppercase letter, 4
lowercase letters, one literal comma, followed by any number of letter characters of either case). Use %PATTERN
when you wish to return data values that contain a known sequence of character types. %PATTERN is especially
useful when the data value is unimportant, but the character type format of those values is significant. %PATTERN
can also specify known literal characters. It uses EXACT collation for literal comparisons, which are always case-
sensitive.

To perform a comparison with the first characters of a string, use the %STARTSWITH predicate.

Examples
The following example returns a row for each state that has at least one person under the age of 21. For each row it returns
the average, minimum, and maximum ages of all people in the state.

SQL

SELECT Home_State, MIN(Age) AS Youngest,
 AVG(Age) AS AvgAge, MAX(Age) AS Oldest
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Age < 21
 ORDER BY Youngest

The following example returns a row for each state that has at least one person under the age of 21. For each row it returns
the average, minimum, and maximum ages of all people in the state. Using the %AFTERHAVING keyword, it also returns
the average age of those people in the state under the age of 21 (AvgYouth), and the age of the oldest person in the state
under the age of 21 (OldestYouth).

SQL

SELECT Home_State,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgYouth,
 MIN(Age) AS Youngest, MAX(Age) AS Oldest,
 MAX(Age %AFTERHAVING) AS OldestYouth
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Age < 21
 ORDER BY AvgAge

For further examples of %AFTERHAVING, refer to the individual aggregate functions.

See Also
• SELECT statement

• WHERE clause

• GROUP BY clause

• Overview of Predicates

• Querying the Database

406 InterSystems SQL Reference

SQL Clauses

INTO (SQL)
A SELECT clause that specifies the storing of selected values in host variables.

Synopsis

INTO :hostvar1 [,:hostvar2]...

Description
The INTO clause and host variables are only used in Embedded SQL. They are not used in Dynamic SQL. In Dynamic
SQL, similar functionality for output variables is provided by the %SQL.Statement class. Specifying an INTO clause in a
SELECT query processed via ODBC, JDBC, or Dynamic SQL results in an SQLCODE -422 error.

An INTO clause can be used in a SELECT, DECLARE, or FETCH statement. The INTO clause is identical for all three
statements; examples on this page all refer to the SELECT statement. For usage with DECLARE and FETCH, refer to
SQL Cursors.

The INTO clause uses the values retrieved (or calculated) in the SELECT select-item list to set corresponding output host
variables, making these returned data values available to ObjectScript. In a SELECT the optional INTO clause appears
after the select-item list and before the FROM clause.

CAUTION: Output host variables are initialized to the empty string when Embedded SQL is compiled. This prevents
<UNDEFINED> errors at execution time. Therefore, host variables only contain meaningful values when
SQLCODE=0. Always check SQLCODE before using an output host variable value. Do not use these
variable values when SQLCODE=100 or when SQLCODE is a negative number.

Host Variables

A host variable can contain only a single value. Therefore, a SELECT in embedded SQL only retrieves one row of data.
This defaults to the first row of the table. You can, of course, retrieve data from some other row of the table by limiting the
eligible rows using a WHERE condition.

In embedded SQL you can return data from multiple rows by declaring a cursor and then issuing a FETCH for each suc-
cessive row. The INTO clause host variables can be specified in the DECLARE query or specified in the FETCH.

INTO clause host variables can be specified in either of two ways (or a combination of both):

• A host variable list, consisting of a comma-separated list of host variables, one for each select-item.

• A host variable array, consisting of a single subscripted host variable.

For important restrictions on the use of host variable values in the containing program, refer to Host Variables.

Note: If the host language declares data types for variables, all host variables must be declared in the host language
before invoking the SELECT statement. The data types of the retrieved field values must match the host variable
declarations. (ObjectScript does not declare data types for variables.)

Using a Host Variable List

The following rules apply when you specify a host variable list in the INTO clause:

• The number of host variables in the INTO clause must match the number of fields specified in the select-item list. If
the number of selected fields and host variables differs, SQL returns a “cardinality mismatch” error.

• Selected fields and host variables are matched by relative position. Therefore, the corresponding items in these two
lists must appear in the same sequence.

InterSystems SQL Reference 407

INTO (SQL)

• The listed host variables may be any combination of unsubscripted or subscripted variables.

• A listed host variable can return an aggregate value (such as a count, sum, or average) or a function value.

• A listed host variable can return %CLASSNAME and %TABLENAME values.

• Listed host variables can return field values from a SELECT involving multiple tables, or return values from a SELECT
with no FROM clause.

The following example selects four fields into a list of four host variables. The host variables in this example are subscripted:

ObjectScript

 &sql(SELECT %ID,Home_City,Name,SSN
 INTO :mydata(1),:mydata(2),:mydata(3),:mydata(4)
 FROM Sample.Person
 WHERE Home_State='MA')
 IF SQLCODE=0 {
 FOR i=1:1:15 {
 IF $DATA(mydata(i)) {
 WRITE "field ",i," = ",mydata(i),! }
 } }
 ELSE {WRITE "SQLCODE=",SQLCODE,! }

For further examples refer to Host Variable List Examples, below.

Using a Host Variable Array

A host variable array uses a single subscripted variable to contain all of the selected field values. This array is populated
according to the order of field definition in the table, not the order of fields in the select-item list.

The following rules apply when using a host variable array in the INTO clause:

• The fields specified in the select-item list are selected into subscripts of a single host variable. Therefore, you do not
have to match the number of items in the select-item list with the host variable count.

• The host variable subscripts are populated by the corresponding field position in the table definition. For example, the
6th field, as defined in the table definition, corresponds to mydata(6). All subscripts that do not correspond to a specified
select-item remain undefined. The order of the items in the select-item has no effect on how subscripts are populated.

• A host variable array can only return field values from a single table.

• A host variable array can only return field values. It cannot return an aggregate value (such as a count, sum, or average),
a function value, or a %CLASSNAME or %TABLENAME value. (You can return these by specifying a host variable
argument that combines host variable list items with the host variable array.)

The following example selects four fields into a host variable array:

ObjectScript

 &sql(SELECT %ID,Home_City,Name,SSN
 INTO :mydata()
 FROM Sample.Person
 WHERE Home_State='MA')
 IF SQLCODE=0 {
 FOR i=0:1:15 {
 IF $DATA(mydata(i)) {
 WRITE "field ",i," = ",mydata(i),! }
 } }
 ELSE {WRITE "SQLCODE=",SQLCODE,! }

For further examples refer to Host Variable Array Examples, below.

For further details, refer to Host Variable as a Subscripted Array.

408 InterSystems SQL Reference

SQL Clauses

Arguments

:hostvar1

An output host variable that has been declared in the host language. When specified in an INTO clause, the variable name
is preceded by a colon (:). A host variable can be a local variable (unsubscripted or subscripted) or an object property. You
can specify multiple variables as a comma-separated list, as a single subscripted array variable, or a combination of a
comma-separated list and a single subscripted array variable.

Host Variable Returning Field Values
The following Embedded SQL example selects three fields from the first record in the table (Embedded SQL always
retrieves a single record), and uses INTO to set three corresponding unsubscripted host variables. These variables are then
used by the ObjectScript WRITE commands. It is considered good program practice to immediately test the SQLCODE
variable upon returning from Embedded SQL. If SQLCODE is not equal to 0, the values of output host variables are initialized
to the empty string.

ObjectScript

 WRITE !,"Going to get the first record"
 &sql(SELECT Home_State, Name, Age
 INTO :state, :name, :age
 FROM Sample.Person)
 IF SQLCODE=0 {
 WRITE !," Name=",name
 WRITE !," Age=",age
 WRITE !," Home State=",state }
 ELSE {
 WRITE !,"SQL error ",SQLCODE }

The following Embedded SQL example returns field values from a row resulting from the join of two tables. You must use
a host variable list when returning fields from more than one table:

ObjectScript

 &sql(SELECT P.Name,E.Title,E.Name,P.%TABLENAME,E.%TABLENAME
 INTO :name(1),:title,:name(2),:ptname,:etname
 FROM Sample.Person AS P LEFT JOIN
 Sample.Employee AS E ON E.Name %STARTSWITH 'B'
 WHERE P.Name %STARTSWITH 'A')
 IF SQLCODE=0 {
 WRITE ptname," = ",name(1),!
 WRITE etname," = ",title,!
 WRITE etname," = ",name(2) }
 ELSE {
 WRITE !,"SQL error ",SQLCODE }

For restrictions on the use of input and output host variable values, refer to Host Variables.

Host Variables Returning Literal and Aggregate Values
Because output host variables are only valid when SQLCODE=0, it is important to avoid using the results of a query that
issues an SQLCODE=100 (query returns no table data). SQLCODE=100 defaults all output host variables to the empty
string, including returned literals and COUNT aggregates.

The following Embedded SQL example passes a host variable (today) into the SELECT statement, where a calculation
results in the INTO clause variable value (:tomorrow). This host variable is passed out to the containing program. This
query does not reference table fields and therefore does not specify a FROM clause. An Embedded SQL query without a
FROM clause cannot issue SQLCODE=100. An Embedded SQL query with a FROM clause can issue SQLCODE=100,
which would define all output variables to default null string values, including those such as :tomorrow that are not table
field values.

InterSystems SQL Reference 409

INTO (SQL)

ObjectScript

 SET today=$HOROLOG
 &sql(SELECT :today+1
 INTO :tomorrow)
 IF SQLCODE=0 {
 WRITE !,"Tomorrow is: ",$ZDATE(tomorrow) }
 ELSE {
 WRITE !,"SQL error ",SQLCODE }

The following Embedded SQL example returns aggregate values. It uses the COUNT aggregate function to count the
records in a table and AVG to average the Salary field values. The INTO clause returns these values to ObjectScript as
two subscripted host variables.

Because both select-items are aggregates, this program always issues SQLCODE=0, even when the specified table contains
no data. In this case, COUNT(*)=0 and AVG(Salary) is the default empty string.

ObjectScript

 WRITE !,"Counting the records"
 &sql(SELECT COUNT(*),AVG(Salary)
 INTO :agg(1),:agg(2)
 FROM Sample.Employee)
 IF SQLCODE=0 {
 WRITE !,"Total Employee records= ",agg(1)
 WRITE !,"Average Employee salary= ",agg(2) }
 ELSEIF SQLCODE=100 {
 WRITE !,"Total Employee records= ",agg(1) }
 ELSE {
 WRITE !,"SQL error ",SQLCODE }

The following Embedded SQL example is the same as the previous example, except it also returns a field value. Because
the select-items includes a field value, this program can issue SQLCODE=100 when the specified table contains no data.
In this example, if SQLCODE=100, COUNT(*) is the default empty string, not 0:

ObjectScript

 WRITE !,"Counting the records"
 &sql(SELECT COUNT(*),AVG(Salary),Salary
 INTO :agg(1),:agg(2),:pay
 FROM Sample.Employee)
 IF SQLCODE=0 {
 WRITE !,"Total Employee records= ",agg(1)
 WRITE !,"Average Employee salary= ",agg(2)
 WRITE !,"Sample Employee salary=",pay }
 ELSE {
 WRITE !,"SQL error ",SQLCODE }

For restrictions on the use of input and output host variable values, refer to Host Variables.

Host Variable Array
The following two Embedded SQL examples use a host variable array to return the non-hidden data field values from a
row. In these examples %ID is specified in the select-item list, because, by default, SELECT * does not return the RowId
(though it does for Sample.Person); the RowId is always field 1. Note in Sample.Person, fields 4 and 9 can take NULL,
field 5 is not a data field (it references Sample.Address), and field 10 is hidden.

The first example returns a specified number of fields (firstflds); hidden and non-data fields are included in this count,
though not displayed. Using firstflds would be appropriate when returning a row from a table with many fields. Note that
this example can return Field 0, which is the parent reference. Sample.Person is not a child table, so tflds(0) is undefined:

410 InterSystems SQL Reference

SQL Clauses

ObjectScript

 &sql(SELECT *,%ID INTO :tflds()
 FROM Sample.Person)
 IF SQLCODE=0 {
 SET firstflds=14
 FOR i=0:1:firstflds {
 IF $DATA(tflds(i)) {
 WRITE "field ",i," = ",tflds(i),! }
 } }
 ELSE {WRITE "SQLCODE error=",SQLCODE,! }

The second example returns all the non-hidden data fields in Sample.Person. Note that this example does not attempt to
return Field 0, the parent reference, because in Sample.Person tflds(0) is undefined, and would therefore generate an
<UNDEFINED> error:

ObjectScript

 &sql(SELECT *,%ID INTO :tflds()
 FROM Sample.Person)
 IF SQLCODE=0 {
 SET x=1
 WHILE x '="" {
 WRITE "field ",x," = ",tflds(x),!
 SET x=$ORDER(tflds(x)) }
 }
 ELSE { WRITE "SQLCODE error=",SQLCODE,! }

The following Embedded SQL example combines a comma-separated host variable list (for non-field values) and a host
variable array (for field values):

ObjectScript

 &sql(SELECT %TABLENAME,Name,Age,AVG(Age)
 INTO :tname,:tflds(),:ageavg
 FROM Sample.Person
 WHERE Age > 50)
 IF SQLCODE=0 {
 WRITE "Table name is = ",tname,!
 FOR i=0:1:25 {
 IF $DATA(tflds(i)) {
 WRITE "field ",i," = ",tflds(i),! }
 }
 WRITE "Average age is = ",ageavg,! }
 ELSE {WRITE "SQLCODE=",SQLCODE,! }

See Also
• SELECT, DECLARE, FETCH statements

• VALUES clause

• Host Variables

• ObjectScript: SET command

InterSystems SQL Reference 411

INTO (SQL)

ORDER BY (SQL)
A SELECT clause that specifies the sorting of rows in a result set.

Synopsis

ORDER BY orderItem
ORDER BY orderItem [ASC | DESC]
ORDER BY orderItem [ASC | DESC], orderItem2 [ASC | DESC]

Description
ORDER BY sorts the rows of a query result set by one or more specified ordering items, typically columns. Specify ORDER
BY as the last clause in a SELECT statement, after the FROM, WHERE, GROUP BY, and HAVING clauses. For example:

SQL

SELECT Name, AVG(Age) AS AvgAge, Home_State
FROM Sample.Person
GROUP BY Home_State
ORDER BY AvgAge

• ORDER BY orderItem sorts the rows of a query result set by the values of the specified order item, such as a column.
The rows are returned in ascending order.

This statement returns the queried rows sorted by the Home_State column in ascending order.

SQL

SELECT Name,Age,Home_State
FROM Sample.Person
ORDER BY Home_State

Example: Sort By Column Name

• ORDER BY orderItem [ASC | DESC] sorts the values in either ascending order (ASC) or descending order (DESC).

This statement returns the queried rows sorted by the Home_State column in descending order.

SQL

SELECT Name,Age,Home_State
FROM Sample.Person
ORDER BY Home_State DESC

Example: Using a TOP Clause with ORDER BY

• ORDER BY orderItem [ASC | DESC], orderItem2 [ASC | DESC] sorts the values sequentially by one or more order
items.

This statement returns the queried rows sorted first by the Home_State column in ascending order, then sorted by
the Age column in descending order.

SQL

SELECT Name,Age,Home_State
FROM Sample.Person
ORDER BY Home_State,Age DESC

Examples:

– Sort By Column Name

412 InterSystems SQL Reference

SQL Clauses

– Sort By Column Alias

– Sort By Column Number

The ORDER BY clause is applied after the execution of window functions in the SELECT list (including a window
function’s own ORDER BY clause). Therefore, the values returned by a window function are not affected by the SELECT
query’s ORDER BY clause.

If you omit the ORDER BY clause, the returned row order is unspecified and can differ with each statement execution.

ORDER BY sorts rows by the Logical (internal storage) data value, regardless of the current Select Mode setting. For
more details on how ORDER BY sorts rows, see ORDER BY Collation.

Arguments

orderItem

An item, or comma-separated list of items, that specifies the order by which to sort the query result set. You can specify
the items in orderItem as any combination of the following:

• The name of a column in the table. The column does not need to be specified in the SELECT list. Column names are
not case-sensitive. Specifying a column name that is not in the table generates an SQLCODE -29 error.

• The alias of a column in the table. The alias must be specified in the SELECT list. Column aliases are not case-sensitive.

• The number of a column in the table, specified as an unsigned numeric literal. The number is based on the order of
columns specified in the SELECT list. Specifying a column number that does not correspond to a SELECT list column
results in an SQLCODE -5 error.

If the first character of an orderItem is a number, InterSystems IRIS® assumes you are specifying a column number.
Integer truncation rules apply to resolve a non-integer value to an integer. For example, 1.99 resolves to 1. Otherwise,
it assumes orderItem is a column name or column alias.

You cannot specify a column number as a variable or as the result of an expression. You cannot enclose a column
number in parentheses.

• An expression evaluated on a column in the table, such as ORDER BY LENGTH(Name).

• A window function, such as ORDER BY ROW_NUMBER() OVER (PARTITION BY State).

• An aggregate function, provided that it is also specified in the SELECT list. Specifying an aggregate function only in
the ORDER BY clause generates an SQLCODE -73 error.

With few exceptions, an orderItem must be specified as a literal. You cannot use a variable or other expression that provides
a column name as a string. If an orderItem cannot be parsed as either a valid identifier (column name or column alias) or
unsigned integer (column number), that orderItem is ignored and ORDER BY execution proceeds to the next orderItem
in the comma-separated list. Some examples of ignored orderItem values include:

• Dynamic SQL ? input parameters

• Embedded SQL :var host variables

• Subqueries

• Expressions that resolve to a number

• Signed numbers

• Numbers enclosed in parentheses

InterSystems SQL Reference 413

ORDER BY (SQL)

If the orderItem property is a very long string or if you are attempting to use ORDER BY on multiple longer orderItems,
InterSystems SQL will raise an error. To avoid this, you can define TRUNCATE collation on the relevant fields. In general,
truncating at 128 characters is safe.

Examples

Sort By Column Name

This statement sorts by column names:

SQL

SELECT Name,Home_State,DOB
FROM Sample.Person
ORDER BY Home_State,Name

You can sort by column name whether or not the sort column is in the SELECT list. For example, this statement returns
the same rows in the same order as the previous statement, even though its SELECT list does not include the Home_State
column:

SQL

SELECT Name,DOB
FROM Sample.Person
ORDER BY Home_State,Name

You can sort by the RowID value even if the RowID is private and not listed in the SELECT list. Specify the %ID pseudo-
column name as the orderItem, rather than the actual RowID name. For example:

SQL

SELECT Name,DOB
FROM Sample.Person
ORDER BY %ID

An ORDER BY clause can specify a table name or table alias as part of the orderItem:

SQL

SELECT P.Name AS People,E.Name As Employees
FROM Sample.Person AS P,Sample.Employee AS E
ORDER BY P.Name

An ORDER BY clause can use the arrow syntax (–>) operator to specify a column in a table that is not the base table:

SQL

SELECT Name,Company->Name AS CompName
FROM Sample.Employee ORDER BY Company->Name,Name

Sort By Column Alias

This statement sorts by column alias.

SQL

SELECT Name,Home_State AS HS,DOB
FROM Sample.Person
ORDER BY HS,Name

This statement sorts by an expression in the SELECT list that has an alias.

414 InterSystems SQL Reference

SQL Clauses

SQL

SELECT Name,Age,$PIECE(AVG(Age)-Age,'.',1) AS AgeDev
FROM Sample.Employee ORDER BY AgeDev,Name

Sort By Column Number

This statement sorts by column number, that is, the numeric sequence of the retrieved columns specified in the SELECT
list. It sorts by Home_State (column 2), then by Name (column 1)

SQL

SELECT Name,Home_State,DOB
FROM Sample.Person
ORDER BY 2,1

This statement sorts by an expression in the SELECT list using a column number.

SQL

SELECT Name,Age,$PIECE(AVG(Age)-Age,'.',1)
FROM Sample.Employee ORDER BY 3,Name

When you sort SELECT * results by column number, if the RowID is public (default), it counts as column 1.

SQL

SELECT * FROM Sample.Person ORDER BY 1

Using a TOP Clause with ORDER BY

If a SELECT statement specifies an ORDER BY and a TOP clause, the returned "top" rows are based on the order specified
in the ORDER BY clause. For example, this statement returns the 5 rows from MyTable that have the highest age value,
ordered from older to younger.

SQL

SELECT TOP 5 Name,Age FROM MyTable ORDER BY Age DESC

Sorting by RowID changes which rows are selected by the TOP clause. For example, consider a table that has 100 rows
with sequential RowIDs. These statements returns rows 1, 2, 3, 4, 5 and rows 100, 99, 98, 97, 96, respectively.

SQL

SELECT TOP 5 %ID FROM MyTable ORDER BY %ID

SQL

SELECT TOP 5 %ID FROM MyTable ORDER BY %ID DESC

Sort Based on List Data

This statement sorts by a column containing InterSystems IRIS list data. Because an InterSystems IRIS list is an encoded
character string that begins with formatting characters, this statement uses $LISTTOSTRING to sort by the actual column
value, rather than the list element encoding:

SQL

SELECT Name,FavoriteColors
FROM Sample.Person
WHERE FavoriteColors IS NOT NULL
ORDER BY $LISTTOSTRING(FavoriteColors)

InterSystems SQL Reference 415

ORDER BY (SQL)

Sort Items Based on Host Variable Values

You can use the CASE expression to define a general-purpose query that can be ordered based on a supplied host variable
value. For example, this statement can order by either Name or Age, depending on the value of var:

SQL

SELECT Name,Age FROM Sample.Person ORDER BY
CASE WHEN :var=1 then Name
 WHEN :var=2 then Age END

This statement specifies two CASE expressions. It orders by whichever case evaluates to true. If both cases evaluate to
true, it orders by Country, and within Country by City:

SELECT Country,City FROM Sample.Person ORDER BY
CASE WHEN :var1=1 then Country END,
 WHEN :var2=1 then City END

Specify the ASC and DESC argument after the CASE END keyword.

You must specify fields in a CASE expression by column name. Column aliases and column numbers are not permitted
in this context.

Sort Items Using Dynamic SQL and Embedded SQL

Dynamic SQL can use an input parameter to supply a literal value to an ORDER BY clause. It cannot use an input
parameter to supply a column name, column alias, column number, or collation keyword. This Dynamic SQL example
uses an input parameter to sort result set rows by first name:

ObjectScript

 set myquery = 4
 set myquery(1) = "SELECT TOP ? Name,Age,"
 set myquery(2) = "CURRENT_DATE AS Today"
 set myquery(3) = "FROM Sample.Person WHERE Age > ?"
 set myquery(4) = "ORDER BY $PIECE(Name,',',?)"

 set tStatement = ##class(%SQL.Statement).%New()
 set qStatus = tStatement.%Prepare(.myquery)
 if qStatus '= 1 {
 write "%Prepare failed:"
 do $System.Status.DisplayError(qStatus)
 quit }

 set rset = tStatement.%Execute(10,60,2)
 do rset.%Display()
 write !,"%Display SQLCODE=",rset.%SQLCODE

This cursor-based Embedded SQL example performs the same operation:

ObjectScript

 SET topnum=10,agemin=60,firstname=2

 &sql(DECLARE pCursor CURSOR FOR
 SELECT TOP :topnum Name,Age,CURRENT_DATE AS Today
 INTO :name,:years,:today FROM Sample.Person
 WHERE Age > :agemin
 ORDER BY $PIECE(Name,',',:firstname))

 &sql(OPEN pCursor)
 QUIT:(SQLCODE'=0)

 FOR { &sql(FETCH pCursor)
 QUIT:SQLCODE
 WRITE "Name=",name," Age=",years," today=",today,!
 }

 &sql(CLOSE pCursor)

416 InterSystems SQL Reference

SQL Clauses

Limitations
• If your SELECT query specifies an ORDER BY clause, the resulting data is not updateable. Thus, if you specify a

subsequent DECLARE CURSOR FOR UPDATE statement, the FOR UPDATE clause is ignored, and the cursor
is declared read-only.

• If the ORDER BY applies to a UNION, an ordering item must be a number or a simple column name. It cannot be an
expression. If a column name is used, it refers to result columns as they are named in the first SELECT list of the
UNION.

• When used in a subquery, an ORDER BY clause must be paired with a TOP clause. This may be a TOP ALL clause.
For example, this query is not valid because it uses a DISTINCT clause in the sorted subquery:

SELECT Name FROM Sample.Person WHERE Name =
 (SELECT DISTINCT Name FROM Sample.Employee ORDER BY Title)

The query is valid because it uses TOP ALL in the sorted subquery instead:

SQL

SELECT Name FROM Sample.Person WHERE Name =
 (SELECT TOP ALL Name FROM Sample.Employee ORDER BY Title)

• Running a query with an ORDER BY orderItem value that exceeds 400 characters can result in an SQL -400 fatal
error. This occurs because of a limitation in the maximum encoded length of a global reference, which is a fixed
InterSystems IRIS system limit. To prevent this problem, use a truncation length in the collation setting for the field
that is the basis of the ORDER BY clause.

For example, suppose the NarrativeSummary column of this query exceeds 400 characters:

SQL

SELECT LocationCity,NarrativeSummary FROM Aviation.Event
WHERE LocationCity %STARTSWITH 'Be'
ORDER BY NarrativeSummary

Adding a collation function with a maxlen truncation length allows this query to execute successfully.

SQL

SELECT LocationCity,NarrativeSummary FROM Aviation.Event
WHERE LocationCity %STARTSWITH 'Be'
ORDER BY %SQLUPPER(NarrativeSummary,400)

Performance
Each literal value used in an ORDER BY clause generates a different cached query. Literal substitution is not performed
on ORDER BY literals. This is because ORDER BY can use an integer to specify a column number. Changing this integer
would result in a fundamentally different query.

More About

ORDER BY Collation

Sorting is done in collation order. By default, the ordering of string values is done based on the collation specified for the
ORDER BY orderItem column when it was created. If your InterSystems IRIS namespace uses the default string collation
of SQLUPPER, then ORDER BY collation is not case-sensitive.

Ordering of numeric data type fields is done based on numeric collation. For expressions, the default collation is EXACT.

InterSystems SQL Reference 417

ORDER BY (SQL)

You can override the default collation for a column by applying a collation function. For example: ORDER BY
%EXACT(Name). You cannot apply a collation function to a column alias. Attempting to do so generates an SQLCODE -
29 error.

The default ascending collation sequence considers NULL to be the lowest value, followed by the empty string (''). ORDER
BY does not distinguish between the empty string and strings that consist only of blank spaces.

If the collation specified for a column is alphanumeric, leading numbers are sorted in character collation sequence, not
integer sequence. To order in integer sequence, you can use the %PLUS collation function, but this function treats all non-
numeric characters as 0.

To properly sort mixed numeric strings in numeric sequence, you must specify more than one ORDER BY orderItem.
Consider a Home_Street column that has this format:

Number StreetName StreetType

Number is an integer house number. StreetName and StreetType are strings that combine to form the full street name,
such as "Elm Street".

This statement sorts street addresses in character collation sequence.

SQL

SELECT Name,Home_Street FROM Sample.Person
ORDER BY Home_Street

This statement sorts the house number in integer sequence and the street name in character collation sequence. This statement
contains an expression and works only with a column name, not a column alias or column number.

SQL

SELECT Name,Home_Street FROM Sample.Person
ORDER BY $PIECE(%PLUS(Home_Street),' ',1),$PIECE(Home_Street,' ',2),$PIECE(Home_Street,' ',3)

ASC and DESC Collation

Sorting can be specified for each column in ascending or descending collation sequence order, as specified by the optional
ASC (ascending) or DESC (descending) keyword following the column identifier. If ASC or DESC is not specified, ORDER
BY sorts that column in ascending order. You cannot specify the ASC or DESC keyword using a Dynamic SQL ? input
parameter or an Embedded SQL :var host variable.

NULL is always the lowest value in ASC sequence and the highest value in DESC sequence.

Multiple comma-separated ORDER BY values specify a hierarchy of sort operations. For example, this statement sorts
the data values of the third-listed item (C) in the SELECT clause list in ascending order; within this sequence, it sorts the
seventh-listed item (J) values in descending order; within this, it sorts the first-listed item (A) values in ascending order.

SQL

SELECT A,B,C,M,E,X,J
FROM LetterTable
ORDER BY 3,7 DESC,1 ASC

Duplicate columns in the list of ORDER BY values have no effect. This is because the second sort is within the order of
the first sort. For example, ORDER BY Name ASC, Name DESC sorts the Name column in ascending order.

NLS Collation

If you have specified a non-default NLS (National Language Support) collation, you must make sure that all collations are
aligned and use the exact same national collation sequence. This includes not only globals used by the tables, but also
globals used for indexes, in temporary files such as in IRISTEMP and process-private globals. For more details, see SQL
Collation and NLS Collations

418 InterSystems SQL Reference

SQL Clauses

See Also
• SELECT

• UNION

• TOP

• Collation

• Querying the Database

• SQLCODE error messages

InterSystems SQL Reference 419

ORDER BY (SQL)

TOP (SQL)
A SELECT clause that specifies how many rows to return.

Synopsis

SELECT [DISTINCT clause] [TOP {[((]int[))] | ALL}]
select-item{,select-item}

Arguments

DescriptionArgument

Limits the number of rows returned to the specified integer number.
The int argument can be either a positive integer, a Dynamic SQL
input parameter (?) or an Embedded SQL host variable (:var) that
resolve to a positive integer.

In Dynamic SQL, the int value can optionally be enclosed with
single parentheses or double parentheses (double parentheses
are the preferred syntax); these parentheses suppress literal
substitution of the int value in the corresponding cached query.

int

TOP ALL is only meaningful in a subquery or in a CREATE VIEW
statement. It is used to support the use of an ORDER BY clause
in these situations, fulfilling the requirement that an ORDER BY
clause must be paired with a TOP clause in a subquery or a query
used in a CREATE VIEW. TOP ALL does not restrict the number
of rows returned.

ALL

Description
The optional TOP clause appears after the SELECT keyword and the optional DISTINCT clause, and before the first
select-item.

The TOP keyword is used in Dynamic SQL and in cursor-based Embedded SQL. In non-cursor Embedded SQL the only
meaningful use of the TOP keyword is TOP 0. Any other TOP int (where int is any non-zero integer) is valid but not
meaningful because a SELECT in non-cursor Embedded SQL always returns at most one row of data.

The TOP clause of a SELECT statement limits the number of rows returned to the number specified in int. If no TOP clause
is specified, the default is to display all the rows that meet the SELECT criteria. If a TOP clause is specified, the number
of rows displayed is either int or all of the rows that fulfill the query predicate requirements, whichever is smaller. If you
specify ALL, SELECT returns all the rows in the table that fulfill the query predicate requirements.

If no ORDER BY clause is specified in the query, the records chosen to be returned as the “top” rows are unpredictable.
If an ORDER BY clause is specified, the top rows accord to the order specified in that clause.

The DISTINCT clause (if specified) is applied before TOP, specifying that (at most) int number of unique values are to be
returned.

TOP short circuits when all rows have been delivered. Thus, if you select until you get SQLCODE 100, the FETCH that
sets SQLCODE 100 is instant.

When accessing data through a view, or through a FROM clause subquery, you can limit the number of rows returned by
using the %vid view ID, rather than (or in addition to) the TOP clause. For further details on using %vid, refer to Defining
and Using Views.

420 InterSystems SQL Reference

SQL Clauses

The TOP int Value

The int numeric value can be an integer, or a numeric string, a Dynamic SQL input parameter (?), or an input host variable
(:var) that resolve to an integer value.

The int value specifies the number of rows to return. Permitted values are 0 and positive numbers. You cannot specify the
int value as an arithmetic expression, field name, subquery column alias, scalar function, or aggregate function. A fractional
number or a numeric string is parsed as its integer value. Zero (0) is a valid int value. TOP 0 executes the query but returns
no data.

TOP ALL must be specified as a keyword in the query. You cannot specify ALL as a ? input parameter or :var host variable
value. The query parser interprets the string “ALL” supplied in this way as a numeric string with a value of 0.

Note that the TOP argument metadata is returned as xDBC data type 12 (VARCHAR) rather than 4 (INTEGER) because
it is possible to specify TOP int as a numeric string or an integer.

The int numeric value can be an integer, or a numeric string, a Dynamic SQL input parameter (?), or an input host variable
(:var) that resolve to an integer value.

The int value specifies the number of rows to return. Permitted values are 0 and positive numbers. You cannot specify the
int value as an arithmetic expression, field name, subquery column alias, scalar function, or aggregate function. A fractional
number or a numeric string is parsed as its integer value. Zero (0) is a valid int value. TOP 0 executes the query but returns
no data.

TOP ALL must be specified as a keyword in the query. You cannot specify ALL as a ? input parameter or :var host variable
value. The query parser interprets the string “ALL” supplied in this way as a numeric string with a value of 0.

Note that the TOP argument metadata is returned as database driver data type 12 (VARCHAR) rather than 4 (INTEGER)
because it is possible to specify TOP int as a numeric string or an integer.

TOP and Cached Queries

An int value can be specified with or without enclosing parentheses. These parentheses affect how a Dynamic SQL query
is cached (non-cursor Embedded SQL queries are not cached). An int value without parentheses is converted to a ?
parameter variable in the cached query. This means that repeatedly invoking the same query with different TOP int values
invokes the same cached query, rather than preparing and optimizing the query each time.

Enclosing parentheses suppress literal substitution. For example, TOP ((7)). When int is enclosed in parentheses, the
cached query preserves the specific int value. Re-invoking the query with the same TOP int value uses the cached query;
invoking the query with a different TOP int value causes SQL to prepare, optimize, and cache this new version of the query.

TOP ALL is not cached as a ? parameter variable. ALL is parsed as a keyword, not a literal. Therefore, the same query
with TOP 7 and with TOP ALL will generate two different cached queries.

An int value can be specified with or without enclosing parentheses. These parentheses affect how a Dynamic SQL query
is cached (non-cursor Embedded SQL queries are not cached). An int value without parentheses is converted to a ?
parameter variable in the cached query. This means that repeatedly invoking the same query with different TOP int values
invokes the same cached query, rather than preparing and optimizing the query each time.

Enclosing parentheses suppress literal substitution. For example, TOP ((7)). When int is enclosed in parentheses, the
cached query preserves the specific int value. Re-invoking the query with the same TOP int value uses the cached query;
invoking the query with a different TOP int value causes SQL to prepare, optimize, and cache this new version of the query.

TOP ALL is not cached as a ? parameter variable. ALL is parsed as a keyword, not a literal. Therefore, the same query
with TOP 7 and with TOP ALL will generate two different cached queries.

TOP and ORDER BY

TOP is generally used in a SELECT with an ORDER BY clause. Note that the default ascending ORDER BY collation
sequence considers NULL to be the lowest (“top”) value, followed by the empty string ('').

InterSystems SQL Reference 421

TOP (SQL)

TOP is required in a subquery SELECT or a CREATE VIEW SELECT when specifying an ORDER BY clause. In these
cases you can specify either TOP int (to limit the number of rows to return) or TOP ALL.

TOP ALL is only used in a subquery or in a CREATE VIEW statement. It is used to support the use of an ORDER BY
clause in these situations, fulfilling the requirement that an ORDER BY clause must be paired with a TOP clause in a
subquery or a CREATE VIEW query. TOP ALL does not restrict the number of rows returned. TOP ALL ... ORDER BY
does not change default SELECT optimization. The ALL keyword cannot be enclosed in parentheses.

TOP Optimization

By default, a SELECT optimizes for fastest time to return all data. Adding both a TOP int clause and an ORDER BY
clause optimizes for fastest time to return first row. (Note that both clauses are required to change the optimization.) You
can use the %SYS.PTools.StatsSQL class TotalTimeToFirstRow property to return the time required to return the first row.

The following are special case optimizations:

• You may wish to use the TOP and ORDER BY optimization strategy without limiting the number of rows returned;
for example, if you are returning data that is displayed in page units. In such a case, you may want to issue a TOP
clause with an int value larger than the total number of rows.

• You may wish to limit the number of rows returned and specify their order without changing the default SELECT
optimization. In this case, specify a TOP clause, an ORDER BY clause, and the %NOTOPOPT keyword to preserve
fastest time to return all data optimization. See FROM for more details.

TOP with Aggregates and Functions

An aggregate function or a scalar function can only return a single value. If the query select-item list contains only aggregates
and functions, the application of the TOP clause is as follows:

• If the select-item list contains an aggregate function, for example COUNT(*) or AVG(Age), and does not contain any
field references, no more than one row is returned, regardless of the TOP int value or the presence of an ORDER BY
clause. These clauses are validated, but ignored. This is shown in the following examples:

SQL

SELECT TOP 5 AVG(Age),CURRENT_TIMESTAMP(3) FROM Sample.Person
 /* returns 1 row */

SQL

SELECT TOP 1 AVG(Age),CURRENT_TIMESTAMP(3) FROM Sample.Person ORDER BY Age
 /* returns 1 row */

• If the select-item list contains one or more scalar functions, expressions, literals (such as %TABLENAME), subqueries,
or host variables, and does not contain any field references or aggregates, the TOP clause is applied. This is shown in
the following example:

SQL

SELECT TOP 5 ROUND(678.987,2),CURRENT_TIMESTAMP(3) FROM Sample.Person
 /* returns 5 identical rows */

The actual number of rows returned depends on the number of rows in the table, even when table fields are not referenced.
For example:

SQL

SELECT TOP 300 CURRENT_TIMESTAMP(3) FROM Sample.Person
 /* returns either the number of rows in Sample.Person
 or 300 rows, whichever is smaller */

422 InterSystems SQL Reference

SQL Clauses

When the query is restricted by a predicate condition, the number of rows returned is restricted by that condition, even
when table fields are not referenced in the select-item list. For example:

SQL

SELECT TOP 300 CURRENT_TIMESTAMP(3) FROM Sample.Person WHERE Home_State = 'MA'
 /* returns either the number of rows in Sample.Person
 where Home_State = 'MA'
 or 300 rows, whichever is smaller */

• If the SELECT statement does not contain a FROM clause, at most one row is returned, regardless of the TOP value.
For example:

SQL

SELECT TOP 5 ROUND(678.987,2),CURRENT_TIMESTAMP(3)
 /* returns 1 row */

• The DISTINCT clause further limits the TOP clause. If there are fewer distinct values than the TOP value, only the
rows with distinct values are returned. When only scalar functions are referenced, only one row is returned. For
example:

SQL

SELECT DISTINCT TOP 15 CURRENT_TIMESTAMP(3) FROM Sample.Person
 /* returns 1 row */

• TOP 0 always returns no rows, regardless of the contents of the select-item list, or whether the SELECT statement
contains a FROM clause or a DISTINCT clause.

In non-cursor Embedded SQL, a query with TOP 0 returns no rows and sets SQLCODE=100; a non-cursor Embedded
SQL query with TOP 1 (or any other TOP int value) returns one row and sets SQLCODE=0. In cursor-based Embedded
SQL, completion of the fetch loop always sets SQLCODE=100, regardless of the TOP int value.

Examples
The following query returns the first 20 rows retrieved from Sample.Person in the order that they are stored in the database.
This record order is generally not predictable.

SQL

SELECT TOP 20 Home_State,Name FROM Sample.Person

The following query returns the first 20 distinct Home_State values retrieved from Sample.Person in ascending collation
sequence order.

SQL

SELECT DISTINCT TOP 20 Home_State FROM Sample.Person ORDER BY Home_State

The following query returns the first 40 distinct FavoriteColor values. The “top” rows reflect the ORDER BY clause
sequencing of all of the rows in Sample.Person in descending (DESC) collation sequence. Descending collation sequence
is used rather than the default ascending collation sequence because the FavoriteColors field is known to have NULLs,
which would appear at the top of the ascending collation sequence.

SQL

SELECT DISTINCT TOP 40 FavoriteColors FROM Sample.Person
 ORDER BY FavoriteColors DESC

InterSystems SQL Reference 423

TOP (SQL)

Also note in the preceding example that because FavoriteColors is a list field, the collation sequence includes the element
length byte. Thus six-letter elements (YELLOW, PURPLE, ORANGE) collate together, listed before five-letter elements
(WHITE, GREEN, etc.).

Dynamic SQL can specify the int value as an input parameter (indicated by “?”). In the following example, the TOP ?
input parameter is set to 10 by the %Execute method:

ObjectScript

 SET myquery = "SELECT TOP ? Name,Age FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(10)
 DO rset.%Display()

The following cursor-based Embedded SQL example performs the same operation:

ObjectScript

 SET topnum=10
 &sql(DECLARE pCursor CURSOR FOR
 SELECT TOP :topnum Name,Age INTO :name,:years FROM Sample.Person
)
 &sql(OPEN pCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH pCursor)
 QUIT:SQLCODE
 WRITE "Name=",name," Age=",years,!
 }
 &sql(CLOSE pCursor)

See Also
• SELECT statement

• DISTINCT clause

• ORDER BY clause

• Querying the Database

424 InterSystems SQL Reference

SQL Clauses

UNION (SQL)
Combines two or more SELECT statements.

Synopsis

select-statement {UNION [ALL] [%PARALLEL] select-statement}

select-statement {UNION [ALL] [%PARALLEL] (query)}

(query) {UNION [ALL] [%PARALLEL] select-statement}

(query) {UNION [ALL] [%PARALLEL] (query)}

Description
A UNION combines two or more queries into a single query that retrieves data into a result. The queries that are combined
by a UNION can be simple queries, consisting of a single SELECT statement, or compound queries.

For a union to be possible between SELECT statements, the number of columns specified in each leg must match. Speci-
fying SELECTs with different numbers of columns results in an SQLCODE -9 error. You can specify a NULL column in
one SELECT to pair with a data column in another SELECT in order to match the number of columns. For example:

SQL

SELECT Name,Salary,BirthDate
FROM Sample.Employee
UNION ALL
SELECT Name,NULL,BirthDate
FROM Sample.Person

CAUTION: To use the SELECT * syntax in a UNION, the tables must contain the same number of columns. Therefore,
future changes to the table definition by adding or deleting a column may cause unforeseen errors in unions
of this sort.

InterSystems SQL determines the result column data types by automatically evaluating all legs of the UNION query and
returning the data type with the highest precedence as follows: VARCHAR, DOUBLE, NUMERIC, BIGINT, INTEGER,
SMALLINT, TINYINT. Other data types, such as DATE, are not assigned precedence. For example, the following program
returns data type TINYINT, even though the DATE data type has a higher precedence in other contexts.

SQL

SELECT MyTinyIntField FROM Table1
 UNION ALL
SELECT MyDateField FROM Table2

If you want to return a data type other than the ones listed, you have to use an explicit CAST statement, as shown in the
following example:

SQL

SELECT CAST(MyTinyInt AS DATE) FROM Table1
 UNION ALL
SELECT MyDateField FROM Table2

If the columns in the legs of the union differ in length, precision, or scale, the result column is assigned the largest value.

Result column names are taken from the name of the column (or column alias) in the first leg of the union. In situations
where the corresponding columns in the two legs do not have the same names, it may be useful to use the same column
alias in all of the legs to identify the result column.

If any column in any of the UNION legs is nullable, the result column metadata is reported as nullable.

InterSystems SQL Reference 425

UNION (SQL)

String fields in the UNION result have the collation type of the corresponding SELECT fields, but are assigned EXACT
collation if the field collations do not match.

UNION and UNION ALL

An ordinary UNION eliminates duplicate rows (all values identical) from the result. A UNION ALL preserves duplicate
rows in the result.

Fields of different precision do not have identical values. For example, the values 33 (data type NUMERIC(9)) and 33.00
(data type NUMERIC(9,2)) are not considered identical.

Fields with different collations do not have identical values. For example, MyStringField and %SQLUPPER(MyStringField)
are not considered identical, even if both values are all uppercase.

TOP and ORDER BY Clauses

A UNION statement can conclude with an ORDER BY clause which orders the result. This ORDER BY applies to the
whole statement; it must be part of the outermost query, not a subquery. It does not have to be paired with a TOP clause.
The following example shows this use of ORDER BY: the two SELECT statements select data, the data is combined by
the UNION, then the ORDER BY sequences the results:

SQL

SELECT Name,Home_Zip FROM Sample.Person
 WHERE Home_Zip %STARTSWITH 9
UNION
SELECT Name,Office_Zip FROM Sample.Employee
 WHERE Office_Zip %STARTSWITH 8
ORDER BY Home_Zip

Using a column number in ORDER BY that does not correspond to a SELECT list column results in an SQLCODE -5
error. Using a column name in ORDER BY that does not correspond to a SELECT list column results in an SQLCODE
-6 error.

Either SELECT statements (or both) in a union can also contain an ORDER BY clause, but it must be paired with a TOP
clause. This ORDER BY is applied to determine which rows are selected by the TOP clause. The following example
shows this use of ORDER BY: the two SELECT statements each use an ORDER BY to sequence their rows, which
determines which rows are selected as the top rows. The selected data is combined by the UNION, then the final ORDER
BY sequences the results:

SQL

SELECT TOP 5 Name,Home_Zip FROM Sample.Person
 WHERE Home_Zip %STARTSWITH 9
 ORDER BY Name
UNION
SELECT TOP 5 Name,Office_Zip FROM Sample.Employee
 WHERE Office_Zip %STARTSWITH 8
 ORDER BY Office_Zip
ORDER BY Home_Zip

TOP may apply to the first SELECT in the union, or to the result of the union, depending on the placement of the ORDER
BY clause:

• TOP...ORDER BY applies to UNION result: the UNION is within a FROM clause subquery, and TOP and ORDER
BY are applied to the results of the UNION. For example:

426 InterSystems SQL Reference

SQL Clauses

SQL

SELECT TOP 10 Name,Home_Zip
 FROM (SELECT Name,Home_Zip FROM Sample.Person
 WHERE Name %STARTSWITH 'A'
 UNION
 SELECT Name,Home_Zip FROM Sample.Person
 WHERE Home_Zip %STARTSWITH 8)
ORDER BY Home_Zip

• TOP applies to first SELECT; ORDER BY applies to UNION result. For example:

SQL

SELECT TOP 10 Name,Home_Zip
 FROM Sample.Person
 WHERE Name %STARTSWITH 'A'
UNION
SELECT Name,Home_Zip FROM Sample.Person
 WHERE Home_Zip %STARTSWITH 8
ORDER BY Home_Zip

Enclosing Parentheses

UNION supports optional enclosing parentheses for either or both of its SELECT statements, or for the entire UNION
statement. You may specify one or more pairs of enclosing parentheses. The following are all valid uses of enclosing
parentheses:

(SELECT ...) UNION SELECT ...
(SELECT ...) UNION (SELECT ...)
((SELECT ...)) UNION ((SELECT ...))
(SELECT ... UNION SELECT ...)
((SELECT ...) UNION (SELECT ...))

Each use of parentheses generates a separate cached query.

UNION/OR Optimization

By default, SQL automatic optimization transforms UNION subqueries to OR conditions, where deemed appropriate. This
UNION/OR transformation allows EXISTS and other low-level predicates to migrate to top-level conditions where they
are available to InterSystems IRIS query optimizer indexing. This default transformation is desirable in most situations.
However, in some situations this UNION/OR transformation imposes a significant overhead burden. The
%NOUNIONOROPT query optimization option disables this automatic UNION/OR transformation for all conditions in
the WHERE clause associated with the FROM clause. Thus, in a complex query, you can disable automatic UNION/OR
optimization for one subquery while allowing it in other subqueries. For further information on %NOUNIONOROPT, refer
to the FROM clause.

If a condition involving a subquery is applied to a UNION, it is applied within each union operand, rather than at the end.
This allows subquery optimizations to be applied in each UNION operand. For descriptions of subquery optimization
options, refer to the FROM clause. In the following example, the WHERE clause condition is applied to each of the subqueries
in the union, rather than to the result of the union:

SQL

SELECT Name,Age FROM
 (SELECT Name,Age FROM Sample.Person
 UNION SELECT Name,Age FROM Sample.Employee)
WHERE Age IN (SELECT TOP 5 Age FROM Sample.Employee WHERE Age>55 ORDER BY Age)

UNION ALL Aggregate Optimization

SQL automatic optimization of a UNION ALL pushes a top-level aggregate into the legs of the union. This can result in
significantly improved performance with or without the %PARALLEL keyword, For example:

InterSystems SQL Reference 427

UNION (SQL)

SQL

SELECT COUNT(*) FROM (SELECT item1 FROM table1 UNION ALL SELECT item2 FROM table2)

is optimized as:

SQL

SELECT SUM(y) FROM (SELECT COUNT(*) AS y FROM table1 UNION ALL SELECT COUNT(*) AS y FROM table2)

This optimization applies to all top-level aggregate functions (not just COUNT), including queries with multiple top-level
aggregate functions. For this optimization to be applied, the outer query must be a "onerow" query, with no WHERE or
GROUP BY clause, it cannot reference %VID, and the UNION ALL must be the only stream in its FROM clause. The
aggregates cannot be nested, and any aggregate function used cannot use %FOREACH() grouping or DISTINCT.

Parallel Processing

The %PARALLEL keyword supports parallelism and distributed processing on a multiprocessor system. It causes InterSys-
tems IRIS to perform parallel processing on the UNION queries, assigning each query to a separate process on the same
machine. In some cases that process will send the query to a different machine to be processed. These processes communicate
via pipes, with InterSystems IRIS creating one or more temporary files to hold subquery results. The main process combines
the resulting rows and returns the final results. For further details, refer to the Show Plan for a UNION query, comparing
the Show Plan with and without the %PARALLEL keyword. To determine the number of processors on the current system
use the %SYSTEM.Util.NumberOfCPUs() method.

In general, the more effort expended to produce each row, the more beneficial %PARALLEL becomes.

Specifying the %PARALLEL keyword disables automatic UNION-to-OR optimizations.

The following examples show the use of the %PARALLEL keyword:

SQL

SELECT Name FROM Sample.Employee WHERE Name %STARTSWITH 'A'
UNION %PARALLEL
SELECT Name FROM Sample.Person WHERE Name %STARTSWITH 'A'
ORDER BY Name

SQL

SELECT Name FROM Sample.Employee WHERE Name %STARTSWITH 'A'
UNION ALL %PARALLEL
SELECT Name FROM Sample.Person WHERE Name %STARTSWITH 'A'
ORDER BY Name

%PARALLEL is intended for SELECT queries and their subqueries. An INSERT command subquery cannot use
%PARALLEL.

Adding the %PARALLEL keyword may not be appropriate for all UNION queries, and may result in an error. The following
SQL constructs generally do not support UNION %PARALLEL execution: an outer join, a correlated field, an IN predicate
condition containing a subquery, or a collection predicate. UNION %PARALLEL is supported for a FOR SOME predicate,
but not for a FOR SOME %ELEMENT collection predicate. To determine if a UNION query can successfully use
%PARALLEL, test each leg of the UNION separately. Separately test each leg query by adding a FROM %PARALLEL
keyword. If one of the FROM %PARALLEL queries generates a query plan that does not show parallelization, then the
UNION query will not support %PARALLEL.

UNION ALL and Aggregate Functions

SQL automatic optimization pushes UNION ALL aggregate functions into the union leg subqueries. SQL calculates the
aggregate value for each subquery, and then combines the results to return the original aggregate value. For example:

428 InterSystems SQL Reference

SQL Clauses

SQL

SELECT COUNT(Name) FROM (SELECT Name FROM Sample.Person
 UNION ALL SELECT Name FROM Sample.Employee)

Is optimized as:

SQL

SELECT SUM(y) FROM (SELECT COUNT(Name) AS y FROM Sample.Person
 UNION ALL SELECT COUNT(Name) AS y FROM Sample.Employee)

This can result in substantial performance improvement. This optimization is applied with or without the %PARALLEL
keyword. This optimization is applied to multiple aggregate functions.

This optimization transform only occurs under the following circumstances:

• The outer query FROM clause must contain only a UNION ALL statement.

• The outer query cannot contain a WHERE clause or a GROUP BY clause.

• The outer query cannot contain a %VID (view ID) field.

• Aggregate functions cannot contain a DISTINCT or %FOREACH keyword.

• Aggregate functions cannot be nested.

Arguments

ALL

An optional keyword literal. If specified, duplicate data values are returned. If omitted, duplicate data values are suppressed.

%PARALLEL

An optional argument that specifies the %PARALLEL keyword. If specified, each side of the union is run in parallel as a
separate process.

select-statement

A SELECT statement, which retrieves data from a database.

query

A query that combines one or more SELECT statements.

Examples
The following example creates a result that contains a row for every Name found in each of the two tables; if a Name is
found in both tables, two rows are created. When the Name is an employee, it lists the office location, concatenated with
the word “office” as State, and the employee’s Title. When Name is a person, it lists the home location, concatenated with
the word “home” as State, and <null> for Title. The ORDER BY clause operates on the result; the combined rows are
ordered by Name:

SQL

SELECT Name,Office_State||' office' AS State,Title
FROM Sample.Employee
UNION
SELECT Name,Home_State||' home',NULL
FROM Sample.Person
ORDER BY Name

InterSystems SQL Reference 429

UNION (SQL)

The following two examples show the effects of the ALL keyword. In the first example, UNION returns only unique values.
In the second example, UNION ALL returns all values, including duplicates:

SQL

SELECT Name
FROM Sample.Employee
WHERE Name %STARTSWITH 'A'
UNION
SELECT Name
FROM Sample.Person
WHERE Name %STARTSWITH 'A'
ORDER BY Name

SQL

SELECT Name
FROM Sample.Employee
WHERE Name %STARTSWITH 'A'
UNION ALL
SELECT Name
FROM Sample.Person
WHERE Name %STARTSWITH 'A'
ORDER BY Name

See Also
• SELECT

• ORDER BY clause, TOP clause

• CREATE QUERY, CREATE PROCEDURE

• Querying the Database

• SQLCODE error messages

430 InterSystems SQL Reference

SQL Clauses

VALUES (SQL)
An INSERT/UPDATE clause that specifies data values for use in fields.

Synopsis

(field1{,fieldn})
 VALUES (value1{,valuen})

Description
The VALUES clause is used in an INSERT, UPDATE, or INSERT OR UPDATE statement to specify the data values to
insert into the fields. Typically:

• INSERT queries use the following syntax:

INSERT INTO tablename (fieldname1,fieldname2,...)
 VALUES (value1,value2,...)

• UPDATE queries use the following syntax:

UPDATE tablename (fieldname1,fieldname2,...)
 VALUES (value1,value2,...)

The elements in the VALUES clause correspond in sequence to the fields specified after the table name. Note if there is
only one value element specified in the VALUES clause, it is not necessary to enclose the element in parentheses.

The following example shows an INSERT statement that adds a single row to the "Employee" table:

SQL

INSERT INTO Employee (Name,SocSec,Telephone)
VALUES("Boswell",333448888,"546-7989")

SQL

INSERT INTO Employee (Name,SocSec,Telephone)
VALUES ('Boswell',333448888,'546-7989')

Insert and update queries can use a VALUES clause without requiring you to explicitly specify a list of field names after
the table name. In order to omit the list of field names after the table name, your query must meet the following two criteria:

• The number of values specified in the VALUES clause is the same as the number of fields in the table (exclusive of
the ID field).

• The values in the VALUES clause are listed in order of the internal column numbers of the fields, beginning with
column 2. Column 1 is always reserved for the system-generated ID field, and is not specified in a VALUES clause.

For example, the query:

SQL

INSERT INTO Sample.Person VALUES (5,'John')

is equivalent to the query:

SQL

INSERT INTO Sample.Person (Age,Name) VALUES (5,'John')

InterSystems SQL Reference 431

VALUES (SQL)

if the table "Sample.Person" has exactly two user-defined fields.

In this example, the value 5 is assigned to the field with the lower column number, and the value "John" is assigned to the
other field.

A VALUES clause can specify an element of an array, as in the following embedded SQL example:

ObjectScript

 &sql(UPDATE Person(Tel)
 VALUES :per('tel',)
 WHERE ID = :id)

An UPDATE query can also reference an array with unspecified last subscript. Whereas INSERT uses the presence and
absence of array elements to assign values and default values to a newly created row, UPDATE uses the presence of an
array element to indicate that the corresponding field should be updated. For example, consider the following array for a
table with six columns:

emp("profile",2)="Smith"
emp("profile",3)=2
emp("profile",3,1)="1441 Main St."
emp("profile",3,2)="Cableton, IL 60433"
emp("profile",5)=NULL
emp("profile",7)=25
emp("profile","next")="F"

Column 1 is always reserved for the ID field, and is not user-specified. The inserted "Employee" row has Column 2 ("Name")
set to "Smith"; Column 3 ("Address") set to a two-line value; Column 4 ("Department") is not specified, and is thus set to
the default; and Column 5 ("Location") set to NULL. The default value for "Location" is not used since the corresponding
array element is defined with a null value. The array elements "7" and "next" do not correspond to column numbers in the
"Employee" table, therefore the query ignores them. Here’s the UPDATE statement that uses this array:

ObjectScript

 &sql(UPDATE Employee
 VALUES :emp('profile',)
 WHERE Employee = 379)

Given the above definitions and array values, this statement will update the values of the "Name", "Address", and "Location"
fields of the "Employee" row for which Row ID = 379.

However, omitting the subscript entirely results in an SQLCODE -54 error: Array designator (last subscript omitted)
expected after VALUES.

You may also use an array reference with an UPDATE query that targets multiple rows, for example:

ObjectScript

 &sql(UPDATE Employee
 VALUES :emp('profile',)
 WHERE Type = 'PART-TIME')

A VALUES clause variable cannot use dot syntax. Therefore, the following embedded SQL example is correct:

 SET sname = state.Name
 &sql(INSERT INTO StateTbl VALUES :sname)

The following is not correct:

 &sql(INSERT INTO State VALUES :state.Name)

NULL and empty string values are different. For further details, see NULL. For backward compatibility, all empty string
('') values in older existing data are considered as NULL values. In new data, empty strings are stored in the data as
$CHAR(0). Through SQL, NULL is referenced as 'NULL'. For example:

432 InterSystems SQL Reference

SQL Clauses

SQL

INSERT INTO Sample.Person
(SSN,Name,Home_City) VALUES ('123-45-6789','Doe,John',NULL)

Through SQL, empty string is referenced as '' (two single quotes). For example:

SQL

INSERT INTO Sample.Person
(SSN,Name,Home_City) VALUES ('123-45-6789','Doe,John','')

You cannot insert a NULL value for the ID field.

Arguments

field

A field name or a comma-separated list of field names.

value

A value or comma-separated list of values. Each value is assigned to the corresponding field.

Examples
The following example inserts a record for “Doe,John” into the Sample.Person table. It then selects this record, and then
deletes this record. A second SELECT confirms the deletion.

SQL

INSERT INTO Sample.Person (Name,SSN,Home_City) VALUES ("Doe,John","123-45-6789","Metropolis")
SELECT Name,SSN,Home_City FROM Sample.Person WHERE Name ="Doe,John"
DELETE FROM Sample.Person WHERE Name="Doe,John"
SELECT Name,SSN FROM Sample.Person WHERE Name='Doe,John'

See Also
• INSERT

• INSERT OR UPDATE

• UPDATE

• SQLCODE error messages

InterSystems SQL Reference 433

VALUES (SQL)

WHERE (SQL)
A SELECT clause that specifies one or more restrictive conditions.

Synopsis

SELECT fields
 FROM table
 WHERE condition-expression

Arguments

DescriptionArgument

An expression consisting of one or more boolean predicates
governing which data values are to be retrieved.

condition-expression

Description
The optional WHERE clause can be used for the following purposes:

• To specify predicates that restrict which data values are to be returned.

• To specify an explicit join between two tables.

• To specify an implicit join between the base table and a field in another table.

The WHERE clause is most commonly used to specify one or more predicates that are used to restrict the data (filter out
rows) retrieved by a SELECT query or subquery. You can also use a WHERE clause in an UPDATE command, DELETE
command, or in a result set SELECT in an INSERT (or INSERT OR UPDATE) command.

The WHERE clause qualifies or disqualifies specific rows from the query selection. The rows that qualify are those for
which the condition-expression is true. The condition-expression can be one or more logical tests (predicates). Multiple
predicates can be linked by the AND and OR logical operators. See “Predicates and Logical Operators” for further details
and restrictions.

If a predicate includes division and there are any values in the database that could produce a divisor with a value of zero
or a NULL value, you cannot rely on order of evaluation to avoid division by zero. Instead, use a CASE statement to suppress
the risk.

A WHERE clause can specify a condition-expression that includes a subquery. The subquery must be enclosed in paren-
theses.

A WHERE clause can specify an explicit join between two tables using the = (inner join) symbolic join operator. For further
details, refer to JOIN.

A WHERE clause can specify an implicit join between the base table and a field from another table using the arrow syntax
(–>) operator. For further details, refer to Implicit Joins.

Specifying a Field

The simplest form of a WHERE clause specifies a predicate comparing a field to a value, such as WHERE Age > 21.
Valid field values include the following: a column name (WHERE Age > 21); an %ID, %TABLENAME, or %CLASS-
NAME; a scalar function specifying a column name (WHERE ROUND(Age,-1)=60), a collation function specifying a
column name (WHERE %SQLUPPER(Name) %STARTSWITH ' AB').

You cannot specify a field by column number.

434 InterSystems SQL Reference

SQL Clauses

Because the name of the RowID field can change when a table is re-compiled, a WHERE clause should avoid referring
to the RowID by name (for example, WHERE ID=22). Instead, refer to the RowID using the %ID pseudo-column name
(for example, WHERE %ID=22).

You cannot specify a field by column alias; attempting to do so generates an SQLCODE -29 error. However, you can use
a subquery to define a column alias, then use this alias in the WHERE clause. For example:

SQL

SELECT Interns FROM
 (SELECT Name AS Interns FROM Sample.Employee WHERE Age<21)
WHERE Interns %STARTSWITH 'A'

You cannot specify an aggregate field; attempting to do so generates an SQLCODE -19 error. However, you can supply
an aggregate function value to a WHERE clause by using a subquery. For example:

SQL

SELECT Name,Age,AvgAge
FROM (SELECT Name,Age,AVG(Age) AS AvgAge FROM Sample.Person)
WHERE Age < AvgAge
ORDER BY Age

Integers and Strings

If a field defined as integer data type is compared to a numeric value, the numeric value is converted to canonical form
before performing the comparison. For example, WHERE Age=007.00 parses as WHERE Age=7. This conversion occurs
in all modes.

If a field defined as integer data type is compared to a string value in Display mode, the string is parsed as a numeric value.
For instance, an empty string (''), like any non-numeric string, is parsed as the number 0. This parsing follows ObjectScript
rules for handling strings as numbers. For example, WHERE Age='twenty' parses as WHERE Age=0; WHERE
Age='20something' parses as WHERE Age=20. For further details, refer to Strings as Numbers. SQL only performs
this parsing in Display mode; in Logical or ODBC mode comparing an integer to a string value returns null.

To compare a string field with a string containing a single quote, double the single quote. For example, WHERE Name
%STARTSWITH 'O''' returns O’Neil and O’Connor, but not Obama.

Date and Time

In InterSystems SQL, dates and times are compared and stored using a Logical Mode internal representation. They can be
returned in Logical mode, Display Mode, or ODBC mode. For example, the date September 28, 1944 is represented as:
Logical mode 37891, Display mode 09/28/1944, ODBC mode 1944-09-28. When specifying a date or time in a
condition-expression, an error can occur due to a mismatch of SQL mode and date or time format, or due to an invalid date
or time value.

A WHERE clause condition-expression must use the date or time format that corresponds to the current mode. For example,
when in Logical mode, to return records with a date of birth in 2005, the WHERE clause would appear as follows: WHERE
DOB BETWEEN 59901 AND 60265. When in Display mode, the same WHERE clause would appear as follows: WHERE
DOB BETWEEN '01/01/2005' AND '12/31/2005'.

Failing to match the condition-expression date or time format to the display mode results in an error:

• In Display mode or ODBC mode, specifying date data in the incorrect format generates an SQLCODE -146 error.
Specifying time data in the incorrect format generates an SQLCODE -147 error.

• In Logical mode, specifying date or time data in the incorrect format does not generate an error, but either returns no
data or returns unintended data. This is because Logical mode does not parse a date or time in Display or ODBC format
as a date or time value. The following WHERE clause, when executed in Logical mode, returns unintended data:
WHERE DOB BETWEEN 37500 AND 38000 AND DOB <> '1944-09-28' returns a range of DOB values,
including DOB=37891 (September 28, 1944), which the <> predicate was attempting to omit.

InterSystems SQL Reference 435

WHERE (SQL)

An invalid date or time value also generates an SQLCODE -146 or -147 error. An invalid date is one that you can specify
in Display mode/ODBC mode, but InterSystems IRIS cannot convert into a Logical mode equivalent. For example, in
ODBC mode the following generates an SQLCODE -146 error: WHERE DOB > '1830-01-01' because InterSystems
IRIS cannot process a date value prior to December 31, 1840. The following in ODBC mode also generates an SQLCODE
-146 error: WHERE DOB BETWEEN '2005-01-01' AND '2005-02-29', because 2005 is not a leap year.

When in Logical mode, a Display mode or ODBC mode value is not parsed as a date or time value, and therefore its value
is not validated. For this reason, in Logical mode a WHERE clause such as WHERE DOB > '1830-01-01' does not
return an error.

Stream Fields

In most situations, you cannot use a stream field in a WHERE clause predicate. Doing so results in an SQLCODE -313
error. However, the following uses of stream fields are allowed in a WHERE clause:

• Stream null testing: you can specify the predicate streamfield IS NULL or streamfield IS NOT NULL.

• Stream length testing: you can specify a CHARACTER_LENGTH(streamfield), CHAR_LENGTH(streamfield),
or DATALENGTH(streamfield) function in a WHERE clause predicate.

• Stream substring testing: you can specify a SUBSTRING(streamfield,start,length) function in a WHERE
clause predicate.

List Structures

InterSystems IRIS supports the list structure data type %List (data type class %Library.List). This is a compressed binary
format, which does not map to a corresponding native data type for InterSystems SQL. It corresponds to data type
VARBINARY with a default MAXLEN of 32749. For this reason, Dynamic SQL cannot use %List data in a WHERE
clause comparison. For further details, refer to Data Types.

To reference structured list data, use the %INLIST predicate or the FOR SOME %ELEMENT predicate.

To use the data values of a list field in a condition-expression, you can use %EXTERNAL to compare the list values to a
predicate. For example, to return all records in which the FavoriteColors list field value consists of the single element 'Red':

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors)='Red'

When %EXTERNAL converts a list to DISPLAY format, the displayed list items appear to be separated by a blank space.
This “space” is actually the two non-display characters CHAR(13) and CHAR(10). To use a condition-expression against
more than one element in the list, you must specify these characters. For example, to return all records in which the
FavoriteColors list field value consists of the two elements 'Orange' and 'Black' (in that order):

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors)='Orange'||CHAR(13)||CHAR(10)||'Black'

Variables

A WHERE clause predicate can specify:

A %TABLENAME, or %CLASSNAME pseudo-field variable keyword. %TABLENAME returns the current table name.
%CLASSNAME returns the name of the class corresponding to the current table. If the query references multiple tables,
you can prefix the keyword with a table alias. For example, t1.%TABLENAME.

One or more of the following ObjectScript special variables (or their abbreviations): $HOROLOG, $JOB, $NAMESPACE,
$TLEVEL, $USERNAME, $ZHOROLOG, $ZJOB, $ZNSPACE, $ZPI, $ZTIMESTAMP, $ZTIMEZONE, $ZVERSION.

436 InterSystems SQL Reference

SQL Clauses

List of Predicates

The SQL predicates fall into the following categories:

• Equality Comparison Predicates

• BETWEEN Predicate

• IN and %INLIST Predicates

• %STARTSWITH Predicate and Contains Operator

• NULL Predicate

• EXISTS Predicate

• FOR SOME Predicate

• FOR SOME %ELEMENT Predicate

• LIKE, %MATCHES, and %PATTERN Predicates

• %INSET and %FIND Predicates

Predicate Case-Sensitivity

A predicate uses the collation type defined for the field. By default, string data type fields are defined with SQLUPPER
collation, which is not case-sensitive. You can define the string collation default for the current namespace and specify a
non-default field collation type when defining a field/property.

The %INLIST, Contains operator ([), %MATCHES, and %PATTERN predicates do not use the field’s default collation.
They always uses EXACT collation, which is case-sensitive.

A predicate comparison of two literal strings is always case-sensitive.

Predicate Conditions and %NOINDEX

You can preface a predicate condition with the %NOINDEX keyword to prevent the query optimizer using an index on
that condition. This is most useful when specifying a range condition that is satisfied by the vast majority of the rows. For
example, WHERE %NOINDEX Age >= 1. For further details, refer to Using %ALLINDEX, %IGNOREINDEX, and
%NOINDEX.

Predicate Condition on Outlier Value

If the WHERE clause in a Dynamic SQL query selects on a non-null outlier value, you can significantly improve performance
by enclosing the outlier value literal in double parentheses. These double parentheses cause Dynamic SQL to use the outlier
selectivity when optimizing. For example, if your business is located in Massachusetts (MA), a large percentage of your
employees will reside in Massachusetts. For the Employees table Home_State field, 'MA' is the outlier value. To optimally
select for this value, you should specify WHERE Home_State=(('MA')).

This syntax should not be used in Embedded SQL or in a view definition. In Embedded SQL or a view definition, the outlier
selectivity is always used and requires no special coding.

A WHERE clause in a Dynamic SQL query automatically optimizes for a null outlier value. For example, a clause such
as WHERE FavoriteColors IS NULL. No special coding is required for IS NULL and IS NOT NULL predicates when
NULL is the outlier value.

Outlier selectivity is determined by running the Tune Table utility.

Equality Comparison Predicates
The following are the available equality comparison predicates:

InterSystems SQL Reference 437

WHERE (SQL)

Table C–2: SQL Equality Comparison Predicates

OperationPredicate

Equals=

Does not equal<>

Does not equal!=

Is greater than>

Is less than<

Is greater than or equal to>=

Is less than or equal to<=

For example:

SQL

SELECT Name, Age FROM Sample.Person
WHERE Age < 21

SQL defines comparison operations in terms of collation: the order in which values are sorted. Two values are equal if they
collate in exactly the same way. A value is greater than another value if it collates after the second value. String field collation
takes the field’s default collation. The InterSystems IRIS default collation is not case-sensitive. Thus, a comparison of two
string field values or a comparison of a string field value with a string literal is (by default) not case-sensitive. For example,
if Home_State field values are uppercase two-letter strings:

ValueExpression

TRUE for values MA.'MA' = Home_State

TRUE for values MA.'ma' = Home_State

TRUE for values VT, WA, WI, WV, WY.'VA' < Home_State

TRUE for values AK, AL, AR.'ar' >= Home_State

Note, however, that a comparison of two literal strings is case-sensitive: WHERE 'ma'='MA' is always FALSE.

BETWEEN Predicate
The BETWEEN comparison operator allows you to select those data values that are in the range specified by the syntax
BETWEEN lowval AND highval. This range is inclusive of the lowval and highval values themselves. This is equivalent
to a paired greater than or equal to operator and a less than or equal to operator. This comparison is shown in the following
example:

SQL

SELECT Name,Age FROM Sample.Person
WHERE Age BETWEEN 18 AND 21

This returns all the records in the Sample.Person table with an Age value between 18 and 21, inclusive of those values.
Note that you must specify the BETWEEN values in ascending order; a predicate such as BETWEEN 21 AND 18 would
return no records.

Like most predicates, BETWEEN can be inverted using the NOT logical operator, as shown in the following example:

438 InterSystems SQL Reference

SQL Clauses

SQL

SELECT Name,Age FROM Sample.Person
WHERE Age NOT BETWEEN 20 AND 55
ORDER BY Age

This returns all the records in the Sample.Person table with an Age value less than 20 or greater than 55, exclusive of those
values.

BETWEEN is commonly used for a range of numeric values, which collate in numeric order. However, BETWEEN can
be used for a collation sequence range of values of any data type.

BETWEEN uses the same collation type as the column it is matching against. By default, string data types collate as not
case-sensitive.

For further details, refer to the BETWEEN predicate.

IN and %INLIST Predicates
The IN predicate is used for matching a value to an unstructured series of items. It has the following syntax:

WHERE field IN (item1,item2[,...])

Collation applies to the IN comparison as it applies to an equality test. IN uses the field’s default collation. By default,
comparisons with field string values are not case-sensitive.

The %INLIST predicate is an InterSystems IRIS extension for matching a value to the elements of an InterSystems IRIS
list structure. It has the following syntax:

WHERE item %INLIST listfield

%INLIST uses EXACT collation. Therefore, by default, %INLIST string comparisons are case-sensitive.

With either predicate you can perform equality comparisons and subquery comparisons.

For further details, refer to IN and %INLIST.

Substring Predicates
You can use the following to compare a field value to a substring:

Table C–3: SQL Substring Predicates

OperationPredicate

The value must start with the specified substring.%STARTSWITH

Contains operator. The value must contain the specified substring.[

%STARTSWITH Predicate

The InterSystems IRIS %STARTSWITH comparison operator permits you to perform partial matching on the initial
characters of a string or numeric. The following example uses %STARTSWITH. to select those records in which the
Name value begins with “S”:

SQL

SELECT Name,Age FROM Sample.Person
WHERE Name %STARTSWITH 'S'

Like other string field comparisons, %STARTSWITH comparisons use the field’s default collation. By default, string
fields are not case-sensitive. For example:

InterSystems SQL Reference 439

WHERE (SQL)

SQL

SELECT Name,Home_City,Home_State FROM Sample.Person
WHERE Home_City %STARTSWITH Home_State

For further details, refer to %STARTSWITH.

Contains Operator ([)

The Contains operator is the open bracket symbol: [. It permits you to match a substring (string or numeric) to any part of
a field value. The comparison is always case-sensitive. The following example uses the Contains operator to select those
records in which the Name value contains a “S”:

SQL

SELECT Name, Age FROM Sample.Person
WHERE Name ['S'

NULL Predicate
This detects undefined values. You can detect all null values, or all non-null values. The NULL predicate has the following
syntax:

WHERE field IS [NOT] NULL

NULL predicate conditions are one of the few predicates that can be used on stream fields in a WHERE clause.

For further details, refer to NULL.

EXISTS Predicate
This operates with subqueries to test whether a subquery evaluates to the empty set.

SQL

SELECT t1.disease FROM illness_tab t1 WHERE EXISTS
 (SELECT t2.disease FROM disease_registry t2
 WHERE t1.disease = t2.disease
 HAVING COUNT(t2.disease) > 100)

For further details, refer to EXISTS.

FOR SOME Predicate
The FOR SOME predicate of the WHERE clause can be used to determine whether or not to return any records based on
a condition test of one or more field values. This predicate has the following syntax:

FOR SOME (table [AS t-alias]) (fieldcondition)

FOR SOME specifies that fieldcondition must evaluate to true; at least one of the field values must match the specified
condition. table can be a single table or a comma-separated list of tables, and each table can optionally take a table alias.
fieldcondition specifies one or more conditions for one or more fields within the specified table. Both the table argument
and the fieldcondition argument must be delimited by parentheses.

The following example shows the use of the FOR SOME predicate to determine whether to return a result set:

SQL

SELECT Name,Age AS AgeWithWorkers
FROM Sample.Person
WHERE FOR SOME (Sample.Person) (Age<65)
ORDER BY Age

440 InterSystems SQL Reference

SQL Clauses

In the above example, if at least one field contains an Age value less than the specified age, all of the records are returned.
Otherwise, no records are returned.

For further details, refer to FOR SOME.

FOR SOME %ELEMENT Predicate
The FOR SOME %ELEMENT predicate of the WHERE clause has the following syntax:

FOR SOME %ELEMENT(field) [AS e-alias] (predicate)

The FOR SOME %ELEMENT predicate matches the elements in field with the specified predicate clause value. The
SOME keyword specifies that at least one of the elements in field must satisfy the specified predicate condition. The
predicate can contain the %VALUE or %KEY keyword.

The FOR SOME %ELEMENT predicate is a Collection Predicate.

For further details, refer to FOR SOME %ELEMENT.

LIKE, %MATCHES, and %PATTERN Predicates
These three predicates allow you to perform pattern matching.

• LIKE allows you to pattern match using literals and wildcards. Use LIKE when you wish to return data values that
contain a known substring of literal characters, or contain several known substrings in a known sequence. LIKE uses
the collation of its target for letter case comparisons.

• %MATCHES allows you to pattern match using literals, wildcards, and lists and ranges. Use %MATCHES when you
wish to return data values that contain a known substring of literal characters, or contain one or more literal characters
that fall within a list or range of possible characters, or contain several such substrings in a known sequence.
%MATCHES uses EXACT collation for letter case comparisons.

• %PATTERN allows you to specify a pattern of character types. For example, '1U4L1",".A' (1 uppercase letter, 4
lowercase letters, one literal comma, followed by any number of letter characters of either case). Use %PATTERN
when you wish to return data values that contain a known sequence of character types. %PATTERN can specify known
literal characters, but is especially useful when the data value is unimportant, but the character type format of those
values is significant.

To perform a comparison with the first characters of a string, use the %STARTSWITH predicate.

Predicates and Logical Operators
Multiple predicates can be associated using the AND and OR logical operators. Multiple predicates can be grouped using
parentheses. Because InterSystems IRIS optimizes execution of the WHERE clause using defined indexes and other opti-
mizations, the order of evaluation of predicates linked by AND and OR logical operators cannot be predicted. For this
reason, the order in which you specify multiple predicates has little or no effect on performance. If strict left-to-right eval-
uation of predicates is desired, you can use a CASE statement.

Note: The OR logical operator cannot be used to associate a FOR SOME %ELEMENT collection predicate that references
a table field with a predicate that a references a field in a different table. For example,

WHERE FOR SOME %ELEMENT(t1.FavoriteColors) (%VALUE='purple')
OR t2.Age < 65

Because this restriction depends on how the optimizer uses indexes, SQL may only enforce this restriction when
indexes are added to a table. It is strongly suggested that this type of logic be avoided in all queries.

For further details, refer to Logical Operators.

InterSystems SQL Reference 441

WHERE (SQL)

See Also
• SELECT statement

• HAVING clause

• Overview of Predicates

• Querying the Database

• SQLCODE error messages

442 InterSystems SQL Reference

SQL Clauses

WHERE CURRENT OF (SQL)
An UPDATE/DELETE clause that specifies the current row using a cursor.

Synopsis

WHERE CURRENT OF cursor

Description
The WHERE CURRENT OF clause can be used in a cursor-based Embedded SQL UPDATE or DELETE statement to
specify the cursor positioned on the record to be updated or deleted. For example:

ObjectScript

 &sql(DELETE FROM Sample.Employees WHERE CURRENT OF EmployeeCursor)

which deletes the row that the last FETCH command obtained from the "EmployeeCursor" cursor.

An Embedded SQL UPDATE or DELETE can use a WHERE clause (with no cursor), or a WHERE CURRENT OF
with a declared cursor, but not both. If you specify an UPDATE or DELETE with neither WHERE nor WHERE
CURRENT OF, all of the records in the table are updated or deleted.

UPDATE Restriction

When using a WHERE CURRENT OF clause, you cannot update a field using the current field value to generate an
updated value. For example, SET Salary=Salary+100 or SET Name=UPPER(Name). Attempting to do so results in
an SQLCODE -69 error: SET <field> = <value expression> not allowed with WHERE CURRENT OF <cursor>.

Arguments

cursor

Specifies that the operation is done at the current position of cursor, which is a cursor that points to the table.

Examples
The following Embedded SQL example shows an UPDATE operation using WHERE CURRENT OF:

ObjectScript

 NEW %ROWCOUNT,%ROWID
 &sql(DECLARE WPCursor CURSOR FOR
 SELECT Lang FROM SQLUser.WordPairs
 WHERE Lang='Sp')
 &sql(OPEN WPCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH WPCursor)
 QUIT:SQLCODE
 &sql(UPDATE SQLUser.WordPairs SET Lang='Es'
 WHERE CURRENT OF WPCursor)
 IF SQLCODE=0 {
 WRITE !,"Update succeeded"
 WRITE !,"Row count=",%ROWCOUNT," RowID=",%ROWID }
 ELSE {
 WRITE !,"Update failed, SQLCODE=",SQLCODE }
 }
 &sql(CLOSE WPCursor)

The following Embedded SQL example shows a DELETE operation using WHERE CURRENT OF:

InterSystems SQL Reference 443

WHERE CURRENT OF (SQL)

ObjectScript

 NEW %ROWCOUNT,%ROWID
 &sql(DECLARE WPCursor CURSOR FOR
 SELECT Lang FROM SQLUser.WordPairs
 WHERE Lang='En')
 &sql(OPEN WPCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH WPCursor)
 QUIT:SQLCODE
 &sql(DELETE FROM SQLUser.WordPairs
 WHERE CURRENT OF WPCursor)
 IF SQLCODE=0 {
 WRITE !,"Delete succeeded"
 WRITE !,"Row count=",%ROWCOUNT," RowID=",%ROWID }
 ELSE {
 WRITE !,"Delete failed, SQLCODE=",SQLCODE }
 }
 &sql(CLOSE WPCursor)

See Also
• DECLARE, OPEN, FETCH, CLOSE

• DELETE, UPDATE, INSERT OR UPDATE

• SQL Cursors

• SQLCODE error messages

444 InterSystems SQL Reference

SQL Clauses

SQL Predicate Conditions

InterSystems SQL Reference 445

Overview of Predicates
Describes logical conditions that evaluate to either true or false.

Use of Predicates
A predicate is a condition expression that evaluates to a boolean value, either true or false.

Predicates can be used as follows:

• In a SELECT statement's WHERE clause or HAVING clause to determine which rows are relevant to a particular
query. Note that not all predicates can be used in a HAVING clause.

• In a JOIN operation’s ON clause to determine which rows are relevant to the join operation.

• In an UPDATE or DELETE statement's WHERE clause, to determine which rows are to be modified.

• In a WHERE CURRENT OF statement's AND clause.

• In a CREATE TRIGGER statement's WHEN clause to determine when to apply triggered action code.

• In a DROP statement, such as DROP TABLE, to suppress errors occurring if the target does not exist.

List of Predicates
Every predicate contains one or more comparison operators, either symbols or keyword clauses. InterSystems SQL supports
the following comparison operators:

DescriptionComparison Operator

Equality comparison conditions. Can be used for
numeric comparisons or string collation order
comparisons. For numeric comparisons, an empty
string value ('') is evaluated as 0. A NULL in any
equality comparison always returns the empty set;
use the IS NULL predicate instead. See Relational
Operators.

= (equals)

<> (does not equal)

!= (does not equal)

> (is greater than)

>= (is greater than or equal to)

< (is less than)

<= (is less than or equal to)

Tests whether a field has undefined (NULL) values.
See IS NULL.

IS [NOT] NULL

Tests whether a value is a JSON formatted string or
an OREF to a JSON array or a JSON object. See IS
JSON.

IS [NOT] JSON

Uses a subquery to test a specified table for existence
of one or more rows. See EXISTS.

EXISTS (subquery)

Conditions the execution of a DROP command on
the existence of the specified target, suppressing the
error if it does not exist. See EXISTS.

DROP-command IF EXISTS objectname

A BETWEEN condition uses >= and <= comparison
conditions together. Match must be between two
specified range limit values (inclusive). See
BETWEEN.

BETWEEN x AND y

446 InterSystems SQL Reference

SQL Predicate Conditions

DescriptionComparison Operator

An equality condition that matches a field value to any
of the items in a comma-separated list, or any of the
items returned by a subquery. See IN.

IN (item1,item2[...,itemn])

IN (subquery)

An equality condition that matches a field value to any
of the elements in a %List structured list. See
%INLIST.

%INLIST listfield

Contains operator. Match must contain the specified
string. The Contains operator uses EXACT collation,
and is therefore case-sensitive. Must specify value in
Logical format.

[

Follows operator. Match must appear after the
specified item in collation sequence. Must specify
value in Logical format.

]

Match must begin with the specified string. See
%STARTSWITH.

%STARTSWITH string

A boolean comparison condition. The FOR SOME
condition must be true for at least one data value of
the specified field. See FOR SOME.

FOR SOME

A list element comparison condition with a %VALUE
or %KEY predicate clause. %VALUE must match the
value of at least one element of the list. %KEY must
be less than or equal to the number of elements in
the list. %VALUE and %KEY clauses can use any of
the other comparison operators. See FOR SOME
%ELEMENT.

FOR SOME %ELEMENT

A pattern match condition using literals and wildcards.
Use LIKE when you wish to return data values that
contain a known substring of literal characters, or
contain several known substrings in a known
sequence. LIKE uses the collation of its target for
letter case comparisons. (Contrast with the Contains
operator, which uses EXACT collation.) See LIKE.

LIKE

A pattern match condition using literals, wildcards,
and lists and ranges. Use %MATCHES when you
wish to return data values that contain a known
substring of literal characters, or contain one or more
literal characters that fall within a list or range of
possible characters, or contain several such
substrings in a known sequence. %MATCHES uses
EXACT collation for letter case comparisons. See
%MATCHES.

%MATCHES

InterSystems SQL Reference 447

Overview of Predicates

DescriptionComparison Operator

A pattern match condition using character types. For
example, '1U4L1",".A' (1 uppercase letter, 4
lowercase letters, one literal comma, followed by any
number of letter characters of either case). Use
%PATTERN when you wish to return data values that
contain a known sequence of character types.
%PATTERN can specify known literal characters, but
is especially useful when the data value is
unimportant, but the character type format of those
values is significant. See %PATTERN.

%PATTERN

A quantified-comparison condition. See ALL, ANY,
and SOME.

ALL

ANY

SOME

Field value comparison conditions that enable filtering
of RowId field values using an abstract,
programmatically specified temp-file or bitmap index.
%INSET supports simple comparisons. %FIND
supports comparisons involving a bitmap index.

%INSET

%FIND

NULL
A NULL is the absence of any value. By definition, it fails all boolean tests: no value is equal to NULL, no value is unequal
to NULL, no value is greater than or less than NULL. Even NULL=NULL fails as a predicate. Because the IN predicate
is a series of OR’ed equality tests, it is not meaningful to specify NULL in the IN value list. Therefore, specifying any
predicate condition eliminates any instances of that field that are NULL. The only way to include NULL fields in the result
set from a predicate condition is to use the IS NULL predicate. This is shown in the following example:

SQL

SELECT FavoriteColors FROM Sample.Person
WHERE FavoriteColors = $LISTBUILD('Red') OR FavoriteColors IS NULL

Collation
A predicate uses the collation type defined for the field. By default, string data type fields are defined with SQLUPPER
collation, which is not case-sensitive. You can define the string collation default for the current namespace and specify a
non-default field collation type when defining a field/property.

If you specify a collation type in a query, you must specify it on both sides of the comparison. Specifying a collation type
can affect index usage; for further details, refer to Index Collation.

Certain predicate comparisons can involve substrings embedded within a string: the Contains operator ([), the %MATCHES
predicate, and the %PATTERN predicate. These predicates always uses EXACT collation, and are therefore always case-
sensitive. Because some collations prepend a blank space to a string, these predicates could not perform their function if
they followed the field’s default collation. However, the LIKE predicate can use wildcards to match substrings embedded
within a string. LIKE uses the field’s default collation, which by default is not case-sensitive.

Compound Predicates
A predicate is the simplest version of a condition expression; a condition expression can consist of one or more predicates.
You can link multiple predicates together with the AND and OR logical operators. You can invert the sense of a predicate

448 InterSystems SQL Reference

SQL Predicate Conditions

by placing the NOT unary operator before the predicate. The NOT unary operator only affects the predicate that immediately
follows it. Predicates are evaluated in strict left-to-right order. You can use parentheses to group predicates. You can place
a NOT unary operator before the opening parentheses to invert the sense of a group of predicates. Spaces are not required
before or after parentheses, or between parentheses and logical operators.

The IN and %INLIST predicates are functionally equivalent to multiple OR equality predicates. The following examples
are equivalent:

ObjectScript

 SET q1="SELECT Name,Home_State FROM Sample.Person "
 SET q2="WHERE Home_State='MA' OR Home_State='VT' OR Home_State='NH'"
 SET myquery=q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

ObjectScript

 SET q1="SELECT Name,Home_State FROM Sample.Person "
 SET q2="WHERE Home_State IN('MA','VT','NH')"
 SET myquery=q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

ObjectScript

 SET list=$LISTBUILD("MA","VT","NH")
 SET q1="SELECT Name,Home_State FROM Sample.Person "
 SET q2="WHERE Home_State %INLIST(?)"
 SET myquery=q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(list)
 DO rset.%Display()

The FOR SOME %ELEMENT predicate can contain logical operators, as well as be linked to other predicates using
logical operators. This is shown in the following example:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors)(%VALUE='Red' OR %Value='White'
 OR %Value %STARTSWITH 'B')
 AND (Name BETWEEN 'A' AND 'F' OR Name %STARTSWITH 'S')
ORDER BY Name

Note the parentheses around (Name BETWEEN 'A' AND 'F' OR Name %STARTSWITH 'S'); without these grouping
parentheses, the FOR SOME %ELEMENT condition would not apply to Name %STARTSWITH 'S'.

Collection Predicates with OR
FOR SOME %ELEMENT is a Collection Predicate. The use of this predicate with the OR logical operator is restricted,
as follows. The OR logical operator cannot be used to associate a Collection Predicate that references a table field with a
predicate that a references a field in a different table. For example,

WHERE FOR SOME %ELEMENT(t1.FavoriteColors) (%VALUE='purple')
OR t2.Age < 65

Because this restriction depends on how the optimizer uses indexes, SQL may only enforce this restriction when indexes
are added to a table. It is strongly suggested that this type of logic be avoided in all queries.

InterSystems SQL Reference 449

Overview of Predicates

Predicates and %SelectMode
All predicates perform their comparisons using Logical (internal storage) data values. However, some predicates can perform
format mode conversion on the predicate value(s), converting it from ODBC or Display format to Logical format. Other
predicates cannot perform format mode conversion, and therefore must always specify the predicate value in Logical format.

Predicates that perform format mode conversion determine whether conversion is required from the data type (such as
DATE or %List) of the matching field and determine the type of conversion from the %SelectMode setting. If %SelectMode
is set to a value other than Logical format (such as %SelectMode=ODBC or %SelectMode=Display) the predicate value(s)
must be specified in the correct ODBC or Display format.

• Equality predicates perform format mode conversion. InterSystems IRIS converts the predicate value to Logical format,
then matches it with the field values. If %SelectMode is set to a mode other than Logical format, the predicate value(s)
must be specified in the %SelectMode format (ODBC or Display) for data types whose display value differs from the
Logical storage value. For example, dates, times, and %List-formatted strings. Because InterSystems IRIS automatically
performs this format conversion, specifying this type of predicate value in Logical format commonly results in an
SQLCODE error. For example, SQLCODE -146 “Unable to convert date input to a valid logical date value” (InterSystems
IRIS assumes the supplied Logical value is an ODBC or Display value and attempts to convert it to a Logical value
— which doesn’t succeed.) Affected predicates include =, <, >, BETWEEN, and IN.

• Pattern predicates cannot perform format mode conversion, because InterSystems IRIS cannot meaningfully convert
the predicate value. Therefore, the predicate value must be specified in Logical format, regardless of the %SelectMode
setting. Specifying predicate value(s) in ODBC or Display format commonly results in no data matches or unintended
data matches. Affected predicates include %INLIST, LIKE, %MATCHES, %PATTERN, %STARTSWITH, [(the
Contains operator), and] (the Follows operator).

You can use the %INTERNAL, %EXTERNAL, or %ODBCOUT format-transform functions to transform the field that
the predicate operates upon. This allows you to specify the predicate value in another format. For example, WHERE
%ODBCOut(DOB) %STARTSWITH '1955-'. However, specifying a format-transform function on a matching field prevents
the use of an index for the field. This can have a significant negative effect upon performance.

In the following Dynamic SQL example, the BETWEEN predicate (an equality predicate) must specify dates in %Select-
Mode=1 (ODBC) format:

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB BETWEEN '1950-01-01' AND '1960-01-01'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

In the following Dynamic SQL examples, the %STARTSWITH predicate (a pattern predicate) cannot perform format
mode conversion. The first example attempts to specify a %STARTSWITH for dates in the %SelectMode=ODBC format
for years in the 1950s. However, because the table does not contain birth dates that begin with $HOROLOG 195 (dates in
the year 1894), no rows are selected:

450 InterSystems SQL Reference

SQL Predicate Conditions

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %STARTSWITH '195'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following example uses the %ODBCOut format-transform function on the matching DOB field so that
%STARTSWITH can be used to select for years in the 1950s in ODBC format. However, note that this usage prevents
the use of an index on the DOB field.

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE %ODBCOut(DOB) %STARTSWITH '195'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

In the following example the %STARTSWITH predicate specifies a %STARTSWITH for dates in Logical (internal)
format. Rows with DOB Logical values beginning with 41 (dates from April 4 1953 ($HOROLOG 41000) through
December 28 1955 ($HOROLOG 41999)) are selected. The DOB field index is used:

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %STARTSWITH '41'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Predicates and PosixTime,Timestamp, and Date
Equality predicate comparisons automatically perform conversion between these different date and datetime representations.
This conversion is independent of %SelectMode. Therefore, the following are all meaningful comparison predicates:

WHERE MyPosixField = MyTimestampField
WHERE MyPosixField < CURRENT_TIMESTAMP
WHERE MyPosixField BETWEEN DATEADD('month',-1,CURRENT_TIMESTAMP) AND $HOROLOG
WHERE MyPosixField BETWEEN DATEADD('day',-1,CURRENT_DATE) AND LAST_DAY(CURRENT_DATE)

Pattern predicate comparisons, such as %STARTSWITH, do not perform conversion between different date and datetime
representations. The operate on the actual stored data value.

Suppress Literal Substitution
You can literal substitution during compile pre-parsing by enclosing the predicate argument in double parentheses. For
example, LIKE(('abc%')). This may improve query performance by improving overall selectivity and/or subscript
bounding selectivity. However, it should be avoided when the same query is called multiple times with different values,
as it will result in the creation of a separate cached query for each query call.

InterSystems SQL Reference 451

Overview of Predicates

Example
The following example uses a variety of conditions in the WHERE clause of a query:

SQL

SELECT PurchaseOrder FROM MyTable
 WHERE OrderTotal >= 1000
 AND ItemName %STARTSWITH :partname
 AND AnnualOrders BETWEEN 50000 AND 100000
 AND City LIKE 'Ch%'
 AND CustomerNumber IN
 (SELECT CustNum FROM TheTop100
 WHERE TheTop100.City='Boston')
 AND :minorder > SOME
 (SELECT OrderTotal FROM Orders
 WHERE Orders.Customer = :cust)

See Also
• SELECT statement, HAVING clause, WHERE clause

• CREATE TRIGGER

452 InterSystems SQL Reference

SQL Predicate Conditions

ALL (SQL)
Matches a value with all corresponding values from a subquery.

Synopsis

scalar-expression comparison-operator ALL (subquery)

Description
The ALL keyword works in conjunction with a comparison operator to create a predicate (a quantified comparison condition)
that is true if the value of a scalar expression matches all of the corresponding values retrieved by the subquery. The ALL
predicate compares a single scalar-expression item with a single subquery SELECT item. A subquery with more than one
select item generates an SQLCODE -10 error.

ALL can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

Where applicable, the system automatically applies Set-Valued Subquery Optimization (SVSO) to an ALL subquery. For
details on this optimization, and using the %NOSVSO keyword to override it, refer to “Query Optimization Options” on
the FROM clause reference page.

Arguments

scalar-expression

A scalar expression (most commonly a data column) whose values are being compared with the result set generated by the
subquery.

comparison-operator

One of the following comparison operators: = (equal to), <> or != (not equal to), < (less than), <= (less than or equal to),
> (greater than), >= (greater than or equal to), [(contains), or] (follows).

subquery

A subquery, enclosed in parentheses, which returns a result set from a single column that is used for the comparison with
scalar-expression.

Examples
The following example selects those ages in the Person database that are less than all of the ages in the Employee database:

SQL

SELECT DISTINCT Age FROM Sample.Person
WHERE Age < ALL
 (SELECT Age FROM Sample.Employee)
ORDER BY Age

The following example selects those names in the Person database that are longer or shorter than all of the names in the
Employee database:

SQL

SELECT $LENGTH(Name) AS NameLength,Name FROM Sample.Person
WHERE $LENGTH(Name) > ALL
 (SELECT $LENGTH(Name) FROM Sample.Employee)
OR $LENGTH(Name) < ALL
 (SELECT $LENGTH(Name) FROM Sample.Employee)

InterSystems SQL Reference 453

ALL (SQL)

The following example returns a list of states west of the Mississippi River, all of which states do not contain an employee
with the title of Manager or Director:

SQL

SELECT DISTINCT State
FROM Sample.USZipCode
WHERE Longitude < -93
 AND State != ALL
 (SELECT Home_State FROM Sample.Employee
 WHERE Title ['Manager' OR Title ['Director')
ORDER BY State

See Also
• SELECT statement, HAVING clause, WHERE clause

• ANY predicate condition

• SOME predicate condition

• Overview of Predicates

454 InterSystems SQL Reference

SQL Predicate Conditions

ANY (SQL)
Matches a value with at least one matching value from a subquery.

Synopsis

scalar-expression comparison-operator ANY (subquery)

Description
The ANY keyword works in conjunction with a comparison operator to create a predicate (a quantified comparison condition)
that is true if the value of a scalar expression matches one or more of the corresponding values retrieved by the subquery.
The ANY predicate compares a single scalar-expression item with a single subquery SELECT item. A subquery with
more than one select item generates an SQLCODE -10 error.

Note: The ANY and SOME keywords are synonyms.

ANY can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

Where applicable, the system automatically applies Set-Valued Subquery Optimization (SVSO) to an ANY subquery. For
details on this optimization, and using the %NOSVSO keyword to override it, refer to “Query Optimization Options” on
the FROM clause reference page.

Arguments

scalar-expression

A scalar expression (most commonly a data column) whose values are being compared with the result set generated by
subquery.

comparison-operator

One of the following comparison operators: = (equal to), <> or != (not equal to), < (less than), <= (less than or equal to),
> (greater than), >= (greater than or equal to), [(contains), or] (follows).

subquery

A subquery, enclosed in parentheses, which returns a result set that is used for the comparison with scalar-expression.

Example
The following example selects those employees with salaries greater than $75,000 that live in any of the states west of the
Mississippi River:

SQL

SELECT Name,Salary,Home_State FROM Sample.Employee
WHERE Salary > 75000
AND Home_State = ANY
 (SELECT State FROM Sample.USZipCode
 WHERE Longitude < -93)
ORDER BY Home_State

See Also
• SELECT statement, HAVING clause, WHERE clause

• ALL predicate condition

• SOME predicate condition

InterSystems SQL Reference 455

ANY (SQL)

• Overview of Predicates

456 InterSystems SQL Reference

SQL Predicate Conditions

BETWEEN (SQL)
Matches a value to a range of values.

Synopsis

scalar-expression BETWEEN lowval AND highval

Description
The BETWEEN predicate allows you to select those data values that are in the range specified by lowval and highval. This
range is inclusive of the lowval and highval values themselves. This is equivalent to a paired greater than or equal to oper-
ator and a less than or equal to operator. This comparison is shown in the following example:

SQL

SELECT Name,Age FROM Sample.Person
WHERE Age BETWEEN 18 AND 21
ORDER BY Age

This returns all the records in the Sample.Person table with an Age value between 18 and 21, inclusive of those values.
Note that you must specify the BETWEEN values in ascending order; a predicate such as BETWEEN 21 AND 18 would
return the null string. If none of the scalar expression values fall within the specified range, BETWEEN returns the null
string.

Like most predicates, BETWEEN can be inverted using the NOT logical operator. Neither BETWEEN nor NOT
BETWEEN can be used to return NULL fields. To return NULL fields use IS NULL. NOT BETWEEN is shown in the
following example:

SQL

SELECT Name,Age FROM Sample.Person
WHERE Age NOT BETWEEN 20 AND 55
ORDER BY Age

This returns all the records in the Sample.Person table with an Age value less than 20 or greater than 55, exclusive of those
values.

BETWEEN can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

Collation Types

BETWEEN is commonly used for a range of numeric values, which collate in numeric order. However, BETWEEN can
be used for a collation sequence range of values of any data type.

BETWEEN uses the same collation type as the column it is matching against. By default, string data types collate as
SQLUPPER, which is not case-sensitive. The “Collation” provides details on defining the string collation default for the
current namespace and specifying a non-default field collation type when defining a field/property.

If your query assigns a different collation type to the column, you must also apply this collation type to the BETWEEN
substring. This is shown in the following examples:

In the following example, BETWEEN uses the fields’ default letter case collation, SQLUPPER, which is not case-sensitive.
It returns records where Name is higher in alphabetical order than Home_State, and Home_State is higher in alphabetical
order than Home_City:

InterSystems SQL Reference 457

BETWEEN (SQL)

SQL

SELECT Name,Home_State,Home_City
FROM Sample.Person
WHERE Home_State BETWEEN Name AND Home_City
ORDER BY Home_State

In the following example, BETWEEN string comparisons are not case-sensitive, because the Home_State field is defined
as SQLUPPER. This means that the lowval and highval are functionally identical, selecting 'MA' in any lettercase:

SQL

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State
 BETWEEN 'MA' AND 'Ma'
ORDER BY Home_State

In the following example, the %SQLSTRING collation function causes BETWEEN string comparisons to be case-sensitive.
It selects those records with Home_State values of 'MA' through 'Ma', which in this data set includes 'MA', 'MD', 'ME',
'MO', 'MS', and 'MT':

SQL

SELECT Name,Home_State FROM Sample.Person
WHERE %SQLSTRING(Home_State)
 BETWEEN %SQLSTRING('MA') AND %SQLSTRING('Ma')
ORDER BY Home_State

In the following example, the BETWEEN string comparison is not case-sensitive and ignores blank spaces and punctuation
marks:

SQL

SELECT Name FROM Sample.Person
WHERE %STRING(Name) BETWEEN %SQLSTRING('OA') AND %SQLSTRING('OZ')
ORDER BY Name

Refer to %SQLUPPER for further information on case transformation functions.

The following example shows BETWEEN used in an INNER JOIN operation ON clause. It is performing a string compar-
ison which is not case-sensitive:

SQL

SELECT P.Name AS PersonName,E.Name AS EmpName
FROM Sample.Person AS P INNER JOIN Sample.Employee AS E
ON P.Name BETWEEN 'an' AND 'ch' AND P.Name=E.Name

%SelectMode

If %SelectMode is set to a value other than Logical format, the BETWEEN predicate values must be specified in the
%SelectMode format (ODBC or Display). This applies mainly to dates, times, and InterSystems IRIS format lists (%List).
Specifying predicate value(s) in Logical format commonly results in an SQLCODE error. For example, SQLCODE -146
“Unable to convert date input to a valid logical date value”.

In the following Dynamic SQL example, the BETWEEN predicate must specify dates in %SelectMode=1 (ODBC) format:

458 InterSystems SQL Reference

SQL Predicate Conditions

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB BETWEEN '1950-01-01' AND '1960-01-01'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Arguments

scalar-expression

A scalar expression (most commonly a data column) whose values are being compared with the range of values between
lowval and highval (inclusive).

expression

Expression that resolves to the low collation sequence value specifying the beginning of a range of values to match with
each value in scalar-expression.

expression

Expression that resolves to the high collation sequence value specifying the end of a range of values to match with each
value in scalar-expression.

See Also
• SELECT statement, HAVING clause, WHERE clause

• Overview of Predicates

• Collation

InterSystems SQL Reference 459

BETWEEN (SQL)

EXISTS (SQL)
Checks for the existence of a given object.

Synopsis

Checking a table for the existence of at least one row

EXISTS select-statement

Suppressing errors if the target of a DROP command does not exist

DROP-command IF EXISTS name

Ignoring a CREATE TABLE command if target already exists, suppressing errors

CREATE TABLE IF NOT EXISTS name

Arguments

DescriptionArgument

A simple query, usually containing a condition expression.select-statement

One of the following commands: DROP AGGREGATE, DROP
DATABASE, DROP FUNCTION, DROP INDEX, DROP METHOD, DROP
PROCEDURE, DROP QUERY, DROP ROLE, DROP TABLE, DROP
TRIGGER, DROP USER, DROP VIEW.

DROP-command

Description
The EXISTS predicate is used to test a specified table, typically for existence of at least a row. Since the SELECT statement
following the EXISTS is being checked for containing something, the clause is often of the form:

EXISTS (SELECT... FROM... WHERE...)

where a typical statement might be:

SQL

SELECT name
 FROM Table_A
 WHERE EXISTS
 (SELECT *
 FROM Table_B
 WHERE Table_B.Number = Table_A.Number)

In this example, the predicate tests for the existence of one or more rows specified by the subquery.

Note that the test must occur on a SELECT statement (not on a UNION).

The NOT EXISTS clause tests for the non-existence of a row in a table, as shown in the following example:

SQL

SELECT EmployeeName,Age
 FROM Employees
 WHERE NOT EXISTS (SELECT * FROM BonusTable
 WHERE NOT (BonusTable.Result = 'Positive'
 AND Employees.EmployeeNum = BonusTable.EmployeeNum))

460 InterSystems SQL Reference

SQL Predicate Conditions

EXISTS can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

Where applicable, the system automatically applies Set-Valued Subquery Optimization (SVSO) to an EXISTS or NOT
EXISTS subquery. For details on this optimization, and using the %NOSVSO keyword to override it, refer to “Query
Optimization Options” on the FROM clause reference page.

The variation IF EXISTS can be used to condition the execution of a DROP command (such as DROP TABLE) on the
existence of its target, as in the following statement:

SQL

DROP TABLE IF EXISTS Records

In this example, no error will occur if the table Records does not exist. The statement will return SQLCODE 1 and a message.
This behavior takes priority to settings which govern DDL statements in the Management Portal or the configuration
parameter file (CPF), which suppress the error silently.

Similarly, IF NOT EXISTS can be specified when using the command CREATE TABLE, as in the following statement:

CREATE TABLE IF NOT EXISTS Records (...)

In this example, if a Records table already exists, the command will do nothing. No error will occur, and the statement will
return SQLCODE 1 and a message. This behavior takes priority over settings which govern DDL statements in the Man-
agement Portal or the configuration parameter file (CPF), which effectively overwrite the existing table and suppress the
error silently. For further details, consult the section on methods to check for existing tables on the reference page.

See Also
• SELECT statement, HAVING clause, WHERE clause

• Overview of Predicates

InterSystems SQL Reference 461

EXISTS (SQL)

%FIND (SQL)
Matches a value to a set of generated values with bitmap chunks iteration.

Synopsis

scalar-expression %FIND valueset [SIZE ((nn))]

Description
The %FIND predicate allows you to filter a result set by selecting those data values that match the values specified in
valueset, iterating through values in a sequence of bitmap chunks. This match is successful when a scalar-expression value
matches a value in valueset. If the valueset values do not match any of the scalar expression values, %FIND returns the
null string. This match is always performed on the logical (internal storage) data value, regardless of the display mode.

%FIND, like the other comparison conditions, is used in the WHERE clause or the HAVING clause of a SELECT
statement.

%FIND enables filtering of field values using an abstract, programmatically specified set of matching values. Specifically,
it enables filtering of RowId field values using an abstract, programmatically specified bitmap, where valueset behaves
similar to the subscript layer of a bitmap index.

The user-defined class is derived from the abstract class %SQL.AbstractFind. this abstract class defines the ContainsItem()
boolean method. The ContainsItem() method matches the scalar-expression values to the valueset values.

Iteration through values in a sequence of bitmap chunks is performed using the following three methods:

• GetChunk(c), which returns the bitmap chunk with chunk number c.

• NextChunk(.c), which returns the first bitmap chunk with chunk number > c.

• PreviousChunk(.c), which returns the first bitmap chunk with chunk number < c.

Refer to %SQL.AbstractFind for further details concerning these four methods.

Collation Types

%FIND uses the same collation type as the column it is matched against. By default, string data type fields are defined
with SQLUPPER collation, which is not case-sensitive. You can define the string collation default for the current namespace
and specify a non-default field collation type when defining a field/property. If you assign a different collation type to the
column, you must also apply this collation type to the %FIND substring. Refer to %SQLUPPER for further information
on case transformation functions.

SIZE Clause

The optional %FIND SIZE clause provides the integer nn, which specifies an order-of-magnitude estimate of the number
of values in valueset. InterSystems IRIS uses this order-of-magnitude estimate to determine the optimal query plan. Specify
nn as one of the following literals: 10, 100, 1000, 10000, etc. Because nn must be available as a constant value at compile
time, it must be specified as a literal in all SQL code. Note that nesting parentheses must be specified as shown for all SQL,
with the exception of Embedded SQL.

%FIND and %INSET Compared

• %INSET is the simplest and most general interface. It supports the ContainsItem() method.

• %FIND supports iteration over bitmap chunks using a bitmap index. It emulates the functionality of the ObjectScript
$ORDER function, supporting NextChunk(), PreviousChunk(), and GetChunk() iteration methods, as well as the
ContainsItem() method.

462 InterSystems SQL Reference

SQL Predicate Conditions

Arguments

scalar-expression

A scalar expression (most commonly the RowId field of a table) whose values are being compared with valueset.

valueset

An object reference (OREF) to a user-defined object that implements bitmap chunks iteration methods and the ContainsItem()
method. This method takes a set of data values and returns a boolean when there is a match with a value in scalar-expression.

SIZE ((nn))

An optional order-of-magnitude integer (10, 100, 1000, etc.) used for query optimization.

See Also
• SELECT statement, HAVING clause, WHERE clause

• %INSET predicate

• Overview of Predicates

• SEARCH_INDEX function

InterSystems SQL Reference 463

%FIND (SQL)

FOR SOME (SQL)
Determines whether to return a record based on a condition test of field values.

Synopsis

FOR SOME (table [AS t-alias]) (fieldcondition)

Description
The FOR SOME predicate allows you to determine whether to return a record based on a boolean condition test of the
values of one or more fields in a table. If fieldcondition evaluates as true, the record is returned. If fieldcondition evaluates
as false, the record is not returned.

FOR SOME can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

Delimiting parentheses are mandatory for the table (and its optional t-alias) argument. Delimiting parentheses are also
mandatory for the fieldcondition argument. Whitespace is permitted, but not required, between these two sets of parentheses.

Commonly, FOR SOME is used to determine whether to return a record from a table based on the contents of a record in
another table. FOR SOME can also be used to determine whether to return a record from a table based on the contents of
a record in the same table. In this latter case, either all records are returned or no records are returned.

Compound Conditions

A fieldcondition can contain more than one condition expression. The set of conditions is enclosed in parentheses. Multiple
conditions are specified with the logical operators AND and OR, which can also be specified using the & and ! symbols.
A logical operator may be followed by the NOT unary operator. By default, conditions are evaluated in left-to-right order.
You can specify a different order of evaluation by grouping multiple conditions using parentheses.

SQL

SELECT Name,COUNT(Name) AS NameCount
FROM Sample.Person AS p
WHERE FOR SOME (Sample.Employee AS e)(e.Name=p.Name AND p.Name %STARTSWITH 'A')
ORDER BY Name

SQL

SELECT Name,COUNT(Name) AS NameCount
FROM Sample.Person AS p
WHERE FOR SOME (Sample.Employee AS e)(e.Name=p.Name OR p.Name %STARTSWITH 'A')
ORDER BY Name

Multiple Tables

You can specify multiple tables as a comma-separated list before the fieldcondition. The condition that determines whether
to return records may reference the table from which data is being selected, or may reference field values in another table.
Table aliases are usually required to associate each specified field with its table.

Arguments

table

table can be a single table or a comma-separated list of tables. The enclosing parentheses are mandatory.

AS t-alias

An optional alias for the preceding table name. An alias must be a valid identifier; it can be a delimited identifier.

464 InterSystems SQL Reference

SQL Predicate Conditions

fieldcondition

fieldcondition specifies one or more condition expressions referencing one or more fields. Thefieldcondition is enclosed
with parentheses. You can specify multiple condition expressions within fieldcondition using AND (&) and OR (!) logical
operators.A subquery, enclosed in parentheses, which returns a result set from a single column that is used for the compar-
ison with scalar-expression.

Examples
In the following example, FOR SOME returns all records in the Sample.Person table in which its Name field value matches
the Name field value in the Sample.Employee table:

SQL

SELECT Name,COUNT(Name) AS NameCount
FROM Sample.Person AS p
WHERE FOR SOME (Sample.Employee AS e)(e.Name=p.Name)
ORDER BY Name

In the following example, FOR SOME returns records in the Sample.Person table based on a boolean test of the same
table. This program returns all Sample.Person records if at least one record has an Age value greater than 65. Otherwise,
it returns no records. Because at least one record in Sample.Person has an Age field value greater than 65, all Sample.Person
records are returned:

SQL

SELECT Name,Age,COUNT(Name) AS NameCount
FROM Sample.Person
WHERE FOR SOME (Sample.Person)(Age>65)
ORDER BY Age

Like most predicates, FOR SOME can be inverted using the NOT logical operator, as shown in the following example:

SQL

SELECT Name,Age,COUNT(Name) AS NameCount
FROM Sample.Person
WHERE NOT FOR SOME (Sample.Person)(Age>65)
ORDER BY Age

In the following example, FOR SOME returns all records in the Sample.Person table in which its Name field value matches
the Name field value in the Sample.Employee table, and their residence (Home_State) is in the same state as their office
(Office_State):

SQL

SELECT Name,Home_State,COUNT(Name) AS NameCount
FROM Sample.Person AS p
WHERE FOR SOME (Sample.Employee AS e)(p.Name=e.Name AND p.Home_State=e.Office_State)
ORDER BY Name

In the following example, all records are returned if there is at least one Name in the Sample.Person table that is also found
in the Sample.Employee table. Because this condition is true for at least one record, all Sample.Person records are returned:

SQL

SELECT Name AS PersonName,Age,COUNT(Name) AS NameCount
FROM Sample.Person
WHERE FOR SOME (Sample.Employee AS e,Sample.Person AS p) (e.Name=p.Name)
ORDER BY Name

InterSystems SQL Reference 465

FOR SOME (SQL)

In the following example, all records are returned if there is at least one Name in the Sample.Person table that is also found
in the Sample.Company table. Because names of persons and names of companies (in this data set) are never the same, this
condition is not true for any record. Therefore, no Sample.Person records are returned:

SQL

SELECT Name AS PersonName,Age,COUNT(Name) AS NameCount
FROM Sample.Person
WHERE FOR SOME (Sample.Company AS c,Sample.Person AS p) (c.Name=p.Name)
ORDER BY Name

See Also
• SELECT statement, HAVING clause, WHERE clause

• Overview of Predicates

• FOR SOME %ELEMENT predicate

466 InterSystems SQL Reference

SQL Predicate Conditions

FOR SOME %ELEMENT (SQL)
Matches list element values or the number of list elements with a predicate.

Synopsis

FOR SOME %ELEMENT(field) [[AS] e-alias] (predicate)

Description
The FOR SOME %ELEMENT predicate matches the list elements in field with the specified predicate. The SOME
keyword specifies that at least one of the elements in the field must satisfy the specified predicate clause.

The predicate clause must contain either the %VALUE or the %KEY keyword, followed by a predicate condition. These
keywords are not case-sensitive.

The use of %VALUE and %KEY is explained in the following examples:

• (%VALUE=’Red’) matches all field values that contain the value Red as one of their list elements. The field may only
contain the single element Red, or it may contain multiple elements, one of which is the element Red.

• (%KEY=2) matches all field values that contain at least 2 elements. The field may contain exactly two elements or it
may contain more than two elements. The %KEY value must be a positive integer. (%KEY=0) does not match any
field values.

FOR SOME %ELEMENT cannot be used to match a field that is NULL.

The predicate clause can use any predicate condition, not just the equality condition. The following are some examples of
predicate clauses:

(%VALUE='Red')
(%VALUE > 21)
(%VALUE %STARTSWITH 'R')
(%VALUE ['e')
(%VALUE IN ('Red','Blue')
(%VALUE IS NOT NULL)
(%KEY=3)
(%KEY > 1)
(%KEY IS NOT NULL)

Note: When supplying the predicate value at runtime (using a ? input parameter or a :var input host variable), the
resulting predicate %STARTSWITH 'abc' gives better performance than the equivalent resulting predicate LIKE
'abc%'.

You can specify multiple predicate conditions using AND, OR, and NOT logical operators. InterSystems IRIS applies the
combined predicate conditions to each element. Therefore, it is not meaningful to apply two %VALUE or two %KEY
predicates using an AND test.

For example, using FOR SOME %ELEMENT to match a field containing the values Red, Green, Red Green, Black Red,
Green Yellow Red, Green Black, Yellow, or Black Yellow:

• (%VALUE='Red') matches any field containing the element Red: Red, Red Green, Black Red, and Red Yellow Green.

• (%VALUE='Red' OR %VALUE='Green') matches any field containing either element (or both, in any order): Red,
Green, Red Green, Black Red, Green Yellow Red, Green Black. This is functionally identical to (%VALUE
IN('Red','Green')).

• (%VALUE='Red' AND %VALUE='Green') matches no field values because it matches each element against both
Red and Green, and no element can have the value Red and the value Green. This predicate does not match the two-
element value Red Green.

InterSystems SQL Reference 467

FOR SOME %ELEMENT (SQL)

• (%VALUE='Red' AND %KEY=2) matches Red Green, Black Red, Green Yellow Red.

• (%VALUE='Red' OR %KEY=2) matches Red, Red Green, Black Red, Green Yellow Red, Green Black, Black Yellow.

FOR SOME %ELEMENT is a collection predicate. It can be used in most contexts where a predicate condition can be
specified, as described in Overview of Predicates. It is subject to the following restrictions:

• You cannot use FOR SOME %ELEMENT in a HAVING clause.

• You cannot use FOR SOME %ELEMENT as a predicate that selects fields for a JOIN operation.

• You cannot associate FOR SOME %ELEMENT with another predicate condition using the OR logical operator if
the two predicates reference fields in different tables. For example:

WHERE FOR SOME %ELEMENT(t1.FavoriteColors) (%VALUE='purple') OR t2.Age < 65

Because this restriction depends on how the optimizer uses indexes, SQL may only enforce this restriction when indexes
are added to a table. It is strongly suggested that this type of logic be avoided in all queries.

• You cannot use FOR SOME %ELEMENT when querying a sharded table. See Querying the Sharded Cluster.

Collection Index

An important use of FOR SOME %ELEMENT is to select elements using a collection index. If the appropriate KEYS
or ELEMENTS index is defined for field, InterSystems IRIS uses this index rather than directly referencing the field value
elements.

If the following collection index is defined:

Class Member

 INDEX fcIDX1 ON FavoriteColors(ELEMENTS);

The following query uses this index:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) (%VALUE='Red')

If the following collection index is defined:

Class Member

 INDEX fcIDX2 ON FavoriteColors(KEYS) [Type = bitmap];

The following query uses this index:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) (%KEY=2)

For further details on FOR SOME %ELEMENT with collection indexes, refer to Querying Collections.

Arguments

field

A scalar expression (most commonly a data column) whose elements are being compared with predicate.

468 InterSystems SQL Reference

SQL Predicate Conditions

AS e-alias

An optional element alias used to qualify %KEY or %VALUE within the predicate. Commonly, this alias is used when
the predicate contains a nested FOR SOME %ELEMENT condition. The alias must be a valid identifier. The AS keyword
is optional.

(predicate)

A predicate condition, enclosed in parentheses. Within this condition use %VALUE and/or %KEY to determine what the
condition is matching. %VALUE matches the element value (%VALUE=’Red’). %KEY matches the minimum number
of elements (%KEY=2). Within this condition, %VALUE and %KEY may be optionally qualified if you have specified
an e-alias. This predicate can consist of multiple condition expressions with AND and OR logical operators.

Examples
The following example uses FOR SOME %ELEMENT to return those rows where the FavoriteColors list contains the
element 'Red':

SQL

SELECT Name,FavoriteColors
FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) (%VALUE='Red')

In the following example, the %VALUE predicate contains an IN statement specifying a comma-separated list. This
example returns those rows where the FavoriteColors list contains either the element 'Red' or the element 'Blue' (or both):

SQL

SELECT Name,FavoriteColors
FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) (%VALUE IN ('Red','Blue'))

The following example uses a predicate clause with two Contains operators ([). It returns those rows where the Favorite-
Colors list has an element that contains a lowercase 'l' and a lowercase 'e' (the contains operator is case-sensitive). In this
case, the elements 'Blue', 'Yellow', and 'Purple':

SQL

SELECT Name,FavoriteColors AS Preferences
FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) AS fc (fc.%VALUE ['l' AND fc.%VALUE ['e')

This example also demonstrates how an element alias (e-alias) is used.

The following Dynamic SQL example uses %KEY to return rows based on the number of elements in FavoriteColors. The
first %Execute() sets %KEY=1, returning all rows that have one or more FavoriteColors elements. The second %Execute()
sets %KEY=2, returning all rows that have two or more FavoriteColors elements:

ObjectScript

 SET q1 = "SELECT %ID,Name,FavoriteColors FROM Sample.Person "
 SET q2 = "WHERE FOR SOME %ELEMENT(FavoriteColors) (%KEY=?)"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(1)
 DO rset.%Display()
 WRITE !,"End of data %KEY 1",!!
 SET rset = tStatement.%Execute(2)
 DO rset.%Display()
 WRITE !,"End of data %KEY 2"

InterSystems SQL Reference 469

FOR SOME %ELEMENT (SQL)

See Also
• SELECT statement, WHERE clause

• Overview of Predicates

• FOR SOME predicate

470 InterSystems SQL Reference

SQL Predicate Conditions

IN (SQL)
Matches a value to items in an unstructured comma-separated list.

Synopsis

scalar-expression IN (item1,item2[,...])
scalar-expression IN (subquery)

Arguments
DescriptionArgument

A scalar expression (most commonly a data column) whose values
are being compared with a comma-separated list of values or the
result set generated by the subquery.

scalar-expression

One or more literal values, input host variables, or expressions that
resolve to a literal value. List in any order, separate with commas.

item

A subquery, enclosed in parentheses, which returns a result set
from a single column that is used for the comparison with
scalar-expression.

subquery

Description
The IN predicate is used for matching a value to an unstructured series of items. Typically, it compares column data values
to a comma-separated list of values. IN can perform equality comparisons and subquery comparisons.

Like most predicates, IN can be inverted using the NOT logical operator. Neither IN nor NOT IN can be used to return
NULL fields. To return NULL fields use IS NULL.

IN can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

Equality Comparison

The IN predicate can serve as shorthand for the use of multiple equality comparisons linked together with the OR operator.
For instance:

SQL

SELECT Name, Home_State FROM Sample.Person
WHERE Home_State IN ('ME','NH','VT','MA','RI','CT')

evaluates true if Home_State equals any of the values in the comma-separated list. The listed items can be constants or
expressions.

IN comparisons use the collation type defined for the scalar-expression, regardless of the collation type of the individual
items. By default, string data type fields are defined with SQLUPPER collation, which is not case-sensitive. You can define
the string collation default for the current namespace and specify a non-default field collation type when defining a
field/property.

The following two examples show that collation matching is based on the scalar-expression collation. The Home_State
field is defined with SQLUPPER (not case-sensitive) collation. Therefore, the following example returns NH Home_State
values:

InterSystems SQL Reference 471

IN (SQL)

SQL

SELECT Name, Home_State FROM Sample.Person
WHERE Home_State IN ('ME','nH','VT')

The following example does not return NH Home_State values:

SQL

SELECT Name, Home_State FROM Sample.Person
WHERE %EXACT(Home_State) IN ('ME','nH','VT')

It is not meaningful to include NULL in the list of values. NULL is the absence of a value, and therefore fails all equality
tests. Specifying an IN predicate (or any other predicate) eliminates any instances of the specified field that are NULL.
This is shown in the following incorrect (but executable) example:

SQL

SELECT FavoriteColors FROM Sample.Person
WHERE FavoriteColors IN ($LISTBUILD('Red'),$LISTBUILD('Blue'),NULL)
 /* NULL here is meaningless. No FavoriteColor NULL fields returned */

The only way to include a field with NULL in the predicate result set is to specify the IS NULL predicate, as shown in the
following example:

SQL

SELECT FavoriteColors FROM Sample.Person
WHERE FavoriteColors IN ($LISTBUILD('Red'),$LISTBUILD('Blue')) OR FavoriteColors IS NULL

When dates or times are used for IN predicate equality comparisons, the appropriate data type conversions are automatically
performed. If the WHERE field is type TimeStamp, values of type Date or Time are converted to Timestamp. If the WHERE
field is type Date, values of type TimeStamp or String are converted to Date. If the WHERE field is type Time, values of
type TimeStamp or String are converted to Time.

The following examples both perform the same equality comparisons and return the same data. The DOB field is of data
type Date:

SQL

SELECT Name,DOB FROM Sample.Person
WHERE DOB IN ({d '1951-02-02'},{d '1987-02-28'})

SQL

SELECT Name,DOB FROM Sample.Person
WHERE DOB IN ({ts '1951-02-02 02:37:00'},{ts '1987-02-28 16:58:10'})

For further details refer to Date and Time Constructs.

%SelectMode

If %SelectMode is set to a value other than Logical format, the IN predicate values must be specified in the %SelectMode
format (ODBC or Display). This applies mainly to dates, times, and InterSystems IRIS format lists (%List). Specifying
predicate values in Logical format commonly results in an SQLCODE error. For example, SQLCODE -146 “Unable to
convert date input to a valid logical date value”.

In the following Dynamic SQL example, the IN predicate must specify dates in %SelectMode=1 (ODBC) format:

472 InterSystems SQL Reference

SQL Predicate Conditions

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB IN('1956-03-05','1956-04-08','1956-04-18','1956-12-08')"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Subquery Comparison

You can use the IN predicate with a subquery to test whether a column value (or any other expression) equals any of the
subquery row values. For example:

SQL

SELECT Name,Home_State FROM Sample.Person
WHERE Name IN
 (SELECT Name FROM Sample.Employee
 HAVING Salary < 50000)

Note that the subquery must have exactly one select-item in the SELECT list.

The following example uses an IN subquery to return the Employee states that are not Vendor states:

SQL

SELECT Home_State
FROM Sample.Employee
WHERE Home_State NOT IN (SELECT Address_State FROM Sample.Vendor)
GROUP BY Home_State

The following example matches a collation function expression to an IN predicate with a subquery:

SQL

SELECT Name,Id FROM Sample.Person
WHERE %EXACT(Spouse) NOT IN
 (SELECT Id FROM Sample.Person
 WHERE Age < 65)

An IN cannot specify both a subquery and a comma-separated list of literal values.

Literal Substitution Override

You can override literal substitution during compile pre-parsing by enclosing each IN predicate argument with parentheses.
For example, WHERE Home_State IN (('ME'),('NH'),('VT'),('MA'),('RI'),('CT')). This may improve
query performance by improving overall selectivity and/or subscript bounding selectivity. However, it should be avoided
when the same query is called multiple times with different values, as it will result in the creation of a separate cached
query for each query call.

IN and %INLIST

Both the IN and %INLIST predicates can be used to supply multiple values to use for OR equality comparisons. The
%INLIST predicate is used for matching a value to the elements of a %List structure. In Dynamic SQL you can supply
the %INLIST predicate values as a single host variable. You must supply the IN predicate values as individual host variables.
Therefore, changing the number of IN predicate values results in the creation of a separate cached query. %INLIST takes
a single predicate value, a %List with multiple elements; changing the number of %List elements does not result in the
creation of a separate cached query. %INLIST also provides an order-of-magnitude SIZE argument that SQL uses to
optimize performance. For these reasons it is often advantageous to use %INLIST($LISTFROMSTRING(val)) rather
than IN(val1,val2,val3,..valn).

InterSystems SQL Reference 473

IN (SQL)

%INLIST can perform equality comparisons; it cannot perform subquery comparisons.

For further details, refer to %INLIST.

See Also
• SELECT statement, HAVING clause, WHERE clause

• %INLIST predicate

• Overview of Predicates

474 InterSystems SQL Reference

SQL Predicate Conditions

%INLIST (SQL)
Matches a value to the elements in a %List structured list.

Synopsis

scalar-expression %INLIST list [SIZE ((nn))]

Arguments

DescriptionArgument

A scalar expression (most commonly a data column) whose values
are being compared with list elements.

scalar-expression

A %List structure containing one or more elements.list

Optional — An integer specifying an order-of-magnitude estimate of
the number of elements in list. Must be specified as a literal with one
of the following values: 10, 100, 1000, 10000, and so forth.

SIZE ((nn))

Description
The %INLIST predicate is an InterSystems IRIS extension for matching the values of a field with the elements of a list
structure. Both %INLIST and IN allow you to perform such equality comparisons with multiple specified values. %INLIST
specifies these multiple values as the elements of a single list argument. Therefore, %INLIST allows you to vary the
number of values to match without creating a separate cached query.

The optional %INLIST SIZE clause provides the integer nn, which specifies an order-of-magnitude estimate of the number
of list elements in list. InterSystems IRIS uses this order-of-magnitude estimate to determine the optimal query plan. Because
the same cached query is used regardless of the number of elements in list, specifying SIZE allows you to create a cached
query optimized for the anticipated approximate number of elements in list. Changing the SIZE literal creates a separate
cached query. Specify nn as one of the following literals: 10, 100, 1000, 10000, etc. Because nn must be available as a
constant value at compile time, it must be specified as a literal in all SQL code. Note that double parentheses must be
specified as shown for all compiled SQL (Dynamic SQL). Double parentheses are not used with Embedded SQL.

%INLIST performs an equality comparison with each of the elements of list. %INLIST comparisons use the collation
type defined for the scalar-expression. Therefore, comparisons of list elements may be case-sensitive or not case-sensitive,
depending on the collation of scalar-expression. By default, string data type fields are defined with SQLUPPER collation,
which is not case-sensitive. You can define the string collation default for the current namespace and specify a non-default
field collation type when defining a field/property.

It is not meaningful to specify NULL as a comparison value. NULL is the absence of a value, and therefore fails all
equality tests. Specifying an %INLIST predicate (or any other predicate) eliminates any instances of the specified field
that are NULL. You must specify the IS NULL predicate to include fields with NULL in the predicate result set.

Like most predicates, %INLIST can be inverted using the NOT logical operator. Neither %INLIST nor NOT %INLIST
can be used to return NULL fields. To return NULL fields use IS NULL.

If the match expression is not in %List format, %INLIST generates an SQLCODE -400 error. For example, if the SqlListType
of the collection property is DELIMITED, the logical value of the list field is not in %List format. For further details on
list structures, see the SQL $LIST function.

%INLIST can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

For matching a value to an unstructured series of items, such as a comma-separated list of values, use the IN predicate. IN
can perform equality comparisons and subquery comparisons.

InterSystems SQL Reference 475

%INLIST (SQL)

%SelectMode

The %INLIST predicate does not use the current %SelectMode setting. The elements of list should be specified in Logical
format, regardless of the %SelectMode setting. Attempting to specify list elements in ODBC format or Display format
commonly results in no data matches or unintended data matches.

You can use the %EXTERNAL or %ODBCOUT format-transform functions to transform the scalar-expression field that
the predicate operates upon. This allows you to specify the list elements in Display format or ODBC format. However,
using a format-transform function prevents the use of the index for the field, and can thus have a significant performance
impact.

In the following Dynamic SQL example, the %INLIST predicate specifies a list containing date value elements for the
year 1978 in Logical format, not in %SelectMode=1 (ODBC) format. Dates that correspond to these $HOROLOG format
dates are selected:

ObjectScript

 SET bday=$LISTBUILD(50039)
 FOR i=50039:1:50403 {SET bday=bday_$LISTBUILD(i) }
 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %INLIST ?"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(bday)
 DO rset.%Display()

The following Dynamic SQL example uses the %ODBCOUT format-transform function to transform the DOB field matched
by the predicate. This allows you to specify the %INLIST list elements in ODBC format. However, specifying the format-
transform function prevents the use of an index for DOB field values:

ObjectScript

 SET births=$LISTBUILD("1978-01-15","1978-08-22","1978-10-01")
 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE %ODBCOUT(DOB) %INLIST ?"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(births)
 DO rset.%Display()

%INLIST and IN

Both the %INLIST and IN predicates can be used to supply multiple values to use for equality comparisons. The following
examples return the same results:

SQL

SELECT Name, Home_State
FROM Sample.Person
WHERE Home_State %INLIST $LISTBUILD('VT','NH','ME')

SQL

SELECT Name,Home_State
FROM Sample.Person
WHERE Home_State IN('VT','NH','ME')

For Dynamic SQL, you can supply the %INLIST predicate values as a single host variable; you must supply the IN
predicate values as individual host variables. Therefore, changing the number of IN predicate values results in the creation

476 InterSystems SQL Reference

SQL Predicate Conditions

of a separate cached query. Changing the number of %INLIST predicate values does not result in the creation of a separate
cached query. For further details, refer to Cached Queries.

Examples
The following two examples show that collation matching is based on the scalar-expression collation. The Home_State
field is defined with SQLUPPER collation which is not case-sensitive. The list in these examples specifies New Hampshire
as “nH”, rather than “NH”. The first example returns NH Home_State values, the second example does not return NH
Home_State values:

SQL

SELECT Name,Home_State
FROM Sample.Person
WHERE Home_State %INLIST $LISTBUILD("VT","nH","ME")

SQL

SELECT Name,Home_State
FROM Sample.Person
WHERE %EXACT(Home_State) %INLIST $LISTBUILD("VT","nH","ME")

The following example creates a cached query with a SIZE literal of 10. Specifying SIZE 10 is optimal for this query,
because 10 corresponds in order-of-magnitude to the actual number of elements in the list. Changing the number of elements
in the list does not create a separate cached query. Changing the SIZE literal does create a separate cached query:

SQL

SELECT Name,Home_State
FROM Sample.Person
WHERE Home_State %INLIST $LISTBUILD("VT","NH","ME") SIZE ((10))

See Also
• SELECT statement, HAVING clause, WHERE clause

• $LISTBUILD function

• IN predicate

• Overview of Predicates

InterSystems SQL Reference 477

%INLIST (SQL)

%INSET (SQL)
Matches a value to a set of generated values.

Synopsis

scalar-expression %INSET valueset [SIZE ((nn))]

Description
The %INSET predicate allows you to filter a result set by selecting those data values that match the values specified in
valueset. This match is successful when a scalar-expression value matches a value in valueset. If the valueset values do
not match any of the scalar expression values, %INSET returns the null string. This match is always performed on the
logical (internal storage) data value, regardless of the display mode.

%INSET is never true for a NULL value. Therefore, it will not match a NULL in the scalar-expression with a NULL in
valueset.

%INSET, like the other comparison conditions, is used in the WHERE clause or the HAVING clause of a SELECT
statement.

%INSET enables filtering of field values using an abstract, programmatically specified set of matching values. Specifically,
it enables filtering of RowId field values using an abstract, programmatically specified temp-file or bitmap index, where
valueset behaves similar to the lowest subscript layer of a bitmap index or a regular index.

The user-defined class is derived from the abstract class %SQL.AbstractFind. this abstract class defines the ContainsItem()
method, which is the only method supported by %INSET. The ContainsItem() method returns the valueset. Refer to
%SQL.AbstractFind for further details.

Collation Types

%INSET uses the same collation type as the column it is matched against. By default, string data type fields are defined
with SQLUPPER collation, which is not case-sensitive. You can define the string collation default for the current namespace
and specify a non-default field collation type when defining a field/property. If you assign a different collation type to the
column, you must also apply this collation type to the %INSET substring. Refer to %SQLUPPER for further information
on case transformation functions.

SIZE Clause

The optional %INSET SIZE clause provides the integer nn, which specifies an order-of-magnitude estimate of the number
of values in valueset. InterSystems IRIS uses this order-of-magnitude estimate to determine the optimal query plan. Specify
nn as one of the following literals: 10, 100, 1000, 10000, etc. Because nn must be available as a constant value at compile
time, it must be specified as a literal in all SQL code. Note that nesting parentheses must be specified as shown for all SQL,
with the exception of Embedded SQL.

%INSET and %FIND Compared

• %INSET is the simplest and most general interface. It supports the ContainsItem() method.

• %FIND supports iteration over bitmap chunks using a bitmap index. It emulates the functionality of the ObjectScript
$ORDER function, supporting NextChunk(), PreviousChunk(), and GetChunk() iteration methods, as well as the
ContainsItem() method.

•

478 InterSystems SQL Reference

SQL Predicate Conditions

Arguments

scalar-expression

A scalar expression (most commonly the RowId field of a table) whose values are being compared with valueset.

valueset

An object reference (OREF) to a user-defined object that implements a ContainsItem() method. This method takes a set
of data values and returns a boolean when there is a match with a value in scalar-expression.

SIZE ((nn))

An optional order-of-magnitude integer (10, 100, 1000, etc.) used for query optimization.

See Also
• SELECT statement, HAVING clause, WHERE clause

• %FIND predicate

• Overview of Predicates

InterSystems SQL Reference 479

%INSET (SQL)

IS JSON (SQL)
Determines if a data value is in JSON format.

Synopsis

scalar-expression IS [NOT] JSON [keyword]

Description
The IS JSON predicate determines if a data value is in JSON format.

IS JSON (with or without the optional VALUE keyword) returns true for any JSON array or JSON object. This includes
an empty JSON array '[]' or an empty JSON object '{}'.

The VALUE keyword and the SCALAR keyword are synonyms.

For further details, refer to the ObjectScript SET command subsection “JSON Object and JSON Array”.

The IS NOT JSON predicate is one of the few predicates that can be used on a stream field in a WHERE clause. Its
behavior is the same as IS NOT NULL.

IS JSON can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

Arguments

scalar-expression

A scalar expression that is being checked for JSON formatting.

keyword

An optional argument. One of the following: VALUE, SCALAR, ARRAY, or OBJECT. The default is VALUE.

Examples
The following example determines if the predicate is a properly-formatted JSON string, either a JSON object or a JSON
array:

SQL

SELECT TOP 5 Name FROM Sample.Person
 WHERE '{""name"":""Fred"",""spouse"":""Wilma""}' IS JSON

IS JSON ARRAY returns true for a JSON array OREF. IS JSON OBJECT returns true for a JSON object OREF. This
is shown in the following examples:

SQL

 SET jarray=
 WRITE "JSON array: ",jarray,!
 SET myquery = "SELECT TOP 5 Name FROM Sample.Person WHERE ? IS JSON ARRAY"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(jarray)
 DO rset.%Display()

480 InterSystems SQL Reference

SQL Predicate Conditions

ObjectScript

 SET jarray=[1,2,3,5,8,13,21,34]
 WRITE "JSON array: ",jarray,!
 SET myquery = "SELECT TOP 5 Name FROM Sample.Person WHERE ? IS JSON OBJECT"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(jarray)
 DO rset.%Display()

ObjectScript

 SET jobj={"name":"Fred","spouse":"Wilma"}
 WRITE "JSON object: ",jobj,!
 SET myquery = "SELECT TOP 5 Name FROM Sample.Person WHERE ? IS JSON OBJECT"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(jobj)
 DO rset.%Display()

The following example shows the behavior of the IS NOT JSON predicate:

SQL

SELECT Title,%OBJECT(Picture) AS PhotoOref FROM Sample.Employee
 WHERE Picture IS NOT JSON

See Also
• SELECT statement, HAVING clause, WHERE clause

• JSON_ARRAY, JSON_OBJECT functions

• JSON_ARRAYAGG aggregate function

• Overview of Predicates

InterSystems SQL Reference 481

IS JSON (SQL)

IS NULL (SQL)
Determines if a data value is NULL.

Synopsis

scalar-expression IS [NOT] NULL

Description
The IS NULL predicate detects undefined values. You can detect all null values, or all non-null values:

SQL

SELECT Name, FavoriteColors FROM Sample.Person
WHERE FavoriteColors IS NULL

SQL

SELECT Name, FavoriteColors FROM Sample.Person
WHERE FavoriteColors IS NOT NULL

The IS NULL / IS NOT NULL predicate is one of the few predicates that can be used on a stream field in a WHERE
clause. This is shown in the following example:

SQL

SELECT Title,%OBJECT(Picture) AS PhotoOref FROM Sample.Employee
WHERE Picture IS NOT NULL

IS NULL can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

The IS NULL predicate should not be confused with the SQL ISNULL function.

See Also
• SELECT statement, HAVING clause, WHERE clause

• Overview of Predicates

482 InterSystems SQL Reference

SQL Predicate Conditions

LIKE (SQL)
Matches a value with a pattern string containing literals and wildcards.

Synopsis

scalar-expression LIKE pattern [ESCAPE char]

Arguments

DescriptionArgument

A scalar expression (most commonly a data column) whose values
are being compared with pattern.

scalar-expression

A quoted string representing the pattern of characters to match with
each value in scalar-expression.The pattern string can contain literal
characters, and the underscore (_) and percent (%) wildcard
characters.

pattern

Optional — A string containing a single character.This char character
can be used in pattern to specify that the character immediately
following it is to be treated as a literal.

ESCAPE char

Description
The LIKE predicate allows you to select those data values that match the character or characters specified in pattern. The
pattern may contain wildcard characters. If pattern does not match any of the scalar expression values, LIKE returns the
null string.

LIKE can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

The LIKE predicate supports the following wildcards:

Table D–1: LIKE Wildcard Characters

MatchesCharacter

Any single character._

Any sequence of 0 or more characters. (In accordance with the SQL standard, NULL
is not considered a sequence of 0 characters, and is thus not selected by this wildcard.)

%

In Dynamic SQL or Embedded SQL, a pattern can represent wildcard characters and input parameters or input host variables
as concatenated strings, as shown in the Examples section.

Note: When supplying the predicate value at runtime (using a ? input parameter or a :var input host variable), the
resulting predicate %STARTSWITH 'abc' gives better performance than the equivalent resulting predicate LIKE
'abc%'.

Collation Types

The pattern string uses the same collation type as the column it is matching against. By default, string data type fields are
defined with SQLUPPER collation, which is not case-sensitive. You can define the string collation default for the current
namespace and specify a non-default field collation type when defining a field/property. If a query includes the ESCAPE
char clause, the escaping occurs after collation.

InterSystems SQL Reference 483

LIKE (SQL)

If LIKE is applied against a field with the SQLUPPER default collation type, the LIKE clause returns matches that ignore
letter case. You can use the SQLSTRING collation type to perform a LIKE string comparison that is case-sensitive.

The following example returns all names that contain the substring “Ro”. Because LIKE is not case-sensitive, LIKE
'%Ro%' returns Robert, Rogers, deRocca, LaRonga, Brown, Mastroni, and so forth:

SQL

SELECT Name FROM Sample.Person
WHERE Name LIKE '%Ro%'

Compare this to the Contains operator ([), which uses EXACT (case-sensitive) collation:

SQL

SELECT Name FROM Sample.Person
WHERE Name ['Ro'

By using the %SQLSTRING collation type, you can use LIKE to return only those names that contain the case-sensitive
substring “Ro”. It would not return Mastroni or Brown:

SQL

SELECT Name FROM Sample.Person
WHERE %SQLSTRING(Name) LIKE '%Ro%'

In the above example, the leading space that %SQLSTRING prepended to Name values was handled by the % wildcard.
A more robust example would specify the collation type on both sides of the predicate:

SQL

SELECT Name FROM Sample.Person
WHERE %SQLSTRING(Name) LIKE %SQLSTRING('%Ro%')

Refer to %SQLUPPER for further information on case transformation functions.

All Values, Empty String Values, and NULL

If the pattern value is percent (%), LIKE selects all values for the specified field, including empty string values:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors LIKE '%'

It does not select fields that are NULL.

Specifying a pattern value of empty string returns empty string values.

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors LIKE ''

Specifying a pattern value of NULL is not a meaningful operation. It completes successfully, but returns no values.

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors LIKE NULL

Like most predicates, LIKE can be inverted using the NOT logical operator. Neither LIKE nor NOT LIKE can be used
to return NULL fields. To return NULL fields use IS NULL.

484 InterSystems SQL Reference

SQL Predicate Conditions

ESCAPE Clause

ESCAPE permits the use of a wildcard character as a literal character within pattern. ESCAPE char, if provided and if it
is a single character, indicates that any character directly following it in pattern is to be understood as a literal character,
rather than a wildcard or formatting character. The following example shows the use of ESCAPE to return values that
contain the string '_SYS':

SQL

SELECT * FROM MyTable
WHERE symbol_field LIKE '%_SYS%' ESCAPE '\'

%SelectMode

The LIKE predicate does not use the current %SelectMode setting. A pattern should be specified in Logical format,
regardless of the %SelectMode setting. Attempting to specify a pattern in ODBC format or Display format commonly
results in no data matches or unintended data matches.

You can use the %EXTERNAL or %ODBCOUT format-transform functions to transform the scalar-expression field that
the predicate operates upon. This allows you to specify the pattern in Display format or ODBC format. However, using a
format-transform function prevents the use of the index for the field, and can thus have a significant performance impact.

In the following Dynamic SQL example, the LIKE predicate specifies the date pattern in Logical format, not in %Select-
Mode=1 (ODBC) format. Rows with DOB Logical values beginning with 41 (dates from April 4 1953 ($HOROLOG
41000) through December 28 1955 ($HOROLOG 41999)) are selected:

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB LIKE '41%'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following example uses the %ODBCOUT format-transform function to transform the DOB field matched by the
predicate. This allows you to specify the LIKE pattern in ODBC format. It selects rows with DOB field ODBC values
beginning with 195 (dates within the range of years 1950 through 1959). However, specifying the format-transform function
prevents the use of an index for DOB field values:

SQL

 SELECT Name,DOB FROM Sample.Person
WHERE %ODBCOUT(DOB) LIKE '195%'

Literal Substitution Override

You can override literal substitution during compile pre-parsing by enclosing the LIKE predicate argument with double
parentheses. For example, WHERE Name LIKE (('Mc%')) or WHERE Name LIKE (('%son%')). This may improve
query performance by improving overall selectivity and/or subscript bounding selectivity. However, it should be avoided
when the same query is called multiple times with different values, as it will result in the creation of a separate cached
query for each query call.

Examples
The following example uses the WHERE clause to select Name values that contain “son”, including those that begin or
end with “son”. By default, LIKE string comparisons are not case-sensitive:

InterSystems SQL Reference 485

LIKE (SQL)

SQL

SELECT %ID,Name FROM Sample.Person
WHERE Name LIKE '%son%'

The following Embedded SQL example returns the same result set as the previous example. Note how the input host variable
(:subname) is specified in the LIKE pattern using the concatenation operator:

ObjectScript

 SET subname="son"
 &sql(DECLARE C1 CURSOR FOR SELECT %ID,Name INTO :id,:nameout FROM Sample.Person
 WHERE Name LIKE '%'_:subname_'%')
 &sql(OPEN C1)
 QUIT:(SQLCODE'=0)
 &sql(FETCH C1)
 WHILE (SQLCODE = 0) {
 WRITE id," ",nameout,!
 &sql(FETCH C1) }
 &sql(CLOSE C1)

The following Dynamic SQL example returns the same result set as the previous example. Note how the input parameter
(?) is specified in the LIKE pattern using the concatenation operator:

ObjectScript

 SET myquery = "SELECT %ID,Name FROM Sample.Person WHERE Name LIKE '%'_?_'%'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute("son")
 DO rset.%Display()

The following example uses the WHERE clause to select FavoriteColors values that contain “blue”. The FavoriteColors
field is a %List field; the % wildcards handle the %List formatting characters:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors LIKE '%blue%'

The following example uses a HAVING clause to select records for people whose age starts with a 1 followed by a single
character. It displays the average for all ages and the average for the ages selected by the HAVING clause. It orders the
results by age. All returned values have ages from 10 through 19.

SQL

SELECT Name,
 Age,
 AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgTeen
FROM Sample.Person
HAVING Age LIKE '1_'
ORDER BY Age

See Also
• SELECT statement, HAVING clause, WHERE clause

• %MATCHES predicate

• %PATTERN predicate

• %STARTSWITH predicate

• Overview of Predicates

486 InterSystems SQL Reference

SQL Predicate Conditions

%MATCHES (SQL)
Matches a value with a pattern string containing literals, wildcards, and ranges.

Synopsis

scalar-expression %MATCHES pattern [ESCAPE char]

Description
The %MATCHES predicate is an InterSystems IRIS extension for matching a value to a pattern string. %MATCHES
returns True or False for the match operation. The pattern string can consist of literal characters, wild card characters, and
list or ranges of matching literals.

Pattern matches are case-sensitive. Pattern matching is based on the EXACT value of scalar-expression, not its collation
value. Therefore, a %MATCHES operation is always case-sensitive, even when the collation type of scalar-expression
is not case-sensitive.

%MATCHES supports the following pattern wildcards:

Matches any single character of any type.?

Matches zero or more characters of any type.*

Matches any one of the characters specified in brackets.[abc]

Matches character within the range specified in brackets, inclusive of the specified characters.[a-z]

These ranges match any characters except those specified in brackets.You can use this
syntax to specify no uppercase letters, or no lowercase letters, or no numbers. Only the
specified literal ranges shown are supported.

[^A-Z]

[^a-z]

[^0–9]

Treats the character following as a literal character, rather than as a wildcard. Backslash
is the default escape character; you can specify another character as the escape character
using the optional ESCAPE clause.

\

Like most predicates, %MATCHES can be inverted using the NOT operator: item NOT %MATCHES pattern. Neither
%MATCHES nor NOT %MATCHES can be used to return NULL fields. To return NULL fields use IS NULL.

The backslash (\) character is the default escape character. It can be used to specify that a wildcard character is to be used
as a literal match at the specified pattern location. For example, to match a question mark as the first character of a string
specify '\?*'. To match a question mark as the fourth character of a string specify '???\?*'. To match a question mark
anywhere in a string specify '*\?*'. To match a string that consists of only an asterisk character specify '*'. To match
a string that contains at least one asterisk character specify '***'. To match a backslash character anywhere in a string
specify '**'.

%MATCHES can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

%MATCHES is supported for compatibility with Informix SQL.

%SelectMode

The %MATCHES predicate does not use the current %SelectMode setting. A pattern should be specified in Logical format,
regardless of the %SelectMode setting. Attempting to specify a pattern in ODBC format or Display format commonly
results in no data matches or unintended data matches.

InterSystems SQL Reference 487

%MATCHES (SQL)

You can use the %EXTERNAL or %ODBCOUT format-transform functions to transform the scalar-expression field that
the predicate operates upon. This allows you to specify the pattern in Display format or ODBC format. However, using a
format-transform function prevents the use of the index for the field, and can thus have a significant performance impact.

In the following Dynamic SQL example, the %MATCHES predicate specifies the date pattern in Logical format, not in
%SelectMode=1 (ODBC) format. Rows with DOB Logical values beginning with 41 (dates from April 4 1953 ($HOROLOG
41000) through December 28 1955 ($HOROLOG 41999)) are selected:

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %MATCHES '41*'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example uses the %ODBCOUT format-transform function to transform the DOB field matched
by the predicate. This allows you to specify the %MATCHES pattern in ODBC format. It selects rows with DOB field
ODBC values beginning with 195 (dates within the range of years 1950 through 1959). However, specifying the format-
transform function prevents the use of an index for DOB field values:

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE %ODBCOUT(DOB) %MATCHES '195*'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Arguments

scalar-expression

A scalar expression (most commonly a data column) whose values are being compared with pattern.

string

A quoted string representing the pattern of characters to match with each value in scalar-expression. The pattern string
can contain literal characters, the question mark (?) and asterisk (*) wildcard characters, square brackets used to specify
allowed values, and the backslash (\) used to specify that the character immediately following it is to be treated as a literal.
The pattern can also be the empty string or NULL, though it does not match or return NULL items.

ESCAPE char

An optional argument. A string containing a single character. This char character can be used in pattern to specify that the
character immediately following it is to be treated as a literal. If not specified, the default escape character is backslash (\).

Examples
The following example returns all last names that begin with “A”:

SQL

SELECT Name FROM Sample.Person
WHERE Name %MATCHES 'A*'

488 InterSystems SQL Reference

SQL Predicate Conditions

The following example returns all first names that begin with “A”:

SQL

SELECT Name FROM Sample.Person
WHERE Name %MATCHES '*,A*'

The following example returns all names that contain the letter “A” (in last name, first name, or middle initial):

SQL

SELECT Name FROM Sample.Person
WHERE Name %MATCHES '*A*'

The following example returns all names that do not contain the letters “A”, “a”, “E” or “e”:

SQL

SELECT Name FROM Sample.Person
WHERE Name NOT %MATCHES '*[AaEe]*'

The following example returns all five-letter last names with first names that begin with “A” through “D”:

SQL

SELECT Name FROM Sample.Person
WHERE Name %MATCHES '?????,[A-D]*'

See Also
• SELECT statement, HAVING clause, WHERE clause

• LIKE predicate

• %PATTERN predicate

• Overview of Predicates

InterSystems SQL Reference 489

%MATCHES (SQL)

%PATTERN (SQL)
Matches a value with a pattern string containing literals, wildcards, and character type codes.

Synopsis

scalar-expression %PATTERN pattern

Description
The %PATTERN predicate allows you to match a pattern of character type codes and literals to the data values supplied
by scalar-expression. If pattern matches a complete scalar expression value, this value is returned. If pattern does not fully
match any of the scalar expression values, %PATTERN returns the null string.

%PATERN can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

%PATTERN uses the same pattern codes as the ObjectScript pattern match operator (the ? operator). A pattern consists
of one or more pairs of a repetition count followed by a value. A repetition count can be an integer, a period (.) meaning
“any number of characters”, or a range specified by using a combination of a period with integers. A value can be either a
character type code letter or a literal string (specified in quotes).

Note that a pattern often consists of multiple repetition/value pairs, because the pattern must exactly match the entire data
value. For this reason, many patterns end with the “.E” pair, which means that the rest of the data value can consist of any
number of characters of any type.

A few simple examples of pattern match pairs:

• 1L means one (and only one) lowercase letter.

• 1"L" means one literal character “L”.

• 1"617" means one literal string “617”.

• .U means any number of uppercase letters.

• .E means any number of printable characters of any type.

• .3A means any number up to three (three or less) letters (either uppercase or lowercase).

• 3.N means three or more numeric digits.

• 3.6N means three to six (inclusive) numeric digits.

Pattern matches are case-sensitive. Pattern matching is based on the EXACT value of scalar-expression, not its collation
value. Therefore, a literal letter specified in a %PATTERN operation is always matched case-sensitive, even when the
collation type of scalar-expression is not case-sensitive.

In Dynamic SQL the SQL query is specified as an ObjectScript string, delimited by double quotes. For this reason, double
quotes within a pattern string must be doubled. Thus the pattern for a US dollar amount: '1"$"1.N1"."2N' would be
specified in Dynamic SQL as '1""$""1.N1"".""2N'.

For further details on pattern codes, refer to the Pattern Match Operator reference page.

%SelectMode

The %PATTERN predicate does not use the current %SelectMode setting. A pattern should be specified in Logical format,
regardless of the %SelectMode setting. Attempting to specify a pattern in ODBC format or Display format commonly
results in no data matches or unintended data matches.

490 InterSystems SQL Reference

SQL Predicate Conditions

You can use the %EXTERNAL or %ODBCOUT format-transform functions to transform the scalar-expression field that
the predicate operates upon. This allows you to specify the pattern in Display format or ODBC format. However, using a
format-transform function prevents the use of the index for the field, and can thus have a significant performance impact.

In the following Dynamic SQL example, the %PATTERN predicate specifies the date pattern in Logical format, not in
%SelectMode=1 (ODBC) format. Rows with DOB Logical values beginning with 41 (dates from April 4 1953 ($HOROLOG
41000) through December 28 1955 ($HOROLOG 41999)) are selected:

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %PATTERN '1""41""3N' "
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example uses the %ODBCOUT format-transform function to transform the DOB field matched
by the predicate. This allows you to specify the %PATTERN pattern in ODBC format. It selects rows with DOB field
ODBC values beginning with 195 (dates within the range of years 1950 through 1959). However, specifying the format-
transform function prevents the use of an index for DOB field values:

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE %ODBCOUT(DOB) %PATTERN '1""195"".E' "
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Arguments

scalar-expression

A scalar expression (most commonly a data column) whose values are being compared with pattern.

pattern

A quoted string representing the pattern of characters to match with each value in scalar-expression. The pattern string
can contain literal characters enclosed in double quotes, letter codes that specify types of characters, and numbers and the
period (.) character as wildcard characters.

Examples
The following example uses a %PATTERN operator in the WHERE clause to select Home_State values in which the
first character is any uppercase letter and the second character is the letter “C”:

SQL

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State %PATTERN '1U1"C"'

This example selects records with a Home_State of North Carolina (NC) or South Carolina (SC).

The following example uses a %PATTERN operator in the WHERE clause to select Name values that start with an
uppercase letter followed by a lowercase letter.

InterSystems SQL Reference 491

%PATTERN (SQL)

SQL

SELECT Name FROM Sample.Person
WHERE Name %PATTERN '1U1L.E'

The pattern here translates as: 1U (one uppercase letter), followed 1L (one lowercase letter), followed by .E (any number
of characters of any type). Note that this pattern would exclude names such as ”JONES”, O'Reilly” and “deGastyne”.

The following example uses a %PATTERN operator in a HAVING clause to select records for people whose first name
starts with the letters “Jo”, and to return the count of records searched and records returned.

SQL

SELECT Name,
 COUNT(Name) AS TotRecs,
 COUNT(Name %AFTERHAVING) AS JoRecs
FROM Sample.Person
HAVING Name %PATTERN '1U.L1","1"Jo".E'

In this case, the Name field values are formatted as Lastname,Firstname and may contain an optional middle name or initial.
To reflect this name format, the pattern here translates as: 1U (one uppercase letter), followed .L (any number of lowercase
letters), followed by 1"," (one literal comma character), followed by 1"Jo" (one literal string with the value “Jo”), followed
by .E (any number of characters of any type).

See Also
• SELECT statement, HAVING clause, WHERE clause

• LIKE predicate

• %MATCHES predicate

• Overview of Predicates

492 InterSystems SQL Reference

SQL Predicate Conditions

SOME (SQL)
Matches a value with at least one matching value from a subquery.

Synopsis

scalar-expression comparison-operator SOME (subquery)

Description
The SOME keyword works in conjunction with a comparison operator to create a predicate (a quantified comparison
condition) that is true if the value of a scalar expression matches one or more of the corresponding values retrieved by the
subquery. The SOME predicate compares a single scalar-expression item with a single subquery SELECT item. A subquery
with more than one select item generates an SQLCODE -10 error.

Note: The SOME and ANY keywords are synonyms.

SOME can be used wherever a predicate condition can be specified, as described in Overview of Predicates.

Arguments

scalar-expression

A scalar expression (most commonly a data column) whose values are being compared with the result set generated by
subquery.

comparison-operator

One of the following comparison operators: = (equal to), <> or != (not equal to), < (less than), <= (less than or equal to),
> (greater than), >= (greater than or equal to), [(contains), or] (follows).

subquery

A subquery, enclosed in parentheses, which returns a result set that is used for the comparison with scalar-expression.

Example
The following example selects those employees with salaries greater than $75,000 that live in any of the states west of the
Mississippi River:

SQL

SELECT Name,Salary,Home_State FROM Sample.Employee
WHERE Salary > 75000
AND Home_State = SOME
 (SELECT State FROM Sample.USZipCode
 WHERE Longitude < -93)
ORDER BY Home_State

See Also
• SELECT statement, HAVING clause, WHERE clause

• ALL ANY

• Overview of Predicates

InterSystems SQL Reference 493

SOME (SQL)

%STARTSWITH (SQL)
Matches a value with a substring specifying initial characters.

Synopsis

column %STARTSWITH substring

Description
• column %STARTSWITH substring selects data values from a column that begin with the characters specified in

substring. If substring does not match any column values, %STARTSWITH returns the null string. %STARTSWITH
performs this match on the logical, internal storage value of the column, regardless of the display mode set.

You can use %STARTSWITH in any predicate condition of an InterSystems SQL query. For more details on predicate
conditions, see Overview of Predicates.

This statement selects all names that begin with the letter M.

SQL

SELECT Name FROM Sample.MyTest WHERE Name %STARTSWITH 'M'

For other ways of matching a value, see Other Equivalence Comparisons.

Examples:

– Select Column Data Based on Initial Characters

– Select Column Data Using Logical Operators

Arguments

column

A data column in a table whose values are being compared with substring. This argument can also be a scalar expression
that evaluates to a column table, such as %EXTERNAL(column) or %SQLUPPER(column).

substring

The first character or characters to match with values in column. This argument must be an expression that resolves to a
string or numeric value.

Examples

Select Column Data Based on Initial Characters

The %STARTSWITH predicate can process a variety of string and numeric types.

Letters

This statement returns one row for each distinct Home_State name that begins with the letter M.

SQL

SELECT DISTINCT Home_State FROM Sample.Person
WHERE Home_State %STARTSWITH 'M'
ORDER BY Home_State

494 InterSystems SQL Reference

SQL Predicate Conditions

Under the default collation settings, %STARTSWITH matches are not case-sensitive, so this statement matches names
beginning with either "M" or "m". For more details on controlling the case-sensitivity of matches, see Manage Case-Sensi-
tivity of Selections Based on Collation Type.

Numbers

This statement uses a HAVING clause to select rows for people whose age starts with a 2. The result set displays the
average for all ages and the average for the ages selected by the HAVING clause. It orders the results by age.

SQL

SELECT Name,
 Age,
 AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS Avg20
FROM Sample.Person
HAVING Age %STARTSWITH 2
ORDER BY Age

Dates

This statement performs a %STARTSWITH comparison with the internal date format value for the DOB (date of birth)
field. In this case, it select all dates from 11/5/1988 ($H=54000) through 08/1/1991 ($H=54999):

SQL

SELECT Name,DOB
FROM Sample.Person
WHERE DOB %STARTSWITH 54
ORDER BY DOB

Lists

If column contains a list collection, %STARTSWITH can use the %EXTERNAL format transformation function to
compare the list values to substring. For example, this statement matches on rows in which the FavoriteColors list column
begins with 'Bl':

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'Bl'

For list collections, when %EXTERNAL converts a list to DISPLAY format, the displayed list items appear to be separated
by a blank space. This “space” is actually the two non-display characters CHAR(13) and CHAR(10). To use
%STARTSWITH with more than one element in the list, you must specify these characters:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'Orange'||CHAR(13)||CHAR(10)||'B'

If column contains data of type %Libary.List, you do not need to use the %EXTERNAL, because %Libary.List data is stored
in the LOGICAL format and does not have a separate DISPLAY format. To match list data, you can use $LIST functions.
For example:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors %STARTSWITH $LISTFROMSTRING('Yellow,Orange')

Note: Because InterSystems SQL stores lists as concatenated strings, you cannot use %STARTSWITH to match on
elements in the middle of a list. %STARTSWITH matches only from the start of the list. This applies to both list
collections and %Libary.List data.

InterSystems SQL Reference 495

%STARTSWITH (SQL)

Leading and Trailing Blanks

In most cases, %STARTSWITH treats leading blanks the same as any other character. For example, %STARTSWITH '
B' selects column values with exactly one leading blank followed by the letter B. However, a substring containing only
blanks selects non-null values, not leading blanks.

The %STARTSWITH behavior with trailing blanks depends on the data type and collation type:

• %STARTSWITH ignores trailing blanks in a string substring with SQLUPPER collation.

• %STARTSWITH does not ignore trailing blanks in a numeric, date, or list substring.

In this statement, %STARTSWITH restricts the result set to names that begin with 'M'. Because Name is an SQLUPPER
string data type, the trailing blanks in the substring are ignored.

SQL

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH 'M '

In this statement, %STARTSWITH eliminates all rows from the result set because the trailing blanks in the substring are
not ignored for a numeric value:

SQL

SELECT Name,Age FROM Sample.Person
WHERE Age %STARTSWITH '6 '

In this statement, %STARTSWITH eliminates all rows from the result set because the trailing blank in the substring is
not ignored for a list value:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'Blue '

However, in this statement, the result set consists of those list values that start with Blue followed by a list delimiter, which
is displayed as a blank space. In other words, this statement matches on lists beginning with ‘Blue’ that contain more than
one item:

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'Blue'||CHAR(13)||CHAR(10)

Select Column Data Using Logical Operators

The %STARTSWITH function supports the logical operators NOT, AND, and OR.

This statement selects all names that do not begin with the letter M.

SQL

SELECT Name FROM Sample.MyTest WHERE NOT Name %STARTSWITH 'M'

This statement selects all names that begin with M or N.

SQL

SELECT Name FROM Sample.MyTest WHERE Name %STARTSWITH 'M' OR Name %STARTSWITH 'N'

This statement selects all names in which the first names begin with M and the last names begin with N.

496 InterSystems SQL Reference

SQL Predicate Conditions

SQL

SELECT FirstName,LastName FROM Sample.MyTest WHERE FirstName %STARTSWITH 'M' AND LastName %STARTSWITH
 'N'

Filter Out Null Values

In the %STARTSWITH function, if column evaluates to a non-null data value and substring is an empty value, then
%STARTSWITH returns the non-null column data. You can use this behavior to filter out non-null values. For example,
this statement restricts the result set to non-null values in the FavoriteColors column.

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors %STARTSWITH NULL

An empty substring can be any of these values:

• NULL

• CHAR(0)

• the empty string ('')

• a string consisting of only blank spaces (' ')

• CHAR(32), which is the space character

• CHAR(9), which is the tab character

These statements return the same results as the previous statement.

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors %STARTSWITH ''

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors %STARTSWITH ' '

SQL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors %STARTSWITH CHAR(9)

If column evaluates to null and substring is an empty value, %STARTSWITH does not return data from column.

To return column values that consist of only whitespace characters, you must use %EXACT collation. Note that the
%EXTERNAL collation type is not used for column when filtering nulls from a list field.

%STARTSWITH NULL and empty string behavior differs with a compound substring, because of the definitions of
NULL and empty string. When you concatenate a value with NULL, the result is NULL. When you concatenate a value
with the empty string, the result is the value. This is shown in the following examples:

SQL

SELECT Name,FavoriteColors
FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'B'||NULL
/* Selects all non-null rows */

InterSystems SQL Reference 497

%STARTSWITH (SQL)

SQL

SELECT Name,FavoriteColors
FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'B'||''
/* Selects all values that begin with B */

Manage Case-Sensitivity of Selections Based on Collation Type

%STARTSWITH uses the same collation as the field it is matched against. Since string data type fields are defined with
the SQLUPPER collation, which is not case-sensitive, the default %STARTSWITH selections are also not case-sensitive.
For example, this statement matches home states beginning with either "M" or "m".

SQL

SELECT DISTINCT Home_State FROM Sample.Person
WHERE Home_State %STARTSWITH 'M'
ORDER BY Home_State

If you assign a different collation type to the column in the WHERE clause, this collation type is matched to the literal
value of the %STARTSWITH substring. For example, if you specify the search column, Home_State, to use EXACT
(case-sensitive) collation, then %STARTSWITH matches only on home states beginning with "M".

SQL

SELECT DISTINCT Home_State FROM Sample.Person
WHERE %EXACT(Home_State) %STARTSWITH 'M'
ORDER BY Home_State

Some collation functions prepend a space character to a field value. This can cause %STARTSWITH to match no values,
unless you apply an equivalent collation function to the substring.

For example, suppose a table contains a column, ExactName, that uses EXACT collation. If you apply SQLUPPER collation
to ExactName within the column argument of %STARTSWITH, then %STARTSWITH searches a column whose
values all start with a space character. Therefore, a comparison such as this one returns no rows:

SQL

SELECT ExactName FROM Sample.MyTest WHERE %SQLUPPER(ExactName) %STARTSWITH 'Ra'

To resolve this issue, you must prepend a space character to the substring, such as by applying the same collation function
to the substring. This example applies a case-insensitive match to an EXACT column:

SQL

SELECT ExactName FROM Sample.MyTest WHERE %SQLUPPER(ExactName) %STARTSWITH %SQLUPPER('Ra')

For details on changing the collation defaults or using case transformation functions, see Collation.

More About

Range of Subscripts

When column is retrieved from a subscript, %STARTSWITH can be used as an index-limiting range condition, narrowing
the range of column subscript values that needs to be traversed. The logic is to start the subscript range with the given
substring prefix value, and stop as soon as the subscript value no longer starts with substring.

Other Equivalence Comparisons

%STARTSWITH performs an equivalence comparison on the initial characters of a string. You can perform other types
of equivalence comparisons by using string comparison operators. These include the following:

498 InterSystems SQL Reference

SQL Predicate Conditions

• An equivalence comparison on the entire string, using the equal sign operator:

SQL

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State = 'VT'

This example selects any record that contains the Home_State field value “VT”. Because Home_State is defined as
SQLUPPER, this string comparison is not case-sensitive.

You can also perform a non-equivalence comparison on the entire string, using the not equal operator (<>).

• An equivalence comparison of a substring to a value, using the Contains operator:

SQL

SELECT Name FROM Sample.Person
WHERE Name ['y'

This example selects all Name records that contain the lowercase letter “y”. By default, a Contains operator comparison
is case-sensitive, even when the field is defined as not case-sensitive.

• A context-aware equivalence comparison using InterSystems SQL Search. One use of SQL Search is to determine if
a value contains a specified word or phrase. SQL Search is not case-sensitive.

• An equivalence comparison on the entire string to multiple values, using the IN keyword operator. For example, this
statement selects any record that contains any of the specified Home_State field values.

SQL

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State IN ('VT','MA','NH','ME')
ORDER BY Home_State

• An equivalence comparison on the entire string to a value pattern, using the %PATTERN keyword operator:

SQL

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State %PATTERN '1U1"C"'
ORDER BY Home_State

This example selects any record that contains a Home_State field value that matches the pattern of 1U (one uppercase
letter) followed by 1"C" (one literal letter “C”). The Home_State abbreviations “NC” or “SC” fulfill this pattern.

• An equivalence comparison of a substring with one or more wildcards to a value, using the LIKE keyword operator:

SQL

SELECT Name FROM Sample.Person
WHERE Name LIKE '_a%'

This example selects all Name records that contain the letter “a” as the second letter. This string comparison uses the
Name collation type to determine whether the comparison is case-sensitive or not.

For further details on these and other comparison conditional predicates, refer to the WHERE clause.

%SelectMode Setting

The %STARTSWITH predicate cannot use the current %SelectMode setting. A substring must be specified in Logical
format, regardless of the %SelectMode setting. Specifying predicate value(s) in ODBC or Display format commonly results
in no data matches or unintended data matches. This applies mainly to dates, times, and InterSystems IRIS format lists
(%List).

InterSystems SQL Reference 499

%STARTSWITH (SQL)

In the following Dynamic SQL example, the %STARTSWITH predicate must specify the date substring in Logical format,
not in %SelectMode=1 (ODBC) format. Rows with DOB Logical values beginning with 41 (dates from April 4 1953
($HOROLOG 41000) through December 28 1955 ($HOROLOG 41999)) are selected:

ObjectScript

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %STARTSWITH '41%'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

National Collation of Ambiguous Characters

In some national languages two characters or character combinations are considered first-pass collation equivalent. Commonly
this is a character with or without an accent mark, such as in the Czech2 locale, in which CHAR(65) and CHAR(193) both
collate as “A”. %STARTSWITH recognizes these characters as equivalent.

The following example shows the first-pass collation for Czech2 CHAR(65) (A) and CHAR(193) (Á):

M
MA
MÁ
MAC
MÁC
MACX
MÁCX
MAD
MÁD
MB

When the query compiles, the national collation used at run time is unknown. Therefore, write %STARTSWITH subscript
traversal code to satisfy the possible runtime scenarios.

See Also
• SELECT statement, HAVING clause, WHERE clause

• Overview of Predicates

• Collation

500 InterSystems SQL Reference

SQL Predicate Conditions

SQL Aggregate Functions

InterSystems SQL Reference 501

Overview of Aggregate Functions
Functions that evaluate all of the values of a column and return a single aggregate value.

Supported Aggregate Functions
An aggregate function performs a task in relation to one or more values from a single column and returns a single value.
The supported functions are:

• SUM — returns the sum of the values of a specified column.

• AVG — returns the average of the values of the specified column.

• COUNT — returns the number of rows in a table, or the number of non-null values in a specified column.

• MAX — returns the maximum value used within a specified column.

• MIN — returns the minimum value used within a specified column.

• VARIANCE, VAR_SAMP, VAR_POP — returns the statistical variance of the values of a specified column.

• STDDEV, STDDEV_SAMP, STDDEV_POP — returns the statistical standard deviation of the values of a specified
column.

• LIST — returns all of the values used within a specified column as a comma-separated list.

• %DLIST — returns all of the values used within a specified column as elements in an InterSystems IRIS list structure.

• XMLAGG — returns all of the values used within a specified column as a concatenated string.

• JSON_ARRAYAGG — returns all of the values used within a specified column as a JSON format array.

You can define additional user-defined aggregate functions (UDAFs) using the CREATE AGGREGATE command.

Aggregate functions ignore fields that are NULL. For example, LIST and %DLIST do not include elements for rows in
which the specified field is NULL. COUNT only counts non-null values of the specified field.

Aggregate functions (with the exception of COUNT) cannot be applied to a stream field. Attempting to do so generates
an SQLCODE -37 error. You can use COUNT to count stream field values, with some restrictions.

Note: Aggregate functions are similar to window functions. However, aggregate functions take the values of a column
from a group of rows and return the result as a single value. Window functions take the values of a column from
a group of rows and return a value for each row. An aggregate function can be specified in a window function.
A window function cannot be specified in an aggregate function. AVG(), MAX(), MIN(), and SUM() can be used
as either aggregate functions or window functions.

Using Aggregate Functions
An aggregate function can be used in:

• SELECT list, either as a listed selectItem or in a subquery selectItem.

• HAVING clause. However, a HAVING clause must explicitly specify the aggregate function; it cannot specify an
aggregate using the corresponding selectItem column alias or selectItem sequence number.

• DISTINCT BY clause. However, specifying an aggregate function by itself is not meaningful and always returns a
single row. More meaningful is to specify an aggregate function as part of an expression, such as DISTINCT
BY(MAX(Age)-Age).

An aggregate function cannot be used directly in:

502 InterSystems SQL Reference

SQL Aggregate Functions

• an ORDER BY clause. Attempting to do so generates an SQLCODE -73 error. However, you can use an aggregate
function in an ORDER BY clause by specifying the corresponding column alias or selectItem sequence number.

• a WHERE clause. Attempting to do so generates an SQLCODE -19 error.

• a GROUP BY clause. Attempting to do so generates an SQLCODE -19 error.

• a TOP clause. Attempting to do so generates an SQLCODE -1 error.

• a JOIN. Attempting to specify an aggregate in an ON clause generates an SQLCODE -19 error. Attempting to specify
an aggregate in a USING clause generates an SQLCODE -1 error.

However, you can supply an aggregate function value to these clauses (with the exception of the TOP clause) by using a
subquery supplying a column alias. For example, to use a WHERE clause to select Age values that are less than the average
Age value, you can place the AVG aggregate function in a subquery:

SQL

SELECT Name,Age,AvgAge
FROM (SELECT Name,Age,AVG(Age) AS AvgAge FROM Sample.Person)
WHERE Age < AvgAge
ORDER BY Age

Combining Aggregates and Fields

InterSystems SQL allows you to specify an aggregate function with other SELECT items in a query. An aggregate such as
COUNT(*) does not need to be in a separate query.

SQL

SELECT TOP 5 COUNT(*),Name,AVG(Age)
FROM Sample.Person
ORDER BY Name

When you specify an aggregate function and specify no field select items in the select list, InterSystems SQL returns one
row. A TOP clause is ignored, unless it is TOP 0 (return no rows):

SQL

SELECT TOP 7 AVG(Age),LIST(Age)
FROM Sample.Person
WHERE Age > 75

When you specify an aggregate function and specify one or more field select items in the select list, InterSystems SQL
returns as many rows as required for the field item:

SQL

SELECT DISTINCT Age,AVG(Age),LIST(Age)
FROM Sample.Person
WHERE Age > 75

Column Names and Aliases

By default, the column name assigned to the results of an aggregate function is Aggregate_n, where the n number suffix
is the column order number, as specified in the SELECT list. Thus, the following example creates column names Aggregate_2
and Aggregate_5:

SQL

SELECT TOP 5 Home_State,COUNT(*),Name,Age,AVG(Age)
FROM Sample.Person
ORDER BY Name

InterSystems SQL Reference 503

Overview of Aggregate Functions

To specify another column name (a column alias), use the AS keyword:

SQL

SELECT COUNT(*) AS PersonCount
FROM Sample.Person,Sample.Employee

You can use a column alias to specify an aggregate field in an ORDER BY clause. The following example lists people in
the order that their ages diverge from the average age:

SQL

SELECT Name,Age,
 AVG(Age) AS AvgAge,
 ABS(Age - AVG(Age)) AS RelAge
FROM Sample.Person
ORDER BY RelAge

For further details on column aliases, refer to the SELECT statement.

With ORDER BY

The LIST, %DLIST, XMLAGG, and JSON_ARRAYAGG functions combine the values of a table column from multiple
rows into a single aggregate value. Because an ORDER BY clause is applied to the query result set after all aggregate
fields are evaluated, ORDER BY cannot directly affect the sequence of values within these aggregates. Under certain cir-
cumstances, the results of these aggregates may appear in sequential order, but this ordering should not be relied upon. The
values listed within a given aggregate result value cannot be explicitly ordered.

DISTINCT Keyword Clause

All aggregate functions support the optional DISTINCT keyword clause. This keyword limits the aggregate operation to
only distinct (unique) field values. When using default field collation (%SQLUPPER), field values that differ only in let-
tercase are not considered distinct values. If DISTINCT is not specified, the default is to perform the aggregate operation
on all non-NULL values, including duplicate values. The MIN and MAX aggregate functions support the DISTINCT
keyword, although it perform no operation.

Aggregate functions support the full DISTINCT keyword clause syntax, including the optional BY(item-list) subclause.
Refer to the DISTINCT clause for details.

The aggregate function DISTINCT field1 clause ignores field1 values that are NULL. This differs from the DISTINCT
clause of the SELECT statement: a SELECT DISTINCT clause returns one row for the distinct NULL, just as it returns
one row for each distinct field value. However, an aggregate function DISTINCT BY(field2) field1 does not ignore the
distinct NULL for field2. For example, if FavoriteColors has 50 distinct values and multiple NULLs, the number of DIS-
TINCT rows returned is 51, the COUNT(DISTINCT FavoriteColors) is 50, and the COUNT(DISTINCT
BY(FavoriteColors) %ID) is 51:

SQL

SELECT DISTINCT FavoriteColors,
 COUNT(DISTINCT FavoriteColors),
 COUNT(DISTINCT BY(FavoriteColors) %ID)
 FROM Sample.Person

With DISTINCT and GROUP BY

A SELECT DISTINCT with a selectItem aggregate function and a GROUP BY clause returns the same results as if the
DISTINCT keyword were not present. To achieve the desired results, put the aggregate function in a subquery.

For example, you wish to return the number of distinct counts of persons in states (there are states with 4 people, there are
states with 6 people, etc.). You would expect to achieve this result as follows:

504 InterSystems SQL Reference

SQL Aggregate Functions

SQL

SELECT DISTINCT COUNT(*) AS PersonCounts
FROM Sample.Person
GROUP BY Home_State

Instead, you get a person count for each state, the same as if the DISTINCT keyword were not present:

SQL

SELECT COUNT(*) AS PersonCounts
FROM Sample.Person
GROUP BY Home_State

To achieve your intended result, you need to use a subquery, as follows:

SQL

SELECT DISTINCT *
FROM (SELECT COUNT(*) AS PersonCounts FROM Sample.Person
 GROUP BY Home_State)

Row Counts

When a query returns aggregate values, the %ROWCOUNT value depends on the query:

• Aggregate functions only: calculates aggregate values and returns %ROWCOUNT 1. If an aggregates-only query
selects no rows, it still returns %ROWCOUNT 1: COUNT=0, other aggregate functions return NULL.

• Aggregate functions only with GROUP BY: returns aggregate values for each group selected by the GROUP BY
clause. %ROWCOUNT is the number of groups selected. If the query selects no rows, the GROUP BY selects no
groups, and the query returns %ROWCOUNT 0.

• Aggregate functions only with DISTINCT: calculates aggregate values and returns %ROWCOUNT 1. If the query
selects no rows, the DISTINCT selects no distinct values, and the query returns %ROWCOUNT 0.

• Aggregate functions only with TOP clause: For any non-zero TOP value, calculates aggregate values and returns
%ROWCOUNT 1. For TOP=0, returns %ROWCOUNT 0, aggregates are not calculated.

• Aggregates with fields: If the query returns field values as well as aggregate functions, the number of rows returned
is the number of rows selected. If the query selects no rows, it returns %ROWCOUNT 0 and aggregates are not calcu-
lated.

These results are not affected the presence in the selectItem of subqueries or expressions.

Aggregates,Transactions, and Locking
Including an aggregate function in a query causes the query to return the current state of the data to all result set fields,
including uncommitted changes to the data. Thus, an ISOLATION LEVEL READ COMMITTED setting is ignored for a
query containing an aggregate function. The current state of uncommitted data is as follows:

• INSERT and UPDATE: the aggregate calculation does include the modified values, even though these modifications
are not yet committed and may be rolled back.

• DELETE and TRUNCATE TABLE: the aggregate calculation does not include deleted rows, even though these
deletions are not yet committed and may be rolled back.

Because aggregate functions usually involve data from a large number of rows, it is not acceptable to issue a transaction
lock on all of the rows involved in an aggregate calculation. It is therefore possible that another user may be performing a
transaction that modifies the data while an aggregate calculation is in process.

InterSystems SQL Reference 505

Overview of Aggregate Functions

Aggregates and Sharded Tables
Support for aggregate functions is limited for sharded tables. For example, the aggregate function DISTINCT, %FOREACH,
and %AFTERHAVING clauses are not supported for sharded tables. See Querying the Sharded Cluster.

See Also
• AVG, COUNT, %DLIST, JSON_ARRAYAGG, LIST, MAX, MIN, STDDEV, STDDEV_SAMP, STDDEV_POP,

SUM, VARIANCE, VAR_SAMP, VAR_POP, XMLAGG aggregate functions

• CREATE AGGREGATE command

• SELECT command

• Overview of Window Functions

506 InterSystems SQL Reference

SQL Aggregate Functions

AVG (SQL)
An aggregate function that returns the average of the values of the specified column.

Synopsis

AVG([ALL | DISTINCT [BY(col-list)]] expression
 [%FOREACH(col-list)] [%AFTERHAVING])

Description
The AVG aggregate function returns the average of the values of expression. Commonly, expression is the name of a field,
(or an expression containing one or more field names) in the multiple rows returned by a query.

AVG can be used in a SELECT query or subquery that references either a table or a view. AVG can appear in a SELECT
list or HAVING clause alongside ordinary field values.

AVG cannot be used in a WHERE clause. AVG cannot be used in the ON clause of a JOIN, unless the SELECT is a
subquery.

AVG, like all aggregate functions, can take an optional DISTINCT clause. AVG(DISTINCT col1) averages only those
col1 field values that are distinct (unique). AVG(DISTINCT BY(col2) col1) averages only those col1 field values in
records where the col2 values are distinct (unique). Note however that the distinct col2 values may include a single NULL
as a distinct value.

Data Values

For non-DOUBLE expression values, AVG returns a double-precision floating point number. The precision of the value
returned by AVG is 18. The scale of the returned value depends upon the precision and scale of expression: the scale of
the value returned by AVG is equal to 18 minus the expression precision, plus the expression scale.

For DOUBLE expression values, the scale is 0.

AVG is normally applied to a field or expression that has a numeric value, such as a number field or a date field. By default,
aggregate functions use Logical (internal) data values, rather than Display values. Because no type checking is performed,
it is possible (though rarely meaningful) to invoke it for nonnumeric fields; AVG evaluates nonnumeric values, including
the empty string (''), as zero (0). If expression is data type VARCHAR, the return value is data type DOUBLE.

NULL values in data fields are ignored when deriving an AVG aggregate function value. If no rows are returned by the
query, or the data field value for all rows returned is NULL, AVG returns NULL.

Averaging a Single Value

If all of the expression values supplied to AVG are the same, the resulting average depends on the number of accessed
rows in the table (the divisor). For example, if all of the rows in the table have the same value for a specific column, the
average value of that column is a calculated value, which may differ slightly from the value in the individual columns.

The following example shows how a slight inequality can result from the calculation of an average. The first query does
not reference table rows, so AVG calculates by dividing by 1. The second query references table rows, so AVG calculates
by dividing by the number of rows in the table.

SQL

SELECT
 {fn PI} AS Pi,
 AVG({fn PI}) AS AvgPiDividedBy1
FROM Sample.Person

InterSystems SQL Reference 507

AVG (SQL)

SQL

SELECT
 Name,
 {fn PI} AS Pi,
 AVG({fn PI}) AS AvgPiDividedByNumRows
FROM Sample.Person

Optimization

SQL optimization of an AVG calculation can use a bitslice index, if this index is defined for the field.

Changes Made During the Current Transaction

Like all aggregate functions, AVG always returns the current state of the data, including uncommitted changes, regardless
of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and START TRANSACTION.

Arguments

ALL

An optional argument specifying that AVG return the average of all values for expression. This is the default if no keyword
is specified.

DISTINCT

An optional DISTINCT clause that specifies that AVG calculate the average on only the unique instances of a value. DIS-
TINCT can specify a BY(col-list) subclause, where col-list can be a single field or a comma-separated list of fields.

expression

Any valid expression. Usually the name of a column that contains the data values to be averaged.

%FOREACH(col-list)

An optional column name or a comma-separated list of column names. See SELECT for further information on %FOREACH.

%AFTERHAVING

An optional argument that applies the condition found in the HAVING clause.

AVG returns either the NUMERIC or DOUBLE data type. If expression is data type DOUBLE, AVG returns DOUBLE;
otherwise, it returns NUMERIC.

Examples
The following query lists the average salary for all employees in the Sample.Employee database. Because all rows returned
by the query would have identical values for this average, this query only returns a single row, consisting of the average
salary. For display purposes, this query concatenates a dollar sign to the value (using the || operator), and uses the AS clause
to label the column:

SQL

SELECT '$' || AVG(Salary) AS AverageSalary
 FROM Sample.Employee

The following query lists each state with the average salary for the employees in that state:

SQL

SELECT Home_State,'$' || AVG(Salary) AS AverageSalary
 FROM Sample.Employee
GROUP BY Home_State

508 InterSystems SQL Reference

SQL Aggregate Functions

The following query lists the name and salary for those employees whose salary is greater than the average salary. It also
lists the average salary for all employees; this value is the same for all rows returned by the query:

SQL

SELECT Name,Salary,
 '$' || AVG(Salary) AS AverageAllSalary
FROM Sample.Employee
HAVING Salary>AVG(Salary)
ORDER BY Salary

The following query lists the name and salary for those employees whose salary is greater than the average salary. It also
lists the average salary for those employees with above-average salaries; this value is the same for all rows returned by the
query:

SQL

SELECT Name,Salary,
 '$' || AVG(Salary %AFTERHAVING) AS AverageHighSalary
FROM Sample.Employee
HAVING Salary>AVG(Salary)
ORDER BY Salary

The following query lists those states containing more than three employees with the average salary of that state's
employees, and the average salary of that state's employees earning more than $20,000:

SQL

SELECT Home_State,
 '$' || AVG(Salary) AS AvgStateSalary,
 '$' || AVG(Salary %AFTERHAVING) AS AvgLargerSalaries
FROM Sample.Employee
GROUP BY Home_State
HAVING COUNT(*) > 3 AND Salary > 20000
ORDER BY Home_State

The following query uses several forms of the DISTINCT clause. The AVG(DISTINCT BY col-list examples may
include an additional Age value in the average, because the BY clause can include a single NULL as a distinct value, if
Home_City contains one or more NULLs:

SQL

SELECT AVG(Age) AS AveAge,AVG(ALL Age) AS Synonym,
 AVG(DISTINCT Age) AS AveDistAge,
 AVG(DISTINCT BY(Home_City) Age) AS AvgAgeDistCity,
 AVG(DISTINCT BY(Home_City,Home_State) Age) AS AvgAgeDistCityState
 FROM Sample.Person

The following query uses both the %FOREACH and the %AFTERHAVING keywords. It returns a row for those states
containing people whose names start with “A”, “M”, or “W” (HAVING clause and GROUP BY clause). Each state row
contains the following values:

• LIST(Age %FOREACH(Home_State)): a list of the ages of all of the people in the state.

• AVG(Age %FOREACH(Home_State)): the average age of all of the people in the state.

• AVG(Age %AFTERHAVING): the average age of all of the people in the database that meet the HAVING clause criteria.
(This number is the same for all rows.)

• LIST(Age %FOREACH(Home_State) %AFTERHAVING): a list of the ages of all of the people in the state that
meet the HAVING clause criteria.

• AVG(Age %FOREACH(Home_State) %AFTERHAVING): the average age of all of the people in the state that meet
the HAVING clause criteria.

InterSystems SQL Reference 509

AVG (SQL)

SQL

SELECT Home_State,
 LIST(Age %FOREACH(Home_State)) AS StateAgeList,
 AVG(Age %FOREACH(Home_State)) AS StateAgeAvg,
 AVG(Age %AFTERHAVING) AS AgeAvgHaving,
 LIST(Age %FOREACH(Home_State)%AFTERHAVING) AS StateAgeListHaving,
 AVG(Age %FOREACH(Home_State)%AFTERHAVING) AS StateAgeAvgHaving
FROM Sample.Person
GROUP BY Home_State
HAVING Name LIKE 'A%' OR Name LIKE 'M%' OR Name LIKE 'W%'
ORDER BY Home_State

See Also
• Aggregate Functions overview

• COUNT aggregate function

• SUM aggregate function

510 InterSystems SQL Reference

SQL Aggregate Functions

COUNT (SQL)
An aggregate function that returns the number of rows in a table or a specified column.

Synopsis

COUNT(*)
COUNT(expression)

COUNT(DISTINCT expression)
COUNT(DISTINCT BY(column) expression)
COUNT(ALL expression)

COUNT(... expression %FOREACH(column))
COUNT(... expression ... %AFTERHAVING)

Description
COUNT is an aggregate function that returns a count of the number of rows in a table or column. COUNT returns the
BIGINT data type. If the count includes no rows, COUNT returns 0 or NULL, depending on the query. For more details,
see No Rows Returned in Count.

Use COUNT in a SELECT query to count rows from the table referenced in the query and return the count in the result
set. You can also use COUNT in a subquery that references either a table or view and in the HAVING clause. You cannot
use COUNT in a WHERE clause. Unless SELECT is a subquery, you also cannot use COUNT in the ON clause of a
JOIN.

• COUNT(*) returns the number of rows in the table or view. COUNT(*) counts all rows, including ones that contain
duplicate column values or NULL values.

This query returns the total number of rows in Sample.Person.

SQL

SELECT COUNT(*) FROM Sample.Person

Example: Count Table Rows and Column Values

• COUNT(expression) returns the number of values in expression, which is a table column name or an expression that
evaluates to a column of data. COUNT(expression) does not count NULL values.

This query returns the number of non-NULL values in the Name column of Sample.Person.

SQL

SELECT COUNT(Name) AS TotalNames FROM Sample.Person

Examples:

– Count Table Rows and Column Values

– Count Stream Column Values

– Count Non-NULL Values in Combination of Columns

• COUNT(DISTINCT expression) uses a DISTINCT clause to return the count of the distinct (unique) values in the
expression column. You cannot use DISTINCT with stream columns. What is counted as a distinct value depends on
the column’s collation. For example, with the default column collation of %SQLUPPER, values that differ in letter
case are not counted as distinct values. To count every letter-case variant as a distinct value, use
COUNT(DISTINCT(%EXACT(expression))). NULL values are not included in COUNT DISTINCT counts.

InterSystems SQL Reference 511

COUNT (SQL)

This statement returns the count of unique ages in Sample.Person.

SQL

SELECT COUNT(DISTINCT Age) FROM Sample.Person

Example: Count Distinct Column Values

• COUNT(DISTINCT BY(column) expression) filters out rows that contain duplicates in the column list specified by
column, and then returns a count of values in the expression column. If column contains a NULL value, the NULL is
counted as a distinct value.

This statement returns a count of FavoriteColors values for people with distinct (unique) names.

SQL

SELECT COUNT(DISTINCT BY(Name) FavoriteColors) FROM Sample.Person

Example: Count Distinct Column Values

• COUNT(ALL expression) returns the count of all values for expression. The ALL keyword counts all non-NULL
values, including all duplicates. ALL is the default behavior if no keyword is specified.

• COUNT(... expression %FOREACH(column)) groups the values in the expression column by the distinct values
contained in the column list and returns the count of each group. %FOREACH and GROUP BY are similar. While
GROUP BY operates on an entire query, %FOREACH allows selection of aggregates on sub-populations without
restricting the entire query population.

This query returns a row for each person specified in Sample.Person, where each row contains that person’s name,
home state, and a count of the names of people who also live in that state.

SQL

SELECT
 Name,
 Home_State,
 COUNT(Name %FOREACH(Home_State)) AS PersonCountInState
FROM Sample.Person

Example: Count Grouped Values

• COUNT(... expression ... %AFTERHAVING) counts the rows in expression only after applying the condition found
in the HAVING clause. If you omit %AFTERHAVING, the query does not account for the HAVING condition in
its count.

This query returns the count of names grouped by state and the count of names that start with "M" grouped by state.

SQL

SELECT
 Home_State,
 COUNT(Name) AS NameCount,
 COUNT(Name %AFTERHAVING) AS MNameCount
FROM Sample.Person
GROUP BY Home_State
HAVING Name LIKE 'M%'

Example: Count Grouped Values

512 InterSystems SQL Reference

SQL Aggregate Functions

Arguments

expression

A valid expression that contains the data values to be counted. expression can be the name of a column or an expression
that evaluates to a column of data. You cannot specify expression as a subquery.

column

A column name or comma-separated list of column names.

• In the COUNT(expression %FOREACH(column)) syntax, column specifies the columns used to group the data
before COUNT counts the values in the expression column. column cannot include a stream column.

• In the COUNT(DISTINCT BY(column) expression) syntax, column specifies the columns whose distinct values are
used to filter out duplicate rows before COUNT counts the values in the expression column.

Examples

Count Table Rows and Column Values

This query returns the total number of rows in the Sample.Person table. The count includes rows containing NULL
values in one or more columns.

SQL

SELECT COUNT(*) AS TotalPersons
FROM Sample.Person

This query returns the count of names, spouses, and favorite colors in Sample.Person. COUNT does not include NULL
values in column counts. Therefore, the number of return values for each column might differ or be less than the total
number of rows returned by COUNT(*).

SQL

SELECT
 COUNT(Name) AS People,
 COUNT(Spouse) AS PeopleWithSpouses,
 COUNT(FavoriteColors) AS PeopleWithColorPref
FROM Sample.Person

Count Distinct Column Values

This query uses COUNT DISTINCT to return the count of distinct FavoriteColors values in Sample.Person. The
FavoriteColors column contains several data values and multiple NULL. This query also uses the SELECT DISTINCT
clause to return one row for each distinct FavoriteColors value. The row count is one larger than the COUNT(DISTINCT
FavoriteColors) count. DISTINCT returns a row for a single NULL as a distinct value, but COUNT DISTINCT does
not count NULL. The COUNT(DISTINCT BY(FavoriteColors) %ID) value is the same as the row count, because
the BY clause does count a single NULL as a distinct value.

SQL

SELECT
 DISTINCT FavoriteColors,
 COUNT(DISTINCT FavoriteColors) AS DistColors,
 COUNT(DISTINCT BY(FavoriteColors) %ID) AS DistColorPeople
FROM Sample.Person

InterSystems SQL Reference 513

COUNT (SQL)

Count Grouped Values

The queries in this example use GROUP BY to group repeated values in a column, returning one row per unique value.
The queries then use COUNT to return a per-group count of values from a different column.

This query returns one row per distinct FavoriteColors value. Assuming that FavoriteColors is not required, the
query returns a row for NULL values (if any). Associated with each row are two counts:

• The number of rows that have that FavoriteColors option. Rows with NULL values are not counted.

• The number of names associated with each FavoriteColors option. Assuming that Name does not include NULL
values, this count includes a count of NULL values in FavoriteColors.

SQL

SELECT
 FavoriteColors,
 COUNT(FavoriteColors) AS ColorPreference,
 COUNT(Name) AS People
FROM Sample.Person
GROUP BY FavoriteColors

This query returns the count of person rows for each Home_State value in Sample.Person.

SQL

SELECT
 Home_State,
 COUNT(*) AS AllPersons
FROM Sample.Person
GROUP BY Home_State

This query uses %AFTERHAVING to return the count of person rows, and the count of persons over 65, for each state
with at least one person over 65.

SQL

SELECT
 Home_State,
 COUNT(Name) AS AllPersons,
 COUNT(Name %AFTERHAVING) AS Seniors
FROM Sample.Person
GROUP BY Home_State
HAVING Age > 65
ORDER BY Home_State

This query uses both the %FOREACH and %AFTERHAVING keywords. It uses GROUP BY to return one row per
state and HAVING to filter only on people whose names start with "A", "M", or "W".

SQL

SELECT
 Home_State,
 COUNT(Name) AS NameCount,
 COUNT(Name %FOREACH(Home_State)) AS StateNameCount,
 COUNT(Name %AFTERHAVING) AS NameCountHaving,
 COUNT(Name %FOREACH(Home_State) %AFTERHAVING) AS StateNameCountHaving
FROM Sample.Person
GROUP BY Home_State
HAVING Name LIKE 'A%' OR Name LIKE 'M%' OR Name LIKE 'W%'
ORDER BY Home_State

Each state row contains these counts:

• COUNT(Name) — All people in the database. Assuming Name is required, this count is the same for all rows.

• COUNT(Name %FOREACH(Home_State)) — All people in the state.

514 InterSystems SQL Reference

SQL Aggregate Functions

• COUNT(Name %AFTERHAVING) — All people in the database that meet the HAVING condition. Assuming
Name is required, this number is the same for all rows.

• COUNT(Name %FOREACH(Home_State) %AFTERHAVING): All people in the state that meet the HAVING
condition.

Count Non-NULL Values in Combination of Columns

This query uses COUNT with a concatenation operator (||) to count the rows in which both the FavoriteColors and
Home_State columns do not contain NULL values.

SQL

SELECT COUNT(FavoriteColors||Home_State) AS ColorState
FROM Sample.Person

Count Stream Column Values

You can use COUNT(expression) to count stream column values, with some restrictions:

• Column counts always include all non-NULL values, including duplicate values.

• You cannot specify a stream field in a COUNT DISTINCT expression clause. Attempting to do so results in an
SQLCODE -37 error.

• You cannot specify a stream field in a %FOREACH column clause. Attempting to do so results in an SQLCODE -
37 error.

This query shows a valid use of the COUNT function, where Title is a string field and Notes and Picture are stream
fields:

SQL

SELECT DISTINCT Title,COUNT(Notes),COUNT(Picture %FOREACH(Title))
FROM Sample.Employee

These queries containing stream fields are not valid.

SQL

-- Invalid: DISTINCT keyword with stream field
SELECT Title,COUNT(DISTINCT Notes) FROM Sample.Employee

SQL

-- Invalid: %FOREACH col-list contains stream field
SELECT Title,COUNT(Notes %FOREACH(Picture))
FROM Sample.Employee

No Rows Returned in Count

These examples show what COUNT returns when the SELECT query selects no rows for the function to count. Depending
on the query, COUNT returns either 0 or NULL.

If the SELECT selectItem list does not contain any references to columns in the FROM clause tables, other than columns
supplied to aggregate functions, COUNT returns 0.

COUNT is the only aggregate function that returns 0. All other aggregate functions return NULL. The query returns a
%ROWCOUNT of 1. Sample query:

InterSystems SQL Reference 515

COUNT (SQL)

SQL

SELECT
 COUNT(*) AS Recs, COUNT(Name) AS People,
 AVG(Age) AS AvgAge, MAX(Age) AS MaxAge,
 CURRENT_TIMESTAMP AS Now
FROM Sample.Employee
WHERE Name %STARTSWITH 'ZZZ'

If the SELECT selectItem list contains any direct reference to a column in a FROM clause table, or if TOP 0 is specified,
COUNT returns NULL. The query returns a %ROWCOUNT of 0. Sample query:

SQL

SELECT
 COUNT(*) AS Recs,
 COUNT(Name) AS People,
 $LENGTH(Name) AS NameLen
FROM Sample.Employee WHERE Name %STARTSWITH 'ZZZ'

If no table is specified, COUNT(*) returns 1. The query returns a %ROWCOUNT of 1. Sample query:

SQL

SELECT COUNT(*) AS Recs

Security and Privileges
To use the COUNT(*) syntax, you must have table-level SELECT privilege for the specified table.

To use COUNT(expression) syntaxes, you must have either column-level SELECT privilege for the column specified by
expression or table-level SELECT privilege for the specified table.

• To determine if you have SELECT privilege, use %CHECKPRIV.

• To determine if you have table-level SELECT privilege, use $SYSTEM.SQL.Security.CheckPrivilege().

• To assign privileges, use GRANT.

Performance
To improve COUNT performance, consider defining these indexes:

• For the COUNT(*) syntax, define a bitmap extent index, if this index was not automatically defined when the table
was created.

• For COUNT(expression) syntaxes, define a bitslice index for the column specified by expression. Query Plan opti-
mization of COUNT(expression) automatically applies default collation to the column being counted.

Transaction Considerations
Like all aggregate functions, COUNT returns the current state of the data, including uncommitted changes, regardless of
the current transaction's isolation level. COUNT follows this behavior:

• Counts inserted and updated records, even if those changes have not been committed and can be rolled back.

• Does not count deleted records, even if those deletions have not been committed and can be rolled back.

For more details, see SET TRANSACTION and START TRANSACTION.

See Also
• Aggregate Functions

516 InterSystems SQL Reference

SQL Aggregate Functions

• AVG

• SUM

InterSystems SQL Reference 517

COUNT (SQL)

%DLIST (SQL)
An aggregate function that creates an InterSystems IRIS list of values.

Synopsis

%DLIST([ALL | DISTINCT [BY(col-list)]]
string-expr

 [%FOREACH(col-list)] [%AFTERHAVING])

Description
The %DLIST aggregate function returns an ObjectScript %List structure containing the values in the specified column as
list elements.

A simple %DLIST (or %DLIST ALL) returns InterSystems IRIS list composed of all the non-NULL values for string-expr
in the selected rows. Rows where string-expr is NULL are not included as elements in the list structure.

A %DLIST DISTINCT returns an InterSystems IRIS list composed of all the distinct (unique) non-NULL values for
string-expr in the selected rows: %DLIST(DISTINCT col1). NULL is not included as an element in the %List structure.
%DLIST(DISTINCT BY(col2) col1) returns a %List of elements including only those col1 field values in records
where the col2 values are distinct (unique). Note however that the distinct col2 values may include a single NULL as a
distinct value.

For further information about InterSystems IRIS list structures, see $LIST and related functions.

%DLIST and %SelectMode

You can use the %SelectMode property to specify the data display mode returned by %DLIST: 0=Logical (the default),
1=ODBC, 2=Display.

Note that %DLIST in ODBC mode separates column value lists with commas, and $LISTTOSTRING (by default) returns
elements within a %List column value separated with commas.

%DLIST and ORDER BY

The %DLIST function combines the values of a table column from multiple rows into %List structured list of values.
Because an ORDER BY clause is applied to the query result set after all aggregate fields are evaluated, ORDER BY
cannot directly affect the sequence of values within this list. Under certain circumstances, %DLIST results may appear in
sequential order, but this ordering should not be relied upon. The values listed within a given aggregate result value cannot
be explicitly ordered.

Related Aggregate Functions

• %DLIST returns an InterSystems IRIS list of values.

• LIST returns a comma-separated list of values.

• JSON_ARRAYAGG returns a JSON array of values.

• XMLAGG returns a concatenated string of values.

Arguments

ALL

An optional argument specifying that %DLIST returns a list of all values for string-expr. This is the default if no keyword
is specified.

518 InterSystems SQL Reference

SQL Aggregate Functions

DISTINCT

An optional DISTINCT clause that specifies that %DLIST returns a %List structured list containing only the unique
string-expr values. DISTINCT can specify a BY(col-list) subclause, where col-list can be a single field or a comma-
separated list of fields.

string-expr

An SQL expression that evaluates to a string. Usually the name of a column from the selected table.

%FOREACH(col-list)

An optional column name or a comma-separated list of column names. See SELECT for further information on %FOREACH.

%AFTERHAVING

An optional argument that applies the condition found in the HAVING clause.

Examples
The following example returns an InterSystems IRIS list of all of the values listed in the Home_State column of the Sam-
ple.Person table that start with the letter “A”:

SQL

SELECT %DLIST(Home_State)
FROM Sample.Person
WHERE Home_State %STARTSWITH 'A'

Note that this InterSystems IRIS list contains elements with duplicate values.

The following example returns an InterSystems IRIS list of all of the distinct (unique) values listed in the Home_State
column of the Sample.Person table that start with the letter “A”:

SQL

SELECT %DLIST(DISTINCT Home_State)
FROM Sample.Person
WHERE Home_State %STARTSWITH 'A'

The following example creates an InterSystems IRIS list of all of the values found in the Home_City column for each of
the states, and a count of these city values by state. Every Home_State row contains a list of all of the Home_City values
for that state. These lists may include duplicate city names:

SQL

SELECT Home_State,
 %DLIST(Home_City) AS AllCities,
 COUNT(Home_City) AS CityCount
FROM Sample.Person
GROUP BY Home_State

Perhaps more useful would be a list of all of the distinct values found in the Home_City column for each of the states, as
shown in the following example:

SQL

SELECT Home_State,
 %DLIST(DISTINCT Home_City) AS CitiesList,
 COUNT(DISTINCT Home_City) AS DistinctCities,
 COUNT(Home_City) AS TotalCities
FROM Sample.Person
GROUP BY Home_State

InterSystems SQL Reference 519

%DLIST (SQL)

Note that this example returns integer counts of both the distinct city names and the total city names for each state.

The following example returns %List structures of Home_State values that begin with “A”. It returns the following as
%List elements: the distinct Home_State values (DISTINCT Home_State); the Home_State values corresponding to
distinct Home_City values (DISTINCT BY(Home_City) Home_State), which may possibly including one unique
NULL for Home_City; and all Home_State values:

SQL

SELECT %DLIST(DISTINCT Home_State) AS DistStates,
 %DLIST(DISTINCT BY(Home_City) Home_State) AS DistCityStates,
 %DLIST(Home_State) AS AllStates
FROM Sample.Person
WHERE Home_State %STARTSWITH 'A'

The following Dynamic SQL example uses the %SelectMode property to specify the ODBC display mode for the %List
structure FavoriteColors date field. ODBC mode returns the value for each column as a comma-separated list, and the
$LISTTOSTRING function specifies a different delimiter (in this example, ||) to separate the values from the different
columns:

ObjectScript

 set myquery = "SELECT %DLIST(FavoriteColors) AS colors FROM Sample.Person WHERE Name %STARTSWITH 'A'"

 set tStatement = ##class(%SQL.Statement).%New()
 set tStatement.%SelectMode=1

 set qStatus = tStatement.%Prepare(myquery)
 if $$$ISERR(qStatus) {write "%Prepare failed:" do $SYSTEM.Status.DisplayError(qStatus) quit}

 set rset = tStatement.%Execute()
 if (rset.%SQLCODE '= 0) {write "%Execute failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
 quit}

 while rset.%Next()
 {
 write $LISTTOSTRING(rset.colors,"||"),!
 }
 if (rset.%SQLCODE < 0) {write "%Next failed:", !, "SQLCODE ", rset.%SQLCODE, ": ", rset.%Message
quit}

 write !,"End of data"

The following example uses the %AFTERHAVING keyword. It returns a row for each Home_State that contains at least
one Name value that fulfills the HAVING clause condition (a name that begins with “M”). The first %DLIST function
returns a list of all of the names for that state. The second %DLIST function returns a list containing only those names
that fulfill the HAVING clause condition:

SQL

SELECT Home_State,
 %DLIST(Name) AS AllNames,
 %DLIST(Name %AFTERHAVING) AS HaveClauseNames
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Name LIKE 'M%'
 ORDER BY Home_state

See Also
• Aggregate Functions overview

• SELECT

• $LIST function

• JSON_ARRAYAGG aggregate function

• LIST aggregate function

520 InterSystems SQL Reference

SQL Aggregate Functions

• XMLAGG aggregate function

InterSystems SQL Reference 521

%DLIST (SQL)

JSON_ARRAYAGG (SQL)
An aggregate function that creates a JSON format array of values.

Synopsis

JSON_ARRAYAGG([ALL | DISTINCT [BY(col-list)]]
string-expr

 [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

DescriptionArgument

Optional — Specifies that JSON_ARRAYAGG returns a JSON array
containing all values for string-expr. This is the default if no keyword
is specified.

ALL

Optional — A DISTINCT clause that specifies that
JSON_ARRAYAGG returns a JSON array containing only the unique
string-expr values. DISTINCT can specify a BY(col-list)
subclause, where col-list can be a single field or a comma-separated
list of fields.

DISTINCT

An SQL expression that evaluates to a string. Usually the name of a
column from the selected table.

string-expr

Optional — A column name or a comma-separated list of column
names. See SELECT for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

Description
The JSON_ARRAYAGG aggregate function returns a JSON format array of the values in the specified column. For further
details on JSON array format, refer to the JSON_ARRAY function.

A simple JSON_ARRAYAGG (or JSON_ARRAYAGG ALL) returns a JSON array containing all the values for
string-expr in the selected rows. Rows where string-expr is the empty string ('') are represented by ("\u0000") in the array.
Rows where string-expr is NULL are not included in the array. If there is only one string-expr value, and it is the empty
string (''), JSON_ARRAYAGG returns the JSON array ["\u0000"]. If all string-expr values are NULL,
JSON_ARRAYAGG returns an empty JSON array [].

A JSON_ARRAYAGG DISTINCT returns a JSON array composed of all the different (unique) values for string-expr
in the selected rows: JSON_ARRAYAGG(DISTINCT col1). The NULL string-expr is not included in the JSON array.
JSON_ARRAYAGG(DISTINCT BY(col2) col1) returns a JSON array containing only those col1 field values in records
where the col2 values are distinct (unique). Note however that the distinct col2 values may include a single NULL as a
distinct value.

The JSON_ARRAYAGG string-expr cannot be a stream field. Specifying a stream field results in an SQLCODE -37.

Data Values Containing Escaped Characters

• Double Quote: If a string-expr value contains a double quote character ("), JSON_ARRAYAGG represents this
character using the literal escape sequence \".

• Backslash: If a string-expr value contains a backslash character (\), JSON_ARRAYAGG represents this character
using the literal escape sequence \\.

522 InterSystems SQL Reference

SQL Aggregate Functions

• Single Quote: When a string-expr value contains a single quote as a literal character, InterSystems SQL requires that
this character must be escaped by doubling it as two single quote characters (''. JSON_ARRAYAGG represents this
character as a single quote character '.

Maximum JSON Array Size

The default JSON_ARRAYAGG return type is VARCHAR(8192). This length includes the JSON array formatting char-
acters as well as the field data characters. If you anticipate the value returned will need to be longer than 8192, you can use
the CAST function to specify a larger return value. For example, CAST(JSON_ARRAYAGG(value)) AS
VARCHAR(12000)). If the actual JSON array returned is longer than the JSON_ARRAYAGG return type length, Inter-
Systems IRIS truncates the JSON array at the return type length without issuing an error. Because truncating a JSON array
removes its closing] character, this makes the return value invalid.

JSON_ARRAYAGG and %SelectMode

You can use the %SelectMode property to specify the data display values for the elements in the JSON array: 0=Logical
(the default), 1=ODBC, 2=Display. If the string-expr contains a %List structure, the elements are represented in ODBC
mode separated by a comma, and in Logical and Display mode with %List format characters represented by \ escape
sequences. Refer to $ZCONVERT “Encoding Translation” for an table listing these JSON \ escape sequences.

JSON_ARRAYAGG and ORDER BY

The JSON_ARRAYAGG function combines the values of a table column from multiple rows into a JSON array of element
values. Because an ORDER BY clause is applied to the query result set after all aggregate fields are evaluated, ORDER
BY cannot directly affect the sequence of values within this list. Under certain circumstances, JSON_ARRAYAGG results
may appear in sequential order, but this ordering should not be relied upon. The values listed within a given aggregate
result value cannot be explicitly ordered.

Related Aggregate Functions

• LIST returns a comma-separated list of values.

• %DLIST returns an InterSystems IRIS list containing an element for each value.

• XMLAGG returns a concatenated string of values.

Examples
This example returns a JSON array of all values in the Home_State column of the Sample.Person table that start with the
letter “A”:

SQL

 SELECT JSON_ARRAYAGG(Home_State)
 FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A'

Note that this JSON array contains duplicate values.

The following example returns a host variable containing a JSON array of all of the distinct (unique) values in the Home_State
column of the Sample.Person table that start with the letter “A”:

SQL

 SELECT DISTINCT JSON_ARRAYAGG(Home_State) AS DistinctStates
 FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A'

InterSystems SQL Reference 523

JSON_ARRAYAGG (SQL)

The following example creates a JSON array of all of the values found in the Home_City column for each of the states,
and a count of these city values by state. Every Home_State row contains a JSON array of all of the Home_City values for
that state. These JSON arrays may include duplicate city names:

SQL

SELECT Home_State,
 COUNT(Home_City) AS CityCount,
 JSON_ARRAYAGG(Home_City) AS ArrayAllCities
FROM Sample.Person
GROUP BY Home_State

Perhaps more useful would be a JSON array of all of the distinct values found in the Home_City column for each of the
states, as shown in the following example:

SQL

SELECT DISTINCT Home_State,
 COUNT(DISTINCT Home_City) AS DistCityCount,
 COUNT(Home_City) AS TotCityCount,
 JSON_ARRAYAGG(DISTINCT Home_City) AS ArrayDistCities
FROM Sample.Person GROUP BY Home_State

Note that this example returns integer counts of both the distinct city names and the total city names for each state.

The following Dynamic SQL example uses the %SelectMode property to specify the ODBC display mode for the JSON
array of values returned by the DOB date field:

ObjectScript

 SET myquery = 2
 SET myquery(1) = "SELECT JSON_ARRAYAGG(DOB) AS DOBs "
 SET myquery(2) = "FROM Sample.Person WHERE Name %STARTSWITH 'A'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following example uses the %FOREACH keyword. It returns a row for each distinct Home_State containing a JSON
array of age values for that Home_State.

SQL

SELECT DISTINCT Home_State,
 JSON_ARRAYAGG(Age %FOREACH(Home_State))
FROM Sample.Person
WHERE Home_State %STARTSWITH 'M'

The following example uses the %AFTERHAVING keyword. It returns a row for each Home_State that contains at least
one Name value that fulfills the HAVING clause condition (a name that begins with “M”). The first JSON_ARRAYAGG
function returns a JSON array of all of the names for that state. The second JSON_ARRAYAGG function returns a JSON
array containing only those names that fulfill the HAVING clause condition:

SQL

SELECT Home_State,
 JSON_ARRAYAGG(Name) AS AllNames,
 JSON_ARRAYAGG(Name %AFTERHAVING) AS HavingClauseNames
FROM Sample.Person GROUP BY Home_State
HAVING Name LIKE 'M%' ORDER BY Home_State

524 InterSystems SQL Reference

SQL Aggregate Functions

See Also
• Aggregate Functions overview

• JSON_ARRAY function

• IS JSON predicate condition

• LIST aggregate function

• %DLIST aggregate function

• XMLAGG aggregate function

• SELECT statement

InterSystems SQL Reference 525

JSON_ARRAYAGG (SQL)

LIST (SQL)
An aggregate function that creates a comma-separated list of values.

Synopsis

LIST([ALL | DISTINCT [BY(col-list)]]
string-expr

 [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

DescriptionArgument

Optional — Specifies that LIST returns a list of all values for
string-expr. This is the default if no keyword is specified.

ALL

Optional — A DISTINCT clause that specifies that LIST returns a list
containing only the unique string-expr values. DISTINCT can specify
a BY(col-list) subclause, where col-list can be a single field or a
comma-separated list of fields.

DISTINCT

An SQL expression that evaluates to a string. Usually the name of a
column from the selected table.

string-expr

Optional — A column name or a comma-separated list of column
names. See SELECT for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

Description
The LIST aggregate function returns a comma-separated list of the values in the specified column.

A simple LIST (or LIST ALL) returns a string containing a comma-separated list composed of all the values for string-expr
in the selected rows. Rows where string-expr is the empty string ('') are represented by a placeholder comma in the comma-
separated list. Rows where string-expr is NULL are not included in the comma-separated list. If there is only one string-expr
value, and it is the empty string (''), LIST returns the empty string.

A LIST DISTINCT returns a string containing a comma-separated list composed of all the distinct (unique) values for
string-expr in the selected rows: LIST(DISTINCT col1). The NULL string-expr is not included in the comma-separated
list. LIST(DISTINCT BY(col2) col1) returns a comma-separated list containing only those col1 field values in
records where the col2 values are distinct (unique). Note however that the distinct col2 values may include a single NULL
as a distinct value.

Data Values Containing Commas

Because LIST uses commas to separate string-expr values, LIST should not be used for data values that contain commas.
Use %DLIST or JSON_ARRAYAGG instead.

LIST and %SelectMode

You can use the %SelectMode property to specify the data display mode returned by LIST: 0=Logical (the default),
1=ODBC, 2=Display.

Note that LIST separates column values with commas, and ODBC mode separates elements within a %List column value
with commas. Therefore, using ODBC mode when using LIST on a %List structure produces ambiguous results.

526 InterSystems SQL Reference

SQL Aggregate Functions

LIST and ORDER BY

The LIST function combines the values of a table column from multiple rows into a single comma-separated list of values.
Because an ORDER BY clause is applied to the query result set after all aggregate fields are evaluated, ORDER BY
cannot directly affect the sequence of values within this list. Under certain circumstances, LIST results may appear in
sequential order, but this ordering should not be relied upon. The values listed within a given aggregate result value cannot
be explicitly ordered.

Maximum LIST Size

Any LIST return value must be not longer than the maximum string length.

Related Aggregate Functions

• LIST returns a comma-separated list of values.

• %DLIST returns a list containing an element for each value.

• JSON_ARRAYAGG returns a JSON array of values.

• XMLAGG returns a concatenated string of values.

Examples
The following SQL example returns a host variable containing a comma-separated list of all of the values listed in the
Home_State column of the Sample.Person table that start with the letter “A”:

SQL

 SELECT LIST(Home_State) AS StateList
 FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A'

Note that this list contains duplicate values.

The following SQL example returns a host variable containing a comma-separated list of all of the distinct (unique) values
listed in the Home_State column of the Sample.Person table that start with the letter “A”:

SQL

 SELECT LIST(DISTINCT Home_State) AS DistinctStates
 FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A'

The following SQL example creates a comma-separated list of all of the values found in the Home_City column for each
of the states, and a count of these city values by state. Every Home_State row contains a list of all of the Home_City values
for that state. These lists may include duplicate city names:

SQL

SELECT Home_State,
 COUNT(Home_City) AS CityCount,
 LIST(Home_City) AS ListAllCities
FROM Sample.Person
GROUP BY Home_State

Perhaps more useful would be a comma-separated list of all of the distinct values found in the Home_City column for each
of the states, as shown in the following example:

InterSystems SQL Reference 527

LIST (SQL)

SQL

SELECT Home_State,
 COUNT(DISTINCT Home_City) AS DistCityCount,
 COUNT(Home_City) AS TotCityCount,
 LIST(DISTINCT Home_City) AS DistCitiesList
FROM Sample.Person
GROUP BY Home_State

Note that this example returns integer counts of both the distinct city names and the total city names for each state.

The following example returns lists of Home_State values that begin with “A”. It returns the distinct Home_State values
(DISTINCT Home_State); the Home_State values corresponding to distinct Home_City values (DISTINCT
BY(Home_City) Home_State), which may possibly including one unique NULL for Home_City; and all Home_State
values:

SQL

SELECT LIST(DISTINCT Home_State) AS DistStates,
 LIST(DISTINCT BY(Home_City) Home_State) AS DistCityStates,
 LIST(Home_State) AS AllStates
FROM Sample.Person
WHERE Home_State %STARTSWITH 'A'

The following Dynamic SQL example uses the %SelectMode property to specify the ODBC display mode for the list of
values returned by the DOB date field:

ObjectScript

 SET myquery = "SELECT LIST(DOB) AS DOBs FROM Sample.Person WHERE Name %STARTSWITH 'A'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following example uses the %FOREACH keyword. It returns a row for each distinct Home_State containing a list of
age values for that Home_State:

SQL

SELECT DISTINCT Home_State,
 LIST(Age %FOREACH(Home_State)) AgesForState
FROM Sample.Person WHERE Home_State %STARTSWITH 'M'

The following example uses the %AFTERHAVING keyword. It returns a row for each Home_State that contains at least
one Name value that fulfills the HAVING clause condition (a name that begins with “M”). The first LIST function returns
a list of all of the names for that state. The second LIST function returns a list containing only those names that fulfill the
HAVING clause condition:

SQL

SELECT Home_State,
 LIST(Name) AS AllNames,
 LIST(Name %AFTERHAVING) AS HavingClauseNames
FROM Sample.Person
GROUP BY Home_State
HAVING Name LIKE 'M%'
ORDER BY Home_State

See Also
• Aggregate Functions overview

• %DLIST aggregate function

528 InterSystems SQL Reference

SQL Aggregate Functions

• JSON_ARRAYAGG aggregate function

• XMLAGG aggregate function

• SELECT statement

InterSystems SQL Reference 529

LIST (SQL)

MAX (SQL)
An aggregate function that returns the maximum data value in a specified column.

Synopsis

MAX([ALL | DISTINCT [BY(col-list)]]
expression

 [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

DescriptionArgument

Optional — Applies the aggregate function to all values. ALL has no effect on the
value returned by MAX. It is provided for SQL-92 compatibility.

ALL

Optional — A DISTINCT clause that specifies that each unique value is considered.
DISTINCT has no effect on the value returned by MAX. It is provided for SQL-92
compatibility.

DISTINCT

Any valid expression. Usually the name of a column that contains the values from
which the maximum value is to be returned.

expression

Optional — A column name or a comma-separated list of column names. See SELECT
for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

MAX returns the same data type as expression.

Note: MAX can be specified as an aggregate function or as a window function. This reference page describes the use
of MAX as an aggregate function. MAX as a window function is described in Overview of Window Functions.

Description
The MAX aggregate function returns the largest (maximum) of the values of expression. Commonly, expression is the
name of a field, (or an expression containing one or more field names) in the multiple rows returned by a query.

MAX can be used in a SELECT query or subquery that references either a table or a view. MAX can appear in a SELECT
list or HAVING clause alongside ordinary field values.

MAX cannot be used in a WHERE clause. MAX cannot be used in the ON clause of a JOIN, unless the SELECT is a
subquery.

Like most other aggregate functions, MAX cannot be applied to a stream field. Attempting to do so generates an SQLCODE
-37 error.

Unlike most other aggregate functions, the ALL and DISTINCT keywords, including MAX(DISTINCT BY(col2) col1),
perform no operation in MAX. They are provided for SQL–92 compatibility.

Data Values

The specified field used by MAX can be numeric or nonnumeric. For a numeric data type field, maximum is defined as
highest in numeric value; thus -3 is higher than -7. For a non-numeric data type field, maximum is defined as highest in
string collation sequence; thus '-7' is higher than '-3'.

An empty string ('') value is treated as CHAR(0).

530 InterSystems SQL Reference

SQL Aggregate Functions

A predicate uses the collation type defined for the field. By default, string data type fields are defined with SQLUPPER
collation, which is not case-sensitive. You can define the string collation default for the current namespace and specify a
non-default field collation type when defining a field/property.

When the field’s defined collation type is SQLUPPER, MAX returns strings in all uppercase letters. Thus SELECT
MAX(Name) returns 'ZWIG', regardless of the original lettercase of the data. But because comparisons are performed using
uppercase collation, the clause HAVING Name=MAX(Name) selects rows with the Name value 'Zwig', 'ZWIG', and 'zwig'.

For numeric values, the scale returned is the same as the expression scale.

NULL values in data fields are ignored when deriving a MAX aggregate function value. If no rows are returned by the
query, or the data field value for all rows returned is NULL, MAX returns NULL.

Changes Made During the Current Transaction
Like all aggregate functions, MAX always returns the current state of the data, including uncommitted changes, regardless
of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and START TRANSACTION.

Examples
The following query returns the highest (maximum) salary in the Sample.Employee database:

SQL

SELECT '$' || MAX(Salary) As TopSalary
 FROM Sample.Employee

The following query returns one row for each state that contains at least one employee with a salary smaller than $25,000.
Using the %AFTERHAVING keyword, each row returns the maximum employee salary smaller than $25,000. Each row
also returns the minimum salary and the maximum salary for all employees in that state:

SQL

SELECT Home_State,
 '$' || MAX(Salary %AFTERHAVING) AS MaxSalaryBelow25K,
 '$' || MIN(Salary) AS MinSalary,
 '$' || MAX(Salary) AS MaxSalary
 FROM Sample.Employee
 GROUP BY Home_State
 HAVING Salary < 25000
 ORDER BY Home_State

The following query returns the lowest (minimum) and highest (maximum) name in collation sequence found in the Sam-
ple.Employee database:

SQL

SELECT Name,MIN(Name),MAX(Name)
 FROM Sample.Employee

Note that MIN and MAX convert Name values to uppercase before comparison.

The following query returns the highest (maximum) salary for an employee whose Home_State is 'VT' in the Sam-
ple.Employee database:

SQL

SELECT MAX(Salary)
 FROM Sample.Employee
 WHERE Home_State = 'VT'

The following query returns the number of employees and the highest (maximum) employee salary for each Home_State
in the Sample.Employee database:

InterSystems SQL Reference 531

MAX (SQL)

SQL

SELECT Home_State,
 COUNT(Home_State) As NumEmployees,
 MAX(Salary) As TopSalary
 FROM Sample.Employee
 GROUP BY Home_State
 ORDER BY TopSalary

See Also
• Aggregate Functions overview

• MIN aggregate function

532 InterSystems SQL Reference

SQL Aggregate Functions

MIN (SQL)
An aggregate function that returns the minimum data value in a specified column.

Synopsis

MIN([ALL | DISTINCT [BY(col-list)]]
expression

 [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

DescriptionArgument

Optional — Applies the aggregate function to all values. ALL has no effect on the value
returned by MIN. It is provided for SQL-92 compatibility.

ALL

Optional — Specifies that each unique value is considered. DISTINCT has no effect
on the value returned by MIN. It is provided for SQL-92 compatibility.

DISTINCT

Any valid expression. Usually the name of a column that contains the values from
which the minimum value is to be returned.

expression

Optional — A column name or a comma-separated list of column names. See SELECT
for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

MIN returns the same data type as expression.

Note: MIN can be specified as an aggregate function or as a window function. This reference page describes the use of
MIN as an aggregate function. MIN as a window function is described in Overview of Window Functions.

Description
The MIN aggregate function returns the smallest (minimum) of the values of expression. Commonly, expression is the
name of a field, (or an expression containing one or more field names) in the multiple rows returned by a query.

MIN can be used in a SELECT query or subquery that references either a table or a view. MIN can appear in a SELECT
list or HAVING clause alongside ordinary field values.

MIN cannot be used in a WHERE clause. MIN cannot be used in the ON clause of a JOIN, unless the SELECT is a subquery.

Like most other aggregate functions, MIN cannot be applied to a stream field. Attempting to do so generates an SQLCODE
-37 error.

Unlike most other aggregate functions, the ALL and DISTINCT keywords, including MIN(DISTINCT BY(col2) col1),
perform no operation in MIN. They are provided for SQL–92 compatibility.

Data Values

The specified field used by MIN can be numeric or nonnumeric. For a numeric data type field, minimum is defined as
lowest in numeric value; thus -7 is lower than -3. For a non-numeric data type field, minimum is defined as lowest in string
collation sequence; thus '-3' is lower than '-7'.

An empty string ('') value is treated as CHAR(0).

InterSystems SQL Reference 533

MIN (SQL)

A predicate uses the collation type defined for the field. By default, string data type fields are defined with SQLUPPER
collation, which is not case-sensitive. You can define the string collation default for the current namespace and specify a
non-default field collation type when defining a field/property.

When the field’s defined collation type is SQLUPPER, MIN returns strings in all uppercase letters. Thus SELECT
MIN(Name) returns 'AARON', regardless of the original lettercase of the data. But because comparisons are performed
using uppercase collation, the clause HAVING Name=MIN(Name) selects rows with the Name value 'Aaron', 'AARON',
and 'aaron'.

For numeric values, the scale returned is the same as the expression scale.

NULL values in data fields are ignored when deriving a MIN aggregate function value. If no rows are returned by the
query, or the data field value for all rows returned is NULL, MIN returns NULL.

Changes Made During the Current Transaction
Like all aggregate functions, MIN always returns the current state of the data, including uncommitted changes, regardless
of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and START TRANSACTION.

Examples
In the following examples a dollar sign ($) is concatenated to Salary amounts.

The following query returns the lowest (minimum) salary in the Sample.Employee database:

SQL

SELECT '$' || MIN(Salary) AS LowSalary
 FROM Sample.Employee

The following query returns one row for each state that contains at least one employee with a salary larger than $75,000.
Using the %AFTERHAVING keyword, each row returns the minimum employee salary larger than $75,000. Each row
also returns the minimum salary and the maximum salary for all employees in that state:

SQL

SELECT Home_State,
 '$' || MIN(Salary %AFTERHAVING) AS MinSalaryAbove75K,
 '$' || MIN(Salary) AS MinSalary,
 '$' || MAX(Salary) AS MaxSalary
 FROM Sample.Employee
 GROUP BY Home_State
 HAVING Salary > 75000
 ORDER BY MinSalaryAbove75K

The following query returns the lowest (minimum) and highest (maximum) name in collation sequence found in the Sam-
ple.Employee database:

SQL

SELECT Name,MIN(Name),MAX(Name)
 FROM Sample.Employee

Note that MIN and MAX convert Name values to uppercase before comparison.

The following query returns the lowest (minimum) salary for an employee whose Home_State is 'VT' in the Sample.Employee
database:

SQL

SELECT MIN(Salary)
 FROM Sample.Employee
 WHERE Home_State = 'VT'

534 InterSystems SQL Reference

SQL Aggregate Functions

The following query returns the number of employees and the lowest (minimum) employee salary for each Home_State in
the Sample.Employee database:

SQL

SELECT Home_State,
 COUNT(Home_State) As NumEmployees,
 MIN(Salary) As LowSalary
 FROM Sample.Employee
 GROUP BY Home_State
 ORDER BY LowSalary

See Also
• Aggregate Functions overview

• MAX aggregate function

InterSystems SQL Reference 535

MIN (SQL)

STDDEV, STDDEV_SAMP, STDDEV_POP (SQL)
Aggregate functions that return the statistical standard deviation of a data set.

Synopsis

STDDEV([ALL | DISTINCT [BY(col-list)]]
expression

 [%FOREACH(col-list)] [%AFTERHAVING])

STDDEV_SAMP([ALL | DISTINCT [BY(col-list)]]
expression

 [%FOREACH(col-list)] [%AFTERHAVING])

STDDEV_POP([ALL | DISTINCT [BY(col-list)]]
expression

 [%FOREACH(col-list)] [%AFTERHAVING])

Description
These three standard deviation aggregate functions return the statistical standard deviation of the distribution of the values
of expression, after discarding NULL values. That is, the amount of standard deviation from the mean value of the data
set, expressed as a positive number. The larger the return value, the more variation there is within the data set of values.

The STDDEV, STDDEV_SAMP (sample), and STDDEV_POP (population) functions are derived from the corresponding
variance aggregate functions:

VARIANCESTDDEV

VAR_SAMPSTDDEV_SAMP

VAR_POPSTDDEV_POP

The standard deviation is the square root of the corresponding variance value. Refer to these variance aggregate functions
for further details.

These standard deviation functions can be used in a SELECT query or subquery that references either a table or a view.
They can appear in a SELECT list or HAVING clause alongside ordinary field values.

These standard deviation functions cannot be used in a WHERE clause. They cannot be used in the ON clause of a JOIN,
unless the SELECT is a subquery.

These standard deviation functions return a value of data type NUMERIC with a precision of 36 and a scale of 17, unless
expression is data type DOUBLE in which case it returns data type DOUBLE.

These functions are normally applied to a field or expression that has a numeric value. They evaluate nonnumeric values,
including the empty string (''), as zero (0).

These standard deviation functions ignore NULL values in data fields. If no rows are returned by the query, or the data
field value for all rows returned is NULL, they return NULL.

The standard deviation functions, like all aggregate functions, can take an optional DISTINCT clause. STDDEV(DISTINCT
col1) returns the standard deviation of those col1 field values that are distinct (unique). STDDEV(DISTINCT BY(col2)
col1) returns the standard deviation of the col1 field values in records where the col2 values are distinct (unique). Note
however that the distinct col2 values may include a single NULL as a distinct value.

536 InterSystems SQL Reference

SQL Aggregate Functions

Arguments

ALL

An optional argument specifying that standard deviation functions return the standard deviation of all values for expression.
This is the default if no keyword is specified.

DISTINCT

An optional DISTINCT clause that specifies that standard deviation functions return the standard deviation of the distinct
(unique) expression values. DISTINCT can specify a BY(col-list) subclause, where col-list can be a single field or a
comma-separated list of fields.

expression

Any valid expression. Usually the name of a column that contains the data values to be analyzed for standard deviation.

%FOREACH(col-list)

An optional column name or a comma-separated list of column names. See SELECT for further information on %FOREACH.

%AFTERHAVING

An optional argument that applies the condition found in the HAVING clause.

Changes Made During the Current Transaction
Like all aggregate functions, standard deviation functions always returns the current state of the data, including uncommitted
changes, regardless of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and
START TRANSACTION.

Examples
The following example uses STDDEV to return the standard deviation in the ages of the employees in Sample.Employee,
and the standard deviation in the distinct ages represented by one or more employees:

SELECT STDDEV(Age) AS AgeSD,STDDEV(DISTINCT Age) AS PerAgeSD
 FROM Sample.Employee

The following example uses STDDEV_POP to return the population standard deviation in the ages of the employees in
Sample.Employee, and the standard deviation in the distinct ages represented by one or more employees:

SELECT STDDEV_POP(Age) AS AgePopSD,STDDEV_POP(DISTINCT Age) AS PerAgePopSD
 FROM Sample.Employee

See Also
• Aggregate Functions overview

• VARIANCE, VAR_SAMP, VAR_POP aggregate functions

• AVG aggregate function

• COUNT aggregate function

InterSystems SQL Reference 537

STDDEV, STDDEV_SAMP, STDDEV_POP (SQL)

SUM (SQL)
An aggregate function that returns the sum of the values of a specified column.

Synopsis

SUM([ALL | DISTINCT [BY(col-list)]]
expression

 [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

DescriptionArgument

Optional — Specifies that SUM return the sum of all values for expression. This is the
default if no keyword is specified.

ALL

Optional — A DISTINCT clause that specifies that SUM return the sum of the distinct
(unique) values for expression. DISTINCT can specify a BY(col-list) subclause,
where col-list can be a single field or a comma-separated list of fields.

DISTINCT

Any valid expression. Usually the name of a column that contains the data values to
be summed.

expression

Optional — A column name or a comma-separated list of column names. See SELECT
for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

SUM returns the same data type as expression, with the following exception: TINYINT, SMALLINT and INTEGER are
all returned as data type INTEGER.

Note: SUM can be specified as an aggregate function or as a window function. This reference page describes the use
of SUM as an aggregate function. SUM as a window function is described in Overview of Window Functions.

Description
The SUM aggregate function returns the sum of the values of expression. Commonly, expression is the name of a field,
(or an expression containing one or more field names) in the multiple rows returned by a query.

SUM can be used in a SELECT query or subquery that references either a table or a view. SUM can appear in a SELECT
list or HAVING clause alongside ordinary field values.

SUM cannot be used in a WHERE clause. SUM cannot be used in the ON clause of a JOIN, unless the SELECT is a
subquery.

SUM, like all aggregate functions, can take an optional DISTINCT clause. SUM(DISTINCT col1) totals only those col1
field values that are distinct (unique). SUM(DISTINCT BY(col2) col1) totals only those col1 field values in records
where the col2 values are distinct (unique). Note however that the distinct col2 values may include a single NULL as a
distinct value.

Data Values

SUM returns data type INTEGER for an expression with data type INT, SMALLINT, or TINYINT. SUM returns data
type BIGINT for an expression with data type BIGINT. SUM returns data type DOUBLE for an expression with data type
DOUBLE. For all other numeric data types, SUM returns data type NUMERIC.

538 InterSystems SQL Reference

SQL Aggregate Functions

SUM returns a value with a precision of 18. The scale of the returned value is the same as the expression scale, with the
following exception. If expression is a numeric value with data type VARCHAR or VARBINARY, the scale of the returned
value is 8.

By default, aggregate functions use Logical (internal) data values, rather than Display values.

SUM is normally applied to a field or expression that has a numeric value. Because only minimal type checking is performed,
it is possible (though rarely meaningful) to invoke it for nonnumeric fields. SUM evaluates nonnumeric values, including
the empty string (''), as zero (0). If expression is data type VARCHAR, the return value to ODBC or JDBC is of data type
DOUBLE.

NULL values in data fields are ignored when deriving a SUM aggregate function value. If no rows are returned by the
query, or the data field value for all rows returned is NULL, SUM returns NULL.

Optimization

SQL optimization of a SUM calculation can use a bitslice index, if this index is defined for the field.

Changes Made During the Current Transaction
Like all aggregate functions, SUM always returns the current state of the data, including uncommitted changes, regardless
of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and START TRANSACTION.

Examples
In the following examples a dollar sign ($) is concatenated to Salary amounts.

The following query returns the sum of the salaries of all employees in the Sample.Employee database:

SQL

SELECT '$' || SUM(Salary) AS Total_Payroll
 FROM Sample.Employee

The following query uses %AFTERHAVING to return the sum of all salaries and the sum of salaries over $80,000 for each
state in which there is at least one person with a salary > $80,000:

SQL

SELECT Home_State,
 '$' || SUM(Salary) AS Total_Payroll,
 '$' || SUM(Salary %AFTERHAVING) AS Exec_Payroll
 FROM Sample.Employee
 GROUP BY Home_State
 HAVING Salary > 80000
 ORDER BY Home_State

The following query returns the sum and the average of the salaries for each job title in the Sample.Employee database:

SQL

SELECT Title,
 '$' || SUM(Salary) AS Total,
 '$' || AVG(Salary) AS Average
 FROM Sample.Employee
 GROUP BY Title
 ORDER BY Average

The following query shows SUM used with an arithmetic expression. For each job title in the Sample.Employee database
it returns the sum of the current salaries and the sum of the salaries with a 10% increase in pay:

InterSystems SQL Reference 539

SUM (SQL)

SQL

SELECT Title,
 '$' || SUM(Salary) AS BeforeRaises,
 '$' || SUM(Salary * 1.1) AS AfterRaises
 FROM Sample.Employee
 GROUP BY Title
 ORDER BY Title

The following query shows SUM used with a logical expression using the CASE statement. It counts all of the salaried
employees, and uses SUM to count all of the salaried employees earning $90,000 or more.

SQL

SELECT COUNT(Salary) As AllPaid,
 SUM(CASE WHEN (Salary >= 90000)
 THEN 1 ELSE 0 END) As TopPaid
 FROM Sample.Employee

See Also
• Aggregate Functions overview

• AVG aggregate function

• COUNT aggregate function

540 InterSystems SQL Reference

SQL Aggregate Functions

VARIANCE,VAR_SAMP,VAR_POP (SQL)
Aggregate functions that return the statistical variance of a data set.

Synopsis

VARIANCE([ALL | DISTINCT [BY(col-list)]]
expression

 [%FOREACH(col-list)] [%AFTERHAVING])

VAR_SAMP([ALL | DISTINCT [BY(col-list)]]
expression

 [%FOREACH(col-list)] [%AFTERHAVING])

VAR_POP([ALL | DISTINCT [BY(col-list)]]
expression

 [%FOREACH(col-list)] [%AFTERHAVING])

Description
These three variance aggregate functions return the statistical variance of the values of expression, after discarding NULL
values. That is, the amount of variation from the mean value of the data set, expressed as a positive number. The larger the
return value, the more variation there is within the data set of values. InterSystems SQL also supplies aggregate functions
to return the standard deviation corresponding to each of these variance functions.

There are slight variations in how this statistical variation is derived:

• VARIANCE: Returns 0 if all of the values in the data set have the same value (no variability). Returns 0 if the data
set consists of only one value (no possible variability). Returns NULL if the data set has no values.

The VARIANCE calculation is:

(SUM(expression**2) * COUNT(expression)) - SUM(expression**2)

COUNT(expression) * (COUNT(expression) - 1)

• VAR_SAMP: Sample variance. Returns 0 if all of the values in the data set have the same value (no variability).
Returns NULL if the data set consists of only one value (no possible variability). Returns NULL if the data set has no
values. Uses the same variant calculation as VARIANCE.

• VAR_POP: Population variance. Returns 0 if all of the values in the data set have the same value (no variability).
Returns 0 if the data set consists of only one value (no possible variability). Returns NULL if the data set has no values.

The VAR_POP calculation is:

(SUM(expression**2) * COUNT(expression)) - (SUM(expression) **2)

(COUNT(expression) **2)

These variance aggregate functions can be used in a SELECT query or subquery that references either a table or a view.
They can appear in a SELECT list or HAVING clause alongside ordinary field values.

These variance aggregate functions cannot be used in a WHERE clause. They cannot be used in the ON clause of a JOIN,
unless the SELECT is a subquery.

These variance aggregate functions return a value of data type NUMERIC with a precision of 36 and a scale of 17, unless
expression is data type DOUBLE in which case the function returns data type DOUBLE.

These variance aggregate functions are normally applied to a field or expression that has a numeric value. They evaluate
nonnumeric values, including the empty string (''), as zero (0).

These variance aggregate functions ignore NULL values in data fields. If no rows are returned by the query, or the data
field value for all rows returned is NULL, they return NULL.

InterSystems SQL Reference 541

VARIANCE, VAR_SAMP, VAR_POP (SQL)

The statistical variance functions, like all aggregate functions, can take an optional DISTINCT clause. VARIANCE(DISTINCT
col1) returns the variance of those col1 field values that are distinct (unique). VARIANCE(DISTINCT BY(col2)
col1) returns the variance of the col1 field values in records where the col2 values are distinct (unique). Note however
that the distinct col2 values may include a single NULL as a distinct value.

Arguments

ALL

An optional argument specifying that statistical variance functions return the variance of all values for expression. This is
the default if no keyword is specified.

DISTINCT

An optional DISTINCT clause that specifies that statistical variance functions return the variance of the distinct (unique)
expression values. DISTINCT can specify a BY(col-list) subclause, where col-list can be a single field or a comma-
separated list of fields.

expression

Any valid expression. Usually the name of a column that contains the data values to be analyzed for variance.

%FOREACH(col-list)

An optional column name or a comma-separated list of column names. See SELECT for further information on %FOREACH.

%AFTERHAVING

An optional argument that applies the condition found in the HAVING clause.

Changes Made During the Current Transaction
Like all aggregate functions, the variance functions always returns the current state of the data, including uncommitted
changes, regardless of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and
START TRANSACTION.

Examples
The following example uses VARIANCE to return the variance in the ages of the employees in Sample.Employee, and
the variance in the distinct ages represented by one or more employees:

SELECT VARIANCE(Age) AS AgeVar,VARIANCE(DISTINCT Age) AS PerAgeVar
 FROM Sample.Employee

The following example uses VAR_POP to return the population variance in the ages of the employees in Sample.Employee,
and the variance in the distinct ages represented by one or more employees:

SELECT VAR_POP(Age) AS AgePopVar,VAR_POP(DISTINCT Age) AS PerAgePopVar
 FROM Sample.Employee

See Also
• Aggregate Functions overview

• AVG aggregate function

• COUNT aggregate function

• STDDEV, STDDEV_SAMP, STDDEV_POP aggregate functions

542 InterSystems SQL Reference

SQL Aggregate Functions

XMLAGG (SQL)
An aggregate function that creates a concatenated string of values.

Synopsis

XMLAGG([ALL | DISTINCT [BY(col-list)]]
string-expr

 [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

DescriptionArgument

Optional — Specifies that XMLAGG returns a concatenated string
of all values for string-expr. This is the default if no keyword is
specified.

ALL

Optional — A DISTINCT clause that specifies that XMLAGG returns
a concatenated string containing only the unique string-expr values.
DISTINCT can specify a BY(col-list) subclause, where col-list
can be a single field or a comma-separated list of fields.

DISTINCT

An SQL expression that evaluates to a string. Commonly this is the
name of a column from which to retrieve data.

string-expr

Optional — A column name or a comma-separated list of column
names. See SELECT for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

Description
The XMLAGG aggregate function returns a concatenated string of all values from string-expr. The return value is of data
type VARCHAR.

• A simple XMLAGG (or XMLAGG ALL) returns a string containing a concatenated string composed of all the values
for string-expr in the selected rows. Rows where string-expr is NULL are ignored.

The following two examples both return the same single value, a concatenated string of all of the values listed in the
Home_State column of the Sample.Person table.

SQL

SELECT XMLAGG(Home_State) AS All_State_Values
FROM Sample.Person

SQL

SELECT XMLAGG(ALL Home_State) AS ALL_State_Values
FROM Sample.Person

Note that this concatenated string contains duplicate values.

• An XMLAGG DISTINCT returns a concatenated string composed of all the distinct (unique) values for string-expr
in the selected rows: XMLAGG(DISTINCT col1). Rows where string-expr is NULL are ignored. XMLAGG(DISTINCT
BY(col2) col1) returns a concatenated string containing only those col1 field values in records where the col2
values are distinct (unique). Note however that the distinct col2 values may include a single NULL as a distinct value.

InterSystems SQL Reference 543

XMLAGG (SQL)

Rows where string-expr is NULL are omitted from the return value. Rows where string-expr is the empty string ('') are
omitted from the return value if at least one non-empty string value is returned. If the only non-NULL string-expr values
are the empty string (''), the return value is a single empty string.

XMLAGG does not support data stream fields. Specifying a stream field for string-expr results in an SQLCODE -37.

XML and XMLAGG

One common use of XMLAGG is to tag each data item from a column. This is done by combining XMLAGG and
XMLELEMENT as shown in the following example:

SQL

SELECT XMLAGG(XMLELEMENT("para",Home_State))
FROM Sample.Person

This results in an output string such as the following:

<para>LA</para><para>MN</para><para>LA</para><para>NH</para><para>ME</para>...

XMLAGG and ORDER BY

The XMLAGG function concatenates values of a table column from multiple rows into a single string. Because an ORDER
BY clause is applied to the query result set after all aggregate fields are evaluated, ORDER BY cannot directly affect the
sequence of values within this string. Under certain circumstances, XMLAGG results may appear in sequential order, but
this ordering should not be relied upon. The values listed within a given aggregate result value cannot be explicitly ordered.

Related Aggregate Functions

• XMLAGG returns a string of concatenated values.

• LIST returns a comma-separated list of values.

• %DLIST returns an InterSystems IRIS list containing an element for each value.

• JSON_ARRAYAGG returns a JSON array of values.

Examples
The following example creates a concatenated string of all of the distinct values found in the FavoriteColors column of the
Sample.Person table. Thus every row has the same value for the All_Colors column. Note that while some rows have a
NULL value for FavoriteColors, this value is not included in the concatenated string. Data values are returned in internal
format.

SQL

SELECT Name,FavoriteColors,
 XMLAGG(DISTINCT FavoriteColors) AS All_Colors_In_Table
FROM Sample.Person
ORDER BY FavoriteColors

The following example returns concatenated strings of Home_State values that begin with “A”. It returns the distinct
Home_State values (DISTINCT Home_State); the Home_State values corresponding to distinct Home_City values
(DISTINCT BY(Home_City) Home_State), which may possibly including one unique NULL for Home_City; and
all Home_State values:

544 InterSystems SQL Reference

SQL Aggregate Functions

SQL

SELECT XMLAGG(DISTINCT Home_State) AS DistStates,
 XMLAGG(DISTINCT BY(Home_City) Home_State) AS DistCityStates,
 XMLAGG(Home_State) AS AllStates
FROM Sample.Person
WHERE Home_State %STARTSWITH 'A'

The following example creates a concatenated string of all of the distinct values found in the Home_City column for each
of the states. Every row from the same state contains a list of all of the distinct city values for that state:

SQL

SELECT Home_State, Home_City,
 XMLAGG(DISTINCT Home_City %FOREACH(Home_State)) AS All_Cities_In_State
FROM Sample.Person
ORDER BY Home_State

The following example uses the %AFTERHAVING keyword. It returns a row for each Home_State that contains at least
one Name value that fulfills the HAVING clause condition (a name that begins with either “C” or “K”). The first XMLAGG
function returns a concatenated string consisting of all of the names for that state. The second XMLAGG function returns
a concatenated string consisting of only those names that fulfill the HAVING clause condition:

SQL

SELECT Home_State,
 XMLAGG(Name) AS AllNames,
 XMLAGG(Name %AFTERHAVING) AS HaveClauseNames
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Name LIKE 'C%' OR Name LIKE 'K%'
 ORDER BY Home_state

For the following examples, suppose we have the following table, AutoClub:

YearModelMakeName

1971FirebirdPontiacSmith,Joe

1997SW2SaturnSmith,Joe

1999BonnevillePontiacSmith,Joe

1966MustangFordJones,Scott

2000MiataMazdaJones,Scott

The query:

SQL

SELECT DISTINCT Name, XMLAGG(Make) AS String_Of_Makes
FROM AutoClub WHERE Name = 'Smith,Joe'

returns:

String_Of_MakesName

PontiacSaturnPontiacSmith,Joe

The query:

InterSystems SQL Reference 545

XMLAGG (SQL)

SQL

SELECT DISTINCT Name, XMLAGG(DISTINCT Make) AS String_Of_Makes
FROM AutoClub WHERE Name = 'Smith,Joe'

returns:

String_Of_MakesName

PontiacSaturnSmith,Joe

See Also
• Aggregate Functions overview

• %DLIST aggregate function

• JSON_ARRAYAGG aggregate function

• LIST aggregate function

• XMLELEMENT function

• SELECT statement

546 InterSystems SQL Reference

SQL Aggregate Functions

SQL Window Functions

InterSystems SQL Reference 547

Overview of Window Functions
Functions that specify a per-row "window frame" for calculating aggregates and ranking.

Window Functions and Aggregate Functions
A window function operates on the rows selected by a SELECT query after the WHERE, GROUP BY, and HAVING
clauses have been applied.

A window function combines the values of a field (or fields) from a group of rows and return a value for each row in a
generated column in the result set.

While window functions are like aggregate functions in that they combine results from multiple rows, they are distinct
from aggregates in that they do not combine the rows themselves. However, the aggregate functions AVG(), MIN(), MAX(),
and SUM() can also be invoked as window functions. Within this context, each row receives the result of calling the function
on the group of rows in its corresponding window frame.

Window Functions Syntax
A window function is specified as a select-item in a SELECT query. A window function can also be specified in the ORDER
BY clause of a SELECT query.

A window function performs a task in relation to a per-row window specified by a PARTITION BY clause, an ORDER
BY clause, and a ROWS clause, and returns a value for each row. All three of these clauses are optional, but if specified
must be specified in the orders shown in the following syntax:

window-function() OVER ([PARTITION BY partfield] [ORDER BY orderfield] [ROWS framestart
] | [ROWS BETWEEN framestart AND frameend])

where framestart and frameend can be:

UNBOUNDED PRECEDING | offset PRECEDING | CURRENT ROW | UNBOUNDED FOLLOWING | offset FOLLOWING

Keywords and window function names are not case-sensitive.

A Simple Example

CityTable contains rows with the following values:

CityName

New YorkAble

BostonBetty

ParisCharlie

BostonDavis

ParisEve

ParisFrancis

LondonGeorge

ParisBeatrix

The ROW_NUMBER() window function assigns a unique sequential integer to each row based on the specified window.

SELECT Name,City,ROW_NUMBER() OVER (PARTITION BY City) FROM CityTable

548 InterSystems SQL Reference

SQL Window Functions

This example partitions the rows by the City value and returns the following:

Window_3CityName

1New YorkAble

1BostonBetty

1ParisCharlie

2BostonDavis

2ParisEve

3ParisFrancis

1LondonGeorge

4ParisBeatrix

SELECT Name,City,ROW_NUMBER() OVER (ORDER BY City) FROM CityTable

This example treats all the rows as a single partition. It orders the rows by the City value and returns the following:

Window_3CityName

4New YorkAble

1BostonBetty

5ParisCharlie

2BostonDavis

6ParisEve

7ParisFrancis

3LondonGeorge

8ParisBeatrix

SELECT Name,City,ROW_NUMBER() OVER (Partition BY City ORDER BY Name) FROM CityTable

This example partitions the rows by the City value, orders each City partition by Name values, and returns the following:

Window_3CityName

1New YorkAble

1BostonBetty

2ParisCharlie

2BostonDavis

3ParisEve

4ParisFrancis

1LondonGeorge

1ParisBeatrix

InterSystems SQL Reference 549

Overview of Window Functions

NULL

The PARTITION BY clause treats rows with fields that are NULL (have no assigned value) as a partitioned group. For
example, ROW_NUMBER() OVER (Partition BY City) would assign rows with no City value sequential integers,
just as it assigns sequential integers to rows with a City value of 'Paris'.

The ORDER BY clause treats rows with fields that are NULL (have no assigned value) as ordered before any assigned
value (having the lowest collation value). For example, ROW_NUMBER() OVER (ORDER BY City) would first assign
sequential integers to rows with no City value, then assign sequential integers to rows with a City value in collation sequence.

The ROWS clause treats with fields that are NULL (have no assigned value) as having a value of zero. For example,
SUM(Scores) OVER (ORDER BY Scores ROWS 1 PRECEDING)/2 would assign 0.00 to all rows with no Scores
value ((0 + 0) / 2), and handle the first Scores value by adding 0 to it then dividing by 2.

Supported Window Functions
The following window functions are supported:

• AVG(field) — assigns the average of the values in the field column for rows within the specified window frame to all
rows in that window frame. For example, AVG(Salary) OVER (PARTITION BY Department) FROM
Company.Employee could be used to compare each employee’s salary against the average of the salaries earned by
employees within that employee’s department. AVG() supports the ROWS clause. Refer to the AVG() function’s ref-
erence page for further details on use.

• COUNT(* | field) — assigns a number to each row in the specified window frame starting at 1. If field is specified,
the count is only incremented if the contents of field is non-null. Otherwise, the count is incremented with every row.

• CUME_DIST() — assigns the cumulative distribution value for all rows within the specified window frame. The
cumulative distribution is calculated by counting the rows with values less than or equal to the current row’s value and
dividing that count by the total number of rows in the window. The column name that the cumulative distribution is
computed on is specified in the ORDER BY clause.

• DENSE_RANK() — assigns a ranking integer to each row within the same window frame, starting with 1. The ranking
integers are always consecutive, unlike with the RANK() window function. Ranking integers can include duplicates
values if multiple rows contain the same value for the window function field.

• FIRST_VALUE(field) — assigns the value of the field column for the first row (ROW_NUMBER()=1) within the
specified window frame to all rows in that window frame. For example, FIRST_VALUE(Country) OVER
(PARTITION BY City). FIRST_VALUE() supports the ROWS clause. Note that NULL collates before all values,
so if the value of field in the first row is NULL, all of the rows in the window will be NULL.

• LAST_VALUE(field) — assigns the value of the field column for the last row within the specified window frame to
all rows in that window frame. LAST_VALUE() supports the ROWS clause.

• LAG(field[, offset[, default]]) — assigns the value of the field column for the row that is offset rows before the given
row within the specified window frame. If no offset is specified, the function assigns the value of the field column 1
row before the given row by default. By default, LAG() will assign the value NULL if the given row does not have a
row offset rows before it within its window frame. The user has the option to assign an alternate value under these
conditions by including a value default.

• LEAD(field[, offset[, default]]) — assigns the value of the field column for the row that is offset rows after the given
row within the specified window frame. If no offset is specified, the function assigns the value of the field column 1
row after the given row by default. By default, LEAD() will assign the value NULL if the given row does not have a
row offset rows after it within its window frame. The user has the option to assign an alternate value under these con-
ditions by including a value default.

• MAX(field) — assigns the maximum value of the field column within the specified window frame to all rows in that
window frame. For example, MAX(Salary) OVER (PARTITION BY Department) FROM Company.Employee
could be used to compare each employee’s salary against the highest salary earned by an employee within that employee’s

550 InterSystems SQL Reference

SQL Window Functions

department. MAX() supports the ROWS clause. Refer to the MAX() function’s reference page for further details on
use.

• MIN(field) — assigns the minimum value of the field column within the specified window frame to all rows in that
window frame. For example, MIN(Salary) OVER (PARTITION BY Department) FROM Company.Employee
could be used to compare each employee’s salary against the lowest salary earned by an employee within that employee’s
department. MIN() supports the ROWS clause. Refer to the MIN() function’s reference page for further details on use.

• NTH_VALUE(field, n) — assigns the value of the field column for row number n within the specified window frame
(counting from 1) to all rows in that window frame. NTH_VALUE() supports the ROWS clause.

• NTILE(num-groups) — splits the rows within the specified window frame into a num-groups number of groups that
each have a roughly equal number of elements. Each group is identified by a number, starting from 1.

• PERCENT_RANK() — assigns a ranking percentage as a fractional number between 0 and 1 (inclusive) to each row
within the same window frame. Ranking percentages can include duplicate values if multiple rows contain the same
value for the window function field.

• RANK()— assigns a ranking integer to each row within the same window frame, starting with 1. Ranking integers can
include duplicate values if multiple rows contain the same value for the window function field.

• ROW_NUMBER() — assigns a unique sequential integer to each row within the same window frame, starting with
1. If multiple rows contain the same value for the window function field, each row is assigned a unique sequential
integer.

• SUM(field) — assigns the sum of the values of the field column within the specified window frame to all rows in that
window frame. SUM() supports the ROWS clause. Refer to the SUM() function’s reference page for further details
on use.

The following example compares the values returned by the ORDER BY clause in these window functions:

SELECT Name,City,ROW_NUMBER() OVER (ORDER BY City) AS RowNum,
 RANK() OVER (ORDER BY City) AS RankNum,
 PERCENT_RANK() OVER (ORDER BY City) AS RankPct
 FROM CityTable ORDER BY City

This example treats all the rows as a single partition. It orders the rows by the City value and returns the following:

RankPctRankNumRowNumCityName

011Harriet

.111111111111111111122BostonBetty

.111111111111111111123BostonDavis

.333333333333333333344LondonGeorge

.444444444444444444455New YorkAble

.555555555555555555566ParisCharlie

.555555555555555555567ParisEve

.555555555555555555568ParisFrancis

.555555555555555555569ParisBeatrix

11010RomeJackson

InterSystems SQL Reference 551

Overview of Window Functions

The ROWS Clause
The ROW clause can be used with the AVG(), FIRST_VALUE(), LAST_VALUE(), NTH_VALUE(), MIN(), MAX(),
and SUM() windows functions. It can be specified for the other windows functions, but performs no operation (result is
the same with or without the ROWS clause).

The ROWS clause has two syntactic forms:

ROWS framestart ROWS BETWEEN framestart AND frameend

framestart and frameend have five possible values:

 UNBOUNDED PRECEDING /* start at beginning of the current partition */ offset PRECEDING
 /* start offset number of rows preceding the current row */ CURRENT ROW /*
 start at the current row */ offset FOLLOWING /* continue offset number of rows following the current
 row */ UNBOUNDED FOLLOWING /* continue to the end of the current partition */

ROWS clause syntax can specify a range in either direction. For example, ROWS BETWEEN UNBOUNDED PRECEDING
AND 1 FOLLOWING and ROWS BETWEEN 1 FOLLOWING AND UNBOUNDED PRECEDING are exactly equivalent.

The ROWS framestart syntax defaults to CURRENT ROW as the unspecified second bound of the range. Therefore the
following are equivalent:

ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW

ROWS UNBOUNDED PRECEDING

ROWS BETWEEN 1 PRECEDING AND CURRENT
ROW

ROWS 1 PRECEDING

ROWS BETWEEN CURRENT ROW AND CURRENT
ROW

ROWS CURRENT ROW

ROWS BETWEEN CURRENT ROW AND 1
FOLLOWING

ROWS 1 FOLLOWING

ROWS BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING

ROWS UNBOUNDED FOLLOWING

The default if the ROWS clause is not specified is ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW.

ROWS Clause Example

The following query returns scores that contain a lot of “noise” (random variation). The ROWS clause is used to “smooth”
these variations by summing each score with the one immediately preceding it and the one immediately following it in
collation sequence, then dividing by 3 to get a rolling average score:

SELECT Item,Score,SUM(Score)
 OVER (ORDER BY Score ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)/3
 AS CohortScore FROM Sample.TestScores

The operation is: (PrecedingScore + CurrentScore + FollowingScore)/3. Note that the bottom and top CohortScore values
will not be accurate, because they are adding 0 to two Score values, then dividing by 3: (0 + CurrentScore + FollowingScore)/3
and (PrecedingScore + CurrentScore + 0)/3.

Using Window Functions
An window function can be used in:

• SELECT list as a listed select-item.

552 InterSystems SQL Reference

SQL Window Functions

A window function cannot be embedded in a subquery or an aggregate function in the select-item list.

• ORDER BY clause.

A window function cannot be used in and ON, WHERE, GROUP BY, or HAVING clause. Attempting to do so results in
an SQLCODE -367 error.

Column Names and Aliases

By default, the column name assigned to the results of a window function is Window_n, where the n number suffix is the
column order number, as specified in the SELECT list. Thus, the following example creates column names Window_3
and Window_6:

SELECT Name,State,ROW_NUMBER() OVER (PARTITION BY State),Age,AVG(Age),ROW_NUMBER() OVER (ORDER BY Age)
FROM Sample.Person

To specify another column name (a column alias), use the AS keyword:

SELECT Name,State,ROW_NUMBER() OVER (PARTITION BY State) AS StateRow,Age
FROM Sample.Person

You can use a column alias to specify a window field in an ORDER BY clause:

SELECT Name,State,ROW_NUMBER() OVER (PARTITION BY State) AS StateRow,Age
FROM Sample.Person
ORDER BY StateRow

You cannot use a default column name (such as Window_3) in an ORDER BY clause.

For further details on column aliases, refer to the SELECT statement.

With ORDER BY

Because an ORDER BY clause is applied to the query result set after window functions are evaluated, ORDER BY does
not affect the values assigned by a select-item window function.

See Also
• SELECT statement

• ORDER BY query clause

• Overview of Aggregate Functions

InterSystems SQL Reference 553

Overview of Window Functions

AVG (SQL)
A window function that assigns the average of the values in the field column for rows within the specified window frame
to all rows in that window frame.

Synopsis

AVG(field)

Description
AVG returns the average of the values in a specified column for rows within the specified window frame to all rows in that
window frame. AVG supports the ROWS clause.

This window function works analogously to the aggregate function AVG.

Arguments

field

A column that specifies the rows of values to be averaged.

Examples
The following example compares each employee's salary against the average of the salaries earned by employees within
that employee's department:

SQL

SELECT AVG(Salary) OVER (PARTITION BY Department) FROM Company.Employee

See Also
• Window functions overview

• Aggregate functions: AVG

554 InterSystems SQL Reference

SQL Window Functions

COUNT (SQL)
A window function that assigns a number to each row in the specified window frame starting at 1.

Synopsis

COUNT(*|field)

Description
COUNT creates a counter starting at one for each row (or specific rows if the field argument is specified).

This window function works analogously to the aggregate function COUNT.

Arguments

field

Specifies which field the count should be incremented in. If field is specified, the count is only incremented if the contents
of field is non-null. Otherwise, the count is incremented with every row.

Examples
The following example counts the number of employees in each department while leaving each employee as their own
individual row:

SQL

SELECT COUNT(Employee) OVER (PARTITION BY Department) FROM Company.Employee

See Also
• Window functions overview

• Aggregate functions: COUNT

InterSystems SQL Reference 555

COUNT (SQL)

CUME_DIST() (SQL)
A window function that assigns the cumulative distribution value for all rows within the specified window frame.

Synopsis

CUME_DIST()

Description
CUME_DIST() assigns the cumulative distribution for all rows. A cumulative distribution describes the probability of a
random variable being at or less than a certain value; this distribution is calculated by counting the rows with values less
than or equal to the current row's value and dividing that count by the total number of rows in the window. The column
name that the cumulative distribution is computed on is specified in the ORDER BY clause.

Examples
The following example returns the cumulative distribution of salaries for each employee within each department:

SQL

SELECT CUME_DIST() OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

See Also
• Window functions overview

556 InterSystems SQL Reference

SQL Window Functions

DENSE_RANK() (SQL)
A window function that assigns a rank to each row within the same window frame, starting with one.

Synopsis

DENSE_RANK()

Description
DENSE_RANK() assigns a rank (an integer) to each row, where the integers are always consecutive (unlike with the
RANK() window function). These ranks are determined by the values specified in the ORDER BY expression; for example,
any rows that have the same value are given the same rank. However, unlike RANK(), DENSE_RANK() does not skip
any sequential numbers even if two or more rows share the same rank — if two rows both have a rank of one, the next rank
that will be assigned is two.

DENSE_RANK() also allows duplicate values if multiple rows contain the same value for the window function field.

Examples
The following example returns the rank of the employees based on their salaries within each department:

SQL

SELECT DENSE_RANK() OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

See Also
• Window functions overview

InterSystems SQL Reference 557

DENSE_RANK() (SQL)

FIRST_VALUE (SQL)
A window function that assigns the first value of the field column within the window frame to each of the other values in
that column.

Synopsis

FIRST_VALUE(field)

Description
FIRST_VALUE uses the value of the field column from the first row to assign to all rows in the specific window frame.
FIRST_VALUE supports the ROWS clause.

Note that the NULL collates before all values, so if the value of field in the first row is NULL, all of the rows in the window
will be NULL.

Arguments

field

A column that specifies which value to assign to all rows in that window frame.

Examples
The following example returns the first value of the Country column within each city:

SQL

SELECT FIRST_VALUE(Country) OVER (PARTITION BY City)

See Also
• Window functions overview

558 InterSystems SQL Reference

SQL Window Functions

LAG (SQL)
A window function that assigns the value of the field column for the row that is offset rows before the given row within the
specified window frame.

Synopsis

LAG(field[,offset[,default]])

Description
LAG assigns the value of the field column for the row that is specified by the offset. By default, LAG() will assign the
value NULL if the given row does not have a row offset rows before it within its window frame.

The user has the option to assign an alternate value under these conditions by including a value default.

Arguments

field

A column that specifies the value to be assigned.

offset

This optional argument is an integer specifying from which row to take the value of the field column. If no offset is specified,
the function assigns the value of the field column 1 row before the given row by default.

default

This optional argument specifies what value to return if the given row does not have a row offset rows before it within its
window frame. If no default is specified, the value NULL is assigned.

Examples
The following example returns the previous salary for each employee within each department:

SQL

SELECT LAG(Salary) OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

The following example specifies an offset and default argument to calculate the salary of the previous employee within
each department. If no such employee exists, the value 0 is returned:

SQL

SELECT LAG(Salary, 1, 0) OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

See Also
• Window functions overview

InterSystems SQL Reference 559

LAG (SQL)

LAST_VALUE (SQL)
A window function that assigns the last value of the field column within the window frame to each of the other values in
that column.

Synopsis

LAST_VALUE(field)

Description
LAST_VALUE uses the value of the field column from the last row to assign to all rows in the specific window frame.
LAST_VALUE supports the ROWS clause.

Note that the NULL collates before all values, so if the value of field in the last row is NULL, all of the rows in the window
will be NULL.

Arguments

field

A column that specifies which value to assign to all rows in that window frame.

Examples
The following example returns the last value of the Country column within each city:

SQL

SELECT LAST_VALUE(Country) OVER (PARTITION BY City)

See Also
• Window functions overview

560 InterSystems SQL Reference

SQL Window Functions

LEAD (SQL)
A window function that assigns the value of the field column for the row that is offset rows after the given row within the
specified window frame.

Synopsis

LEAD(field[, offset[, default]])

Description
LEAD assigns the value of the field column for the row that is specified by the offset. By default, LEAD() will assign the
value NULL if the given row does not have a row offset rows after it within its window frame.

The user has the option to assign an alternate value under these conditions by including a value default.

Arguments

field

A column that specifies the value to be assigned

offset

This optional argument is an integer specifying from which row to take the value of the field column. If no offset is specified,
the function assigns the value of the field column 1 row after the given row by default.

default

This optional argument specifies what value to return if the given row does not have a row offset rows after it within its
window frame. If no default is specified, the value NULL is assigned.

Examples
The following example returns the subsequent salary for each employee within each department:

SQL

SELECT LEAD(Salary) OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

The following example specifies an offset and default argument to calculate the salary of the next employee within each
department. If no such employee exists, the value 0 is returned:

SQL

SELECT LEAD(Salary, 1, 0) OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

See Also
• Window functions overview

InterSystems SQL Reference 561

LEAD (SQL)

MAX (SQL)
A window function that assigns the maximum value of the field column within the specified window frame to all rows in
that window frame.

Synopsis

MAX(field)

Description
MAX assigns the maximum value specified by the field column to all rows within the window frame. MAX supports the
ROWS clause.

Arguments

field

A column that specifies from where to take the maximum value.

Examples
The following example compares each employee's salary against the highest salary earned by an employee within that
employee's department:

SQL

SELECT MAX(Salary) OVER (PARTITION BY Department) FROM Company.Employee

See Also
• Window functions overview

• Aggregate functions: MAX

562 InterSystems SQL Reference

SQL Window Functions

MIN (SQL)
A window function that assigns the minimum value of the field column within the specified window frame to all rows in
that window frame.

Synopsis

MIN(field)

Description
MIN assigns the minimum value specified by the field column to all rows within the window frame. MIN supports the
ROWS clause.

Arguments

field

A column that specifies from where to take the minimum value.

Examples
The following example compares each employee's salary against the lowest salary earned by an employee within that
employee's department:

SQL

SELECT MIN(Salary) OVER (PARTITION BY Department) FROM Company.Employee

See Also
• Window functions overview

• Aggregate functions: MIN

InterSystems SQL Reference 563

MIN (SQL)

NTH_VALUE (SQL)
A window function that assigns the value of the field column for row number n within the specified window frame to all
rows in the window frame.

Synopsis

NTH_VALUE(field, n)

Description
NTH_VALUE assigns the value from the field column taken from row number n to all rows within the window frame.
NTH_VALUE supports the ROWS clause.

Arguments

field

A column that specifies which value to assign to all rows.

n

A number that denotes which row's field column value will be used.

Examples
The following example returns the second highest salary within each department:

SQL

SELECT NTH_VALUE(Salary, 2) OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

See Also
• Window functions overview

564 InterSystems SQL Reference

SQL Window Functions

NTILE (SQL)
A window function that splits the row within the specified window frame into num-groups number of groups that each
have a roughly equal number of elements.

Synopsis

NTILE(num-groups)

Description
NTILE splits up the rows in the window frame into num-groups groups such that each group contains about the same
number of elements. Each group is identified by a number, starting from one.

Arguments

num-groups

A number that specifies how many groups to split the rows into.

Examples
The following example splits up employees within each department into four groups based on their salaries:

SQL

SELECT NTILE(4) OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

See Also
• Window functions overview

InterSystems SQL Reference 565

NTILE (SQL)

PERCENT_RANK() (SQL)
A window function that assigns a ranking as a fractional number between 0 and 1 (inclusive) to each row within the same
window frame.

Synopsis

PERCENT_RANK()

Description
PERCENT_RANK assigns a percentile ranking between 0 and 1 (inclusive) to each row. Percentile rankings indicate the
percentage of data that are at or below a certain value within a group. These ranks can include duplicate values if multiple
rows contain the same value for the window function field.

Examples
The following example calculates the percentile rank of each employee based on their salary within each department:

SQL

SELECT PERCENT_RANK() OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

See Also
• Window functions overview

566 InterSystems SQL Reference

SQL Window Functions

RANK() (SQL)
A window function that assigns a rank to each row within the same window frame, starting with one.

Synopsis

RANK()

Description
RANK assigns a rank (an integer) to each row, starting with one. These ranks are determined by the values specified in
the ORDER BY expression; for example, any rows that have the same value are given the same rank. However, unlike
DENSE_RANK(), RANK() skips sequential numbers if two or more rows share the same rank — if two rows both have
a rank of one, the next rank that will be assigned is three.

The ranks can include duplicate values if multiple rows contain the same value for the window function field.

Examples
The following example assigns a rank to each employee based on their salary within each department:

SQL

SELECT RANK() OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

See Also
• Window functions overview

InterSystems SQL Reference 567

RANK() (SQL)

ROW_NUMBER() (SQL)
A window function that assigns a unique sequential integer to each row within the same window frame, starting with one.

Synopsis

ROW_NUMBER()

Description
ROW_NUMBER assigns a unique sequential integer to each row, starting with one. If multiple rows contain the same
value for the window function field, each row is assigned a unique sequential integer.

Examples
The following example assigns numbers in sequential order to each employee (within each department) based on their
salary:

SQL

SELECT ROW_NUMBER() OVER (PARTITION BY Department ORDER BY Salary) FROM Company.Employee

See Also
• Window functions overview

568 InterSystems SQL Reference

SQL Window Functions

SUM (SQL)
A window function that assigns the sum of the values of the field column within the specified window frame to all rows in
that window frame.

Synopsis

SUM(field)

Description
SUM adds up the value of the field column within the frame to all rows in that frame. SUM supports the ROWS clause.

This window function works analogously to the aggregate function SUM.

Arguments

field

A column that specifies the values to be summed up.

Examples
The following example calculates the total salary for each department:

SQL

SELECT SUM(Salary) OVER (PARTITION BY Department) FROM Company.Employee

See Also
• Window functions overview

• Aggregate functions: SUM

InterSystems SQL Reference 569

SUM (SQL)

SQL Functions

InterSystems SQL Reference 571

ABS (SQL)
A numeric function that returns the absolute value of a numeric expression.

Synopsis

ABS(numeric-expression)

{fn ABS(numeric-expression)}

Description
ABS returns the absolute value, which is always zero or a positive number. If numeric-expression is not a number (for
example, the string 'abc', or the empty string '') ABS returns 0. ABS returns <null> when passed a NULL value.

Note that ABS can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

This function can also be invoked from ObjectScript using the ABS() method call:

ObjectScript

 WRITE $SYSTEM.SQL.Functions.ABS(-0099)

Arguments

numeric-expression

A number whose absolute value is to be returned.

ABS returns the same data type as numeric-expression.

Examples
The following example shows the two forms of ABS:

SQL

SELECT ABS(-99) AS AbsGen,{fn ABS(-99)} AS AbsODBC

both returns 99.

The following examples show how ABS handles some other numbers. InterSystems SQL converts numeric-expression to
canonical form, deleting leading and trailing zeros and evaluating exponents, before invoking ABS.

SQL

SELECT ABS(007) AS AbsoluteValue

returns 7.

SQL

SELECT ABS(-0.000) AS AbsoluteValue

returns 0.

SQL

SELECT ABS(-99E4) AS AbsoluteValue

572 InterSystems SQL Reference

SQL Functions

returns 990000.

SQL

SELECT ABS(-99E-4) AS AbsoluteValue

returns .0099.

See Also
• SQL functions: CONVERT TO_NUMBER

• ObjectScript function: $ZABS

InterSystems SQL Reference 573

ABS (SQL)

ACOS (SQL)
A scalar numeric function that returns the arc-cosine, in radians, of a given cosine.

Synopsis

{fn ACOS(numeric-expression)}

Description
ACOS takes a numeric value and returns the inverse (arc) of its cosine as a floating point number. The value of
numeric-expression must be a signed decimal number ranging from 1 to -1 (inclusive). A number outside of this range
causes a runtime error, generating an SQLCODE -400 (fatal error occurred). ACOS returns NULL if passed a NULL value.
ACOS treats nonnumeric strings, including the empty string (''), as the numeric value 0.

ACOS returns a value with a precision of 19 and a scale of 18.

ACOS can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Arguments

numeric-expression

A numeric expression whose value is between -1 and 1. This is the cosine of the angle.

ACOS returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, ACOS returns
DOUBLE; otherwise, it returns NUMERIC.

Examples
The following examples show the effect of ACOS on two cosines:

SQL

SELECT {fn ACOS(0.52)} AS ArcCosine

returns 1.023945...

SQL

SELECT {fn ACOS(-1)} AS ArcCosine

returns pi (3.14159...).

See Also
• SQL functions: ASIN, ATAN, COS, COT, SIN, TAN

• ObjectScript function: $ZARCCOS

574 InterSystems SQL Reference

SQL Functions

ASCII (SQL)
A string function that returns the integer ASCII code value of the first (leftmost) character of a string expression.

Synopsis

ASCII(string-expression)

{fn ASCII(string-expression)}

Description
ASCII returns NULL if passed a NULL or an empty string value. The returning of NULL for empty string is consistent
with SQL Server.

Note that ASCII can be invoked as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

Arguments

string-expression

A string expression, which can be the name of a column, a string literal, or the result of another scalar function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR). A string expression of type
CHAR or VARCHAR.

Examples
The following examples both returns 90, which is the ASCII value of the character Z:

SQL

SELECT ASCII('Z') AS AsciiCode

SQL

SELECT {fn ASCII('ZEBRA')} AS AsciiCode

InterSystems SQL converts numerics to canonical form before performing ASCII conversion. The following example
returns 55, which is the ASCII value of the number 7:

SQL

SELECT ASCII(+007) AS AsciiCode

This number parsing is not done if the numeric is presented as a string. The following example returns 43, which is the
ASCII value of the plus (+) character:

SQL

SELECT ASCII('+007') AS AsciiCode

See Also
• SQL functions: CHAR

• ObjectScript functions: $ASCII $ZLASCII $ZWASCII

InterSystems SQL Reference 575

ASCII (SQL)

ASIN (SQL)
A scalar numeric function that returns the arc-sine, in radians, of the sine of an angle.

Synopsis

{fn ASIN(numeric-expression)}

Description
ASIN returns the inverse (arc) of the sine of an angle as a floating point number. The value of numeric-expression must
be a signed decimal number ranging from 1 to -1 (inclusive). A number outside of this range causes a runtime error, gener-
ating an SQLCODE -400 (fatal error occurred). ASIN returns NULL if passed a NULL value. ASIN treats nonnumeric
strings, including the empty string (''), as the numeric value 0.

ASIN returns a value with a precision of 19 and a scale of 18.

ASIN can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Arguments

numeric-expression

A numeric expression whose value is between -1 and 1. This is the sine of the angle.

ASIN returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, ASIN returns
DOUBLE; otherwise, it returns NUMERIC.

Examples
The following examples show the effect of ASIN on two sines.

SQL

SELECT {fn ASIN(0.52)} AS ArcSine

returns 0.5468509506...

SQL

SELECT {fn ASIN(-1.00)} AS ArcSine

returns -1.5707963267...

See Also
• SQL functions: ACOS, ATAN, COS, COT, SIN, TAN

• ObjectScript function: $ZARCSIN

576 InterSystems SQL Reference

SQL Functions

ATAN (SQL)
A scalar numeric function that returns the arc-tangent, in radians, of the tangent of an angle.

Synopsis

{fn ATAN(numeric-expression)}

Description
ATAN takes any numeric value and returns the inverse (arc) of the tangent of an angle as a floating point number. ATAN
returns NULL if passed a NULL value. ATAN treats nonnumeric strings, including the empty string (''), as the numeric
value 0.

ATAN returns a value with a precision of 36 and a scale of 18.

ATAN can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Arguments

numeric-expression

A numeric expression. This is the tangent of the angle.

ATAN returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, ATAN returns
DOUBLE; otherwise, it returns NUMERIC.

Example
The following example shows the effect of ATAN:

SQL

SELECT {fn ATAN(0.52)} AS ArcTangent

returns 0.47951929199...

See Also
• SQL functions: ACOS, ASIN, COS, COT, SIN, TAN

• ObjectScript function: $ZARCTAN

InterSystems SQL Reference 577

ATAN (SQL)

ATAN2 (SQL)
A scalar numeric function that takes two coordinates and returns the arc-tangent angle in radians.

Synopsis

{fn ATAN2(y,x)}

Description
ATAN2 takes the Cartesian coordinates of a ray (y,x) and returns the inverse (arc) of the tangent of an angle as a floating
point number. The signs of both coordinates are used to determine the Cartesian coordinate. When x is a positive value,
ATAN2 returns the same value as ATAN(y/x). ATAN2 returns NULL if passed a NULL value. ATAN2 treats nonnumeric
strings, including the empty string (''), as the numeric value 0.

ATAN2 returns a value with a precision of 36 and a scale of 18.

ATAN2 can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Arguments

y

A numeric expression specifying the y axis coordinate.

x

A numeric expression specifying the x axis coordinate.

ATAN2 returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, ATAN2 returns
DOUBLE; otherwise, it returns NUMERIC.

Example
The following example invokes ATAN2:

SELECT {fn ATAN2(15,30)} AS ArcTangent

returns 0.46

See Also
• SQL functions: ACOS, ASIN, ATAN, COS, COT, SIN, TAN

• ObjectScript function: $ZARCTAN

578 InterSystems SQL Reference

SQL Functions

CAST (SQL)
A function that converts a given expression to a specified data type.

Synopsis
Character Strings

CAST(expression AS [CHAR | CHARACTER | VARCHAR | NCHAR | NVARCHAR])

CAST(expression AS [CHAR VARYING | CHARACTER VARYING])

CAST(expression AS
 [CHAR(length) | CHARACTER(length) |
 VARCHAR(length) | CHAR VARYING(length) |
 CHARACTER VARYING(length)])

Numeric Values

CAST(expression AS [INT | INTEGER | BIGINT | SMALLINT | TINYINT])

CAST(expression AS [DEC | DECIMAL | NUMERIC])

CAST(expression AS
 [DEC(precision,scale) |
 DECIMAL(precision,scale) |
 NUMERIC(precision,scale)])

CAST(expression AS DOUBLE)

CAST(expression AS [MONEY | SMALLMONEY])

Dates and Times

CAST(expression AS DATE)

CAST(expression AS TIME)

CAST(expression AS [TIMESTAMP | DATETIME | SMALLDATETIME])

CAST(expression AS POSIXTIME)

Bit Values

CAST(expression AS BIT)

Binary Values

CAST(expression AS [BINARY | BINARY VARYING | VARBINARY])

CAST(expression AS [BINARY(length) |
 BINARY VARYING(length) |
 VARBINARY(length)])

Unique Identifiers

CAST(expression AS GUID)

Description
The SQL CAST function converts the data type of an expression to the specified data type. For a list of the data types
supported by InterSystems SQL, see Data Types.

CAST is similar to CONVERT, with these differences:

InterSystems SQL Reference 579

CAST (SQL)

• CONVERT is more flexible than CAST. For example, CONVERT supports the conversion of stream data and enables
formatting of date and time values.

• CAST provides more database compatibility than CONVERT. Whereas CAST is implemented using the ANSI SQL-
92 standard, CONVERT implementations are database-specific. InterSystems SQL provides CONVERT implemen-
tations that are compatible with MS SQL Server and ODBC.

If you specify a CAST with an unsupported data type, InterSystems IRIS® issues an SQLCODE -376.

Character Strings

• CAST(expression AS [CHAR | CHARACTER | VARCHAR | NCHAR | NVARCHAR]) converts a numeric or
string expression to a character string data type. These data types all map to %Library.String.

– CHAR, CHARACTER, and NCHAR are equivalent data types and have a default length of 1 character.

– VARCHAR and NVARCHAR are equivalent data types and have a default length of 30 characters.

This statement returns Name (a character string), Age (a numeric value) and DOB (a date value) as VARCHAR data
types.

SQL

SELECT DISTINCT
 CAST(Name AS VARCHAR) AS VarCharName,
 CAST(Age AS VARCHAR) AS VarCharAge,
 CAST(DOB AS VARCHAR) AS VarCharDOB
FROM Sample.Person

This statement casts a string value to a single character string, truncating the additional letters in the original string.

SQL

SELECT CAST('True' AS CHAR) -- T

Example: Cast Character String Values

• CAST(expression AS [CHAR VARYING | CHARACTER VARYING]) converts the expression and returns the
same number of characters in the original value.

This statement returns the floating-point representation of pi as a string value. The string has the same number of
characters as digits in the floating-point precision of pi.

SQL

SELECT CAST({fn PI()} AS CHAR VARYING) AS StringPi -- 3.141592653589793238

Example: Cast Character String Values

• CAST(expression AS [CHAR(length) | CHARACTER(length) | VARCHAR(length) | CHAR VARYING(length)
| CHARACTER VARYING(length)]) converts the expression to a character string with the number of characters
specified by length. Additional characters are truncated.

This statement returns a string containing the first 8 characters of the input string expression.

SQL

SELECT CAST('Grabscheid,Alfred N.' AS CHAR(8)) -- Grabsche

Example: Cast Character String Values

580 InterSystems SQL Reference

SQL Functions

Numeric Values

• CAST(expression AS [INT | INTEGER | BIGINT | SMALLINT | TINYINT]) converts the expression to the INT,
INTEGER, BIGINT, SMALLINT, or TINYINT data type. In these data types, decimal digits are truncated.

This example presents an average as an integer, not a floating point. CAST truncates the number, so an average age
of 42.9 becomes 42.

SQL

SELECT DISTINCT AVG(Age) AS AvgAge,
 CAST(AVG(Age) AS INTEGER) AS IntAvgAge
 FROM Sample.Person

Example: Cast Numeric Values

• CAST(expressionAS [DEC | DECIMAL | NUMERIC]) converts the expression to the DEC, DECIMAL, or NUMERIC
data types. These data types preserve the number of digits in the original value. InterSystems IRIS converts these data
types using $DECIMAL function, which converts $DOUBLE values to $DECIMAL values. These data types map to
the %Library.Numeric data type.

This statement returns the sin of 1 radian, a floating point value, as a decimal.

SQL

SELECT CAST({fn SIN(1)} AS DECIMAL) AS DecimalValue -- 0.841470984807897

Example: Cast Numeric Values

• CAST(expression AS [DEC(precision,scale) | DECIMAL(precision,scale) | NUMERIC(precision,scale)]) specifies
the precision and scale of the data type.

– precision specifies the total number of digits that a data type can specify. If specified, precision does not affect
the value returned by CAST but it is retained as part of the defined type.

– scale specifies the total number of decimal digits in the data type. CAST rounds numbers to this specified value.

This statement returns the sin of 1 radian as a decimal value, with four digits after the decimal point.

SQL

SELECT CAST({fn SIN(1)} AS DECIMAL(8,4)) AS ScaledDecimalValue -- 0.8415

Example: Cast Numeric Values

• CAST(expression AS DOUBLE) converts the expression to the DOUBLE data type, which follows the IEEE floating
point standard. For further details, refer to the ObjectScript $DOUBLE function.

This statement returns the sin of 1 radian as a double value.

SQL

SELECT CAST({fn SIN(1)} AS DOUBLE) AS DoubleValue -- .84147098480789650487

Example: Cast Numeric Values

• CAST(expression AS [MONEY | SMALLMONEY]) converts the expression to a currency numeric data type:
MONEY or SMALLMONEY. The scale for currency data types is always 4.

This statements returns the integer 10 as a currency value.

SELECT CAST(10 AS MONEY) AS MoneyValue -- 10.0000 (Display Mode)

InterSystems SQL Reference 581

CAST (SQL)

Dates and Times

• CAST(expression AS DATE) converts a formatted date expression to the DATE date type. InterSystems IRIS represents
dates in these formats, depending on context:

– The display date format for your locale (for example, mm/dd/yyyy)

– The ODBC date format (yyyy-mm-dd)

– The $HOROLOG integer date storage format (nnnnn)

You must specify the $HOROLOG date part value as an integer, not a numeric string.

This statement casts a character string to the DATE data type.

SQL

SELECT CAST('1936-11-26' As DATE) AS StringToDate

Example: Cast Formatted Character String to Date

• CAST(expression AS TIME) converts a formatted time expression to the TIME data type. InterSystems IRIS represents
times in these formats, depending on context:

– The display time format for your locale (for example, hh:mm:ss)

– The ODBC date format (hh:mm:ss)

– The $HOROLOG integer time storage format (nnnnn)

You must specify the $HOROLOG date part value as an integer, not a numeric string.

This statement casts a character string to the TIME data type.

SQL

SELECT CAST('14:33:45.78' AS TIME) AS StringToTime

Example: Cast Formatted Character String to Time

• CAST(expression AS [TIMESTAMP | DATETIME | SMALLDATETIME]) represents a date and timestamp with
the format YYYY-MM-DD hh:mm:ss.nnn. This value corresponds to the ObjectScript $ZTIMESTAMP special
variable.

This statement casts a date and time string to the TIMESTAMP data type.

SQL

SELECT CAST('November 26, 1936 14:33:45.78' AS TIMESTAMP) AS StringToTS

Example: Cast Formatted Character String to Timestamp

• CAST(expression AS POSIXTIME) converts an expression representing a date and timestamp to an encoded 64-bit
signed integer. For more details on this encoding format, see Date, Time, PosixTime, and TimeStamp Data Types.

This statement casts a date and time string to the POSIXTIME data type.

SELECT CAST('November 26, 1936 14:33:45.78' AS POSIXTIME) AS StringToPosix

Example: Cast Date to POSIXTIME

582 InterSystems SQL Reference

SQL Functions

Bit Values

• CAST(expression AS BIT) converts the expression to a single boolean value of data type BIT.

This statement returns BIT values of 1 and 0, respectively.

SQL

SELECT
 CAST('1' AS BIT) As BitTrue,
 CAST('0' AS BIT) As BitFalse

Example: Cast Bit Values

Binary Values

• CAST(expression AS [BINARY | BINARY VARYING | VARBINARY]) converts the expression to one of three
data types that map to %Library.Binary (SQLType data type BINARY).

– BINARY has a default length of 1

– BINARY VARYING and VARBINARY have a default length of 30.

When casting to a binary value, CAST does not convert the data but it does truncate the length of the value to the
specified length.

• CAST(expression AS [BINARY(length) | BINARY VARYING(length) | VARBINARY(length)]) sets the maximum
character length of the returns binary data type.

Unique Identifiers

• CAST(expression AS GUID) GUID represents a 36-character value of data type %Library.UniqueIdentifier. If you
supply an expression longer than 36 characters, CAST returns the first 36 characters of expression. To generate a
GUID value, use the %SYSTEM.Util.CreateGUID() method.

Arguments

expression

An SQL expression, commonly a literal or a data field of a table, that is being converted.

length

An integer indicating the maximum number of characters to return after casting.

• If length is less than the length of expression, the returned data is truncated to the first length characters.

• If length is greater than the length of expression, CAST performs no truncation or padding.

precision

Maximum number of total digits returned in the cast data type, specified as an integer. precision is retained as part of the
defined data type but does not affect the value returned by CAST.

For more details about precision, see Precision and Scale.

scale

Maximum number of decimal digits returned in the cast data type, specified as an integer. CAST rounds the returned value
to scale number of digits.

InterSystems SQL Reference 583

CAST (SQL)

• If you specify scale = 0, the numeric value is rounded to an integer.

• If you specify scale = -1, the numeric value is truncated to an integer.

• If you do not specify scale, the scale of the numeric value defaults to 15.

If scale is greater than the number of digits in the value being cast, the returned value displays the appropriate number of
trailing zeros for Display mode but truncates these digits for Logical and ODBC mode.

For more details about scale, see Precision and Scale.

Examples

Cast Character String Values

You can cast character strings to various numeric, date, time, and character string values.

Cast Between Character Strings

When you cast a character string to another character data type, returning either a single character, the first length characters,
or the entire character string.

SQL

SELECT
 CAST('Hello World' AS CHAR) AS StringToChar, -- H
 CAST('Hello World' AS CHAR(5)) AS StringToCharLength, -- Hello
 CAST('Hello World' AS CHAR VARYING) AS StringToCharVary -- Hello World

Before a cast is performed, InterSystems SQL resolves embedded quote characters and string concatenation. Leading and
trailing blanks are retained.

SQL

SELECT
 CAST('Can''t' AS VARCHAR) AS EmbeddedQuote, -- Can't
 CAST('Can'||'not' AS VARCHAR) AS StringConcatenation -- Cannot

Cast Character String to Numeric Type

When you cast a character string to a numeric type, InterSystems SQL returns the single digit zero (0).

SELECT CAST('Hello World' AS DOUBLE) AS StringToNumeric -- 0

This example shows what happens when you use the CAST function to convert Name (a character string) to different
numeric data types. In every case, the value returned is 0 (zero).

SQL

SELECT DISTINCT
 CAST(Name As INT) As IntName,
 CAST(Name As SMALLINT) As SmallIntName,
 CAST(Name As DEC) As DecName,
 CAST(Name As NUMERIC) As NumericName
FROM Sample.Person

Cast Formatted Character String to Date

You can cast strings of the format 'yyyy-mm-dd' to the DATE data type. This string format corresponds to ODBC date
format. InterSystems SQL performs value and range checking on the input expression, where:

• The year (yyyy) must be between 00001 and 9999 (inclusive).

• The month (mm) must be between 01 and 12 (inclusive).

584 InterSystems SQL Reference

SQL Functions

• The day (dd) must be valid for that month.

InterSystems SQL inserts any missing leading zeros. For example:

SQL

SELECT CAST('2022-3-1' AS DATE) AS DateValue -- 03/01/2022 (Display Mode)

An invalid date returns 1840-12-31 (logical date 0). For example, 2/29 is valid only on leap days.

SQL

SELECT CAST('2021-02-29' AS DATE) AS InvalidDate -- 12/31/1840 (Display Mode)

The display mode and the locale's date display format determines the display of the cast. For example, '2004-11-23'
might display as '11/23/2004'.

Embedded SQL returns the cast as the corresponding $HOROLOG date integer. An invalid ODBC date or a non-numeric
string is represented as 0 in logical mode when cast to DATE. Date 0 is displayed as 1840-12-31.

Cast Formatted Character String to Time

You can cast strings of the format 'hh:mm', 'hh:mm:ss' or 'hh:mm:ss.nn', with any number of length fractional
second digits, to the TIME data type. This string format corresponds to ODBC time format. InterSystems SQL performs
value and range checking on the input expression, where:

• The hour (hh) must be from 00 to 23 (inclusive).

• The minute (mm) must be from 00 to 59 (inclusive).

• The day (ss) must be from 00 and to up but not including 60. Fractional seconds are permitted but truncated.

InterSystems SQL adds missing zeros. For example:

SQL

SELECT
 CAST('2:45' AS TIME) AS StringToTime1, -- 02:45:00 (Display Mode)
 CAST('2:45:59' AS TIME) AS StringToTime2, -- 02:45:59 (Display Mode)
 CAST('2:45:59.98' AS TIME) AS StringToTime3 -- 02:45:59.98 (Display Mode)

An invalid time returns 00:00:00 (logical time 0).

SQL

SELECT CAST('11:52:60' AS TIME) AS InvalidTime -- 00:00:00 (Display Mode)

Embedded SQL returns the cast as the corresponding $HOROLOG time integer. An invalid ODBC time or a non-numeric
string is represented as 0 in logical mode when cast to TIME. Time 0 is displayed as 00:00:00.

Cast Formatted Character String to Timestamp

You can cast a string consisting of a valid date and time, a valid date, or a valid time to the TIMESTAMP data type. The
date portion can be in a variety of formats, as described in the TO_TIMESTAMP function. The resulting timestamp is in
the format: YYYY-MM-DD hh:mm:ss.

SQL

SELECT
 CAST('1 MAR 2022 1:33pm' AS TIMESTAMP) As DateToTS1, -- 2022-03-01 13:33:00
 CAST('3/1/2022 13:33:00' AS TIMESTAMP) As DateToTS2 -- 2022-03-01 13:33:00

CAST resolves formatted dates as follows:

InterSystems SQL Reference 585

CAST (SQL)

• Set the date portion (if omitted) to 1841-01-01 (logical date 1).

• Set the time portion (if omitted) to 00:00:00.

• Insert leading zeros (if omitted) for the month and day.

You can precede fractional seconds (if specified) with either a period (.) or a colon (:).

• A period indicates a standard fraction. For example:

– 12:00:00.4 = four-tenths of a second

– 12:00:00.004 = four-thousandths of a second

• A colon indicates that what follows is in thousandths of a second. 12:00:00:4 indicates four-thousandths of a second.
The permitted number of digits following a colon is limited to three.

You can also cast a character string from one time data type to another. This example casts a character string to the TIME
data type, then casts the resulting time to the TIMESTAMP data type. The date is set to the current system date.

SQL

SELECT CAST(CAST('14:33:45.78' AS TIME) As TIMESTAMP) AS TimeToTstamp

Cast Date Values

You can cast a date to a character string data type, numeric data type, or to another date data type.

Cast Date to Character String

Casting a date to a character data type returns either the complete date or as much of the date as the length of the data type
permits. For example, instead of returning the current date as "yyyy-mm-dd", this query returns only "yyyy-".

SQL

SELECT CAST(CURRENT_DATE AS CHAR(5)) AS TruncatedDate

The CHAR VARYING and CHARACTER VARYING data types return the complete display format.

SQL

SELECT CAST(CURRENT_TIME AS CHAR VARYING) AS FullDate

If a date displays in a different format, such as mm/dd/yyyy, character string data types return the date in ODBC date
format (yyyy-mm-dd). For example:

SQL

SELECT CAST(TO_DATE('03/01/2022','MM/DD/YYYY') AS VARCHAR) AS DateFormat -- 2022-03-01

Cast Date to Numeric Type

Casting a date to a numeric data type returns the $HOROLOG value for the date. This is an integer value representing the
number of days since Dec. 31, 1840. For example:

SQL

SELECT CAST(TO_DATE('01 MAR 2022') AS DECIMAL) AS DateToNumeric -- 66169

586 InterSystems SQL Reference

SQL Functions

Cast Date to POSIXTIME

Casting a date to the POSIXTIME data type returns a timestamp as an encoded 64-bit signed integer. Since a date does not
have a time portion, the time portion is supplied to the timestamp encoding as 00:00:00.

SELECT CAST(CURRENT_DATE AS POSIXTIME) As PosixDate

CAST performs date validation. If the expression value is not a valid date, it issues an SQLCODE -400 error.

Cast Date to TIMESTAMP, DATETIME, or SMALLDATETIME

Casting a date to the TIMESTAMP, DATETIME, or SMALLDATETIME data type returns a timestamp of the format
YYYY-MM-DD hh:mm:ss. Since a date does not have a time portion, the time portion of the resulting timestamp is always
00:00:00. CAST performs date validation. If the expression value is not a valid date, it issues an SQLCODE -400 error.

This example casts a DATE data type column to TIMESTAMP. The POSIXTIME data type is included for comparison.

SELECT TOP 5
 DOB,
 CAST(DOB AS TIMESTAMP) AS TStamp,
 CAST(DOB AS POSIXTIME) AS Posix
FROM Sample.Person

Cast Numeric Values

You can cast numeric values to a numeric or character data type. When casting a numeric value results in a shortened value,
the numeric is truncated, not rounded.

SQL

SELECT
 CAST(98.765 AS INT) AS TruncatedInt, -- 98
 CAST(98.765 AS CHAR) AS TruncatedChar1, -- 9
 CAST(98.765 AS CHAR(4)) AS TruncatedChar2 --98.7

Casting a negative number to CHAR returns just the negative sign. Casting a fractional number to CHAR returns just the
decimal point.

SQL

SELECT
 CAST(-50 AS CHAR) AS Negative, -- negative sign: -
 CAST(1/4 AS CHAR) AS Fraction -- decimal point: .

A numeric value can contain these values:

• Digits 0 through 9

• A decimal point

• One or more leading signs (+ or –)

• The exponent sign (the letter E or e) followed by, at most, one + or – sign

Before a cast is performed, InterSystems SQL resolves a numeric to its canonical form by performing exponentiation,
resolving multiple signs, and stripping the leading plus sign, trailing decimal point, and any leading or trailing zeros. For
example:

SQL

SELECT
 CAST(1e2 AS DECIMAL(6,2)) AS PositiveExponent, -- 100.000
 CAST(1e-2 AS DECIMAL(6,2)) AS NegativeExponent, -- 0.01
 CAST(+1000 AS DECIMAL(6,2)) AS LeadingSign, -- 1000.00
 CAST(-+1000 AS DECIMAL(6,2)) AS MultipleSigns, -- -1000.00
 CAST(00.100 AS DECIMAL(6,2)) AS LeadingTrailingZeros -- 0.10

InterSystems SQL Reference 587

CAST (SQL)

InterSystems SQL treats double negative signs as a comment indicator. Encountering double negative signs in a number
results in InterSystems IRIS processing the remainder of that line of code as a comment. A numeric cannot contain group
separator characters (commas). For more details, see Literals.

You can convert numeric values to a variety of numeric types. This example shows how CAST converts a floating point
number, pi, to different numeric data types. For the integer data types, InterSystems SQL applies truncation.

SQL

SELECT
 CAST({fn PI()} As INTEGER) As IntegerPi, -- 3
 CAST({fn PI()} As SMALLINT) As SmallIntPi, -- 3
 CAST({fn PI()} As DECIMAL) As DecimalPi, -- 3.141592653589793
 CAST({fn PI()} As NUMERIC) As NumericPi, -- 3.141592653589793
 CAST({fn PI()} As DOUBLE) As DoublePi -- 3.1415926535897931159

In this example, InterSystems IRIS parses the precision and scale values and changes the value returned by CAST.

SQL

SELECT
 CAST({fn PI()} As DECIMAL) As DecimalPi, -- 3.141592653589793
 CAST({fn PI()} As DECIMAL(6,3)) As DecimalPiPS -- 3.142

When a numeric value is cast to a date or time data type, it displays in SQL as zero (0). When a numeric that is cast as a
date or time is passed out of embedded SQL to ObjectScript, it displays as the corresponding $HOROLOG value.

Cast Bit Values

To return expression as a 0 or 1, you can cast it to a BIT value.

CAST returns 1 (true) when expression is one of these values:

• The number 1 or any other non-zero numeric value.

• The word "TRUE", "True", "true", or any other combination of uppercase and lowercase letters that spell the word
true. It cannot be abbreviated to "T".

These CAST operations all return 1.

SQL

SELECT CAST(1 AS BIT) AS One,
 CAST(7 AS BIT) AS Num,
 CAST(743.6 AS BIT) AS Frac,
 CAST(0.3 AS BIT) AS Zerofrac,
 CAST('tRuE' AS BIT) AS TrueWord

CAST returns 0 (false) when expression is one of these values:

• Any non-numeric value other than the word true and its various uppercase and lowercase combinations.

• The empty string ('').

• The number 0.

These CAST operations all return 0.

SQL

SELECT CAST(0 AS BIT) AS Zero,
 CAST('FALSE' AS BIT) AS FalseWord,
 CAST('T' AS BIT) AS T,
 CAST('F' AS BIT) AS F,
 CAST(0.0 AS BIT) AS Zerodot,
 CAST('' AS BIT) AS EmptyString

588 InterSystems SQL Reference

SQL Functions

More About

Cast NULL and Empty String Values

Casting NULL to any data type returns NULL.

SQL

SELECT CAST(NULL AS DATE) AS NullValue

The result of casting an empty string ('') depends on the data type.

Return Value of Empty StringData Type

Empty string ('')Character data types

0 (zero), with the appropriate number of trailing
fractional zeros.The DOUBLE data type returns zero
with no trailing fractional zeros.

Numeric data type

12/31/1840 (logical date 0)DATE data type

00:00:00 (logical time 0)TIME data type

Empty string ('')TIMESTAMP, DATETIME, and SMALLDATETIME
data types

0BIT data type

Empty string ('')All binary data types

See Also
• Data Types

• CONVERT

• TO_CHAR, TO_DATE, TO_NUMBER, TO_POSIXTIME, TO_TIMESTAMP

InterSystems SQL Reference 589

CAST (SQL)

CEILING (SQL)
A numeric function that returns the smallest integer greater than or equal to a given numeric expression.

Synopsis

CEILING(numeric-expression)

{fn CEILING(numeric-expression)}

Description
CEILING returns the nearest integer value greater than or equal to numeric-expression. The returned value has a scale of
0. When numeric-expression is a NULL value, an empty string (''), or any nonnumeric string, CEILING returns NULL.

Note that CEILING can be invoked as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

This function can also be invoked from ObjectScript using the CEILING() method call:

$SYSTEM.SQL.Functions.CEILING(numeric-expression)

Arguments

numeric-expression

A number whose ceiling is to be calculated. The number can be either a literal or a string. The number can be specified in
scientific notation.

If numeric-expression is of a numeric type, CEILING returns the same data type as numeric-expression.

Examples
The following examples show how CEILING converts a fraction to its ceiling integer:

SQL

SELECT CEILING(167.111) AS CeilingNum1,
 CEILING('167.456') AS CeilingNum2,
 CEILING(167.999) AS CeilingNum3,
 CEILING(167.0) AS CeilingNum4

all return 168.

SQL

SELECT CEILING(-167.111) AS CeilingNum1,
 CEILING('-167.456') AS CeilingNum2,
 CEILING(-167.999) AS CeilingNum3,
 CEILING(-167.0) AS CeilingNum4

all return -167.

The following examples use scientific notation:

SQL

SELECT CEILING(10E-1) // returns 1
SELECT CEILING('-14E-4') // returns 0
SELECT CEILING('-10E-1') // returns -1

The following example uses a subquery to reduce a large table of US Zip Codes (postal codes) to one representative city
for each ceiling Latitude integer:

590 InterSystems SQL Reference

SQL Functions

SQL

SELECT City,State,CEILING(Latitude) AS CeilingLatitude
FROM (SELECT City,State,Latitude,CEILING(Latitude) AS CeilingNum
 FROM Sample.USZipCode)
GROUP BY CeilingNum
ORDER BY CeilingNum DESC

See Also
• FLOOR

• ROUND

InterSystems SQL Reference 591

CEILING (SQL)

CHAR (SQL)
A string function that returns the character that has the ASCII code value specified in a string expression.

Synopsis

CHAR(code-value) {fn CHAR(code-value)}

Description
CHAR returns the character that corresponds to the specified integer code value. Because InterSystems IRIS is a Unicode
system, you can specify the integer code for any Unicode character, 0 through 65535. CHAR returns NULL if code-value
is a integer that exceeds the permissible range of values.

CHAR returns an empty string ('') if code-value is a nonnumeric string. CHAR returns NULL if passed a NULL value.

Note that CHAR can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

Arguments

code-value

An integer code that corresponds to a character.

Examples
The following examples both return the character Z:

SQL

SELECT CHAR(90) AS CharCode

SQL

SELECT {fn CHAR(90)} AS CharCode

The following example returns the Greek letter lambda:

SQL

SELECT {fn CHAR(955)} AS GreekLetter

See Also
• SQL functions: ASCII, CHAR_LENGTH, CHARACTER_LENGTH

• ObjectScript functions: $CHAR, $ZLCHAR, $ZWCHAR

592 InterSystems SQL Reference

SQL Functions

CHARACTER_LENGTH (SQL)
A function that returns the number of characters in an expression.

Synopsis

CHARACTER_LENGTH(expression)

Description
CHARACTER_LENGTH returns an integer value representing the number of characters, not the number of bytes, in the
specified expression. The expression can be a string, or any other data type such as a numeric or a data stream field. This
integer count returned including leading and trailing blanks and the string-termination character. CHARACTER_LENGTH
returns NULL if passed a NULL value, and 0 if passed an empty string ('') value.

Numbers are parsed to canonical form before counting the characters; quoted number strings are not parsed. In the following
example, the first CHARACTER_LENGTH returns 1 (because number parsing removes leading and trailing zeros), the
second CHARACTER_LENGTH returns 8.

SQL

SELECT CHARACTER_LENGTH(007.0000) AS NumLen,
 CHARACTER_LENGTH('007.0000') AS NumStringLen

Note: The CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH functions are identical. All of them
accept a stream field argument. The LENGTH and $LENGTH functions do not accept a stream field argument.

LENGTH also differs from these functions by stripping trailing blanks and the string-termination character before
counting characters. $LENGTH also differs from these functions because it returns 0 if passed a NULL value,
and 0 if passed an empty string.

Arguments

expression

An expression, which can be the name of a column, a string literal, or the result of another scalar function. The underlying
data type can be a character type (such as CHAR or VARCHAR), a numeric, or a data stream.

CHARACTER_LENGTH returns the INTEGER data type.

Examples
The following example returns the number of characters in the state abbreviation field (Home_State) in the Sample.Employee
table. (All U.S. states have a two-letter postal abbreviation):

SQL

SELECT DISTINCT CHARACTER_LENGTH(Home_State) AS StateLength
 FROM Sample.Employee

The following example returns the names of the employees and the number of characters in each employee name, ordered
by ascending number of characters:

SQL

SELECT Name,
 CHARACTER_LENGTH(Name) AS NameLength
 FROM Sample.Employee
 ORDER BY NameLength

InterSystems SQL Reference 593

CHARACTER_LENGTH (SQL)

The following examples return the number of characters in a character stream field (Notes) and a binary stream field (Picture)
in the Sample.Employee table:

SQL

SELECT DISTINCT CHARACTER_LENGTH(Notes) AS NoteLen
 FROM Sample.Employee WHERE Notes IS NOT NULL

SQL

SELECT DISTINCT CHARACTER_LENGTH(Picture) AS PicLen
 FROM Sample.Employee WHERE Picture IS NOT NULL

The following example demonstrates how CHARACTER_LENGTH handles Unicode characters.
CHARACTER_LENGTH counts the number of characters, regardless of their byte length:

SQL

SELECT CHARACTER_LENGTH($CHAR(960)_"FACE")

returns 5.

See Also
• SQL functions: CHAR, CHAR_LENGTH, DATALENGTH, LENGTH, LEN, $LENGTH

• ObjectScript function: $LENGTH

594 InterSystems SQL Reference

SQL Functions

CHARINDEX (SQL)
A string function that returns the position of a substring within a string, with optional search start point.

Synopsis

CHARINDEX(substring,string[,start])

Description
CHARINDEX searches a string for a substring. If a match is found, it returns the starting position of the first matching
substring, counting from 1. If the substring cannot be found, CHARINDEX returns 0.

The empty string is a string value. You can, therefore, use the empty string for either string argument value. The start
argument treats an empty string value as 0. However, note that the ObjectScript empty string is passed to InterSystems
SQL as NULL.

NULL is not a string value in InterSystems SQL. For this reason, specifying NULL for either CHARINDEX string argument
returns NULL.

CHARINDEX cannot use a %Stream.GlobalCharacter field for either the string or substring argument. Attempting to do
so generates an SQLCODE -37 error. You can use the SUBSTRING function to take a %Stream.GlobalCharacter field and
return a %String data type value for use by CHARINDEX.

CHARINDEX is case-sensitive. Use one of the case-conversion functions to locate both uppercase and lowercase instances
of a letter or character string.

This function provides compatibility with Transact-SQL implementations.

CHARINDEX, POSITION, $FIND, and INSTR

CHARINDEX, POSITION, $FIND, and INSTR all search a string for a specified substring and return an integer position
corresponding to the first match. CHARINDEX, POSITION, and INSTR return the integer position of the first character
of the matching substring. $FIND returns the integer position of the first character after the end of the matching substring.
CHARINDEX, $FIND, and INSTR support specifying a starting point for substring search. INSTR also supports speci-
fying the substring occurrence from that starting point.

The following example demonstrates these four functions, specifying all optional arguments. Note that the positions of
string and substring differ in these functions:

SQL

SELECT POSITION('br' IN 'The broken brown briefcase') AS Position,
 CHARINDEX('br','The broken brown briefcase',6) AS Charindex,
 $FIND('The broken brown briefcase','br',6) AS Find,
 INSTR('The broken brown briefcase','br',6,2) AS Inst

For a list of functions that search for a substring, refer to String Manipulation.

Arguments

substring

A substring to match within string.

string

A string expression that is the target for the substring search.

InterSystems SQL Reference 595

CHARINDEX (SQL)

start

An optional argument that denotes the starting point for substring search, specified as a positive integer. A character count
from the beginning of string, counting from 1. To search from the beginning of string, omit this argument or specify a start
of 0 or 1. A negative number, the empty string, NULL, or a nonnumeric value is treated as 0.

CHARINDEX returns the INTEGER data type.

Examples
The following example searches a nucleotide sequence for the first occurrence of the substring TTAGGG. It returns 7, the
character position of this substring within the string:

SQL

SELECT CHARINDEX('TTAGGG','TTAGTCTTAGGGACATTAGGG')

The following example searches for all Name field values that contain the substring 'Fred':

SQL

SELECT Name
FROM Sample.Person
WHERE CHARINDEX('Fred',Name)>0

The following example uses SUBSTRING to allow CHARINDEX to search the first 1000 characters of a
%Stream.GlobalCharacter field containing DNA nucleotide sequences for the first occurrence of the substring TTAGGG:

SQL

SELECT CHARINDEX('TTAGGG',SUBSTRING(DNASeq,1,1000)) FROM Sample.DNASequences

The following example matches a substring after the first 10 characters:

SQL

SELECT CHARINDEX('Re','Reduce, Reuse, Recycle',10)

It returns 16.

The following example specifies a start location beyond the length of the string:

SQL

SELECT CHARINDEX('Re','Reduce, Reuse, Recycle',99)

It returns 0.

The following example shows that CHARINDEX handles the empty string ('') just like any other string value:

SQL

SELECT CHARINDEX('','Fred Astare'),
 CHARINDEX('A',''),
 CHARINDEX('','')

In the above example, the first and second CHARINDEX functions return 0 (no match). The third returns 1, because the
empty string matches the empty string at position 1.

The following example shows that CHARINDEX does not treat NULL as a string value. Specifying NULL for either
string always returns NULL:

596 InterSystems SQL Reference

SQL Functions

SQL

SELECT CHARINDEX(NULL,'Fred Astare'),
 CHARINDEX('A',NULL),
 CHARINDEX(NULL,NULL)

See Also
• $FIND function

• INSTR function

• POSITION function

• String Manipulation

InterSystems SQL Reference 597

CHARINDEX (SQL)

CHAR_LENGTH (SQL)
A function that returns the number of characters in an expression.

Synopsis

CHAR_LENGTH(expression)

Description
CHAR_LENGTH returns an integer value representing the number of characters, not the number of bytes, in the specified
expression. The expression can be a string, or any other data type such as a numeric or a data stream field. This integer
count returned including leading and trailing blanks and the string-termination character. CHARACTER_LENGTH
returns NULL if passed a NULL value, and 0 if passed an empty string ('') value.

Numbers are parsed to canonical form before counting the characters; quoted number strings are not parsed. In the following
example, the first CHAR_LENGTH returns 1 (because number parsing removes leading and trailing zeros), the second
CHAR_LENGTH returns 8.

SQL

SELECT CHAR_LENGTH(007.0000) AS NumLen,
 CHAR_LENGTH('007.0000') AS NumStringLen

Note: The CHAR_LENGTH, CHARACTER_LENGTH, and DATALENGTH functions are identical. All of them
accept a stream field argument. The LENGTH and $LENGTH functions do not accept a stream field argument.

LENGTH also differs from these functions by stripping trailing blanks and the string-termination character before
counting characters.

$LENGTH also differs from these functions because it returns 0 if passed a NULL value, and 0 if passed an
empty string. $LENGTH differs from the other length function by returning data type SMALLINT; all the other
length functions return data type INTEGER.

Arguments

expression

An expression, which can be the name of a column, a string literal, or the result of another scalar function. The underlying
data type can be a character type (such as CHAR or VARCHAR), a numeric, or a data stream.

CHAR_LENGTH returns the INTEGER data type.

Examples
The following example returns the number of characters in the state abbreviation field (Home_State) in the Sample.Employee
table. (All U.S. states have a two-letter postal abbreviation):

SQL

SELECT DISTINCT CHAR_LENGTH(Home_State) AS StateLength
 FROM Sample.Employee

The following example returns the names of the employees and the number of characters in each employee name, ordered
by ascending number of characters:

598 InterSystems SQL Reference

SQL Functions

SQL

SELECT Name,
 CHAR_LENGTH(Name) AS NameLength
 FROM Sample.Employee
 ORDER BY NameLength

The following examples return the number of characters in a character stream field (Notes) and a binary stream field (Picture)
in the Sample.Employee table:

SQL

SELECT DISTINCT CHAR_LENGTH(Notes) AS NoteLen
 FROM Sample.Employee WHERE Notes IS NOT NULL

SQL

SELECT DISTINCT CHAR_LENGTH(Picture) AS PicLen
 FROM Sample.Employee WHERE Picture IS NOT NULL

The following Embedded SQL example shows how CHAR_LENGTH handles Unicode characters. CHAR_LENGTH
counts the number of characters, regardless of their byte length:

ObjectScript

 SET a=$CHAR(960)_"FACE"
 WRITE !,a
 &sql(SELECT CHAR_LENGTH(:a) INTO :b)
 IF SQLCODE'=0 {WRITE !,"Error code ",SQLCODE }
 ELSE {WRITE !,"The CHAR length is ",b }

returns 5.

See Also
• SQL functions: CHAR, CHARACTER_LENGTH, DATALENGTH, LENGTH, LEN, $LENGTH

• ObjectScript function: $LENGTH

InterSystems SQL Reference 599

CHAR_LENGTH (SQL)

COALESCE (SQL)
A function that returns the value of the first expression that is not NULL.

Synopsis

COALESCE(expression,expression [,...])

Description
The COALESCE function evaluates a list of expressions in left-to-right order and returns the value of the first non-NULL
expression. If all expressions evaluate to NULL, NULL is returned.

A string is returned unchanged; leading and trailing blanks are retained. A number is returned in canonical form, with
leading and trailing zeros removed.

For further details on NULL handling, refer to NULL and the Empty String.

Data Type of Returned Value

Non-numeric expressions (such as strings or dates) must all be of the same data type, and return a value of that data type.
Specifying expressions with incompatible data types results in an SQLCODE -378 error with a Datatype mismatch error
message. You can use the CAST function to convert an expression to a compatible data type.

Numeric expressions may be of different data types. If you specify numeric expressions with different data types, the data
type returned is the expression data type most compatible with all of the possible result values, the data type with the
highest data type precedence.

A literal value (string, number, or NULL) is treated as data type VARCHAR. If you specify only two expressions, a literal
value is compatible with a numeric expression: if the first expression is the numeric expression, its data type is returned;
if the first expression is a literal value, the VARCHAR data type is returned.

Arguments

expression

A series of expressions to be evaluated. Multiple expressions are specified as a comma-separated list. This expression list
has a limit of 140 expressions.

NULL Handling Functions Compared
The following table shows the various SQL comparison functions. Each function returns one value if the logical comparison
tests True (A same as B) and another value if the logical comparison tests False (A not same as B). These functions allow
you to perform NULL logical comparisons. You cannot specify NULL in an actual equality (or non-equality) condition
comparison.

600 InterSystems SQL Reference

SQL Functions

Return ValueComparison TestSQL Function

True tests next ex argument. If all
ex arguments are True (NULL),
returns NULL.

False returns ex

ex = NULL for each argumentCOALESCE(ex1,ex2,...)

True returns ex2

False returns NULL

ex1 = NULLIFNULL(ex1,ex2) [two-argument
form]

True returns ex2

False returns ex3

ex1 = NULLIFNULL(ex1,ex2) [three-argument
form]

True returns ex2

False returns ex1

ex1 = NULL{fn IFNULL(ex1,ex2)}

True returns ex2

False returns ex1

ex1 = NULLISNULL(ex1,ex2)

True returns ex2

False returns ex1

ex1 = NULLNVL(ex1,ex2)

True returns NULL

False returns ex1

ex1 = ex2NULLIF(ex1,ex2)

Examples
The following example takes a series of values and returns the first (value d) that is not NULL. Note that the ObjectScript
empty string ("") is translated as NULL in InterSystems SQL:

ObjectScript

SELECT COALESCE("","","","firstdata","","nextdata")

The following example compares the values of two columns in left-to-right order and returns the value of the first non-
NULL column. The FavoriteColors column is NULL for some rows; the Home_State column is never NULL. For
COALESCE to compare the two, FavoriteColors must be cast as a string:

SQL

SELECT TOP 25 Name,FavoriteColors,Home_State,
COALESCE(CAST(FavoriteColors AS VARCHAR),Home_State) AS CoalesceCol
FROM Sample.Person

The following Dynamic SQL example compares COALESCE to the other NULL-processing functions:

InterSystems SQL Reference 601

COALESCE (SQL)

ObjectScript

 SET myquery = "SELECT TOP 50 %ID,"_
 "IFNULL(FavoriteColors,'blank') AS Ifn2Col,"_
 "IFNULL(FavoriteColors,'blank','value') AS Ifn3Col,"_
 "COALESCE(CAST(FavoriteColors AS VARCHAR),Home_State) AS CoalesceCol,"_
 "ISNULL(FavoriteColors,'blank') AS IsnullCol,"_
 "NULLIF(FavoriteColors,$LISTBUILD('Orange')) AS NullifCol,"_
 "NVL(FavoriteColors,'blank') AS NvlCol"_
 " FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

See Also
• CASE command

• IFNULL function

• ISNULL function

• NULLIF function

• NVL function

602 InterSystems SQL Reference

SQL Functions

CONCAT (SQL)
A scalar string function that returns a character string as a result of concatenating two character expressions.

Synopsis

{fn CONCAT(string1,string2)}

Description
• {fn CONCAT(string1,string2)} concatenates two strings and returns a concatenated string. This syntax is equivalent

to using the concatenate operator (||). You can also use the STRING function to concatenate two or more expressions
into a single string.

This statement selects the top 5 first names and last names from a table, concatenating the LastName and FirstName
columns and separating them by a comma.

SQL

SELECT TOP 5
FirstName, LastName,
{fn CONCAT({fn CONCAT(LastName, ',')}, FirstName)} AS FullName
FROM Sample.Person

FullNameLastNameFirstName

Ulman,QuigleyUlmanQuigley

Woo,BuzzWooBuzz

Mastrolito,MarioMastrolitoMario

Noodleman,JulieNoodlemanJulie

Quincy,LawrenceQuincyLawrence

Example: Concatenate Two Strings

Arguments

string1,string2

The string expressions to be concatenated. The expressions can be the name of a column, a string literal, a numeric, or the
result of another scalar function, where the underlying data type can be represented as any character type (such as CHAR
or VARCHAR).

You can concatenate any combination of numerics or numeric strings; the concatenation result is a numeric string. Inter-
Systems SQL converts numerics to canonical form (exponents are expanded and leading and trailing zeros are removed)
before concatenation. Numeric strings are not converted to canonical form before concatenation.

You can concatenate leading or trailing blanks to a string. Concatenating a NULL value to a string results in a NULL

InterSystems SQL Reference 603

CONCAT (SQL)

Examples

Concatenate Two Strings

This statement concatenates the Home_State and Home_City columns to create a location value. The concatenation is
shown twice, using the CONCAT function and the concatenate operator.

SQL

SELECT TOP 5
 {fn CONCAT({fn CONCAT(HomeCity,', ')}, HomeState)} AS LocationWithConcatFunction,
 HomeCity||', '||HomeState AS LocationWithConcatOperator
FROM Sample.Person

LocationWithConcatOperatorLocationWithConcatFunction

Denver, CODenver, CO

Boston, MABoston, MA

Albuquerque, NMAlbuquerque, NM

Jacksonville, FLJacksonville, FL

Lexington, KYLexington, KY

This statement concatenates a string and a NULL, which returns a column of NULLs.

SQL

SELECT {fn CONCAT(HomeState,NULL)} AS StrNull
FROM Sample.Person

StrNull

NULL

NULL

NULL

NULL

NULL

This statement shows that numbers are converted to canonical form before concatenation. To avoid this, you can specify
the number as a string, as shown in the second part of this statement.

SQL

SELECT TOP 5
 {fn CONCAT(HomeState,0012.00E2)} AS StrNum,
 {fn CONCAT(HomeState,'0012.00E2')} AS StrStrNum
FROM Sample.Person

604 InterSystems SQL Reference

SQL Functions

StrStrNumStrNum

CO0012.00E2CO1200

MA0012.00E2MA1200

NM0012.00E2NM1200

FL0012.00E2FL1200

KY0012.00E2KY1200

The statement shows that trailing blank spaces are retained. When you concatenate a two-letter state field with 10 spaces,
the length of each value in the concatenated column is 12.

SQL

SELECT TOP 5
HomeState,
CHAR_LENGTH({fn CONCAT(HomeState,' ')}) AS StrSpace
FROM Sample.Person2

StrSpaceHomeState

12CO

12MA

12NM

12FL

12KY

See Also
• ASCII

• CHAR

• STRING

• SUBSTRING

InterSystems SQL Reference 605

CONCAT (SQL)

CONVERT (SQL)
A function that converts a given expression to a specified data type.

Synopsis

CONVERT(type,expression)

CONVERT(type,expression,formatCcode)

{fn CONVERT(expression,type)}

Description
The CONVERT function converts an expression in one data type to a corresponding value in another data type. CONVERT
is similar to CAST, with these differences:

• CONVERT is more flexible than CAST. For example, CONVERT supports the conversion of stream data and enables
formatting of date and time values.

• CAST provides more database compatibility than CONVERT. Whereas CAST is implemented using the ANSI SQL-
92 standard, CONVERT implementations are database-specific. InterSystems SQL provides CONVERT implemen-
tations that are compatible with MS SQL Server and ODBC.

MS SQL Server Compatibility

This implementation of CONVERT is a general InterSystems IRIS® scalar function that is compatible with MS SQL
Server. This function supports the formatting of dates and times and the conversion of stream data.

• CONVERT(type,expression) converts an expression to the specified data type. For a list of the data types supported
by InterSystems SQL, see Data Types.

This statement converts a decimal number (an approximation of pi) to a character string, truncating the number to four
characters.

SQL

SELECT CONVERT(CHAR(4),3.14159) -- '3.14'

Examples:

– Convert Between Numeric Types

– Convert Between Character Strings

– Convert Stream Data to Character String

– Convert Character String to Numeric Type

– Convert Date to Timestamp

– Convert Date to Numeric Type

• CONVERT(type,expression,formatCode) converts the expression to the specified data type and formats the returned
value based on the specified format code.

This statement converts a date string to the TIMESTAMP data type. The function converts the input based on format
code 103, which represents the mm/dd/yy format. For a complete list of format codes, see the formatCode argument.

606 InterSystems SQL Reference

SQL Functions

SQL

SELECT CONVERT(TIMESTAMP,'1/1/99',103) -- '01/01/1999 00:00:00'

Example: Convert Date to Character String

ODBC Compatibility

This implementation of CONVERT is a general InterSystems IRIS ODBC scalar function. This function does not support
the formatting of dates and times. It also does not support the conversion of stream data.

• {fn CONVERT(expression,type)} converts the expression to the specified data type. In this implementation of
CONVERT, you must precede each data type argument with the SQL_ keyword. These data types do not accept
parameter. For example, for string data types, you cannot set a maximum length. For numeric data types, you cannot
set the precision (maximum number of digits) and scale (maximum number of decimal digits).

This statement converts a decimal number to a character string. The returned string performs no truncation. Maximum
length specifications such as SQL_VARCHAR(4) are not permitted.

SQL

SELECT {fn CONVERT(3.14159,SQL_VARCHAR) } -- '3.14159'

Examples:

• Convert Between Numeric Types

• Convert Between Character Strings

• Convert Character String to Numeric Type

• Convert Date to Timestamp

• Convert Date to Numeric Type

Arguments

type

The data type to convert expression to. The types you can specify depend on whether you are using the InterSystems IRIS
CONVERT() syntax or the ODBC {fn CONVERT()} syntax.

CONVERT() Function

The InterSystems IRIS CONVERT() syntax supports the data types described in Data Types. Common data types that you
can specify include:

• Character string data types: CHAR, CHARACTER, VARCHAR. For some character string types, you can optionally
specify a maximum length parameter. For example: VARCHAR(10)

• Numeric data types: INTEGER, DECIMAL, DOUBLE, MONEY. For some numeric types, you can optionally specify
precision and scale parameters. For example: DECIMAL(8,4)

• Data and time data types: DATE, TIME, TIMESTAMP, POSIXTIME

• Bit and binary data types: BIT, BINARY, VARBINARY

{fn CONVERT()} Function

The ODBC {fn CONVERT()} syntax supports a more limited set of data types than the CONVERT() syntax. The supported
data types correspond to the ones you specify for the CONVERT() syntax but must be preceded by the SQL_ keyword.

InterSystems SQL Reference 607

CONVERT (SQL)

This table describes the valid data types that you can specify, separated into two groups:

• The first group converts both the data value and the data type. For example, converting a %Date source to
SQL_VARCHAR transforms the date to a text value and the query processes it as a VARCHAR data type.

• The second group converts the data type but does not convert the data value. For example, converting a %Date source
to INTEGER does not transform the %Date source but the query processes the integer form of the date as an INTEGER
data type.

Valid Conversion Types (Only Type
Converted)

Valid Conversion Types (Type and Value
Converted)

Source

n/aSQL_VARCHAR, SQL_DOUBLE,
SQL_DATE, SQL_TIME

Any numeric data
type

n/aSQL_DATE, SQL_TIME, SQL_TIMESTAMP%String

SQL_INTEGER, SQL_BIGINT,
SQL_SMALLINT, SQL_TINYINT,
SQL_DATE

SQL_VARCHAR, SQL_POSIXTIME,
SQL_TIMESTAMP

%Date

SQL_INTEGER, SQL_BIGINT,
SQL_SMALLINT, SQL_TINYINT,
SQL_TIME

SQL_VARCHAR, SQL_POSIXTIME,
SQL_TIMESTAMP

%Time

SQL_VARCHAR, SQL_INTEGER,
SQL_BIGINT, SQL_SMALLINT,
SQL_TINYINT

SQL_TIMESTAMP, SQL_DATE, SQL_TIME%PosixTime

SQL_VARCHAR, SQL_INTEGER,
SQL_BIGINT, SQL_SMALLINT,
SQL_TINYINT

SQL_POSIXTIME, SQL_DATE, SQL_TIME%TimeStamp

SQL_DOUBLESQL_INTEGER, SQL_BIGINT,
SQL_SMALLINT, SQL_TINYINT

Any non-stream
data type

When specifying data types for this, keep these points in mind:

• SQL_VARCHAR is the standard ODBC representation. When converting to SQL_VARCHAR, dates and times are
converted to their appropriate ODBC representations; numeric datatype values are converted to a string representation.
When converting from SQL_VARCHAR, the value must be a valid ODBC Time, Timestamp, or Date representation.

• When converting a time value to SQL_TIMESTAMP or SQL_POSIXTIME, an unspecified date defaults to 1841-01-
01. In the CONVERT() syntax, the date defaults to 1900-01-01.

• When converting a date value to SQL_TIMESTAMP or SQL_POSIXTIME the time defaults to 00:00:00.

• Fractional seconds can be preceded by either a period (.) or a colon (:). The symbols have different meanings. A period
indicates a standard fraction; thus 12:00:00.4 indicates four-tenths of a second, and 12:00:00.004 indicates four-
thousandth of a second. A colon indicates that what follows is in thousandths of a second; thus 12:00:00:4 indicates
four-thousandth of a second. The permitted number of digits following a colon is limited to three.

• When converting to an integer data type or the SQL_DOUBLE data type, the CONVERT function converts data values
(including dates and times) to a numeric representation. For SQL_DATE, this is the number of days since January 1,
1841. For SQL_TIME, this is the number of seconds since midnight. When CONVERT encounters a nonnumeric
character, it truncates the input string at that character. The integer data types also truncate decimal digits, returning
the integer portion of the number.

608 InterSystems SQL Reference

SQL Functions

expression

The expression to be converted to a new data type. expression can be scalar, such as a single string value, or nonscalar,
such as a table column. The valid values of expression depend on the data type specified by type.

• If expression does not have a defined data type (for example, a host variable supplied by ObjectScript) its data type
defaults to the string data type.

• If expression contains stream data and you are using the {fn CONVERT(expression,type)} syntax, then CONVERT
issues an SQLCODE -37 error.

• If expression is NULL, the converted value remains NULL, regardless of the specified type.

• If expression is an empty string ('') or a nonnumeric string value, the returned value depends on the specified type:

– If type is a string data type, then CONVERT returns the supplied value.

– If type is a numeric data type or type TIME, SQL_TIME, or SQL_DATE, then CONVERT returns 0 (zero).

Specifying an invalid value given the type results in an SQLCODE -141 error.

formatCode

An integer code that specifies date, datetime, and time formats.

Use formatCode to define the output when converting from a date/time/timestamp data type to a character string. For
example:

SQL

SELECT CONVERT(VARCHAR,TO_DATE('22 FEB 2022'),1) -- '02/22/22'

You can also use formatCode to define the input when converting from a character string to a date/time/timestamp data
type. For example:

SQL

SELECT CONVERT(DATE,'22 FEB 2022',106) -- '02/22/2022'

Only the CONVERT() syntax supports formatCode.

Specifying an expression with an invalid format or a format that does not match the formatCode generates an SQLCODE
-141 error. Specifying a non-existent formatCode returns 1900-01-01 00:00:00.

This table describes the supported format codes, where:

• The first column lists codes that output a two-digit year.

• The second column lists code that output a four-digit year or do not output a year.

FormatFour-Digit Year
Codes

Two-Digit Year
Codes

Mon dd yyyy hh:mmAM (or PM)0 or 100n/a

mm/dd/yy1011

yy.mm.dd1022

dd/mm/yy1033

dd.mm.yy1044

InterSystems SQL Reference 609

CONVERT (SQL)

FormatFour-Digit Year
Codes

Two-Digit Year
Codes

dd-mm-yy1055

dd Mon yy1066

Mon dd, yy (no leading zero when dd < 10)1077

hh:mm:ss8 or 108n/a

Mon dd yyyy hh:mm:ss:nnnAM (or PM)9 or 109n/a

mm-dd-yy11010

yy/mm/dd11111

yymmdd11212

dd Mon yyyy hh:mm:ss:nnn (24 hour)13 or 113n/a

hh:mm:ss.nnn (24 hour)14 or 114n/a

yyyy-mm-dd hh:mm:ss (24 hour)20 or 120n/a

yyyy-mm-dd hh:mm:ss.nnn (24 hour)21 or 121n/a

yyyy-mm-ddThh:mm:ss.nnn (24 hour)126n/a

dd Mon yyyy hh:mm:ss:nnnAM (or PM)130n/a

dd/mm/yyyy hh:mm:ss:nnnAM (or PM)131n/a

Range of Values

The range of permitted dates is 0001-01-01 through 9999-12-31.

Default Values

For the CONVERT() syntax, when converting a time value to TIMESTAMP, POSIXTIME, DATETIME, or SMALL-
DATETIME, the date defaults to 1900-01-01. For the {fn CONVERT()} syntax, the date defaults to 1841-01-01.

When converting a date value to TIMESTAMP, POSIXTIME, DATETIME, or SMALLDATETIME, the time defaults to
00:00:00.

Default Format

If you do not specify formatCode, CONVERT tries to determine the format from the specified value. If it cannot, it defaults
to formatCode 100 (mm-dd-yy).

Two-Digit Years

Two-digit years from 00 through 49 are converted to 21st century dates (2000 through 2049).

Two-digit years from 50 through 99 are converted to 20th century dates (1950 through 1999).

Fractional Seconds

You can precede fractional seconds by either a period (.) or a colon (:). The symbols have different meanings:

• Period (default) — Valid for all formatCode values. A period indicates a standard fraction. For example, 12:00:00.4
indicates four-tenths of a second and 12:00:00.004 indicates four-thousandth of a second. CONVERT has no limit
on the number of digits of fractional precision.

610 InterSystems SQL Reference

SQL Functions

• Colon — Valid only for formatCode values 9/109, 13/113, 14/114, 130, and 131. A colon indicates that the number
that follows is in thousandths of a second. For example, 12:00:00:4 indicates four-thousandth of a second
(12:00:00.004). You can specify a maximum of three digits of fractional precision.

Examples

Convert Between Numeric Types

This example compares the conversion of a fractional number using the DECIMAL and DOUBLE data types. It uses the
InterSystems IRIS CONVERT() syntax. The conversion to DOUBLE results in a loss of precision.

SQL

SELECT CONVERT(DECIMAL,-123456789.0000123456789) AS DecimalVal, -- -123456789.0000123457
 CONVERT(DOUBLE,-123456789.0000123456789) AS DoubleVal -- -123456789.00001235306

This statement uses the ODBC {fn CONVERT()} syntax to perform a similar conversion. This syntax does not support a
DECIMAL data type, so the statement converts to a DOUBLE data type only.

SQL

SELECT {fn CONVERT(-123456789.0000123456789,SQL_DOUBLE) } AS DecimalVal -- -123456789.00001235306

Convert Between Character Strings

This example shows how to truncate a string by performing a VARCHAR-to-VARCHAR conversion, specifying an output
string length shorter than the expression string length. Truncation is supported only for the InterSystems IRIS CONVERT()
syntax. The only supported character string format for the ODBC {fn CONVERT()} syntax is SQL_VARCHAR.

SQL

SELECT CONVERT(VARCHAR(5),'Hello, World') As TruncatedValue -- 'Hello'

If a character data type has no specified length, the default maximum length is 30 characters.

SQL

SELECT CONVERT(VARCHAR,'This string is more than 30 characters.') --This string is more than 30 ch

SQL

SELECT {fn CONVERT('This string is more than 30 characters.',SQL_VARCHAR) } --This string is more than
 30 ch

For the CONVERT() syntax, this maximum length also applies to converts to BINARY or VARBINARY types. Otherwise,
these data types with no specified length are mapped to a MAXLEN of 1 character, as shown in the Data Types table.

Convert Stream Data to Character String

This example converts a character stream field to a VARCHAR text string. It also displays the length of the character stream
field using CHAR_LENGTH:

SQL

SELECT Notes,CONVERT(VARCHAR(80),Notes) AS NoteText,CHAR_LENGTH(Notes) AS TextLen
FROM Sample.Employee WHERE Notes IS NOT NULL

The ODBC {fn CONVERT()} syntax does not support character streams.

InterSystems SQL Reference 611

CONVERT (SQL)

Convert Date to Character String

This example converts dates in the "DOB" (Date Of Birth) column to the SQL_VARCHAR data type. The resulting string
is in the format: yyyy-mm-dd.

SQL

SELECT DOB,CONVERT(VARCHAR,DOB) AS DOBtoVChar
FROM Sample.Person

SQL

SELECT DOB,{fn CONVERT(DOB,SQL_VARCHAR)} AS DOBtoVChar
FROM Sample.Person

This example shows several conversions of the date-of-birth field (DOB) to a formatted character string. A sample output
date string appears in a comment after each conversion.

SQL

SELECT DOB,
 CONVERT(VARCHAR(20),DOB) AS DOBDefault, -- Mar 20 1983 12:00AM
 CONVERT(VARCHAR(20),DOB,100) AS DOB100, -- Mar 20 1983 12:00AM
 CONVERT(VARCHAR(20),DOB,107) AS DOB107, -- Mar 20, 1983
 CONVERT(VARCHAR(20),DOB,114) AS DOB114, -- 00:00:00.000
 CONVERT(VARCHAR(20),DOB,126) AS DOB126 -- 1983-03-20T00:00:00:
FROM Sample.Person

The default format and the code-100 format are the same. Because the DOB field does not contain a time value, formats
that display time (here including the default, 100, 114, and 126) supply a zero value, which represents 12:00AM (midnight).
The code-126 format provides a date and time string that contains no spaces.

Only the InterSystems IRIS CONVERT() syntax supports date string formatting, not ODBC {fn CONVERT()} syntax.

Convert Character String to Numeric Type

This example converts a mixed string to an integer. InterSystems IRIS truncates the string at the first nonnumeric character
and then converts the resulting numeric to canonical form:

SQL

SELECT CONVERT(INTEGER,'007 James Bond') -- 7

SQL

SELECT {fn CONVERT('007 James Bond',SQL_INTEGER)} -- 7

Convert Date to Timestamp

This example converts dates in the "DOB" (Date Of Birth) column to timestamp data types. The resulting timestamp is in
the format yyyy-mm-dd hh:mm:ss.

SQL

SELECT DOB,CONVERT(TIMESTAMP,DOB) AS DOBtoTstamp
FROM Sample.Person

SQL

SELECT DOB,{fn CONVERT(DOB,SQL_TIMESTAMP)} AS DOBtoTstamp
FROM Sample.Person

612 InterSystems SQL Reference

SQL Functions

Convert Date to Numeric Type

This example converts dates in the "DOB" (Date Of Birth) column to integer data types. The resulting integer is the
$HOROLOG count of days since December 31, 1840.

SQL

SELECT DOB,CONVERT(INTEGER,DOB) AS DOBtoInt
FROM Sample.Person

SQL

SELECT DOB,{fn CONVERT(DOB,SQL_INTEGER)} AS DOBtoInt
FROM Sample.Person

Convert Bit Values

You can perform a BIT data type conversion. The permitted values are 1, 0, or NULL. If you specify any other value,
InterSystems IRIS issues an SQLCODE -141 error. This example shows two BIT conversions of a NULL:

ObjectScript

 SET a=""
 &sql(SELECT CONVERT(BIT,:a),
 CONVERT(BIT,NULL)
 INTO :x,:y)
 WRITE !,"SQLCODE=",SQLCODE
 WRITE !,"the host variable is:",x
 WRITE !,"the NULL keyword is:",y

You can specify empty strings in bit conversion only when it is stored in a host variable using embedded SQL. If you
specify an empty string directly, as in CONVERT(BIT,''), InterSystems IRIS issues an SQLCODE -141 error.

More About

CONVERT Class Method

You can also perform data type conversions using the CONVERT() method call, specifying data types as SQL_ keywords,
as shown in this syntax:

$SYSTEM.SQL.Functions.CONVERT(expression,SQL_convertToType,SQL_convertFromType)

For example:

ObjectScript

 write $SYSTEM.SQL.Functions.CONVERT(66225,"SQL_VARCHAR","SQL_DATE")

See Also
• CAST

• Data Types

InterSystems SQL Reference 613

CONVERT (SQL)

COS (SQL)
A scalar numeric function that returns the cosine, in radians, of an angle.

Synopsis

{fn COS(numeric-expression)}

Arguments

DescriptionArgument

A numeric expression. This is an angle expressed in radians.numeric-expression

COS returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, COS returns
DOUBLE; otherwise, it returns NUMERIC.

Description
COS takes any numeric value and returns the cosine as a floating point number. The returned value is within the range -1
to 1, inclusive. COS returns NULL if passed a NULL value. COS treats nonnumeric strings as the numeric value 0.

COS returns a value with a precision of 19 and a scale of 18.

COS can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Examples
These examples show the effect of COS on two sines.

SQL

SELECT {fn COS(0.52)} AS Cosine

returns 0.86781.

SQL

SELECT {fn COS(-.31)} AS Cosine

returns 0.95233.

See Also
• SQL functions: ACOS, ASIN, ATAN, COT, SIN, TAN

• ObjectScript function: $ZCOS

614 InterSystems SQL Reference

SQL Functions

COT (SQL)
A scalar numeric function that returns the cotangent, in radians, of an angle.

Synopsis

{fn COT(numeric-expression)}

Description
COT takes any nonzero number and returns its cotangent as a floating point number. COT returns NULL if passed a NULL
value. A numeric value of 0 (zero) causes a runtime error, generating an SQLCODE -400 (fatal error occurred). COT treats
nonnumeric strings as the numeric value 0.

COT returns a value with a precision of 36 and a scale of 18.

COT can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Arguments

numeric-expression

A numeric expression. This is an angle expressed in radians.

COT returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, COT returns
DOUBLE; otherwise, it returns NUMERIC.

Examples
The following examples show the effect of COT:

SQL

SELECT {fn COT(0.52)} AS Cotangent

returns 1.74653.

SQL

SELECT {fn COT(124.1332)} AS Cotangent

returns -0.040312.

See Also
• SQL functions: ACOS, ASIN, ATAN, COS, SIN, TAN

• ObjectScript function: $ZCOT

InterSystems SQL Reference 615

COT (SQL)

CURDATE (SQL)
A scalar date/time function that returns the current local date.

Synopsis

{fn CURDATE()}
{fn CURDATE}

Description
CURDATE takes no arguments. It returns the current local date as data type DATE. Note that the argument parentheses
are optional. CURDATE returns the current local date for this timezone; it adjusts for local time variants, such as Daylight
Saving Time.

CURDATE in Logical mode returns the current local date in $HOROLOG format; for example, 64701. CURDATE in
Display mode returns the current local date in the default format for the locale. For example, in an American locale
02/22/2018, in a European locale 22/02/2018, in a Russian locale 22.02.2018.

To specify a different date format, use the TO_DATE function. To change the default date format, use the SET OPTION
command with the DATE_FORMAT, YEAR_OPTION, or DATE_SEPARATOR options.

To return just the current date, use CURDATE or CURRENT_DATE. These functions return their values in DATE data
type. The CURRENT_TIMESTAMP, GETDATE and NOW functions can also be used to return the current date and time
as a TIMESTAMP data type.

Note that all InterSystems SQL time and date functions except GETUTCDATE are specific to the local time zone setting.
To get a current timestamp that is universal (independent of time zone) you can use GETUTCDATE or the ObjectScript
$ZTIMESTAMP special variable.

These data types perform differently when using embedded SQL. The DATE data type stores values as integers in
$HOROLOG format; when displayed in SQL they are converted to date display format; when returned from embedded
SQL they are returned as integers. A TIMESTAMP data type stores and displays its value in the same format. You can use
the CONVERT function to change the data type of dates and times.

Examples
The following examples both return the current date:

SQL

SELECT {fn CURDATE()} AS Today

SQL

SELECT {fn CURDATE} AS Today

The following example returns the current date. Because this date is stored in $HOROLOG format, it is returned as an
integer:

SQL

SELECT {fn CURDATE()} AS CurrentDate

The following example shows how CURDATE can be used in a SELECT statement to return all records that have a
shipment date that is the same or later than today's date:

616 InterSystems SQL Reference

SQL Functions

SQL

SELECT * FROM Orders
 WHERE ShipDate >= {fn CURDATE()}

See Also
• SQL functions: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, CURTIME, GETDATE,

GETUTCDATE, NOW

• ObjectScript function: $ZDATE

InterSystems SQL Reference 617

CURDATE (SQL)

CURRENT_DATE (SQL)
A date/time function that returns the current local date.

Synopsis

CURRENT_DATE

Description
CURRENT_DATE takes no arguments. It returns the current local date as data type DATE. Argument parentheses are
not permitted. CURRENT_DATE returns the current local date for this timezone; it adjusts for local time variants, such
as Daylight Saving Time.

CURRENT_DATE in Logical mode returns the current local date in $HOROLOG format; for example, 64701.
CURRENT_DATE in Display mode returns the current local date in the default format for the locale. For example, in an
American locale 02/22/2018, in a European locale 22/02/2018, in a Russian locale 22.02.2018.

To specify a different date format, use the TO_DATE function. To change the default date format, use the SET OPTION
command with the DATE_FORMAT, YEAR_OPTION, or DATE_SEPARATOR options.

To return just the current date, use CURRENT_DATE or CURDATE. These functions return their values in DATE data
type. The CURRENT_TIMESTAMP, GETDATE and NOW functions can also be used to return the current date and time
as a TIMESTAMP data type.

Note that all InterSystems SQL time and date functions except GETUTCDATE are specific to the local time zone setting.
To get a current timestamp that is universal (independent of time zone) you can use GETUTCDATE or the ObjectScript
$ZTIMESTAMP special variable.

These data types perform differently when using embedded SQL. The DATE data type stores values as integers in
$HOROLOG format; when displayed in SQL they are converted to date display format; when returned from embedded
SQL they are returned as integers. A TIMESTAMP data type stores and displays its value in the same format. You can use
the CONVERT function to change the datatype of dates and times.

CURRENT_DATE can be used as a default specification keyword in CREATE TABLE or ALTER TABLE.

Examples
The following example returns the current date, converted to Display mode:

SQL

SELECT CURRENT_DATE AS Today

The following example also returns the current date, but because this date is stored in $HOROLOG format, it is returned
as an integer:

SQL

SELECT CURRENT_DATE

The following example shows how CURRENT_DATE can be used in a WHERE clause to return records of people born
in the last 1000 days:

SQL

SELECT Name, DOB, Age
FROM Sample.Person
WHERE DOB > CURRENT_DATE - 1000

618 InterSystems SQL Reference

SQL Functions

See Also
CURDATE, CURRENT_TIME, CURRENT_TIMESTAMP, CURTIME, GETDATE, GETUTCDATE, NOW

InterSystems SQL Reference 619

CURRENT_DATE (SQL)

CURRENT_TIME (SQL)
A date/time function that returns the current local time.

Synopsis

CURRENT_TIME
CURRENT_TIME(precision)

Arguments
DescriptionArgument

A positive integer that specifies the time precision as the number of digits of fractional
seconds. The default is 0 (no fractional seconds); this default is configurable.

precision

CURRENT_TIME returns the TIME data type.

Description
CURRENT_TIME takes either no arguments or a precision argument. Empty argument parentheses are not permitted.

CURRENT_TIME returns the current local time for this timezone. It adjusts for local time variants, such as Daylight
Saving Time.

CURRENT_TIME in Logical mode returns the current local time in $HOROLOG format; for example, 37065.
CURRENT_TIME in Display mode returns the current local time in the default format for the locale; for example,
10:18:27.

To change the default time format, use the SET OPTION command with the TIME_FORMAT and TIME_PRECISION
options. You can configure fractional seconds of precision, as described below.

To return just the current time, use CURRENT_TIME or CURTIME. These functions return their values in TIME data
type. The CURRENT_TIMESTAMP, GETDATE and NOW functions can also be used to return the current date and time
as a TIMESTAMP data type.

Note that all InterSystems SQL time and date functions except GETUTCDATE are specific to the local time zone setting.
To get a current timestamp that is universal (independent of time zone) you can use GETUTCDATE or the ObjectScript
$ZTIMESTAMP special variable.

These data types perform differently when using embedded SQL. The TIME data type stores values as integers in
$HOROLOG format (as the number of seconds since midnight); when displayed in SQL they are converted to time display
format; when returned from embedded SQL they are returned as integers. A TIMESTAMP data type stores and displays
its value in the same format. You can use the CAST or CONVERT function to change the datatype of times and dates.

CURRENT_TIME can be used as a default specification keyword in CREATE TABLE or ALTER TABLE.
CURRENT_TIME cannot specify a precision argument when used as a default specification keyword.

Fractional Seconds Precision

CURRENT_TIME can return up to nine digits of fractional seconds of precision. The default for the number of digits of
precision can be configured using the following:

• SET OPTION with the TIME_PRECISION option.

• The system-wide $SYSTEM.SQL.Util.SetOption() method configuration option DefaultTimePrecision. To
determine the current setting, call $SYSTEM.SQL.CurrentSettings() which displays Default time precision;
the default is 0.

620 InterSystems SQL Reference

SQL Functions

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Default time precision for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP.

Specify an integer 0 through 9 (inclusive) for the default number of decimal digits of precision to return. The default is 0.
The actual precision returned is platform dependent; digits of precision in excess of the precision available on your system
are returned as zeroes.

Examples
The following example returns the current system time:

SQL

SELECT CURRENT_TIME

The following example returns the current system time with three digits of fractional seconds precision:

SQL

SELECT CURRENT_TIME(3)

The following Embedded SQL example returns the current time. Because this time is stored in $HOROLOG format, it is
returned as an integer:

ObjectScript

 &sql(SELECT CURRENT_TIME INTO :a)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Current time is: ",a }

The following example sets the LastCall field in the selected row of the Contacts table to the current system time:

SQL

UPDATE Contacts SET LastCall = CURRENT_TIME
 WHERE Contacts.ItemNumber=:item

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL time functions: CAST, CONVERT, CURTIME, HOUR, MINUTE, SECOND

• SQL timestamp functions: CURRENT_TIMESTAMP, GETDATE, GETUTCDATE, NOW, SYSDATE, TIMESTAM-
PADD, TIMESTAMPDIFF

• InterSystems IRIS ObjectScript: $ZTIME function, $HOROLOG special variable, $ZTIMESTAMP special variable

InterSystems SQL Reference 621

CURRENT_TIME (SQL)

CURRENT_TIMESTAMP (SQL)
A date/time function that returns the current local date and time.

Synopsis

CURRENT_TIMESTAMP
CURRENT_TIMESTAMP(precision)

Arguments

DescriptionArgument

A positive integer that specifies the time precision as the number of digits of fractional
seconds. The default is 0 (no fractional seconds); this default is configurable.

precision

CURRENT_TIMESTAMP returns the TIMESTAMP data type.

Description
CURRENT_TIMESTAMP takes either no arguments or a precision argument. Empty argument parentheses are not per-
mitted.

CURRENT_TIMESTAMP returns the current local date and time for this timezone; it adjusts for local time variants,
such as Daylight Saving Time.

CURRENT_TIMESTAMP can return a timestamp in either %TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff)
or %PosixTime data type format (an encoded 64-bit signed integer). The following rules determine which timestamp format
is returned:

1. If the current timestamp is being supplied to a field of data type %PosixTime, the current timestamp value is returned
in POSIXTIME data type format. For example, WHERE PosixField=CURRENT_TIMESTAMP or INSERT INTO
MyTable (PosixField) VALUES (CURRENT_TIMESTAMP).

2. If the current timestamp is being supplied to a field of data type %TimeStamp, the current timestamp value is returned
in TIMESTAMP data type format. For example, WHERE TSField=CURRENT_TIMESTAMP or INSERT INTO
MyTable (TSField) VALUES (CURRENT_TIMESTAMP).

3. If the current timestamp is being supplied without context, the current timestamp value is returned in TIMESTAMP
data type format. For example, SELECT CURRENT_TIMESTAMP.

You can use $HOROLOG to store or return the current local date and time in internal format.

To change the default datetime string format, use the SET OPTION command with the various date and time options.

You can specify CURRENT_TIMESTAMP, with or without precision, as the field default value when defining a datetime
field using CREATE TABLE or ALTER TABLE. CURRENT_TIMESTAMP can be specified as the field default value
for a field of data type %Library.PosixTime or %Library.TimeStamp; the current date and time is stored in the format specified
by the field’s data type.

Fractional Seconds Precision

CURRENT_TIMESTAMP has two syntax forms:

• Without argument parentheses, CURRENT_TIMESTAMP is functionally identical to NOW. It uses the system-wide
default time precision.

622 InterSystems SQL Reference

SQL Functions

• With argument parentheses, CURRENT_TIMESTAMP(precision), is functionally identical to GETDATE, except
that the CURRENT_TIMESTAMP() precision argument is mandatory. CURRENT_TIMESTAMP() always returns
its specified precision and ignores the configured system-wide default time precision.

Fractional seconds are always truncated, not rounded, to the specified precision.

• In TIMESTAMP data type format, the maximum possible digits of precision is nine. The actual number of digits sup-
ported is determined by the precision argument, the configured default time precision, and the system capabilities. If
you specify a precision larger than the configured default time precision, the additional digits of precision are returned
as trailing zeros.

• In POSIXTIME data type format, the maximum possible digits of precision is six. Every POSIXTIME value is computed
using six digits of precision; these fractional digits default to zeros unless supplied. The actual number of non-zero
digits supported is determined by the precision argument, the configured default time precision, and the system capa-
bilities.

Configuring Precision

The default precision can be configured using the following:

• SET OPTION with the TIME_PRECISION option.

• The system-wide $SYSTEM.SQL.Util.SetOption() method configuration option DefaultTimePrecision. To
determine the current setting, call $SYSTEM.SQL.CurrentSettings() which displays Default time precision;
the default is 0.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Default time precision for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP.

Specify an integer 0 through 9 (inclusive) for the default number of decimal digits of precision to return. The default is 0.
The actual precision returned is platform dependent; precision digits in excess of the precision available on your system
are returned as zeroes.

Date and Time Functions Compared

GETDATE and NOW can also be used to return the current local date and time as either a TIMESTAMP data type or a
POSIXTIME data type value. GETDATE supports precision, NOW does not support precision.

SYSDATE is identical to CURRENT_TIMESTAMP, with the exception that SYSDATE does not support precision.
CURRENT_TIMESTAMP is the preferred InterSystems SQL function; SYSDATE is provided for compatibility with
other vendors.

All InterSystems SQL time and date functions except GETUTCDATE are specific to the local time zone setting. To get a
universal (time zone independent) timestamp, you can use either GETUTCDATE to return the universal date and time as
either a TIMESTAMP data type or a POSIXTIME data type value, or the ObjectScript $ZTIMESTAMP special variable.

To return just the current local date, use CURDATE or CURRENT_DATE. To return just the current local time, use
CURRENT_TIME or CURTIME. These functions return their values in DATE or TIME data type. None of these functions
support precision.

The TIMESTAMP data type storage format and display format are the same. The POSIXTIME data type storage format
is an encoded 64-bit signed integer. The TIME and DATE data types store their values as integers in $HOROLOG format;
when displayed in SQL they are converted to date or time display format. Embedded SQL returns them in logical (storage)
format by default. You can change the Embedded SQL returned value format using the #sqlcompile select macro prepro-
cessor directive.

You can use the CAST or CONVERT function to change the data type of dates and times.

InterSystems SQL Reference 623

CURRENT_TIMESTAMP (SQL)

Examples
The following example returns the current local date and time three different ways: in TIMESTAMP data type format with
system default time precision, with a precision of two digits of fractional seconds, and in $HOROLOG internal storage
format with full seconds:

SQL

SELECT
 CURRENT_TIMESTAMP AS FullSecStamp,
 CURRENT_TIMESTAMP(2) AS FracSecStamp,
 $HOROLOG AS InternalFullSec

The following example sets a locale default time precision. The first CURRENT_TIMESTAMP specifies no precision;
it returns the current time with the default time precision. The second CURRENT_TIMESTAMP specifies precision; this
overrides the configured default time precision. The precision argument can be larger or smaller than the default time pre-
cision setting:

SQL

SELECT CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(2)

The following example compares local (time zone specific) and universal (time zone independent) time stamps:

SQL

 SELECT CURRENT_TIMESTAMP,GETUTCDATE()

The following example sets the LastUpdate field in the selected row of the Orders table to the current system date and time.
If LastUpdate is data type %TimeStamp, CURRENT_TIMESTAMP returns the current date and time as an ODBC
timestamp; if LastUpdate is data type %PosixTime, CURRENT_TIMESTAMP returns the current date and time as an
encoded 64-bit signed integer:

SQL

UPDATE Orders SET LastUpdate = CURRENT_TIMESTAMP
 WHERE Orders.OrderNumber=:ord

The following example creates a table named Orders, which records product orders received:

SQL

CREATE TABLE Orders (
 OrderId INT NOT NULL,
 ClientId INT,
 ItemName CHAR(40) NOT NULL,
 OrderDate TIMESTAMP DEFAULT CURRENT_TIMESTAMP(3),
 PRIMARY KEY (OrderId))

The OrderDate column contains the date and time that the order was received. It uses the TIMESTAMP data type and
inserts the current system date and time as the default value using the CURRENT_TIMESTAMP function with a precision
of 3.

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL timestamp functions: CAST, CONVERT, GETDATE, GETUTCDATE, NOW, SYSDATE, TIMESTAMPADD,
TIMESTAMPDIFF, TO_POSIXTIME, TO_TIMESTAMP

• SQL current date and time functions: CURDATE, CURRENT_DATE, CURRENT_TIME, CURTIME

624 InterSystems SQL Reference

SQL Functions

• ObjectScript: $ZDATETIME function, $HOROLOG special variable, $ZTIMESTAMP special variable

InterSystems SQL Reference 625

CURRENT_TIMESTAMP (SQL)

CURTIME (SQL)
A scalar date/time function that returns the current local time.

Synopsis

{fn CURTIME()}
{fn CURTIME}

Description
CURTIME returns the current local time as data type TIME. It takes no argument; note that the argument parentheses are
optional. CURTIME returns the current local time for this timezone; it adjusts for local time variants, such as Daylight
Saving Time.

CURTIME in Logical mode returns the current local time in $HOROLOG format; for example, 37065. CURTIME in
Display mode returns the current local time in the default format for the locale; for example, 10:18:27.

Hours are represented in 24-hour format.

To change the default time format, use the SET OPTION command with the TIME_FORMAT and TIME_PRECISION
options.

To return just the current time, use CURTIME or CURRENT_TIME. These functions return their values in TIME data
type. The CURRENT_TIMESTAMP, GETDATE and NOW functions can also be used to return the current date and time
as a TIMESTAMP data type.

Note that all InterSystems SQL time and date functions except GETUTCDATE are specific to the local time zone setting.
To get a current timestamp that is universal (independent of time zone) you can use GETUTCDATE or the ObjectScript
$ZTIMESTAMP special variable.

These data types perform differently when using embedded SQL. The TIME data type stores values as integers in
$HOROLOG format (as the number of seconds since midnight); when displayed in SQL they are converted to time display
format; when returned from embedded SQL they are returned as integers. A TIMESTAMP data type stores and displays
its value in the same format. You can use the CAST or CONVERT function to change the data type of times and dates.

Examples
The following examples both return the current system time:

SQL

SELECT {fn CURTIME()} AS TimeNow

SQL

SELECT {fn CURTIME} AS TimeNow

The following Embedded SQL example returns the current time. Because this time is stored in $HOROLOG format, it is
returned as an integer:

ObjectScript

 &sql(SELECT {fn CURTIME} INTO :a)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Current time is: ",a }

The following example sets the LastCall field in the selected row of the Contacts table to the current system time:

626 InterSystems SQL Reference

SQL Functions

SQL

UPDATE Contacts Set LastCall = {fn CURTIME()}
 WHERE Contacts.ItemNumber=:item

See Also
• SQL concepts: Data Type Date and Time Constructs

• SQL time functions: CAST CONVERT CURRENT_TIME HOUR MINUTE SECOND

• SQL timestamp functions: CURRENT_TIMESTAMP GETDATE GETUTCDATE NOW TIMESTAMPADD
TIMESTAMPDIFF

• ObjectScript: $ZTIME function $HOROLOG special variable $ZTIMESTAMP special variable

InterSystems SQL Reference 627

CURTIME (SQL)

DATABASE
A scalar string function that returns the database name qualifier.

Synopsis

{fn DATABASE()}

Description
DATABASE returns the current qualifier for the name of the database corresponding to the connection handle. In InterSys-
tems IRIS, DATABASE always returns the empty string ('').

628 InterSystems SQL Reference

SQL Functions

DATALENGTH (SQL)
A function that returns the number of characters in an expression.

Synopsis

DATALENGTH(expression)

Description
The DATALENGTH returns the number of characters used for an expression.

The DATALENGTH, CHAR_LENGTH, and CHARACTER_LENGTH functions are identical. Use of the
CHAR_LENGTH function is recommended for new code. DATALENGTH is provided for TSQL compatibility. Refer
to CHAR_LENGTH for further details.

Arguments

expression

An expression, which can be the name of a column, a string literal, or the result of another scalar function. The underlying
data type can be a character type (such as CHAR or VARCHAR), a numeric, or a data stream.

DATALENGTH returns the INTEGER data type.

See Also
• CHAR_LENGTH function

• CHARACTER_LENGTH function

InterSystems SQL Reference 629

DATALENGTH (SQL)

DATE (SQL)
A function that takes a timestamp and returns a date.

Synopsis

DATE(timestamp)

Description
• DATE(timestamp) takes a timestamp expression and returns a date of data type DATE. This function is equivalent to

CAST(timestamp as DATE).

This statement converts a timestamp string to a date. The time portion of the timestamp is validated but not returned.

SQL

SELECT DATE('2000-01-01 00:00:00') AS StringToDate -- Display Mode: 01/01/2000

Example: Convert Timestamps of Varying Types to Dates

Arguments

timestamp

An expression that specifies a timestamp, date, or date and time representation. Specify timestamp as one of these data type
classes:

• %Library.TimeStamp

• %Library.PosixTime

• %Library.Date

• %Library.Integer

• %Library.Numeric values in implicit logical timestamp format, such as +$HOROLOG. See Numeric Timestamps.

• %Library.String values compatible with %Library.TimeStamp. See String Timestamps.

Numeric Timestamps

The $HOROLOG and $ZTIMESTAMP special variables specify the current date as a numeric character string. DATE
casts such strings to 0, which represents the date December 31, 1840.

SQL

SELECT
 DATE($HOROLOG), -- Returns 0 (12/31/1840)
 DATE($ZTIMESTAMP) -- Returns 0 (12/31/1840)

To interpret $HOROLOG or $ZTIMESTAMP as the current date, you must force numeric interpretation by prefixing
the date with a plus (+) sign.

SQL

SELECT
 DATE(+$HOROLOG), -- Returns the current date
 DATE(+$ZTIMESTAMP) -- Returns the current date

630 InterSystems SQL Reference

SQL Functions

String Timestamps

String timestamps converted to the DATE format, must be compatible with the %Library.TimeStamp data type. The data
type stores strings in the ODBC date format, and the DATE function validates input strings against this format. If the string
passes validation, DATE returns the corresponding date. If it fails validation, DATE returns 0, which corresponds to the
date December 31, 1840. An empty string ('') also returns 0. A NULL argument returns NULL.

DATE performs these validation checks:

• The string corresponds to ODBC format, where fff is fractional seconds:

yyyy-mm-dd hh:mm:ss.fff

• The string contains at least a full date: yyyy-mm-dd. The time portion is optional. DATE validates any specified
times but does not return them. Any part of the time can be included. For example: yyyy-mm-dd hh:

• The string does not contain any invalid format characters or trailing characters. Leading zeros can be omitted or
included.

• Each numeric element of the string, including the optional time portion, contains a valid value given the range for that
element. For example:

– Month values are from 1 to 12.

– Day values do not exceed the number of days for the specified month (includes leap year days).

– Dates are within the range of 0001-01-01 to 9999-12-31.

Examples

Convert Timestamps of Varying Formats to Dates

These statements convert timestamps of data type %Library.TimeStamp to the DATE data type.

SQL

SELECT
 {fn NOW} AS NowCol,
 DATE({fn NOW}) AS DateCol

SQL

SELECT
 CURRENT_TIMESTAMP AS TSCol,
 DATE(CURRENT_TIMESTAMP) AS DateCol

SQL

SELECT
 GETDATE() AS GetDateCol,
 DATE(GETDATE()) AS DateCol

These statements convert strings written in the %Library.TimeStamp format to DATE.

SQL

SELECT
 '2022-05-22 13:14:23' AS DateStrCol,
 DATE('2022-05-22 13:14:23') AS DateCol

This statement converts a %Library.PosixTime timestamp to DATE.

InterSystems SQL Reference 631

DATE (SQL)

SQL

SELECT
 TO_POSIXTIME('2022-05-22','YYYY-MM-DD') AS PosixCol,
 DATE(TO_POSIXTIME('2022-05-22','YYYY-MM-DD')) AS DateCol

These statements convert string values that represent dates in the InterSystems IRIS® logical format to DATE. To convert
these values properly, you must force numeric evaluation by prefixing the strings with a plus sign (+).

SQL

SELECT
 $H AS HoroCol,
 DATE(+$H) AS DateCol

SQL

SELECT
 $ZTIMESTAMP AS TSCol,
 DATE(+$ZTIMESTAMP) AS DateCol

Alternatives
To perform equivalent timestamp-to-date conversions in ObjectScript using code, use the DATE() method:

ObjectScript

 WRITE $SYSTEM.SQL.Functions.DATE("2018-02-23 12:37:45")

See Also
• CAST function

• CURDATE and CURRENT_DATE functions

• CURRENT_TIMESTAMP function

• GETUTCDATE function

• NOW function

• TO_TIMESTAMP function

• $HOROLOG special variable

• $ZTIMESTAMP special variable

632 InterSystems SQL Reference

SQL Functions

DATEADD (SQL)
A date/time function that returns a timestamp calculated by adding or subtracting a number of date part units (such as hours
or days) to a date or timestamp.

Synopsis

DATEADD(datePart,numUnits,date)

Description
• DATEADD(datePart,numUnits,date) modifies a date or time expression by incrementing the specified date part by

the specified number of units. If you specify negative units, then DATEADD decrements the date by that number of
units.

– If date is of type %Library.PosixTime (an encoded 64-bit signed integer), then DATEADD returns a timestamp of
type %Library.PosixTime.

– If date is of any other type, then DATEADD returns a timestamp of type %Library.TimeStamp in the format yyyy-
mm-dd hh:mm:ss.fff.

This statement increments the current date by 5 months.

SQL

SELECT DATEADD('month',5,CURRENT_DATE)

DATEADD is compatible with Sybase and Microsoft SQL Server.

Arguments

datePart

The full or abbreviated name of a date or time part. You can specify datePart in uppercase or lowercase. In embedded SQL,
specify datePart as a literal value or host variable. This table shows the valid date and time part names and abbreviations.
It also shows by how much a single unit of that part (numUnits = 1) increments the date.

numUnits = 1AbbreviationsName

Increments year by 1.yyyy, yyyear

Increments month by 3.qq, qquarter

Increments month by 1.mm, mmonth

Increments day by 7.wk, wwweek

Increments day by 1.dw, wweekday

Increments day by 1.dd, dday

Increments day by 1.dy, ydayofyear

Increments hour by 1.hh, hhour

Increments minute by 1.mi, nminute

Increments second by 1.ss, ssecond

InterSystems SQL Reference 633

DATEADD (SQL)

numUnits = 1AbbreviationsName

Increments second by 0.001
(precision of 3)

msmillisecond

Increments second by 0.000001
(precision of 6)

mcsmicrosecond

Increments second by
0.000000001 (precision of 9)

nsnanosecond

Incrementing or decrementing a date part causes other date parts to be modified appropriately. For example, incrementing
the hour past midnight automatically increments the day, which may in turn increment the month, and so forth.

DATEADD performs slightly different operations depending on whether you specify datePart with or without quotes:

• Quotes: DATEADD('month',1,'2022-02-25'): datePart is treated as a literal. When processing the query,
InterSystems SQL performs literal substitution, replacing the 'month' string with an input parameter, which produces
a more generally reusable cached query.

• No quotes: DATEADD(month,1,'2022-02-25'): datePart is treated as a keyword. When processing the query,
InterSystems SQL does not perform literal substitution, which produces a more specific cached query.

Specifying an invalid datePart literal value generates an SQLCODE -8 error code. However, if you supply an invalid
datePart value as a host variable, no SQLCODE error is issued and the DATEPART function that is called to parse datePart
returns a value of NULL.

numUnits

The number of datePart units added to or subtracted from date, specified as a numeric value. DATEADD truncates numUnits
to an integer. If numUnits contains no numeric parts or does not start with a numeric value, DATEADD truncates this value
to 0 and returns the originally specified date.

date

The date or time expression being added to or subtracted from, specified as one of these InterSystems IRIS® data types:

• %Date logical value (+$H), also known as $HOROLOG format.

• %PosixTime (%Library.PosixTime) logical value (an encoded 64-bit signed integer).

• %TimeStamp (%Library.TimeStamp) logical value (YYYY-MM-DD HH:MM:SS.FFF), also known as ODBC format.

• %String or string-compatible value, which can be in one of these formats:

Table G–1: $HOROLOG Date and Time Format

ExampleFormat

SELECT DATEADD('yy',1,'66716')ddddd

SELECT DATEADD('yy',1,'66716,256')ddddd,sssss

SELECT DATEADD('yy',1,'66716,256.467')ddddd,sssss.fff

where:

– ddddd is the integer number of days since December 31, 1840.

– sssss is the integer number of seconds since the start of that day.

– fff is the integer number of fractional seconds. If you specify fractional seconds, the returned DATEADD value
also includes fractional seconds.

634 InterSystems SQL Reference

SQL Functions

Table G–2: Date Format

ExampleFormat

SELECT DATEADD('year',1,'12/31/99')MM/DD/YY

SELECT DATEADD('year',1,'8/24/2022')MM/DD/YYYY

SELECT DATEADD('year',1,'12-31-99')MM-DD-YY

SELECT DATEADD('year',1,'8-24-2022')MM-DD-YYYY

SELECT DATEADD('year',1,'12.31.99')MM.DD.YY

SELECT DATEADD('year',1,'8.24.2022')MM.DD.YYYY

SELECT DATEADD('year',1,'Dec 30 92')Mmm DD YY

SELECT DATEADD('year',1,'January 23

2021')

Mmm DD YYYY

SELECT DATEADD('year',1,'Dec 30, 92')Mmm DD, YY

SELECT DATEADD('year',1,'January 23,

2021')

Mmm DD, YYYY

where:

– MM is the two-digit month.

– DD is the two-digit number of days in the month.

– Mmm is the spelled-out month. You can specify a minimum of three letters (for example, Mar) up to the full
month name (for example, March).

– YY and YYYY are the two-digit and four-digit forms of the year, respectively.

You can specify date as a combined date and time string. For example:

SQL

SELECT DATEADD('hh',1,'12/22/2021 8:15:23')

If you specify a time without a date, DATEADD defaults to date 01/01/1900.

Table G–3:Time Format

ExampleFormat

SELECT DATEADD('hour',1,'10:')HH:

SELECT DATEADD('mi',1,'10:30')HH:MM

SELECT DATEADD('ss',1,'10:30:59')HH:MM:SS

SELECT DATEADD('ms',1,'10:30:59.245')HH...SS.FFF

SELECT DATEADD('mi',1,'10:30PM')HH...[AM|PM]

where:

– HH is the two-digit number of hours into the day.

– MM is the two-digit number of minutes into the hour.

InterSystems SQL Reference 635

DATEADD (SQL)

– SS is the two-digit number of seconds into the minute.

– FFF is the number of fractional seconds.

You can specify date as a combined date and time string. For example:

SQL

SELECT DATEADD('hh',1,'12/22/2021 8:15:23')

If you specify a date without a time, DATEADD defaults to time 00:00:00.

The date argument has these restrictions and behaviors:

• The date string must be complete and properly formatted with the appropriate number of elements and digits for each
element and the appropriate separator character. Years must be specified as four digits. If you omit the date portion of
an input value, DATEADD defaults to '1900-01-01'.

• Date and time values must be within the valid range:

– Years — 0001 through 9999

– Months — 1 through 12

– Days — 1 through 31

– Hours — 00 through 23

– Minutes — 0 through 59

– Seconds — 0 through 59

The number of days in a month must match the month and year. For example, the date '02-29' is valid only if the
specified year is a leap year.

• In date values less than 10 (month and day) a leading zero in optional. Other non-canonical integer values are not
permitted. For example, a Day value of '07' or '7' is valid, but '007', '7.0', or '7a' are not valid.

• Time values are optional. If date specifies an incomplete time, zeros are supplied for the unspecified parts.

• An hour value less than 10 must include a leading zero.

Examples

Add Varying Time Units to Dates

This statement adds 1 week to the specified date. It returns 2022-03-05 00:00:00, because adding 1 week adds 7 days.
DATEADD supplies the omitted time portion.

SQL

SELECT DATEADD('week',1,'2022-02-26') AS NewDate

The statement adds 5 months to the specified timestamp and returns 2022-04-26 12:00:00. DATEADD modifies both the
month and year, because adding 5 months also increments the year.

SQL

SELECT DATEADD(MM,5,'2021-11-26 12:00:00') AS NewDate

This statement also adds 5 months to the timestamp and returns 2021-06-30 12:00:00. DATEADD modifies both the day
and month, because incrementing only the month results in an invalid date of June 31.

636 InterSystems SQL Reference

SQL Functions

SQL

SELECT DATEADD('mm',5,'2021-01-31 12:00:00') AS NewDate

This statement adds 45 minutes to the timestamp and returns 2022-02-26 12:45:00.

SQL

SELECT DATEADD(MI,45,'2022-02-26 12:00:00') AS NewTime

This statement also adds 45 minutes to the timestamp, but in this case the addition increments the day, which increments
the month. It returns 2022-03-01 00:15:00.

SQL

SELECT DATEADD('mi',45,'2022-02-28 23:30:00') AS NewTime

This statement decrements the original timestamp by 45 minutes and returns 2021-12-31 23:25:00.

SQL

SELECT DATEADD(N,-45,'2022-01-01 00:10:00') AS NewTime

This statement adds 60 days to the current date, adjusting for the varying lengths of months.

SQL

SELECT DATEADD(D,60,CURRENT_DATE) AS NewDate

The first DATEADD of this statement adds 92 days to the specified date and returns 2022-03-22 00:00:00. The second
DATEADD adds 1 quarter to the specified date and returns 2022-03-20 00:00:00. Incrementing by a quarter increments
the month field by 3. If necessary, DATEADD also increments the year field and corrects for the maximum number of
days for a given month.

SQL

SELECT DATEADD('dd',92,'2021-12-20') AS NewDateD,
 DATEADD('qq',1,'2021-12-20') AS NewDateQ

The previous statements all use date part abbreviations. However, you can also specify the date part by its full name. For
example, this statement adds 92 days to the date and returns 2022-03-22 00:00:00.

SQL

SELECT DATEADD('day',92,'2021-12-20') AS NewDate

This Embedded SQL code uses host variables to perform the same DATEADD operation as the previous SQL statement.

ObjectScript

 set datePart = "day"
 set numUnits = 92
 set dateIn = "2021-12-20"

 &sql(SELECT DATEADD(:datePart,:numUnits,:dateIn) INTO :dateOut)

 write "in: ",dateIn,!,"out: ",dateOut

Alternatives
You can perform time and date modifications using the TIMESTAMPADD ODBC scalar function.

InterSystems SQL Reference 637

DATEADD (SQL)

To perform equivalent timestamp conversions in ObjectScript, use the DATEADD() method:

$SYSTEM.SQL.Functions.DATEADD(datePart,numUnits,date)

See Also
• DATEDIFF function

• DATENAME function

• DATEPART function

• TIMESTAMPADD function

• TIMESTAMPDIFF function

638 InterSystems SQL Reference

SQL Functions

DATEDIFF (SQL)
A date/time function that returns an integer difference for a specified datepart between two dates.

Synopsis

DATEDIFF(datePart,startDate,endDate)

Description
• DATEDIFF(datePart,startDate,endDate) returns an INTEGER value that is the difference between the starting and

ending date (startDate minus endDate) for the specified date part (seconds, days, weeks, and so on). If endDate is
earlier than startDate, DATEDIFF returns a negative INTEGER value.

This statement returns 353 because there are 353 days (D) between the two timestamps:

SQL

SELECT DATEDIFF(D,'2022-01-01 00:00:00','2022-12-20 12:00:00')

Example: Calculate Differences Between Dates

DATEDIFF is compatible with Sybase and Microsoft SQL Server. You can perform similar time and date comparisons
using the TIMESTAMPDIFF ODBC scalar function.

Arguments

datePart

The name or abbreviated name of a date or time part. You can specify datePart in uppercase or lowercase. In embedded
SQL, you specify datePart as a literal value or host variable. This table shows the valid date and time parts:

AbbreviationsName

yyyy, yyyear

qq, qquarter

mm, mmonth

wk, wwweek

dw, wweekday

dd, dday

dy, ydayofyear

hh, hhour

mi, nminute

ss, ssecond

msmillisecond

mcsmicrosecond

nsnanosecond

The weekday and dayofyear date part values are functionally identical to the day date part value.

InterSystems SQL Reference 639

DATEDIFF (SQL)

DATEDIFF does not handle quarters (3-month intervals).

If you specify start and end dates that include fractional seconds, DATEDIFF returns the difference as an integer number
of fractional seconds. For example:

SQL

SELECT DATEDIFF('ms','64701,56670.10','64701,56670.27'), /* returns 170 */
 DATEDIFF('ms','64701,56670.1111','64701,56670.27222') /* returns 161 */

DATEDIFF returns fractional seconds as milliseconds (a three-digit integer), microseconds (6-digit integer), or nanoseconds
(9-digit integer) regardless of the number of fractional digits precision in startDate and endDate. For example:

DATEDIFF performs slightly different operations depending on whether you specify datePart with or without quotes:

• Quotes: DATEDIFF('month','2018-02-25',$HOROLOG): datePart is treated as a literal. When processing the
query, InterSystems SQL performs literal substitution, replacing the 'month' string with an input parameter, which
produces a more generally reusable cached query.

• No quotes: DATEDIFF(month,'2018-02-25',$HOROLOG): datePart is treated as a keyword. When processing
the query, InterSystems SQL does not perform literal substitution, which produces a more specific cached query.

In Embedded SQL, specifying an invalid datePart as an input variable returns an SQLCODE -8 error. Specifying an invalid
datePart as a literal value returns a <SYNTAX> error.

In Dynamic SQL, if you supply an invalid datepart, DATEDIFF returns NULL. No SQLCODE error is issued.

startDate,endDate

The starting and ending dates over which DATEDIFF calculates the difference, specified as one of these InterSystems
IRIS® data types:

• %Date logical value (+$H), also known as $HOROLOG format.

• %PosixTime (%Library.PosixTime) logical value (an encoded 64-bit signed integer).

• %TimeStamp (%Library.TimeStamp) logical value (YYYY-MM-DD HH:MM:SS.FFF), also known as ODBC format.

• %String or string-compatible value, which can be in one of these formats:

Table G–4: $HOROLOG Date and Time Format

ExampleFormat

SELECT DATEDIFF('yy','65726','66716')ddddd

SELECT

DATEDIFF('mi','65726,143','66716,256')

ddddd,sssss

SELECT

DATEDIFF('ns','65726,143.345','66716,256.467')

ddddd,sssss.fff

where:

– ddddd is the integer number of days since December 31, 1840.

– sssss is the integer number of seconds since the start of that day.

– fff is the integer number of fractional seconds.

640 InterSystems SQL Reference

SQL Functions

Table G–5: Date Format

ExampleFormat

SELECT

DATEDIFF('yy','11/25/80','12/31/99')

MM/DD/YY

SELECT

DATEDIFF('dd','3/15/2017','8/24/2022')

MM/DD/YYYY

SELECT

DATEDIFF('yy','11-25-80','12-31-99')

MM-DD-YY

SELECT

DATEDIFF('dd','3-15-2017','8-24-2022')

MM-DD-YYYY

SELECT

DATEDIFF('yy','11.25.80','12.31.99')

MM.DD.YY

SELECT

DATEDIFF('dd','3.15.2017','8.24.2022')

MM.DD.YYYY

SELECT DATEDIFF('ss','Sep 9 91','Dec 30

92')

Mmm DD YY

SELECT DATEDIFF('ss','October 10

2019','January 23 2021')

Mmm DD YYYY

SELECT DATEDIFF('ss','Sep 9, 91','Dec

30, 92')

Mmm DD, YY

SELECT DATEDIFF('ss','October 10,

2019','January 23, 2021')

Mmm DD, YYYY

where:

– MM is the two-digit month.

– DD is the two-digit number of days in the month.

– Mmm is the spelled-out month. You can specify a minimum of three letters (for example, Mar) up to the full
month name (for example, March).

– YY and YYYY are the two-digit and four-digit forms of the year, respectively.

You can specify startDate and endDate as combined date and time strings. For example:

SQL

SELECT DATEDIFF('hh','12/22/2021 8:15:23','12/31/2021 10:30:23')

If you specify a time without a date, DATEDIFF defaults to date 01/01/1900.

InterSystems SQL Reference 641

DATEDIFF (SQL)

Table G–6:Time Format

ExampleFormat

SELECT DATEDIFF('hh','2:','10:')HH:

SELECT DATEDIFF('mi','2:15','10:30')HH:MM

SELECT

DATEDIFF('ss','2:15:23','10:30:59')

HH:MM:SS

SELECT

DATEDIFF('ms','2:15:23:335','10:30:59:245')

HH...SS:FFF

SELECT

DATEDIFF('ms','2:15:23.335','10:30:59.245')

HH...SS.FFF

SELECT DATEDIFF('mi','2:15AM','10:30PM')HH...[AM|PM]

where:

– HH is the two-digit number of hours into the day.

– MM is the two-digit number of minutes into the hour.

– SS is the two-digit number of seconds into the minute.

– FFF is the number of fractional seconds.

You can specify startDate and endDate as combined date and time strings. For example:

SQL

SELECT DATEDIFF('hh','12/22/2021 8:15:23','12/31/2021 10:30:23')

If you specify a date without a time, DATEDIFF defaults to time 00:00:00.

You can specify startDate and endDate arguments in different data types.

startDate and endDate arguments have these restrictions and behaviors:

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element and the appropriate separator character. Years must be specified as four digits. If you omit the date portion of
an input value, DATEDIFF defaults to '1900-01-01'.

• Date and time values must be within the valid range:

– Years — 0001 through 9999

– Months — 1 through 12

– Days — 1 through 31

– Hours — 00 through 23

– Minutes — 0 through 59

– Seconds — 0 through 59

The number of days in a month must match the month and year. For example, the date '02-29' is valid only if the
specified year is a leap year. An invalid date value results in an SQLCODE -8 error.

• In date values less than 10 (month and day) a leading zero in optional. Other non-canonical integer values are not
permitted. For example, a Day value of '07' or '7' is valid, but '007', '7.0', or '7a' are not valid.

642 InterSystems SQL Reference

SQL Functions

• Time values are optional. If startDate or endDate specifies an incomplete time, zeros are supplied for the unspecified
parts.

• An hour value less than 10 must include a leading zero. Omitting this leading zero results in an SQLCODE -8 error.

• In Embedded SQL, specifying an invalid startDate or endDate as either an input variable or literal returns an SQLCODE
-8 error.

• In Dynamic SQL, if you supply an invalid startDate or endDate, DATEDIFF returns NULL. No SQLCODE error is
issued.

• Two-digit years from 01 to 99 are assumed to be from 1901 to 1999. For example, in this statement, the startDate year
is 1914:

SQL

SELECT DATEDIFF('year','10/11/14','04/22/2022'),
 DATEDIFF('year','12:00:00','2022-04-22 12:00:00')

Specifying 00 is treated as year 0000, which is invalid and returns an error.

To change the default sliding window that controls this date system-wide, use the ^%DATE legacy utility. For infor-
mation on establishing a sliding window for interpreting a specified date with a two-digit year, see the $ZDATE,
$ZDATEH, $ZDATETIME and $ZDATETIMEH functions.

Examples

Calculate Differences Between Dates

DATEDIFF returns the total number of the specified unit between startDate and endDate. For example, this statement
calculates the number of minutes between dates. It evaluates both the date and time components. For each day difference,
it adds 1440 minutes, which is the number of minutes in a day.

SQL

SELECT DATEDIFF('mi','1910-08-21 08:32:04','1910-08-28 01:45:00')

DATEDIFF does not account for the actual duration between dates. In this way, it can be considered as a count of the
specified date part boundaries crossed between startDate and endDate. For example, these differences between consecutive
years all return a DATEDIFF of 1, even though their durations are greater than or less than 365 days.

SQL

SELECT DATEDIFF('yyyy','1910-08-21','1911-08-21') AS ExactYear,
 DATEDIFF('yyyy','1910-06-30','1911-01-01') AS HalfYear,
 DATEDIFF('yyyy','1910-01-01','1911-12-31') AS Nearly2Years,
 DATEDIFF('yyyy','1910-12-31 11:59:59','1911-01-01 00:00:00') AS NewYearSecond

Similarly, in this statement, the difference these consecutive minutes is 1, even though only 6 seconds actually separate the
two values.

SQL

SELECT DATEDIFF('mi','12:23:59','12:24:05') AS MinuteDiff

The previous statements used abbreviations for the date part. Alternatively, you can specify the full name of the date part.
For example:

SQL

SELECT DATEDIFF('minute','12:23:59','12:24:05') AS MinuteDiff

InterSystems SQL Reference 643

DATEDIFF (SQL)

This Embedded SQL example uses host variables to perform the same DATEDIFF operation as the previous statement:

ObjectScript

 set datePart="minute"
 set startDate="12:23:59"
 set endDate="12:24:05"

 &sql(SELECT DATEDIFF(:datePart,:startDate,:endDate) INTO :diff)
 WRITE diff, !

This statement uses DATEDIFF in the WHERE clause to select patients admitted in the last week:

SQL

SELECT Name,DateOfAdmission FROM Sample.Patients WHERE DATEDIFF(D,DateOfAdmission,$HOROLOG) <= 7

This statement uses a subquery to return those records where the person’s date of birth is 1500 days or fewer from the
current date:

SQL

SELECT Name,Age,DOB
FROM (SELECT Name,Age,DOB, DATEDIFF('dy',DOB,$HOROLOG) AS DaysTo FROM Sample.Person)
WHERE DaysTo <= 1500
ORDER BY Age

Time Differences Independent of Time Format
DATEDIFF returns a time difference in seconds and milliseconds, even when the time format for the current process is
set to not return seconds. For example:

ObjectScript

 // Get current time format and set start and end times
 set originalTimeFormat = ##class(%SYS.NLS.Format).GetFormatItem("TimeFormat")
 set startDate = "66211,34717.10"
 set endDate = "66211,34720.27"

 // Set time format that includes seconds (TimeFormat = 1)
 do ##class(%SYS.NLS.Format).SetFormatItem("TimeFormat",1)
 write "DATETIME (with seconds): ",!, $ZDATETIME(startDate,1,-1)," ",$ZDATETIME(endDate,1,-1),!
 &sql(SELECT DATEDIFF('ss',:startDate,:endDate) INTO :diff)
 write "DATEDIFF number of seconds: ",diff,!!

 // Set time format that omits seconds (TimeFormat = 2)
 do ##class(%SYS.NLS.Format).SetFormatItem("TimeFormat",2)
 write "DATETIME (without seconds): ",!, $ZDATETIME(startDate,1,-1)," ",$ZDATETIME(endDate,1,-1),!
 &sql(SELECT DATEDIFF('ss',:startDate,:endDate) INTO :diff)
 write "DATEDIFF number of seconds: ",diff,!

 // Revert to original time format
 do ##class(%SYS.NLS.Format).SetFormatItem("TimeFormat",originalTimeFormat)

Alternatives
To call this function in ObjectScript code, use the DATEDIFF() method:

$SYSTEM.SQL.Functions.DATEDIFF(datePart,startDate,endDate)

Specifying an invalid datepart to the DATEDIFF() method generates a <ZDDIF> error.

See Also
• DATEADD

• DATENAME

• DATEPART

644 InterSystems SQL Reference

SQL Functions

• TIMESTAMPADD

• TIMESTAMPDIFF

• ^%DATE legacy documentation at https://docs.intersystems.com/priordocexcerpts

InterSystems SQL Reference 645

DATEDIFF (SQL)

https://docs.intersystems.com/priordocexcerpts/

DATENAME (SQL)
A date/time function that returns a string representing the value of the specified part of a date/time expression.

Synopsis

DATENAME(datepart,date-expression)

Description
The DATENAME function returns the name of the specified part (such as the month "June") of a date/time value. The
result is returned as data type VARCHAR(20). If the result is numeric (such as "23" for the day), it is still returned as a
VARCHAR(20) string. To return this information as an integer, use DATEPART. To return a string containing multiple
date parts, use TO_DATE.

Note that DATENAME is provided for Sybase and Microsoft SQL Server compatibility.

This function can also be invoked from ObjectScript using the DATENAME() method call:

$SYSTEM.SQL.Functions.DATENAME(datepart,date-expression)

Datepart Argument

The datepart argument can be a string containing one (and only one) of the following date/time components, either the full
name (the Date Part column) or its abbreviation (the Abbreviation column). These datepart component names and abbrevi-
ations are not case-sensitive.

Return ValuesAbbreviationsDate Part

0001-9999yyyy, yyyear

1-4qq, qquarter

January,...Decembermm, mmonth

1-53wk, wwweek

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday

dw, wweekday

1-366dy, ydayofyear

1-31dd, dday

0-23hh, hhour

0-59mi, nminute

0-59ss, ssecond

0-999 (with precision of 3)msmillisecond

0–999999 (with precision of 6)mcsmicrosecond

0–999999999 (with precision of 9)nsnanosecond

If you specify an invalid datepart value as a literal, an SQLCODE -8 error code is issued. However, if you supply an invalid
datepart value as a host variable, no SQLCODE error is issued and the DATENAME function returns a value of NULL.

The preceding table shows the default return values for the various date parts. You can modify the returned values for
several of these date parts by using the SET OPTION command with various time and date options.

646 InterSystems SQL Reference

SQL Functions

week: InterSystems IRIS can be configured to determine the week of the year for a given date using either the InterSystems
IRIS default algorithm or the ISO 8601 standard algorithm. For further details, refer to the WEEK function.

weekday: The InterSystems IRIS default for weekday is to designate Sunday as first day of the week (weekday=1).
However, you can configure the first day of the week to another value, or you can apply the ISO 8601 standard which
designates Monday as first day of the week. For further details, refer to the DAYOFWEEK function.

millisecond: InterSystems IRIS returns a string containing the number of milliseconds (thousandths of a second). If the
date-expression has more than three fractional digits of precision, InterSystems IRIS truncates it to three digits and returns
this number as a string. If the date-expression has a specified precision, but less than three fractional digits of precision,
InterSystems IRIS zero pads it to three digits and returns this number as a string.microsecond and nanosecond perform
similar truncation and zero padding.

A datepart can be specified as a quoted string or without quotes. These syntax variants perform slightly different operations:

• Quotes: DATENAME('month','2018-02-25'): the datepart is treated as a literal when creating cached queries.
InterSystems SQL performs literal substitution. This produces a more generally reusable cached query.

• No quotes: DATENAME(month,'2018-02-25'): the datepart is treated as a keyword when creating cached queries.
No literal substitution. This produces a more specific cached query.

Date Expression Formats

The date-expression argument can be in any of the following formats:

• An InterSystems IRIS %Date logical value (+$H)

• An InterSystems IRIS %PosixTime (%Library.PosixTime) logical value (an encoded 64-bit signed integer)

• An InterSystems IRIS %TimeStamp (%Library.TimeStamp) logical value (YYYY-MM-DD HH:MM:SS.FFF), also
known as ODBC format.

• An InterSystems IRIS %String (or compatible) value

The InterSystems IRIS %String (or compatible) value can be in any of the following formats:

• 99999,99999 ($H format)

• Sybase/SQL-Server-date Sybase/SQL-Server-time

• Sybase/SQL-Server-time Sybase/SQL-Server-date

• Sybase/SQL-Server-date (default time is 00:00:00)

• Sybase/SQL-Server-time (default date is 01/01/1900)

Sybase/SQL-Server-date is one of these five formats:

mmdelimiterdddelimiter[yy]yy dd Mmm[mm][,][yy]yy dd [yy]yy Mmm[mm] yyyy Mmm[mm] dd yyyy [dd] Mmm[mm]

where delimiter is a slash (/), hyphen (-), or period (.).

If the year is given as two digits, InterSystems IRIS checks the sliding window to interpret the date. The system default for
the sliding window can be set via the legacy ^%DATE legacy utility. For information on setting the sliding window for
the current process, see the ObjectScript $ZDATE, $ZDATEH, $ZDATETIME and $ZDATETIMEH functions.

Sybase/SQL-Server-time represents one of these three formats:

HH:MM[:SS:SSS][{AM|PM}] HH:MM[:SS.S] HH['']{AM|PM}

If the date-expression specifies a time format but does not specify a date format, DATENAME defaults to the date
1900–01–01, which has a weekday value of Monday.

InterSystems SQL Reference 647

DATENAME (SQL)

Range and Value Checking

DATENAME performs the following checks on input values. If a value fails a check, the null string is returned.

• A valid date-expression may consist of a date string (yyyy-mm-dd), a time string (hh:mm:ss), or a date and time string
(yyyy-mm-dd hh:mm:ss). If both date and time are specified, both must be valid. For example, you can return a Year
value if no time string is specified, but you cannot return a Year value if an invalid time string is specified.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. For example, you cannot return a Year value if the Day value is
omitted. Years must be specified as four digits.

• A time string must be properly formatted with the appropriate separator character. Because a time value can be zero,
you can omit one or more time elements (either retaining or omitting the separator characters) and these elements will
be returned with a value of zero. Thus, 'hh:mm:ss', 'hh:mm:', 'hh:mm', 'hh::ss', 'hh::', 'hh', and ':::' are all valid. To omit
the Hour element, date-expression must not have a date portion of the string, and you must retain at least one separator
character (:).

• Date and time values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through
31. Hours: 0 through 23. Minutes: 0 through 59. Seconds: 0 through 59.

• The number of days in a month must match the month and year. For example, the date '02–29' is only valid if the
specified year is a leap year.

• Most date and time values less than 10 may include or omit a leading zero. However, an Hour value of less than 10
must include the leading zero if it is part of a datetime string. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

• If date-expression specifies a time format but does not specify a date format, DATENAME does not perform range
validation for the time component values.

Arguments

datepart

The type of date/time information to return. The name (or abbreviation) of a date or time part. This name can be specified
in uppercase or lowercase, with or without enclosing quotes. The datepart can be specified as a literal or a host variable.

date-expression

A date, time, or timestamp expression from which thedatepart value is to be returned. date-expression must contain a value
of type datepart.

Examples
In the following example, each DATENAME returns 'Wednesday' because that is the day of week ('dw') of the specified
date:

SQL

SELECT DATENAME('dw','2018-02-21') AS DayName,
 DATENAME(dw,'02/21/2018') AS DayName,
 DATENAME('DW',64700) AS DayName

The following example returns 'December' because that is the month name ('mm') of the specified date:

SQL

SELECT DATENAME('mm','2018-12-20 12:00:00') AS MonthName

648 InterSystems SQL Reference

SQL Functions

The following example returns '2018' (as a string) because that is the year ('yy') of the specified date:

SQL

SELECT DATENAME('yy','2018-12-20 12:00:00') AS Year

Note that the above examples use the abbreviations of the date parts. However, you can specify the full name, as in this
example:

SQL

SELECT DATENAME('year','2018-12-20 12:00:00') AS Year

The following example returns the current quarter, week-of-year, and day-of-year. Each value is returned as a string:

SQL

SELECT DATENAME('Q',$HOROLOG) AS Q,
 DATENAME('WK',$HOROLOG) AS WkCnt,
 DATENAME('DY',$HOROLOG) AS DayCnt

The following example passes in the datepart and date-expression as a host variables:

SQL

SELECT DATENAME("year",$HOROLOG)

The following example uses a subquery to returns records from Sample.Person whose day of birth was a Wednesday:

SQL

SELECT Name AS WednesdaysChild,DOB
FROM (SELECT Name,DOB,DATENAME('dw',DOB) AS Wkday FROM Sample.Person)
WHERE Wkday='Wednesday'
ORDER BY DOB

See Also
• SQL functions: DATEADD, DATEDIFF, DATEPART, TO_DATE, TIMESTAMPADD, TIMESTAMPDIFF

• ObjectScript function: $ZDATETIME

• ^%DATE legacy documentation at https://docs.intersystems.com/priordocexcerpts

InterSystems SQL Reference 649

DATENAME (SQL)

https://docs.intersystems.com/priordocexcerpts/

DATEPART (SQL)
A date/time function that returns an integer representing the value of the specified part of a date/time expression.

Synopsis

DATEPART(datepart,date-expression)

Arguments

DescriptionArgument

The type of date/time information to return. The name (or abbreviation) of a
date or time part. This name can be specified in uppercase or lowercase,
with or without enclosing quotes. The datepart can be specified as a literal
or a host variable.

datepart

A date, time, or timestamp expression from which the datepart value is to
be returned. date-expression must contain a value of type datepart.

date-expression

Description
The DATEPART function returns the datepart information about a specified date/time expression as data type Integer.
The one exception is sqltimestamp (sts), whichreturns as data type %Library.Timestamp. To return datepart information
as a character string, use DATENAME.

DATEPART returns the value of only one element of date-expression; to return a string containing multiple date parts,
use TO_DATE.

This function can also be invoked from ObjectScript using the DATEPART() method call:

$SYSTEM.SQL.Functions.DATEPART(datepart,date-expression)

DATEPART is provided for Sybase and Microsoft SQL Server compatibility.

Datepart Argument

The datepart argument can be one of the following date/time components, either the full name (the Date Part column) or
its abbreviation (the Abbreviation column). These datepart component names and abbreviations are not case-sensitive.

Return ValuesAbbreviationsDate Part

0001-9999yyyy, yyyear

1-4qq, qquarter

1-12mm, mmonth

1-53wk, wwweek

1-7 (Sunday,...,Saturday)dw, wweekday

1-366dy, ydayofyear

1-31dd, dday

0-23hh, hhour

0-59mi, nminute

650 InterSystems SQL Reference

SQL Functions

Return ValuesAbbreviationsDate Part

0-59ss, ssecond

0-999 (with precision of 3)msmillisecond

0–999999 (with precision of 6)mcsmicrosecond

0–999999999 (with precision of 9)nsnanosecond

SQL_TIMESTAMP: yyyy-mm-dd hh:mm:ssstssqltimestamp

The preceding table shows the default return values for the various date parts. You can modify the returned values for
several of these date parts by using the SET OPTION command with various time and date options.

week: InterSystems IRIS can be configured to determine the week of the year for a given date using either the InterSystems
IRIS default algorithm or the ISO 8601 standard algorithm. For further details, refer to the WEEK function.

weekday: The InterSystems IRIS default for weekday is to designate Sunday as first day of the week (weekday=1).
However, you can configure the first day of the week to another value, or you can apply the ISO 8601 standard which
designates Monday as first day of the week. For further details, refer to the DAYOFWEEK function. Note that the
ObjectScript $ZDATE and $ZDATETIME functions count week days from 0 through 6 (not 1 through 7).

second: If the date-expression contains fractional seconds, InterSystems IRIS returns second as a decimal number with
whole seconds as the integer component, and fractional seconds as the decimal component. Precision is not truncated.

millisecond: InterSystems IRIS returns three fractional digits of precision, with trailing zeroes removed. If the
date-expression has more than three fractional digits of precision, InterSystems IRIS truncates it to three digits.

sqltimestamp: InterSystems IRIS converts the input data to timestamp format and supplies zero values for the time
elements, if necessary. The sqltimestamp (abbreviated sts) datepart value is for use only with DATEPART. Do not
attempt to use this value in other contexts.

A datepart can be specified as a quoted string, without quotes, or with parentheses around a quoted string. No literal sub-
stitution is performed on datepart, regardless of how specified; literal substitution is performed on date-expression. All
datepart values return a data type INTEGER value, except sqltimestamp (or sts), which returns its value as a character
string of data type TIMESTAMP.

Date Input Formats

The date-expression argument can be in any of the following formats:

• An InterSystems IRIS %Date logical value (+$H)

• An InterSystems IRIS %PosixTime (%Library.PosixTime) logical value (an encoded 64-bit signed integer)

• An InterSystems IRIS %TimeStamp (%Library.TimeStamp) logical value (YYYY-MM-DD HH:MM:SS.FFF), also
known as ODBC format.

• An InterSystems IRIS %String (or compatible) value

The InterSystems IRIS %String (or compatible) value can be in any of the following formats:

• 99999,99999 ($H format)

• Sybase/SQL-Server-date Sybase/SQL-Server-time

• Sybase/SQL-Server-time Sybase/SQL-Server-date

• Sybase/SQL-Server-date (default time is 00:00:00)

• Sybase/SQL-Server-time (default date is 01/01/1900)

InterSystems SQL Reference 651

DATEPART (SQL)

Sybase/SQL-Server-date is one of these five formats:

mmdelimiterdddelimiter[yy]yy dd Mmm[mm][,][yy]yy dd [yy]yy Mmm[mm] yyyy Mmm[mm] dd yyyy [dd] Mmm[mm]

where delimiter is a slash (/), hyphen (-), or period (.).

If the year is given as two digits, InterSystems IRIS checks the sliding window to interpret the date. The system default for
the sliding window can be set via the ̂ %DATE legacy utility. For information on setting the sliding window for the current
process, see the documentation for the ObjectScript $ZDATE, $ZDATEH, $ZDATETIME and $ZDATETIMEH functions.

Sybase/SQL-Server-time represents one of these three formats:

HH:MM[:SS:SSS][{AM|PM}] HH:MM[:SS.S] HH['']{AM|PM}

If the date-expression specifies a time format but does not specify a date format, DATENAME defaults to the date
1900–01–01, which has a weekday value of 2 (Monday).

For sqltimestamp, time is returned as a 24-hour clock. Fractional seconds are truncated.

Invalid Argument Error Codes

If you specify an invalid datepart option, DATEPART generates an SQLCODE -8 error code, and the following %msg:
'badopt' is not a recognized DATEPART option.

If you specify an invalid date-expression value (for example, an alphabetic text string), DATEPART generates an SQLCODE
-400 error code, and the following %msg: Invalid input to DATEPART() function:
DATEPART('year','badval'). If you specify a date-expression that fails validation (as described below), DATEPART
generates an SQLCODE -400 error code, and the following %msg: Unexpected error occurred: <ILLEGAL
VALUE>datepart.

Range and Value Checking

DATEPART performs the following checks on date-expression values. If a value fails a check, the null string is returned.

• A valid date-expression may consist of a date string (yyyy-mm-dd), a time string (hh:mm:ss), or a date and time string
(yyyy-mm-dd hh:mm:ss). If both date and time are specified, both must be valid. For example, you can return a Year
value if no time string is specified, but you cannot return a Year value if an invalid time string is specified.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. For example, you cannot return a Year value if the Day value is
omitted. Years must be specified as four digits.

• A time string must be properly formatted with the appropriate separator character. Because a time value can be zero,
you can omit one or more time elements (either retaining or omitting the separator characters) and these elements will
be returned with a value of zero. Thus, 'hh:mm:ss', 'hh:mm:', 'hh:mm', 'hh::ss', 'hh::', 'hh', and ':::' are all valid. To omit
the Hour element, date-expression must not have a date portion of the string, and you must retain at least one separator
character (:).

• Date and time values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through
31. Hours: 0 through 23. Minutes: 0 through 59. Seconds: 0 through 59.

• The number of days in a month must match the month and year. For example, the date '02–29' is only valid if the
specified year is a leap year.

• Most date and time values less than 10 may include or omit a leading zero. However, an Hour value of less than 10
must include the leading zero if it is part of a datetime string. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

• If date-expression specifies a time format but does not specify a date format, DATEPART does not perform range
validation for the time component values.

652 InterSystems SQL Reference

SQL Functions

Examples
In the following example, each DATEPART returns the year portion of the datetime string (in this case, 2018) as an integer.
Note that date-expression can be in various formats, and datepart can be specified as either the datepart name or datepart
abbreviation, quoted or unquoted:

SQL

SELECT DATEPART('yy','2018-02-22 12:00:00') AS YearDTS,
 DATEPART('year','2018-02-22') AS YearDS,
 DATEPART(YYYY,'02/22/2018') AS YearD,
 DATEPART(YEAR,64701) AS YearHD,
 DATEPART('Year','64701,23456') AS YearHDT

The following example returns the current year and quarter, based on the $HOROLOG value:

SQL

SELECT DATEPART('yyyy',$HOROLOG) AS Year,DATEPART('q',$HOROLOG) AS Quarter

The following example returns the birth day-of-week for the Sample.Person table, ordered by day of week:

SQL

SELECT Name,DOB,DATEPART('weekday',DOB) AS bday
FROM Sample.Person
ORDER BY bday,DOB

In the following example, each DATEPART returns 20 as the minutes portion of the date-expression string:

SQL

SELECT DATEPART('mi','2018-2-20 12:20:07') AS Minutes,
 DATEPART('n','2018-02-20 10:20:') AS Minutes,
 DATEPART(MINUTE,'2018-02-20 10:20') AS Minutes

In the following example, each DATEPART returns 0 as the seconds portion of the date-expression string:

SQL

SELECT DATEPART('ss','2018-02-20 03:20:') AS Seconds,
 DATEPART('S','2018-02-20 03:20') AS Seconds,
 DATEPART('Second','2018-02-20') AS Seconds

The following example returns the full SQL timestamp as a TIMESTAMP data type. DATEPART fills in the missing time
information to return a timestamp of '2018-02-25 00:00:00':

SQL

SELECT DATEPART(sqltimestamp,'2/25/2018') AS DTStamp

The following example supplies a date and time in $HOROLOG format, and returns a timestamp of '2018-02-22 06:30:56':

SQL

SELECT DATEPART(sqltimestamp,'64701,23456') AS DTStamp

The following example uses a subquery with DATEPART to return those people whose birthday is leap year day (February
29th):

InterSystems SQL Reference 653

DATEPART (SQL)

SQL

SELECT Name,DOB
FROM (SELECT Name,DOB,DATEPART('dd',DOB) AS DayNum,DATEPART('mm',DOB) AS Month FROM Sample.Person)
WHERE Month=2 AND DayNum=29

See Also
• DATEDIFF function

• DATENAME function

• TIMESTAMPADD function

• TIMESTAMPDIFF function

• TO_DATE function

• ^%DATE legacy documentation at https://docs.intersystems.com/priordocexcerpts

654 InterSystems SQL Reference

SQL Functions

https://docs.intersystems.com/priordocexcerpts/

DATE_TRUNC (SQL)
A date/time function that returns a timestamp that is truncated to a specified granularity.

Synopsis

DATE_TRUNC(datePart, dateExpression)

Description
• DATE_TRUNC(datePart, date) returns a date expression that truncates the input date down to the specified datePart.

– If date is of type %Library.PosixTime (an encoded 64–bit signed integer), then DATE_TRUNC returns a timestamp
of type %Library.PosixTime.

– If date is of any other type, then DATE_TRUNC returns a timestamp of type %Library.TimeStamp in the format
yyyy-mm-dd hh:mm:ss.fff.

The following statement truncates the date to the day.

SQL

SELECT DATE_TRUNC('month', CURRENT_DATE)

DATE_TRUNC is compatible with Sysbase and Microsoft SQL Server.

Arguments

datePart

The full or abbreviated name of a date or time part that the date is truncated down to. You can specify datePart in uppercase
or lowercase. The supported date and time formats are enumerated in the following table:

Table G–7:

AbbreviationsDate Part

yyyy, yyyear

mm, mmonth

qq, qquarter

wk, wwweek

dw, wweekday

dd, dday

dy, ydayofyear

hh, hhour

mi, nminute

ss, ssecond

msmillisecond

mcsmicrosecond

InterSystems SQL Reference 655

DATE_TRUNC (SQL)

AbbreviationsDate Part

nsnanosecond

date

A date, time, or timestamp expression to be truncated. This expression may be one of the following types:

• %Date logical value (+$H), also known as $HOROLOG format.

• %PosixTime (%Library.PosixTime) logical value (an encoded 64-bit signed integer).

• %TimeStamp (%Library.TimeStamp) logical value (YYYY-MM-DD HH:MM:SS.FFF), also known as ODBC format.

• %String or string-compatible value, which can be in one of these formats:

Table G–8: $HOROLOG Date and Time Format

ExampleFormat

SELECT DATE_TRUNC('yy','66716')ddddd

SELECT DATE_TRUNC('yy','66716,256')ddddd,sssss

SELECT DATE_TRUNC('yy','66716,256.467')ddddd,sssss.fff

where:

– ddddd is the integer number of days since December 31, 1840.

– sssss is the number of seconds since the start of that day.

– fff is the integer number of fractional seconds. If you specify fractional seconds, the returned DATE_TRUNC
value also includes fractional seconds.

Table G–9: Date Format

ExampleFormat

SELECT DATE_TRUNC('year','8/24/2022')MM/DD/YYYY

SELECT DATE_TRUNC('year','12-31-99')MM-DD-YY

SELECT DATE_TRUNC('year','8-24-2022')MM-DD-YYYY

SELECT DATE_TRUNC('year','12.31.99')MM.DD.YY

SELECT DATE_TRUNC('year','8.24.2022')MM.DD.YYYY

SELECT DATE_TRUNC('year','Dec 30 92')Mmm DD YY

SELECT DATE_TRUNC('year','January 23 2021')Mmm DD YYYY

SELECT DATE_TRUNC('year','Dec 30, 92')Mmm DD, YY

SELECT DATE_TRUNC('year','January 23, 2021')Mmm DD, YYYY

SELECT DATE_TRUNC('year','12/31/99')MM/DD/YY

where:

– MM is the two-digit month.

– DD is the two-digit number of days in the month.

656 InterSystems SQL Reference

SQL Functions

– Mmm is the spelled-out month. You can specify a minimum of three letters (for example, Mar) up to the full
month name (for example, March).

– YY and YYYY are the two-digit and four-digit forms of the year, respectively.

You can specify date as a combined date and time string. For example:

SQL

SELECT DATE_TRUNC('hh','12/22/2021 8:15:23')

If you specify a time without a date, DATE_TRUNC defaults to date 01/01/1900.

Table G–10:Time Format

ExampleFormat

SELECT DATE_TRUNC('hour','10:')HH:

SELECT DATE_TRUNC('mi','10:30')HH:MM

SELECT DATE_TRUNC('ss','10:30:59')HH:MM:SS

SELECT DATE_TRUNC('ms','10:30:59.245')HH...SS.FFF

SELECT DATE_TRUNC('mi','10:30PM')HH...[AM|PM]

where:

– HH is the two-digit number of hours into the day.

– MM is the two-digit number of minutes into the hour.

– SS is the two-digit number of seconds into the minute.

– FFF is the number of fractional seconds.

You can specify date as a combined date and time string. For example:

SQL

SELECT DATEADD('hh',1,'12/22/2021 8:15:23')

If you specify a date without a time, DATE_TRUNC defaults to time 00:00:00.

The date argument has these restrictions and behaviors:

• The date string must be complete and properly formatted with the appropriate number of elements and digits for each
element and the appropriate separator character. Years must be specified as four digits. If you omit the date portion of
an input value, DATE_TRUNC defaults to '1900-01-01'.

• Date and time values must be within the valid range:

– Years — 0001 through 9999

– Months — 1 through 12

– Days — 1 through 31

– Hours — 00 through 23

– Minutes — 0 through 59

– Seconds — 0 through 59

InterSystems SQL Reference 657

DATE_TRUNC (SQL)

The number of days in a month must match the month and year. For example, the date '02-29' is valid only if the
specified year is a leap year.

• In date values less than 10 (month and day), a leading zero in optional. Other non-canonical integer values are not
permitted. For example, a Day value of '07' or '7' is valid, but '007', '7.0', or '7a' are not valid.

• Time values are optional. If date specifies an incomplete time, zeros are supplied for the unspecified parts.

• An hour value less than 10 must include a leading zero.

Examples
The following example performs the DATE_TRUNC function on a date written in $HOROLOG format. The result of this
example is 2023–08–30 00:04:16.

SQL

SELECT DATE_TRUNC('ss','66716,256.467')

The following example performs the DATE_TRUNC function on a date written as a string. The result is 1980–01–01

00:00:00.

SQL

SELECT DATE_TRUNC('yy','11.25.80')

The following example performs the DATE_TRUNC function using CURRENT_DATE. The result varies, depending on
the date, but the date is truncated to the day.

SQL

SELECT DATE_TRUNC('dd', CURRENT_DATE)

Alternatives
To call this function in ObjectScript code, use the DATE_TRUNC() method:

$SYSTEM.SQL.Functions.DATE_TRUNC(datePart, dateExpression)

See Also
• DATEADD

• DATEDIFF

• DATENAME

• DATEPART

658 InterSystems SQL Reference

SQL Functions

DAY (SQL)
A date function that returns the day of the month for a date expression.

Synopsis

DAY(date-expression)

{fn DAY(date-expression)}

Description
DAY returns the day of the month for a given date expression.

The DAY function is an alias for the DAYOFMONTH function. DAY is provided for TSQL compatibility. Refer to
DAYOFMONTH for further details.

Arguments

date-expression

An expression that is the name of a column, the result of another scalar function, or a date or timestamp literal.

See Also
• DAYOFMONTH

InterSystems SQL Reference 659

DAY (SQL)

DAYNAME (SQL)
A date function that returns the name of the day of the week for a date expression.

Synopsis

{fn DAYNAME(date-expression)}

Description
DAYNAME returns the name of the day that corresponds to a specified date. The returned value is a character string with
a maximum length of 15. The default day names returned are: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday.

To change these default day name values, use the SET OPTION command with the WEEKDAY_NAME option.

The day name is calculated for an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC
format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

DAYNAME checks that the date supplied is a valid date. The year must be between 0001 and 9999 (inclusive), the month
01 through 12, and the day appropriate for that month (for example, 02/29 is only valid on leap years). If the date is not
valid, DAYNAME issues an SQLCODE -400 error (Fatal error occurred).

The same day of week information can be returned by using the DATENAME function. You can use TO_DATE to retrieve
a day name or day name abbreviation with other date elements. To return an integer corresponding to the day of the week,
use DAYOFWEEK DATEPART or TO_DATE.

This function can also be invoked from ObjectScript using the DAYNAME() method call:

$SYSTEM.SQL.Functions.DAYNAME(date-expression)

Arguments

date-expression

An expression that evaluates to either an InterSystems IRIS date integer, an ODBC date, or a timestamp. This expression
can be the name of a column, the result of another scalar function, or a date or timestamp literal.

Examples
The following examples both return the character string Wednesday because the day of the date (February 21, 2018) is a
Wednesday. The first example takes a timestamp string:

SQL

SELECT {fn DAYNAME('2018-02-21 12:35:46')} AS Weekday

The second example takes an InterSystems IRIS date integer:

SQL

SELECT {fn DAYNAME(64700)} AS Weekday

The following examples all return the name of the current day of the week:

660 InterSystems SQL Reference

SQL Functions

SQL

SELECT {fn DAYNAME({fn NOW()})} AS Wd_Now,
 {fn DAYNAME(CURRENT_DATE)} AS Wd_CurrDate,
 {fn DAYNAME(CURRENT_TIMESTAMP)} AS Wd_CurrTstamp,
 {fn DAYNAME($ZTIMESTAMP)} AS Wd_ZTstamp,
 {fn DAYNAME($HOROLOG)} AS Wd_Horolog

Note that $ZTIMESTAMP returns Coordinated Universal Time (UTC). The other time-expression values return the local
time. This may affect the DAYNAME value.

The following example shows how DAYNAME responds to an invalid date (the year 2017 was not a leap year):

SQL

SELECT {fn DAYNAME("2017-02-29")}

See Also
• SQL functions: DATENAME, DATEPART, DAYOFMONTH, DAYOFWEEK, DAYOFYEAR, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 661

DAYNAME (SQL)

DAYOFMONTH (SQL)
A date function that returns the day of the month for a date expression.

Synopsis

{fn DAYOFMONTH(date-expression)}

Description
DAYOFMONTH returns the day of the month as an integer from 1 to 31. The date-expression can be an InterSystems
IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp or $HOROLOG string is not evaluated and can be omitted.

The DAYOFMONTH and DAY functions are functionally identical.

This function can also be invoked from ObjectScript using the DAYOFMONTH() method call:

ObjectScript

 WRITE $SYSTEM.SQL.Functions.DAYOFMONTH("2018-02-25")

Timestamp date-expression

The day (dd) portion of a timestamp string should be an integer in the range from 1 through 31. There is, however, no range
checking for user-supplied values. Numbers greater than 31 and fractions are returned as specified. Because (–) is used as
a separator character, negative numbers are not supported. Leading zeros are optional on input; leading zeros are suppressed
on output.

DAYOFMONTH returns NULL when the day portion is '0', '00', or a nonnumeric value. NULL is also returned if the day
portion of the date string is omitted entirely ('yyyy–mm hh:mm:ss'), or if no date expression is supplied.

The elements of a datetime string can be returned using the following SQL scalar functions: YEAR, MONTH,
DAYOFMONTH (or DAY), HOUR, MINUTE, SECOND. The same elements can be returned by using the DATEPART
or DATENAME function. DATEPART and DATENAME performs value and range checking on day values.

$HOROLOG date-expression

When calculating day of the month for a $HOROLOG value, DAYOFMONTH calculates leap years differences,
including century day adjustments: 2000 is a leap year, 1900 and 2100 are not leap years.

DAYOFMONTH can process date-expression values prior to December 31, 1840 as negative integers. This is shown in
the following example:

SQL

SELECT {fn DAYOFMONTH(-306)} AS DayOfMonthFeb, /* February 29, 1840 */
 {fn DAYOFMONTH(-305)} AS DayOfMonthMar, /* March 1, 1840 */
 {fn DAYOFMONTH(-127410)} AS DayOfMonthFeb /* February 29, 1492 */

The LAST_DAY function returns the date (in $HOROLOG format) of the last day of the month for a specified date.

662 InterSystems SQL Reference

SQL Functions

Arguments

date-expression

A date or timestamp expression from which the day of the month value is to be returned. An expression that is the name
of a column, the result of another scalar function, or a date or timestamp literal.

Examples
The following examples return the number 25 because the date specified is the twenty-fifth day of the month:

SQL

SELECT {fn DAYOFMONTH('2018-02-25')} AS DayNumTS,
 {fn DAYOFMONTH(64704)} AS DayNumH

The following example also returns the number 25 for the day of the month. The year is omitted, but the separator character
(–) serves as a placeholder:

SQL

SELECT {fn DAYOFMONTH('-02-25 11:45:32')} AS DayNum

The following examples return <null>:

SQL

SELECT{fn DAYOFMONTH('2018-02-00 11:45:32')} AS DayNum

SQL

SELECT {fn DAYOFMONTH('2018-02 11:45:32')} AS DayNum

SQL

SELECT {fn DAYOFMONTH('11:45:32')} AS DayNum

The following DAYOFMONTH examples all returns the current day of the month:

SQL

SELECT {fn DAYOFMONTH({fn NOW()})} AS DoM_Now,
 {fn DAYOFMONTH(CURRENT_DATE)} AS DoM_CurrD,
 {fn DAYOFMONTH(CURRENT_TIMESTAMP)} AS DoM_CurrTS,
 {fn DAYOFMONTH($HOROLOG)} AS DoM_Horolog,
 {fn DAYOFMONTH($ZTIMESTAMP)} AS DoM_ZTS

Note that $ZTIMESTAMP returns Coordinated Universal Time (UTC). The other time-expression values return the local
time. This may affect the DAYOFMONTH value.

The following example shows that leading zeros are suppressed. It returns a length of either 1 or 2, depending on the day
of the month value:

SQL

SELECT LENGTH({fn DAYOFMONTH('2018-02-05')}),
 LENGTH({fn DAYOFMONTH('2018-02-15')})

See Also
• SQL functions: DATENAME, DATEPART, DAY, DAYNAME, DAYOFWEEK, DAYOFYEAR, LAST_DAY,

MONTH, TO_DATE

InterSystems SQL Reference 663

DAYOFMONTH (SQL)

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

664 InterSystems SQL Reference

SQL Functions

DAYOFWEEK (SQL)
A date function that returns the day of the week as an integer for a date expression.

Synopsis

{fn DAYOFWEEK(date-expression)}

Description
DAYOFWEEK takes a date-expression and returns an integer corresponding to the day of the week for that date. Days of
the week are counted from the first day of the week; the InterSystems IRIS default is that Sunday is the first day of the
week. Therefore, by default, the returned values represent these days:

• 1 — Sunday

• 2 — Monday

• 3 — Tuesday

• 4 — Wednesday

• 5 — Thursday

• 6 — Friday

• 7 — Saturday

The first day of the week default can be overridden system-wide or for specific namespaces, as described in “Setting First
Day of Week”.

Note that the ObjectScript $ZDATE and $ZDATETIME functions count days of the week from 0 through 6 (not 1 through
7).

The date-expression can be an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC format
date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

The same day of week information can be returned by using the DATEPART or TO_DATE function. To return the name
of the day of the week, use DAYNAME, DATENAME, or TO_DATE.

This function can also be invoked from ObjectScript using the DAYOFWEEK() method call:

$SYSTEM.SQL.Functions.DAYOFWEEK(date-expression)

Date Validation

DAYOFWEEK performs the following checks on input values. If a value fails a check, the null string is returned.

• A valid date-expression may consist of a date string (yyyy-mm-dd), a date and time string (yyyy-mm-dd hh:mm:ss),
an InterSystems IRIS date integer, or a $HOROLOG value. DAYOFWEEK evaluates only the date portion of the
date-expression.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. Years must be specified as four digits.

• Date values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through 31.

InterSystems SQL Reference 665

DAYOFWEEK (SQL)

• The number of days in a month must match the month and year. For example, the date '02–29' is only valid if the
specified year is a leap year.

• Date values less than 10 may include or omit a leading zero. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

Setting First Day of Week

By default, the first day of the week is Sunday. You can override this default system-wide by specifying SET
^%SYS("sql","sys","day of week")=n, where n values are 1=Monday through 7=Sunday. To set Monday as the
first day of the week specify SET ^%SYS("sql","sys","day of week")=1. If Monday is the first day of the week,
a Wednesday date-expression returns 3, rather than the 4 that would be returned if Sunday was the first day of the week.
To reset the InterSystems IRIS default (Sunday as first day of week), specify SET ^%SYS("sql","sys","day of
week")=7.

You can set the first day of the week for a specific namespace by specifying SET ^%SYS("sql","sys","day of
week",namespace)=n, where n values are 1=Monday through 7=Sunday. To set Monday as the first day of the week
for the USER namespace, specify SET ^%SYS("sql","sys","day of week","USER")=1. Once the first day of
the week is set at the namespace level, changing the system-wide setting by specifying SET ^%SYS("sql","sys","day
of week")=n has no effect on that namespace. To restore the ability to change that namespace’s first day of week default,
you must kill ^%SYS("sql","sys","day of week",namespace). See example below.

InterSystems IRIS also supports the ISO 8601 standard for determining the day of the week, week of the year, and other
date settings. This standard is principally used in European countries. The ISO 8601 standard begins counting the days of
the week with Monday. To activate ISO 8601, SET ^%SYS("sql","sys","week ISO8601")=1; to deactivate, set
it to 0. If week ISO8601 is activated and InterSystems IRIS day of week is undefined or set to the default (7=Sunday),
the ISO 8601 standard overrides the InterSystems IRIS default. If InterSystems IRIS day of week is set to any other
value, it overrides week ISO8601 for DAYOFWEEK. See example below.

Arguments

date-expression

A valid ODBC-format date or $HOROLOG format date, with or without the time component. An expression that is the
name of a column, the result of another scalar function, or a date or timestamp literal.

Examples
In the following example, both select-items return the number 5 (if Sunday is set as the first day of the week) because the
specified date-expression (64701 = February 22, 2018) is a Thursday:

SQL

SELECT {fn DAYOFWEEK('2018-02-22')}||' '||DATENAME('dw','2018-02-22') AS ODBCDoW,
 {fn DAYOFWEEK(64701)}||' '||DATENAME('dw','64701') AS HorologDoW

In the following example, all select-items return the integer corresponding to the current day of the week:

SQL

SELECT {fn DAYOFWEEK({fn NOW()})} AS DoW_Now,
 {fn DAYOFWEEK(CURRENT_DATE)} AS DoW_CurrDate,
 {fn DAYOFWEEK(CURRENT_TIMESTAMP)} AS DoW_CurrTstamp,
 {fn DAYOFWEEK($ZTIMESTAMP)} AS DoW_ZTstamp,
 {fn DAYOFWEEK($HOROLOG)} AS DoW_Horolog

Note that $ZTIMESTAMP returns Coordinated Universal Time (UTC). The other time-expression values return the local
time. This may affect the DAYOFWEEK value.

666 InterSystems SQL Reference

SQL Functions

The following Embedded SQL example demonstrates changing the first day of week for a namespace. It initially sets the
system-wide first day of week (to 7), then sets the first day of week for a namespace (to 3). A subsequent system-wide first
day of week change (to 2) has no effect on namespace first day of week until the program kills the namespace-specific
setting. Killing the namespace-specific setting immediately resets that namespace’s first day of week to the current system-
wide value. Finally, the program restores the initial system-wide setting.

Note: The following program tests if you have namespace-specific first day of week settings for the %SYS or USER
namespaces. If you do, this program aborts to prevent changing these settings.

ObjectScript

SetUp
 SET TestNsp="USER"
 SET ControlNsp="%SYS"
InitialDoWValues
 WRITE "Systemwide default DoW initial values",!
 DO TestDayofWeek()
 IF a=b {WRITE "No namespace-specific DoW defaults",!!}
 ELSE {WRITE "DoW initial settings are namespace-specific",!
 WRITE "Stopping this program"
 QUIT }
 SET initialDoW=^%SYS("sql","sys","day of week")
SetSystemwideDoW
 KILL ^%SYS("sql","sys","day of week",TestNsp)
 KILL ^%SYS("sql","sys","day of week",ControlNsp)
 SET ^%SYS("sql","sys","day of week")=7
 WRITE "Systemwide DoW set",!
 DO TestDayofWeek()
SetNamespaceDoW
 SET ^%SYS("sql","sys","day of week",TestNsp)=3
 WRITE TestNsp," namespace DoW set",!
 &sql(SELECT {fn DAYOFWEEK($HOROLOG)} INTO :a)
 DO TestDayofWeek()
ResetSystemwideDoW
 SET ^%SYS("sql","sys","day of week")=2
 WRITE "Systemwide DoW set with ",TestNsp," DoW set",!
 DO TestDayofWeek
KillNamespaceDoW
 KILL ^%SYS("sql","sys","day of week",TestNsp)
 WRITE "Namespace ",TestNsp," DoW killed",!
 DO TestDayofWeek
ResetSystemwideDoWDefault
 SET ^%SYS("sql","sys","day of week")=initialDoW
 WRITE "Systemwide DoW reset after ",TestNsp," DoW killed",!
 DO TestDayofWeek
TestDayofWeek()
 SET $NAMESPACE=TestNsp
 &sql(SELECT {fn DAYOFWEEK($HOROLOG)} INTO :a)
 WRITE "Today is the ",a," day of week in ",$NAMESPACE,!
 SET $NAMESPACE=ControlNsp
 &sql(SELECT {fn DAYOFWEEK($HOROLOG)} INTO :b)
 WRITE "Today is the ",b," day of week in ",$NAMESPACE,!!
 RETURN

The following Embedded SQL example shows the default day of the week and the day of the week with the ISO 8601
standard applied. It assumes that the InterSystems IRIS day of week is undefined or set to the default:

ObjectScript

TestISO
 SET def=$DATA(^%SYS("sql","sys","week ISO8601"))
 IF def=0 {SET ^%SYS("sql","sys","week ISO8601")=0}
 ELSE {SET isoval=^%SYS("sql","sys","week ISO8601")}
 IF isoval=1 {GOTO UnsetISO }
 ELSE {SET isoval=0 GOTO DayofWeek }
UnsetISO
 SET ^%SYS("sql","sys","week ISO8601")=0
DayofWeek
 &sql(SELECT {fn DAYOFWEEK($HOROLOG)} INTO :a)
 WRITE "Today:",!
 WRITE "default day of week is ",a,!
 SET ^%SYS("sql","sys","week ISO8601")=1
 &sql(SELECT {fn DAYOFWEEK($HOROLOG)} INTO :b)
 WRITE "ISO8601 day of week is ",b,!
ResetISO
 SET ^%SYS("sql","sys","week ISO8601")=isoval

InterSystems SQL Reference 667

DAYOFWEEK (SQL)

See Also
• SQL functions: DATENAME, DATEPART, DAYNAME, DAYOFMONTH, DAYOFYEAR, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

668 InterSystems SQL Reference

SQL Functions

DAYOFYEAR (SQL)
A date function that returns the day of the year as an integer for a date expression.

Synopsis

{fn DAYOFYEAR(date-expression)}

Description
DAYOFYEAR returns an integer from 1 to 366 that corresponds to the day of the year for a given date expression.
DAYOFYEAR calculates leap year dates.

The day of year is calculated for an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC
format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

When calculating day of the month for a $HOROLOG value, DAYOFYEAR calculates leap years differences, including
century day adjustments: 2000 is a leap year, 1900 and 2100 are not leap years.

DAYOFYEAR can process date-expression values prior to December 31, 1840 as negative integers. This is shown in the
following example:

SQL

SELECT {fn DAYOFYEAR(-306)} AS LastDayFeb, /* February 29, 1840 */
 {fn DAYOFYEAR(-305)} AS FirstDayMar /* March 1, 1840 */

The earliest valid date-expression is -672045 (January 1, 0001).

The same day count can be returned by using the DATEPART or DATENAME function. DATEPART and DATENAME
performs value and range checking on date expressions.

This function can also be invoked from ObjectScript using the DAYOFYEAR() method call:

$SYSTEM.SQL.Functions.DAYOFYEAR(date-expression)

Arguments

date-expression

A date expression that is the name of a column, the result of another scalar function, or a date or timestamp literal.

Examples
The following examples both return the number 64 because the day in the date expression (March 4, 2016) is the 64th day
of the year (the leap year day is automatically counted):

SQL

SELECT {fn DAYOFYEAR('2016-03-04 12:45:37')} AS DayCount

SQL

SELECT {fn DAYOFYEAR(63981)} AS DayCount

InterSystems SQL Reference 669

DAYOFYEAR (SQL)

The following examples all return the count for the current day:

SQL

SELECT {fn DAYOFYEAR({fn NOW()})} AS DNumNow,
 {fn DAYOFYEAR(CURRENT_DATE)} AS DNumCurrD,
 {fn DAYOFYEAR(CURRENT_TIMESTAMP)} AS DNumCurrTS,
 {fn DAYOFYEAR($HOROLOG)} AS DNumHorolog,
 {fn DAYOFYEAR($ZTIMESTAMP)} AS DNumZTS

Note that $ZTIMESTAMP returns Coordinated Universal Time (UTC). The other time-expression values return the local
time. This may affect the DAYOFYEAR value.

The following example uses a subquery to return Employee records ordered by the day of year of each person’s birthday:

SQL

SELECT Name,DOB
FROM (SELECT Name,DOB,{fn DAYOFYEAR(DOB)} AS BDay FROM Sample.Employee)
ORDER BY BDay

See Also
• SQL functions: DATENAME, DATEPART, DAYNAME, DAYOFMONTH, DAYOFWEEK

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

670 InterSystems SQL Reference

SQL Functions

DECODE (SQL)
A function that evaluates a given expression and returns a specified value.

Synopsis

DECODE(expr {,search,result}[,default])

Description
You can specify multiple search,result pairs, separated by commas. You can specify one default. The maximum number
of parameters in the DECODE expression (including expr, search, result, and default) is about 100. The search, result,
and default values can be derived from expressions.

To evaluate a DECODE expression, InterSystems IRIS compares expr to each search value, one by one:

• If expr is equal to a search value, the corresponding result is returned.

• If expr is not equal to any search value, the default value is returned, or, if default is omitted, null is returned.

InterSystems IRIS evaluates each search value only before comparing it to expr, rather than evaluating all search values
before comparing any of them to expr. Therefore, InterSystems IRIS never evaluates a search if a previous search is equal
to expr.

In a DECODE expression, InterSystems IRIS considers two nulls to be equivalent. If expr is null, InterSystems IRIS returns
the result of the first search that is also null.

Note that DECODE is supported for Oracle compatibility.

Data Type of Returned Value

DECODE returns the data type of the first result argument. If the data type of the first result argument cannot be determined,
DECODE returns VARCHAR. For numeric values, DECODE returns the largest length, precision, and scale from all of
the possible result argument values.

If the data types of result and default are different, the data type returned is the type most compatible with all of the possible
return values, the data type with the highest data type precedence. For example, if result is an integer and default is a fractional
number, DECODE returns a value with data type NUMERIC. This is because NUMERIC is the data type with the highest
precedence that is compatible with both.

Arguments

expr

The expression to be decoded.

search

The value to which expr is compared.

result

The value which is returned if expr matches search.

default

The optional default value which is returned if expr does not match any search.

InterSystems SQL Reference 671

DECODE (SQL)

Examples
The following example “decodes” ages from 13 through 19 as 'Teen'; the default is 'Adult':

SQL

SELECT Name,Age,DECODE(Age,
 13,'Teen',14,'Teen',15,'Teen',16,'Teen',
 17,'Teen',18,'Teen',19,'Teen',
 'Adult') AS AgeBracket
FROM Sample.Person
WHERE Age > 12

The following example decodes NULLs. If there is no value for FavoriteColors, DECODE replaces it with the string ‘No
Preference’; otherwise, it returns the FavoriteColors value:

SQL

SELECT Name,DECODE(FavoriteColors,
 NULL,'No Preference',
 $LISTTOSTRING(FavoriteColors,'^')) AS ColorPreference
FROM Sample.Person
ORDER BY Name

The following example decodes color preferences. If the person has a single favorite color, that color name is replaced by
a letter abbreviation. If the person has more than one favorite color, DECODE returns the FavoriteColors value:

SQL

SELECT Name,DECODE(FavoriteColors,
 $LISTBUILD('Red'),'R',
 $LISTBUILD('Orange'),'O',
 $LISTBUILD('Yellow'),'Y',
 $LISTBUILD('Green'),'G',
 $LISTBUILD('Blue'),'B',
 $LISTBUILD('Purple'),'V',
 $LISTBUILD('White'),'W',
 $LISTBUILD('Black'),'K',
 $LISTTOSTRING(FavoriteColors,'^'))
FROM Sample.Person
WHERE FavoriteColors IS NOT NULL
ORDER BY FavoriteColors

Note that the ORDER BY clause sorts by the original field values. The following example sorts by the DECODE values:

SQL

SELECT Name,DECODE(FavoriteColors,
 $LISTBUILD('Red'),'R',
 $LISTBUILD('Orange'),'O',
 $LISTBUILD('Yellow'),'Y',
 $LISTBUILD('Green'),'G',
 $LISTBUILD('Blue'),'B',
 $LISTBUILD('Purple'),'V',
 $LISTBUILD('White'),'W',
 $LISTBUILD('Black'),'K',
 $LISTTOSTRING(FavoriteColors,'^')) AS ColorCode
FROM Sample.Person
WHERE FavoriteColors IS NOT NULL
ORDER BY ColorCode

The following example decodes the numeric code in the Company code field in Employee records and returns the corre-
sponding department name. If an employee’s Company code is not 1 through 10, DECODE returns the default of “Admin
(non-tech)”:

672 InterSystems SQL Reference

SQL Functions

SQL

SELECT Name,
DECODE (Company,
 1, 'TECH MARKETING', 2, 'TECH SALES', 3, 'DOCUMENTATION',
 4, 'BASIC RESEARCH', 5, 'SOFTWARE DEVELOPMENT', 6, 'HARDWARE DEVELOPMENT',
 7, 'QUALITY TESTING', 8, 'FIELD SUPPORT', 9, 'PHONE SUPPORT',
 10, 'TECH TRAINING',
 'Admin (non-tech)') AS TechJobs
FROM Sample.Employee

The expression has Company as the expr parameter and uses ten pairs of search and result parameters. "Admin (non-tech)"
is the default parameter.

See Also
• CASE

InterSystems SQL Reference 673

DECODE (SQL)

DEGREES (SQL)
A numeric function that converts radians to degrees.

Synopsis

DEGREES(numeric-expression)

{fn DEGREES(numeric-expression)}

Description
DEGREES takes an angle measurement in radians and returns the corresponding angle measurement in degrees. DEGREES
returns NULL if passed a NULL value.

The returned value has a default precision of 36 and a default scale of 18.

You can use the RADIANS function to convert degrees to radians.

Arguments

numeric-expression

The name of the savepoint, specified as an identifier. The measure of an angle in radians. An expression that resolves to a
numeric value.

DEGREES returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, DEGREES
returns DOUBLE; otherwise, it returns NUMERIC.

DEGREES can be specified as either a standard scalar function or an ODBC scalar function with curly brace syntax.

Examples
The following Embedded SQL example returns the degree equivalents corresponding to the radian values 0 through 6:

ObjectScript

 SET a=0
 WHILE a<7 {
 &sql(SELECT DEGREES(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"radians ",a," = degrees ",b
 SET a=a+1 }
 }

See Also
• SQL functions: CONVERT, RADIANS, TO_NUMBER

674 InterSystems SQL Reference

SQL Functions

%EXACT (SQL)
A collation function that converts characters to the EXACT collation format.

Synopsis

%EXACT(expression)

%EXACT expression

Description
%EXACT returns expression in the EXACT collation sequence. This collation sequence orders values as follows:

1. NULL collates before all actual values. %EXACT has no effect on NULLs. This is the same as default collation.

2. Canonical numeric values (whether input as a number or as a string) collate in numeric order before string values.

3. String values collate in case-sensitive string order. The EXACT collation sequence for strings is the same as the ANSI-
standard ASCII collation sequence: digits are collated before uppercase alphabetic characters and uppercase alphabetic
characters are collated before lowercase alphabetic characters. Punctuation characters occur at several places in the
sequence.

This results in a sequence such as the following:

NULL
-2 /* canonical number collation */
0
1
2
10
22
88
'' /* empty string */
/* character-by-character string collation */
-00 /* non-canonical number collates as string */
0 Elm St. /* character-by-character string collation */
022 /* non-canonical number collates as string */
1 Elm St.
19 Elm St.
19 elm St. /* string collation is case-sensitive */
19Elm St.
2 Elm St.
201 Elm St.
21 Elm St.
Elm St.

%EXACT is commonly used to collate string values containing letters in case-sensitive order. The SQL default is to convert
all letters to uppercase for the purpose of collation.

%EXACT is an InterSystems SQL extension and is intended for SQL lookup queries.

You can perform the same collation conversion in ObjectScript using the Collation() method of the %SYSTEM.Util class.

%EXACT collates an input string as either wholly numeric (canonical) or as a mixed-character string in which numbers
are treated the same as any other character. Compare this to %MVR collation, which sorts a string based on the numeric
substrings within the string.

DISTINCT and GROUP BY

The DISTINCT clause and the GROUP BY clause group values based on their uppercase default collation, and return
values in all uppercase letters, even when none of the actual data values are in all uppercase letters.

• You can use %EXACT to group values by case-sensitive values: SELECT Name FROM mytable GROUP BY
%EXACT(Name)

InterSystems SQL Reference 675

%EXACT (SQL)

• You can use %EXACT to return an actual case-sensitive value for each group: SELECT %EXACT(Name) FROM
mytable GROUP BY Name

Note: By default, SQL indexes represent string data in uppercase default collation. For this reason, specifying EXACT
collation may prevent the use of an index with potentially significant performance implications.

Arguments

commitmode

A string expression, which can be the name of a column, a string literal, a numeric, or the result of another function, where
the underlying data type can be represented as any character type (such as CHAR or VARCHAR2).

Examples
The following example orders all street addresses by %EXACT collation:

SQL

SELECT Name,Street
FROM Sample.Person
ORDER BY %EXACT Street

The following examples uses %EXACT to return all Name values that are higher in the collating sequence than 'Smith'.
The first example uses parentheses syntax, the second omits the parentheses.

SQL

SELECT Name
FROM Sample.Person
WHERE %EXACT(Name) > 'Smith'

SQL

SELECT Name
FROM Sample.Person
WHERE %EXACT Name > 'Smith'

See Also
• ASCII function

• %SQLSTRING collation function

• %SQLUPPER collation function

• %TRUNCATE collation function

• Collation

676 InterSystems SQL Reference

SQL Functions

EXP (SQL)
A scalar numeric function that returns the exponential (inverse of natural logarithm) of a number.

Synopsis

{fn EXP(expression)}

Description
EXP is the exponential function en, where e is the constant 2.718281828. Therefore, to return the value of e, you can
specify {fn EXP(1)}. EXP is the inverse of the natural logarithm function LOG.

EXP returns a value with a precision of 36 and a scale of 18. EXP returns NULL if passed a NULL value.

EXP can only be used as an ODBC scalar function (with the curly brace syntax).

Arguments

expression

The logarithmic exponent, which is a numeric expression.

EXP returns either the NUMERIC or DOUBLE data type. If expression is data type DOUBLE, EXP returns DOUBLE;
otherwise, it returns NUMERIC.

Examples
The following example returns the constant e:

SQL

SELECT {fn EXP(1)} AS e_constant

returns 2.718281828...

The following Embedded SQL example returns the exponential values for the integers 0 through 10:

ObjectScript

 SET a=0
 WHILE a<11 {
 &sql(SELECT {fn EXP(:a)} INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"Exponential of ",a," = ",b
 SET a=a+1 }
 }

The following example demonstrates that EXP is the inverse of LOG:

SQL

SELECT {fn EXP(7)} AS Exp,
 {fn LOG(7)} AS Log,
 {fn EXP({fn LOG(7)})} AS ExpOfLog

Note in the third function call the small discrepancy between the number input and the calculated return value. The next
example shows how to handle this computational discrepancy.

InterSystems SQL Reference 677

EXP (SQL)

The following Embedded SQL example shows the relationship between the LOG and EXP functions for the integers 1
through 10:

ObjectScript

 SET a=1
 WHILE a<11 {
 &sql(SELECT {fn LOG(:a)} INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"Logarithm of ",a," = ",b }
 &sql(SELECT ROUND({fn EXP(:b)},12) INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Exponential of log ",b," = ",c
 SET a=a+1 }
 }

Note that the ROUND function is needed here to correct for very small discrepancies caused by system calculation limitations.
In the above example, ROUND is set arbitrarily to 12 decimal digits for this purpose.

See Also
• SQL functions: LOG LOG10 POWER ROUND

• ObjectScript function: $ZEXP

678 InterSystems SQL Reference

SQL Functions

%EXTERNAL (SQL)
A format-transformation function that returns an expression in DISPLAY format.

Synopsis

%EXTERNAL(expression)

%EXTERNAL expression

Description
%EXTERNAL converts expression to DISPLAY format, regardless of the current select mode (display mode). The DIS-
PLAY format represents data in the VARCHAR data type with whatever data conversion the field or data type Logical-
ToDisplay method performs.

%EXTERNAL is commonly used on a SELECT list select-item. It can be used in a WHERE clause, but this use is dis-
couraged because using %EXTERNAL prevents the use of indexes on the specified field.

Applying %EXTERNAL changes the column header name to a value such as “Expression_1”; it is therefore usually
desirable to specify a column name alias, as shown in the examples below.

Whether %EXTERNAL converts a date depends on the data type returned by the date field or function. %EXTERNAL
converts CURDATE, CURRENT_DATE, CURTIME, and CURRENT_TIME values. It does not convert CURRENT_TIMES-
TAMP, GETDATE, GETUTCDATE, NOW, and $HOROLOG values.

When %EXTERNAL converts a %List structure to DISPLAY format, the displayed list elements appear to be separated
by a blank space. This “space” is actually the two non-display characters CHAR(13) and CHAR(10).

%EXTERNAL is an InterSystems SQL extension.

To convert an expression to LOGICAL format, regardless of the current select mode, use the %INTERNAL function. To
convert an expression to ODBC format, regardless of the current select mode, use the %ODBCOUT function.

For further details on display format options, refer to Data Display Options.

Arguments

expression

The expression to be converted. A field name, an expression containing a field name, or a function that returns a value in
a convertible data type, such as DATE or %List. Cannot be a stream field.

Examples
The following Dynamic SQL example returns Date of Birth (DOB) data values in the current select mode format, and the
same data using the %EXTERNAL function. For the purpose of demonstration, in this program the %SelectMode value
is determined randomly for each invocation:

SQL

SELECT TOP 5 DOB,%EXTERNAL(DOB) AS ExtDOB
FROM Sample.Person

The following examples show the two syntax forms for this function; they are otherwise identical. They specify the
%EXTERNAL (DISPLAY format), %INTERNAL (LOGICAL format), and %ODBCOUT (ODBC format) of a %List
field:

InterSystems SQL Reference 679

%EXTERNAL (SQL)

SQL

SELECT TOP 10 %EXTERNAL(FavoriteColors) AS ExtColors,
 %INTERNAL(FavoriteColors) AS IntColors,
 %ODBCOUT(FavoriteColors) AS ODBCColors
FROM Sample.Person

SQL

SELECT TOP 10 %EXTERNAL FavoriteColors AS ExtColors,
 %INTERNAL FavoriteColors AS IntColors,
 %ODBCOUT FavoriteColors AS ODBCColors
FROM Sample.Person

The following example converts date of birth (DOB) and rounded date of birth (DOB) values to %EXTERNAL (DISPLAY
format):

SQL

SELECT %EXTERNAL(DOB) AS DOB,
 %INTERNAL(ROUND(DOB,-3)) AS DOBGroup,
 %EXTERNAL(ROUND(DOB,-3)) AS RoundedDOB
FROM Sample.Person
GROUP BY (ROUND(DOB,-3))
ORDER BY DOBGroup

See Also
• %INTERNAL, %ODBCIN, %ODBCOUT

• SQL concepts: Data Types, Date and Time Constructs

680 InterSystems SQL Reference

SQL Functions

$EXTRACT (SQL)
A string function that extracts characters from a string by position.

Synopsis

$EXTRACT(string[,from[,to]])

Description
$EXTRACT returns a substring from a specified position in string. The nature of the substring returned depends on the
arguments used.

• $EXTRACT(string) extracts the first character in the string.

• $EXTRACT(string,from) extracts the character in the position specified by from. For example, if variable var1 contains
the string “ABCD”, the following command extracts “B” (the second character):

SQL

SELECT $EXTRACT('ABCD',2) AS Extracted

• $EXTRACT(string,from,to) extracts the range of characters starting with the from position and ending with the to
position. For example, the following command extracts the string “Alabama” (that is, all characters from position 5 to
position 11, inclusive) from the string “1234Alabama567”:

SQL

SELECT $EXTRACT('1234Alabama567',5,11) AS Extracted

This function returns data of type VARCHAR.

Arguments

string

The string value can be a variable name, a numeric value, a string literal, or any valid expression.

from

The from value must be a positive integer (however, see Note). If a fractional number, the fraction is truncated and only
the integer portion is used.

If the from value is greater than the number of characters in the string, $EXTRACT returns a null string.

If from is specified without the to argument, it extracts the single specified character.

If used with the to argument, it identifies the start of the range to be extracted and must be less than the value of to. If from
equals to, $EXTRACT returns the single character at the specified position. If from is greater than to, $EXTRACT returns
a null string.

to

The to argument must be used with the from argument. It must be a positive integer. If a fractional number, the fraction is
truncated and only the integer portion is used.

If the to value is greater than or equal to the from value, $EXTRACT returns the specified substring. If to is greater than
the length of the string, $EXTRACT returns the substring from the from position to the end of the string. If to is less than
from, $EXTRACT returns a null string.

InterSystems SQL Reference 681

$EXTRACT (SQL)

Examples
The following example returns “S”, the fourth character in the string:

SQL

SELECT $EXTRACT('THIS IS A TEST',4) AS Extracted

The following example returns a substring “THIS IS” which is composed of the first through seventh characters.

SQL

SELECT $EXTRACT('THIS IS A TEST',1,7) AS Extracted

The following example extracts the second character (“B”) from “ABCD”.

SQL

SELECT $EXTRACT("ABCD",2)

The following example shows that the one-argument format is equivalent to the two-argument format when the from value
is “1”. Both $EXTRACT functions return “H”.

SQL

SELECT $EXTRACT("HELLO")
SELECT $EXTRACT("HELLO",1)

Notes

$EXTRACT Compared with $PIECE and $LIST

$EXTRACT returns a substring of characters by integer position from a string. $PIECE and $LIST both work on specially
formatted strings.

$PIECE returns a substring from a standard character string using delimiter characters within the string.

$LIST returns a sublist of elements from an encoded list by the integer position of elements (not characters). $LIST cannot
be used on ordinary strings, and $EXTRACT cannot be used on encoded lists.

The $EXTRACT, $FIND, $LENGTH, and $PIECE functions operate on standard character strings. The various $LIST
functions operate on encoded character strings, which are incompatible with standard character strings. The only exceptions
are the $LISTGET function and the one-argument and two-argument forms of $LIST, which take an encoded character
string as input, but output a single element value as a standard character string.

$EXTRACT and Unicode

The $EXTRACT function operates on characters, not bytes. Therefore, Unicode strings are handled the same as ASCII
strings, as shown in the following embedded SQL example using the Unicode character for “pi” ($CHAR(960)):

682 InterSystems SQL Reference

SQL Functions

ObjectScript

 SET a="QT PIE"
 SET b=("QT "_$CHAR(960))
 &sql(SELECT
 $EXTRACT(:a,-33,4),
 $EXTRACT(:a,4,4),
 $EXTRACT(:a,4,99),
 $EXTRACT(:b,-33,4),
 $EXTRACT(:b,4,4),
 $EXTRACT(:b,4,99)
 INTO :a1,:a2,:a3,:b1,:b2,:b3)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"ASCII form returns ",!,a1,!,a2,!,a3
 WRITE !,"Unicode form returns ",!,b1,!,b2,!,b3 }

Null and Invalid Arguments

• When string is a null string, a null string is returned.

• When from is a number larger than the string length, a null string is returned.

• When from is zero or a negative number, and no to is specified, a null string is returned.

• When to is zero, a negative number, or a number smaller than from, a null string is returned.

• When to is a valid value, from can be zero or a negative number. $EXTRACT treats such from values as 1.

No SQLCODE error is generated for invalid argument values.

In following example, the negative from value is evaluated as 1; $EXTRACT returns the substring “THIS IS” composed
of the first through seventh characters.

SQL

SELECT $EXTRACT('THIS IS A TEST',-7,7)

In following embedded SQL example, all $EXTRACT function calls return the null string:

ObjectScript

 SET a="THIS IS A TEST"
 SET b=""
 &sql(SELECT
 $EXTRACT(:a,33),
 $EXTRACT(:a,-7),
 $EXTRACT(:a,3,2),
 $EXTRACT(:a,-7,0),
 $EXTRACT(:a,-7,-10),
 $EXTRACT(:b,-33,4),
 $EXTRACT(:b,4,4),
 $EXTRACT(:b,4,99),
 $EXTRACT(NULL,-33,4),
 $EXTRACT(NULL,4,4),
 $EXTRACT(NULL,4,99)
 INTO :a1,:a2,:a3,:a4,:a5,:b1,:b2,:b3,:c1,:c2,:c3)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"FROM too big: ",a1
 WRITE !,"FROM negative, no TO: ",a2
 WRITE !,"TO smaller than FROM: ",a3
 WRITE !,"TO not a positive integer: ",a4,a5
 WRITE !,"LIST is null string: ",b1,b2,b3,c1,c2,c3 }

See Also
• SQL functions: $FIND $LENGTH $LIST $LISTGET $PIECE

• ObjectScript functions: $EXTRACT $FIND $LENGTH $LIST $LISTBUILD $LISTGET $PIECE

InterSystems SQL Reference 683

$EXTRACT (SQL)

$FIND (SQL)
A string function that returns the end position of a substring within a string, with optional search start point.

Synopsis

$FIND(string,substring[,start])

Description
$FIND returns an integer specifying the end position of a substring within a string. $FIND searches string for substring.
If substring is found, $FIND returns the integer position of the first character following substring. If substring is not found,
$FIND returns a value of 0.

You can include the start option to specify a starting position for the search. If start is greater than the number of characters
in string, $FIND returns a value of 0. If start is omitted, string position 1 is the default. If start is zero, a negative number,
or a nonnumeric string, position 1 is the default.

$FIND is case-sensitive. Use one of the case-conversion functions to locate both uppercase and lowercase instances of a
letter or character string.

$FIND, POSITION, CHARINDEX, and INSTR

$FIND, POSITION, CHARINDEX, and INSTR all search a string for a specified substring and return an integer position
corresponding to the first match. $FIND returns the integer position of the first character after the end of the matching
substring. CHARINDEX, POSITION, and INSTR return the integer position of the first character of the matching substring.
CHARINDEX, $FIND, and INSTR support specifying a starting point for substring search. INSTR also support specifying
the substring occurrence from that starting point.

The following example demonstrates these four functions, specifying all optional arguments. Note that the positions of
string and substring differ in these functions:

SQL

SELECT POSITION('br' IN 'The broken brown briefcase') AS Position,
 CHARINDEX('br','The broken brown briefcase',6) AS Charindex,
 $FIND('The broken brown briefcase','br',6) AS Find,
 INSTR('The broken brown briefcase','br',6,2) AS Inst

For a list of functions that search for a substring, refer to String Manipulation.

Arguments

string

The target string that is to be searched. It can be a variable name, a numeric value, a string literal, or any valid expression.

substring

The substring that is to be searched for. It can be a variable name, a numeric value, a string literal, or any valid expression.

start

An optional argument that denotes the starting point for substring search, specified as a positive integer. A character count
from the beginning of string, counting from 1. To search from the beginning of string, omit this argument or specify a start
of 0 or 1. A negative number, the empty string, or a nonnumeric value is treated as 0. Specifying start as NULL causes
$FIND to return <null>.

$FIND returns the SMALLINT data type.

684 InterSystems SQL Reference

SQL Functions

Examples
In the following example, string contains the string “ABCDEFG” and substring contains the string “BCD”. The $FIND
function returns the value 5, indicating the position of the character (“E”) that follows “BCD”:

SQL

SELECT $FIND('ABCDEG','BCD') AS SubPoint

The following example searches the numeric 987654321 for the number 7. It returns 4, the position following the substring:

SQL

SELECT $FIND(987654321,7) AS SubPoint

The following example returns 3, the position of the character that follow the first instance of the substring “AA”:

SQL

SELECT $FIND('AAAAAA','AA') AS SubPoint

In the following example, $FIND searches for a substring that is not in the string. It returns zero (0):

SQL

SELECT $FIND('AABBCCDD','AC') AS SubPoint

In the following example, $FIND begins its search with the seventh character. This example returns 14, the position of the
character that follows the next occurrence of “R”:

SQL

SELECT $FIND('EVERGREEN FOREST','R',7) AS SubPoint

In the following example, $FIND begins its search after the last character in string. It returns zero (0):

SQL

SELECT $FIND('ABCDEFG','G',10) AS SubPoint

The following example shows that a start less than 1 is treated as 1:

SQL

SELECT
$FIND("ABCDEFG","F"),
$FIND("ABCDEFG","F",1),
$FIND("ABCDEFG","F",0),
$FIND("ABCDEFG","F",-35)

The following example uses $FIND to search a string containing the Unicode character for pi, $CHAR(960). The first
$FIND returns 5, the character following pi. The second $FIND also returns 5; it begins its search at character 4, which
happens to be pi, the character sought. The third $FIND begins its search at character 5; it returns 13, the position following
the next occurrence of pi. Note that position 13 is returned, even though position 12 is the last character in the string:

ObjectScript

SELECT
$FIND("QT "_$CHAR(960)_" HONEY "_$CHAR(960),$CHAR(960)),
$FIND("QT "_$CHAR(960)_" HONEY "_$CHAR(960),$CHAR(960),4),
$FIND("QT "_$CHAR(960)_" HONEY "_$CHAR(960),$CHAR(960),5)

InterSystems SQL Reference 685

$FIND (SQL)

See Also
• CHARINDEX function

• INSTR function

• POSITION function

• String Manipulation

686 InterSystems SQL Reference

SQL Functions

FLOOR (SQL)
A numeric function that returns the largest integer less than or equal to a given numeric expression.

Synopsis

FLOOR(numeric-expression)

{fn FLOOR(numeric-expression)}

Description
FLOOR returns the nearest integer value less than or equal to numeric-expression. The returned value has a scale of 0.
When numeric-expression is a NULL value, an empty string (''), or a nonnumeric string, FLOOR returns NULL.

Note that FLOOR can be invoked as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

This function can also be invoked from ObjectScript using the FLOOR() method call:

$SYSTEM.SQL.Functions.FLOOR(numeric-expression)

Arguments

numeric-expression

A number whose ceiling is to be calculated. The number can be either a literal or a string; numbers specified as strings can
be in scientific notation.

If numeric-expression is of a numeric type, FLOOR returns the same data type as numeric-expression.

Examples
The following examples show how FLOOR converts a fraction to its floor integer:

SQL

SELECT FLOOR(167.111) AS FloorNum1,
 FLOOR('167.456') AS FloorNum2,
 FLOOR(167.999) AS FloorNum3,
 FLOOR(167.0) AS FloorNum4

all return 167.

SQL

SELECT FLOOR(-167.111) AS FloorNum1,
 FLOOR(-167.456) AS FloorNum2,
 FLOOR(-167.999) AS FloorNum3,
 FLOOR(-168.0) AS FloorNum4

all return -168.

The following examples use scientific notation:

SQL

SELECT FLOOR(10E-1) // returns 1
SELECT FLOOR('-14E-4') // returns -1
SELECT FLOOR('-10E-1') // returns -1

The following example uses a subquery to reduce a large table of US Zip Codes (postal codes) to one representative city
for each floor Latitude integer:

InterSystems SQL Reference 687

FLOOR (SQL)

SQL

SELECT City,State,FLOOR(Latitude) AS FloorLatitude
FROM (SELECT City,State,Latitude,FLOOR(Latitude) AS FloorNum
 FROM Sample.USZipCode)
GROUP BY FloorNum
ORDER BY FloorNum DESC

See Also
• CEILING

• ROUND

688 InterSystems SQL Reference

SQL Functions

GETDATE (SQL)
A date/time function that returns the current local date and time.

Synopsis

GETDATE([precision])

Arguments

DescriptionArgument

Optional — A positive integer that specifies the time precision as the number of digits
of fractional seconds.The default is 0 (no fractional seconds); this default is configurable.
A precision value is optional, the parentheses are mandatory.

precision

Description
GETDATE returns the current local date and time for this timezone as a timestamp; it adjusts for local time variants, such
as Daylight Saving Time.

GETDATE can return a timestamp in either %TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) or %PosixTime
data type format (an encoded 64-bit signed integer). The following rules determine which timestamp format is returned:

1. If the current timestamp is being supplied to a field of data type %PosixTime, the current timestamp value is returned
in POSIXTIME data type format. For example, WHERE PosixField=GETDATE() or INSERT INTO MyTable
(PosixField) VALUES (GETDATE()).

2. If the current timestamp is being supplied to a field of data type %TimeStamp, the current timestamp value is returned
in TIMESTAMP data type format. Its ODBC type is TIMESTAMP, LENGTH is 16, and PRECISION is 19. For
example, WHERE TSField=GETDATE() or INSERT INTO MyTable (TSField) VALUES (GETDATE()).

3. If the current timestamp is being supplied without context, the current timestamp value is returned in TIMESTAMP
data type format. For example, SELECT GETDATE().

To change the default datetime string format, use the SET OPTION command with the various date and time options.

GETDATE is a synonym for CURRENT_TIMESTAMP and is provided for compatibility with Sybase and Microsoft
SQL Server. The CURRENT_TIMESTAMP and NOW functions can also be used to return the current local date and time
as a timestamp in either TIMESTAMP or POSIXTIME formats. CURRENT_TIMESTAMP supports precision, NOW
does not support precision.

To return just the current date, use CURDATE or CURRENT_DATE. To return just the current time, use CURRENT_TIME
or CURTIME. These functions use the DATE or TIME data type. None of these functions support precision. The TIME
and DATE data types store their values as integers in $HOROLOG format. They can be displayed in either Display format
or Logical (storage) format. You can use the CAST or CONVERT function to change the data type of dates and times.

Universal Time (UTC)

All InterSystems SQL timestamp, date, and time functions except GETUTCDATE are specific to the local time zone setting.
GETUTCDATE returns the current UTC (universal) date and time as either a TIMESTAMP value or a POSIXTIME value.
You can also use the ObjectScript $ZTIMESTAMP special variable to get a current timestamp that is universal (independent
of time zone).

InterSystems SQL Reference 689

GETDATE (SQL)

Fractional Seconds Precision

GETDATE can return up to nine digits of precision. The number of digits of precision returned is set using the precision
argument. The default for the precision argument can be configured using the following:

• SET OPTION with the TIME_PRECISION option.

• The system-wide $SYSTEM.SQL.Util.SetOption() method configuration option DefaultTimePrecision. To
determine the current setting, call $SYSTEM.SQL.CurrentSettings() which displays Default time precision;
the default is 0.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Default time precision for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP.

Specify an integer 0 through 9 (inclusive) for the precision argument. The default is 0. The actual precision returned is
platform dependent; precision digits in excess of the precision available on your system are returned as zeroes.

Fractional seconds are always truncated, not rounded, to the specified precision.

Examples
In designing a report, GETDATE can be used to print the current date and time each time the report is produced. GETDATE
is also useful for tracking activity, such as logging the time that a transaction occurred.

GETDATE can be used in a SELECT statement select list or in the WHERE clause of a query. The following example
returns the current date and time in TIMESTAMP format:

SQL

SELECT GETDATE() AS DateTime

The following example returns the current date and time with two digits of precision:

SQL

SELECT GETDATE(2) AS DateTime

The following example compares local (time zone specific) and universal (time zone independent) timestamps:

ObjectScript

SELECT GETDATE(), GETUTCDATE()

The following example sets the LastUpdate field in the selected row of the Orders table to the current system date and time.
If LastUpdate is data type %TimeStamp, GETDATE returns the current date and time as an ODBC timestamp; if LastUpdate
is data type %PosixTime, GETDATE returns the current date and time as an encoded 64-bit signed integer:

SQL

UPDATE Orders SET LastUpdate = GETDATE()
 WHERE Orders.OrderNumber=:ord

GETDATE can be used in CREATE TABLE to specify the default value for a given field. In the following example, the
CREATE TABLE statement uses GETDATE to set a default value for the StartDate field:

SQL

CREATE TABLE Employees(
 EmpId INT NOT NULL,
 LastName CHAR(40) NOT NULL,
 FirstName CHAR(20) NOT NULL,
 StartDate TIMESTAMP DEFAULT GETDATE())

690 InterSystems SQL Reference

SQL Functions

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL timestamp functions: CAST, CONVERT, CURRENT_TIMESTAMP, GETUTCDATE, NOW, SYSDATE,
TIMESTAMPADD, TIMESTAMPDIFF, TO_POSIXTIME, TO_TIMESTAMP

• SQL current date and time functions: CURDATE, CURRENT_DATE, CURRENT_TIME, CURTIME

• ObjectScript: $ZDATETIME function, $HOROLOG special variable, $ZTIMESTAMP special variable

InterSystems SQL Reference 691

GETDATE (SQL)

GETUTCDATE (SQL)
A date/time function that returns the current UTC date and time.

Synopsis

GETUTCDATE([precision])

Description
GETUTCDATE returns Universal Time Constant (UTC) date and time as a timestamp. Because UTC time is the same
everywhere on the planet, does not depend on the local timezone and is not subject to local time variants (such as Daylight
Saving Time), this function is useful for applying consistent timestamps when users in different time zones access the same
database.

GETUTCDATE can return a timestamp in either %TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) or
%PosixTime data type format (an encoded 64-bit signed integer). The following rules determine which timestamp format
is returned:

1. If the current UTC timestamp is being supplied to a field of data type %PosixTime, this timestamp value is returned
in POSIXTIME data type format. For example, WHERE PosixField=GETUTCDATE() or INSERT INTO MyTable
(PosixField) VALUES (GETUTCDATE()).

2. If the current UTC timestamp is being supplied to a field of data type %TimeStamp, this timestamp value is returned
in TIMESTAMP data type format. Its ODBC type is TIMESTAMP, LENGTH is 16, and PRECISION is 19. For
example, WHERE TSField=GETUTCDATE() or INSERT INTO MyTable (TSField) VALUES
(GETUTCDATE()).

3. If the current UTC timestamp is being supplied without context, this timestamp value is returned in TIMESTAMP
data type format. For example, SELECT GETUTCDATE().

To change the default datetime string format, use the SET OPTION command with the various date and time options.

Typical uses for GETUTCDATE are in the SELECT statement select list or in the WHERE clause of a query. In
designing a report, GETUTCDATE can be used to print the current date and time each time the report is produced.
GETUTCDATE is also useful for tracking activity, such as logging the time that a transaction occurred.

GETUTCDATE can be used in CREATE TABLE to specify a field’s default value.

Other SQL Functions

GETUTCDATE returns the current UTC date and time as a timestamp in either TIMESTAMP or POSIXTIME format.

All other timestamp functions return the local date and time: GETDATE, CURRENT_TIMESTAMP, NOW, and SYSDATE
return the current local date and time as a timestamp in either TIMESTAMP or POSIXTIME format.

GETDATE and CURRENT_TIMESTAMP provide a precision argument.

NOW, argumentless CURRENT_TIMESTAMP, and SYSDATE do not provide a precision argument; they take the
system-wide default time precision.

CURDATE and CURRENT_DATE return the current local date. CURTIME and CURRENT_TIME return the current
local time. These functions use the DATE or TIME data type. None of these functions support precision.

A TIMESTAMP data type stores and displays its value in the same format. A POSIXTIME data type stores its value as an
encoded 64-bit signed integer. The TIME and DATE data types store their values as integers in $HOROLOG format and
can be displayed in a variety of formats.

692 InterSystems SQL Reference

SQL Functions

Note that all InterSystems SQL timestamp functions except GETUTCDATE are specific to the local time zone setting.
To get a current timestamp that is universal (independent of time zone) you can also use the ObjectScript $ZTIMESTAMP
special variable. Note that you can set the precision for GETUTCDATE; $ZTIMESTAMP always returns a precision of
3.

Fractional Seconds Precision

GETUTCDATE can return up to nine digits of precision. The number of digits of precision returned is set using the
precision argument. The default for the precision argument can be configured using the following:

• SET OPTION with the TIME_PRECISION option.

• The system-wide $SYSTEM.SQL.Util.SetOption() method configuration option DefaultTimePrecision. To
determine the current setting, call $SYSTEM.SQL.CurrentSettings() which displays Default time precision;
the default is 0.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Default time precision for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP.

Specify an integer 0 through 9 (inclusive) for the default number of decimal digits of precision to return. The default is 0.
The actual precision returned is platform dependent; precision digits in excess of the precision available on your system
are returned as zeroes.

Fractional seconds are always truncated, not rounded, to the specified precision.

Arguments

precision

An optional positive integer that specifies the time precision as the number of digits of fractional seconds. The default is
0 (no fractional seconds); this default is configurable.

Examples
The following example returns the current date and time as a UTC timestamp and as a local timestamp, both in TIMESTAMP
format:

SQL

SELECT GETUTCDATE() AS UTCDateTime,
 GETDATE() AS LocalDateTime

The following example returns the current UTC date and time with fractional seconds having two digits of precision:

SQL

SELECT GETUTCDATE(2) AS DateTime

The following example compares local (time zone specific) and universal (time zone independent) timestamps:

SQL

SELECT GETDATE(),GETUTCDATE()

The following example sets the LastUpdate field in the selected row of the Orders table to the current UTC date and time.
If LastUpdate is data type %TimeStamp, GETUTCDATE returns the current UTC date and time as an ODBC timestamp;
if LastUpdate is data type %PosixTime, GETUTCDATE returns the current UTC date and time as an encoded 64-bit
signed integer:

InterSystems SQL Reference 693

GETUTCDATE (SQL)

SQL

UPDATE Orders SET LastUpdate = GETUTCDATE()
 WHERE Orders.OrderNumber=:ord

In the following example, the CREATE TABLE statement uses GETUTCDATE to set a default value for the OrderRcvd
field:

CREATE TABLE Orders(
 OrderId INT NOT NULL,
 ItemName CHAR(40) NOT NULL,
 Quantity INT NOT NULL,
 OrderRcvd TIMESTAMP DEFAULT GETUTCDATE())

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL timestamp functions: CAST, CONVERT, CURRENT_TIMESTAMP, GETDATE, NOW, SYSDATE, TIMES-
TAMPADD, TIMESTAMPDIFF, TO_POSIXTIME, TO_TIMESTAMP

• SQL current date and time functions: CURDATE, CURRENT_DATE, CURRENT_TIME, CURTIME

• ObjectScript: $ZDATETIME function, $HOROLOG special variable, $ZTIMESTAMP special variable

694 InterSystems SQL Reference

SQL Functions

GREATEST (SQL)
A function that returns the greatest value from a series of expressions.

Synopsis

GREATEST(expression,expression[,...])

Description
GREATEST returns the greatest value from a comma-separated series of expressions. Expressions are evaluated in left-
to-right order. If only one expression is provided, GREATEST returns that value. If any expression is NULL, GREATEST
returns NULL.

If all of the expression values resolve to canonical numbers, they are compared in numeric order. If a quoted string contains
a number in canonical format, it is compared in numeric order. However, if a quoted string contains a number not in
canonical format (for example, '00', '0.4', or '+4'), it is compared as a string. String comparisons are performed character-
by-character in collation order. Any string value is greater than any numeric value.

The empty string is greater than any numeric value, but less than any other string value.

If the returned value is a number, GREATEST returns it in canonical format (leading and trailing zeros removed, etc.). If
the returned value is a string, GREATEST returns it unchanged, including any leading or trailing blanks.

GREATEST returns the greatest value from a comma-separated series of expressions. LEAST returns the least value from
a comma-separated series of expressions. COALESCE returns the first non-NULL value from a comma-separated series
of expressions.

Data Type of Returned Value

If the data types of the expression values are different, the data type returned is the type most compatible with all of the
possible return values, the data type with the highest data type precedence. For example, if one expression is an integer and
another expression is a fractional number, GREATEST returns a value with data type NUMERIC. This is because NUMERIC
is the data type with the highest precedence that is compatible with both. If, however, an expression is a literal number or
string, GREATEST returns data type VARCHAR.

Arguments

expression

An expression that resolves to a number or a string. The values of these expressions are compared to each other. An
expression can be a field name, a literal, an arithmetic expression, a host variable, or an object reference. You can list up
to 140 comma-separated expressions.

Examples
In the following example, each GREATEST compares three canonical numbers:

SQL

SELECT GREATEST(22,2.2,-21) AS HighNum,
 GREATEST('2.2','22','-21') AS HighNumStr

In the following example, each GREATEST compares three numeric strings. However, each GREATEST contains one
string that is non-canonical; these non-canonical values are compared as character strings. A character string is always
greater than a number:

InterSystems SQL Reference 695

GREATEST (SQL)

SQL

SELECT GREATEST('22','+2.2','-21'),
 GREATEST('0.2','22','-21')

In the following example, each GREATEST compare three strings and returns the value with the highest collation sequence:

SQL

SELECT GREATEST('A','a',''),
 GREATEST('a','ab','abc'),
 GREATEST('#','0','7'),
 GREATEST('##','00','77')

The following example compares two dates, treated as canonical numbers: the date of birth as a $HOROLOG integer, and
the integer 58073 converted to a date. It returns the date of birth for each person born in the 21st century. Anyone born
before January 1, 2000 is displayed with the default birth date of December 31, 1999:

SQL

SELECT Name,GREATEST(DOB,TO_DATE(58073)) AS NewMillenium
FROM Sample.Person

See Also
• LEAST function

• COALESCE function

• CONVERT function

• TO_NUMBER function

696 InterSystems SQL Reference

SQL Functions

HOUR (SQL)
A time function that returns the hour for a datetime expression.

Synopsis

{fn HOUR(time-expression)}

Description
HOUR returns an integer specifying the hour for a given time or datetime value. The hour is calculated for a $HOROLOG
or $ZTIMESTAMP value, an ODBC format date string, or a timestamp.

A time-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

To change this default time format, use the SET OPTION command.

Note that you can supply a time integer (number of elapsed seconds), but not a time string (hh:mm:ss). You must supply
a datetime string (yyyy-mm-dd hh:mm:ss). You can omit the seconds (:ss) or minutes and seconds (mm:ss) portion of a
datetime string and still return the hour portion. The time portion of a datetime string must be a valid time value. The date
portion of the datetime string is not validated.

Hours are expressed in 24-hour time. The hours (hh) portion should be an integer in the range from 0 through 23. Leading
zeros are optional on input; leading zeros are suppressed on output.

HOUR returns a value of 0 hours when the hours portion is '0' or '00'. Zero hours is also returned if no time expression is
supplied, or if the hours portion of the time expression is omitted (':mm:ss' or '::ss').

The same time information can be returned using DATEPART or DATENAME.

This function can also be invoked from ObjectScript using the HOUR() method call:

$SYSTEM.SQL.Functions.HOUR(time-expression)

Arguments

time-expression

An expression that is the name of a column, the result of another scalar function, or a string or numeric literal. It must
resolve either to a datetime string or a time integer, where the underlying data type can be represented as %Time,
%TimeStamp, or %PosixTime.

Examples
The following examples both return the number 18 because the time-expression value is 18:45:38:

SQL

SELECT {fn HOUR('2017-02-16 18:45:38')} AS ODBCHour

SQL

SELECT {fn HOUR(67538)} AS HorologHour

The following example also returns 18. The seconds (or minutes and seconds) portion of the time value can be omitted.

SQL

SELECT {fn HOUR('2017-02-16 18:45')} AS Hour_Given

InterSystems SQL Reference 697

HOUR (SQL)

The following example returns 0 hours, because the time portion of the datetime string has been omitted:

SQL

SELECT {fn HOUR('2017-02-16')} AS Hour_Given

The following examples all return the hours portion of the current time:

SQL

SELECT {fn HOUR(CURRENT_TIME)} AS H_CurrentT,
 {fn HOUR({fn CURTIME()})} AS H_CurT,
 {fn HOUR({fn NOW()})} AS H_Now,
 {fn HOUR($HOROLOG)} AS H_Horolog,
 {fn HOUR($ZTIMESTAMP)} AS H_ZTS

Note that $ZTIMESTAMP returns Coordinated Universal Time (UTC). The other time-expression values return the local
time.

The following example shows that leading zeros are suppressed. The first HOUR function returns a length 2, the others
return a length of 1. An omitted time is considered to be 0 hours, which has a length of 1:

SQL

SELECT LENGTH({fn HOUR('2018-02-15 11:45')}),
 LENGTH({fn HOUR('2018-02-15 03:45')}),
 LENGTH({fn HOUR('2018-02-15 3:45')}),
 LENGTH({fn HOUR('2018-02-15')})

The following example shows that the HOUR function recognizes the TimeSeparator character specified for the locale:

SQL

SELECT {fn HOUR('2018-02-16 18.45.38')}

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL functions: MINUTE, SECOND, CURRENT_TIME, CURTIME, NOW, DATEPART, DATENAME

• ObjectScript function: $ZTIME

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

698 InterSystems SQL Reference

SQL Functions

IFNULL (SQL)
A function that tests for NULL and returns the appropriate expression.

Synopsis

IFNULL(expression-1,expression-2 [,expression-3])

{fn IFNULL(expression-1,expression-2)}

Description
InterSystems IRIS supports IFNULL as both an SQL general function and an ODBC scalar function. Note that while these
two perform very similar operations, they are functionally different. The SQL general function supports three arguments.
The ODBC scalar function supports two arguments. The two-argument forms of the SQL general function and the ODBC
scalar function are not the same; they return different values when expression-1 is not null.

The SQL general function evaluates whether expression-1 is NULL. It never returns expression-1:

• If expression-1 is NULL, expression-2 is returned.

• If expression-1 is not NULL, expression-3 is returned.

• If expression-1 is not NULL, and there is no expression-3, NULL is returned.

The ODBC scalar function evaluates whether expression-1 is NULL. It either returns expression-1 or expression-2:

• If expression-1 is NULL, expression-2 is returned.

• If expression-1 is not NULL, expression-1 is returned.

Refer to NULL for further details on NULL handling.

Data Type of Returned Value

• IFNULL(expression-1,expression-2): returns the data type of expression-2. If expression-2 is a numeric literal, a string
literal, or NULL returns data type VARCHAR.

• IFNULL(expression-1,expression-2,expression-3): if expression-2 and expression-3 have different data types, returns
the data type with the higher (more inclusive) data type precedence. If expression-2 or expression-3 is a numeric literal
or a string literal, returns data type VARCHAR. If expression-2 or expression-3 is NULL, returns the data type of the
non-NULL argument.

If expression-2 and expression-3 have different length, precision, or scale, IFNULL returns the greater length, precision,
or scale of the two expressions.

• {fn IFNULL(expression-1,expression-2)}: returns the data type of expression-1. If expression-1 is a numeric literal,
a string literal, or NULL, returns data type VARCHAR.

DATE and TIME Display Conversion

Some expression-1 data types, such as DATE and TIME data types, require conversion from Logical mode (mode 0) to
ODBC mode (mode 1) or Display mode (mode 2). If the expression-2 or expression-3 value is not the same data type, this
value cannot be converted in ODBC mode or Display mode, and an SQLCODE error is generated: -146 for DATE data
type; -147 for TIME data type. For example, IFNULL(DOB,'nodate',DOB) cannot be executed in ODBC mode or
Display mode; it issue an SQLCODE -146 error with the %msg Error: 'nodate' is an invalid ODBC/JDBC
Date value or Error: 'nodate' is an invalid DISPLAY Date value. To execute this statement in ODBC
mode or Display mode, you must CAST the value as the appropriate data type: IFNULL(DOB,CAST('nodate' as
DATE),DOB). This results in a date 0, which displays as 1840-12-31.

InterSystems SQL Reference 699

IFNULL (SQL)

%List Display Conversion

A %List field is a string data type field with encoding. If expression-1 is a %List field, the appropriate expression-2 or
expression-3 value depends on the Select Mode:

• In Logical mode (mode 0) or Display mode (mode 2), a %List value is returned as string data type with the format
$lb("element1","element2",...). Therefore, an expression-2 or expression-3 value must be specified as a
%List, as shown in the following example:

SQL

SELECT TOP 20 Name,
IFNULL(FavoriteColors,$LISTBUILD('No Preference'),FavoriteColors) AS ColorChoice
FROM Sample.Person

• In ODBC mode (mode 1), a %List value is returned as a string of comma-separated elements:
element1,element2,.... Therefore, an expression-2 or expression-3 value can be specified as a string as shown
in the following example:

ObjectScript

SELECT TOP 20 Name,
IFNULL(FavoriteColors'No Preference',FavoriteColors) AS ColorChoice
FROM Sample.Person

Arguments

expression-1

The expression to be evaluated to determine if it is NULL or not.

expression-2

An expression that is returned if expression-1 is NULL.

expression-3

An optional expression that is returned if expression-1 is not NULL. If expression-3 is not specified, a NULL value is
returned when expression-1 is not NULL.

The returned data type is described below.

NULL Handling Functions Compared
The following table shows the various SQL comparison functions. Each function returns one value if the logical comparison
tests True (A same as B) and another value if the logical comparison tests False (A not same as B). These functions allow
you to perform NULL logical comparisons. You cannot specify NULL in an actual equality (or non-equality) condition
comparison.

700 InterSystems SQL Reference

SQL Functions

Return ValueComparison TestSQL Function

True returns ex2

False returns NULL

ex1 = NULLIFNULL(ex1,ex2) [two-argument
form]

True returns ex2

False returns ex3

ex1 = NULLIFNULL(ex1,ex2,ex3)
[three-argument form]

True returns ex2

False returns ex1

ex1 = NULL{fn IFNULL(ex1,ex2)}

True returns ex2

False returns ex1

ex1 = NULLISNULL(ex1,ex2)

True returns ex2

False returns ex1

ex1 = NULLNVL(ex1,ex2)

True returns NULL

False returns ex1

ex1 = ex2NULLIF(ex1,ex2)

True tests next ex argument. If all
ex arguments are True (NULL),
returns NULL.

False returns ex

ex = NULL for each argumentCOALESCE(ex1,ex2,...)

Examples
In the following example, the general function and the ODBC scalar function both returns the second expression (99)
because the first expression is NULL:

SQL

SELECT IFNULL(NULL,99) AS NullGen,{fn IFNULL(NULL,99)} AS NullODBC

In the following example, the general function and the ODBC scalar function examples return different values. The general
function returns <null> because the first expression is not NULL. The ODBC example returns the first expression (33)
because the first expression is not NULL:

SQL

SELECT IFNULL(33,99) AS NullGen,{fn IFNULL(33,99)} AS NullODBC

The following example returns the string 'No Preference' if FavoriteColors is NULL; otherwise, it returns NULL:

SQL

SELECT Name,
IFNULL(FavoriteColors,'No Preference') AS ColorChoice
FROM Sample.Person

The following example returns the string 'No Preference' if FavoriteColors is NULL; otherwise, it returns the value of
FavoriteColors:

InterSystems SQL Reference 701

IFNULL (SQL)

SQL

SELECT Name,
IFNULL(FavoriteColors,'No Preference',FavoriteColors) AS ColorChoice
FROM Sample.Person

The following example returns the string 'No Preference' if FavoriteColors is NULL; otherwise, it returns the string 'Pref-
erence':

SQL

SELECT Name,
IFNULL(FavoriteColors,'No Preference','Preference') AS ColorPref
FROM Sample.Person

The following ODBC syntax examples return the string 'No Preference' if FavoriteColors is NULL, otherwise they return
the FavoriteColors data value:

SQL

SELECT Name,
 {fn IFNULL(FavoriteColors,$LISTBUILD('No Preference'))} AS ColorPref
FROM Sample.Person

SQL

SELECT Name,
{fn IFNULL(FavoriteColors,'No Preference')} AS ColorChoice
FROM Sample.Person

The following example uses IFNULL in the WHERE clause. It selects people under the age of 21 who do not have favorite
color preferences. If FavoriteColors is NULL, IFNULL returns the Age field value, which is used for the condition test:

SQL

SELECT Name,FavoriteColors,Age
FROM Sample.Person
WHERE 21 > IFNULL(FavoriteColors,Age)
ORDER BY Age

Refer to the NULL predicate (IS NULL, IS NOT NULL) for similar functionality.

See Also
• CASE command

• COALESCE function

• ISNULL function

• NULLIF function

• NVL function

• NULL predicate

702 InterSystems SQL Reference

SQL Functions

INSTR (SQL)
A string function that returns the position of a substring within a string, with an optional search start point and occurrence
count.

Synopsis

INSTR(string,substring[,start[,occurrence]])

Description
INSTR searches string for substring, and returns the position of the first character of substring. The position is returned
as an integer, counting from the beginning of string. If substring is not found, 0 (zero) is returned. INSTR returns NULL
if passed a NULL value for either argument.

INSTR supports specifying start as the starting point for substring search. INSTR also supports specifying the substring
occurrence from that starting point.

INSTR is case-sensitive. Use one of the case-conversion functions to locate both uppercase and lowercase instances of a
letter or character string.

This function can also be invoked from ObjectScript using the INSTR() method call:

ObjectScript

 WRITE $SYSTEM.SQL.Functions.INSTR("The broken brown briefcase","br",6,2)

INSTR, CHARINDEX, POSITION, and $FIND

INSTR, CHARINDEX, POSITION, and $FIND all search a string for a specified substring and return an integer position
corresponding to the first match. CHARINDEX, POSITION, and INSTR return the integer position of the first character
of the matching substring. $FIND returns the integer position of the first character after the end of the matching substring.
CHARINDEX, $FIND, and INSTR support specifying a starting point for substring search. INSTR also supports speci-
fying the substring occurrence from that starting point.

The following example demonstrates these four functions, specifying all optional arguments. Note that the positions of
string and substring differ in these functions:

SQL

SELECT POSITION('br' IN 'The broken brown briefcase') AS Position,
 CHARINDEX('br','The broken brown briefcase',6) AS Charindex,
 $FIND('The broken brown briefcase','br',6) AS Find,
 INSTR('The broken brown briefcase','br',6,2) AS Inst

For a list of functions that search for a substring, refer to String Manipulation.

Arguments

string

The string expression within which to search for substring. It can be the name of a column, a string literal, or the result of
another scalar function, where the underlying data type can be represented as any character type (such as CHAR or VAR-
CHAR2).

substring

A substring that is believed to occur within string.

InterSystems SQL Reference 703

INSTR (SQL)

start

An optional argument specifying the starting point for substring search, specified as a positive integer. A character count
from the beginning of string, counting from 1. To search from the beginning of string, omit this argument or specify a start
of 1. A start value of 0, the empty string, NULL, or a nonnumeric value cause INSTR to return 0. Specifying start as a
negative number causes INSTR to return <null>.

occurrence

An optional non-zero integer that specifies which occurrence of substring to return when searching from the start position.
The default is to return the position of the first occurrence.

INSTR returns the INTEGER data type.

Examples
The following example returns 11, because “b” is the 11th character in the string:

SQL

SELECT INSTR('The quick brown fox','b',1) AS PosInt

The following example returns the length of the last name (surname) for each name in the Sample.Person table. It locates
the comma used to separate the last name from the rest of the name field, then subtracts 1 from that position:

SQL

SELECT Name,
INSTR(Name,',',1)-1 AS LNameLen
FROM Sample.Person

The following example returns the position of the first instance of the letter “B” in each name in the Sample.Person table.
Because INSTR is case-sensitive, the %SQLUPPER function is used to convert all name values to uppercase before per-
forming the search. Because %SQLUPPER adds a blank space at the beginning of a string, this example subtracts 1 to
get the actual letter position. Searches that do not locate the specified string return zero (0); in this example, because of the
subtraction of 1, the value displayed for these searches is –1:

SQL

SELECT Name,
INSTR(%SQLUPPER(Name),'B',1)-1 AS BPos
FROM Sample.Person

See Also
• CHARINDEX function

• $FIND function

• POSITION function

• String Manipulation

704 InterSystems SQL Reference

SQL Functions

%INTERNAL (SQL)
A format-transformation function that returns an expression in LOGICAL format.

Synopsis

%INTERNAL(expression)

%INTERNAL expression

Description
%INTERNAL converts expression to LOGICAL format, regardless of the current select mode (display mode). The
LOGICAL format is the in-memory format of data (the format upon which operations are performed). %INTERNAL is
commonly used on a SELECT list select-item.

%INTERNAL can be used in a WHERE clause, but this use is strongly discouraged because using %INTERNAL prevents
the use of indexes on the specified field, and %INTERNAL forces all comparisons to be case-sensitive, even if the field
has default collation.

Applying %INTERNAL changes the column header name to a value such as “Expression_1”; it is therefore usually
desirable to specify a column name alias, as shown in the examples below.

%INTERNAL converts a value of data type %Date to an INTEGER data type value. %INTERNAL converts a value of
data type %Time to a NUMERIC (15,9) data type value. This conversion is provided because an ODBC or JDBC client
does not recognize InterSystems IRIS logical %Date and %Time values.

Whether %INTERNAL converts a date depends on the data type returned by the date field or function. %INTERNAL
converts CURDATE, CURRENT_DATE, CURTIME, and CURRENT_TIME values. It does not convert CURRENT_TIMES-
TAMP, GETDATE, GETUTCDATE, NOW, and $HOROLOG values.

A stream field cannot be specified as an argument to ObjectScript unary functions, including all format-transformation
functions, with the exception of %INTERNAL. The %INTERNAL function permits a stream field as an expression value,
but performs no operation on that stream field.

%INTERNAL is an InterSystems SQL extension.

To convert an expression to DISPLAY format, regardless of the current select mode, use the %EXTERNAL function. To
convert an expression to ODBC format, regardless of the current select mode, use the %ODBCOUT function.

For further details on display format options, refer to Data Display Options.

Arguments

expression

The expression to be converted. A field name, an expression containing a field name, or a function that returns a value in
a convertible data type, such as DATE or %List.

Examples
The following example returns Date of Birth (DOB) data values in the current select mode format, and the same data using
the %INTERNAL function:

SQL

SELECT TOP 5 DOB,%INTERNAL(DOB) AS IntDOB
FROM Sample.Person

InterSystems SQL Reference 705

%INTERNAL (SQL)

The following examples show the two syntax forms for this function; they are otherwise identical. They specify the
%EXTERNAL (DISPLAY format), %INTERNAL (LOGICAL format), and %ODBCOUT (ODBC format) of a %List
field:

SQL

SELECT TOP 10 %EXTERNAL(FavoriteColors) AS ExtColors,
 %INTERNAL(FavoriteColors) AS IntColors,
 %ODBCOUT(FavoriteColors) AS ODBCColors
FROM Sample.Person

SQL

SELECT TOP 10 %EXTERNAL FavoriteColors AS ExtColors,
 %INTERNAL FavoriteColors AS IntColors,
 %ODBCOUT FavoriteColors AS ODBCColors
FROM Sample.Person

See Also
• %EXTERNAL, %ODBCIN, %ODBCOUT

• SQL concepts: Data Types, Date and Time Constructs

706 InterSystems SQL Reference

SQL Functions

ISNULL (SQL)
A function that tests for NULL and returns the appropriate expression.

Synopsis

ISNULL(check-expression,replace-expression)

Arguments

DescriptionArgument

The expression to be evaluated.check-expression

An expression that is returned if check-expression is NULL.replace-expression

ISNULL returns the same data type as check-expression.

Description
ISNULL evaluates check-expression and returns one of two values:

• If check-expression is NULL, replace-expression is returned.

• If check-expression is not NULL, check-expression is returned.

The data type of replace-expression should be compatible with the data type of check-expression.

Note that the ISNULL function is the same as the NVL function, which is provided for Oracle compatibility.

Refer to NULL for further details on NULL handling.

DATE and TIME Display Conversion

Some check-expression data types require conversion from Logical mode to ODBC mode or Display mode, such as the
DATE and TIME data types. If the replace-expression value is not the same data type, this value cannot be converted in
ODBC mode or Display mode, and an SQLCODE error is generated: -146 for DATE data type; -147 for TIME data type.
For example, ISNULL(DOB,'nodate') cannot be executed in ODBC mode or Display mode; it issues an SQLCODE -
146 error with the %msg Error: 'nodate' is an invalid ODBC/JDBC Date value or Error: 'nodate'
is an invalid DISPLAY Date value. To execute this statement in ODBC mode or Display mode, you must CAST
the value as the appropriate data type: ISNULL(DOB,CAST('nodate' as DATE)). This results in a date 0, which
displays as 1840-12-31.

NULL Handling Functions Compared
The following table shows the various SQL comparison functions. Each function returns one value if the logical comparison
tests True (A same as B) and another value if the logical comparison tests False (A not same as B). These functions allow
you to perform NULL logical comparisons. You cannot specify NULL in an actual equality (or non-equality) condition
comparison.

InterSystems SQL Reference 707

ISNULL (SQL)

Return ValueComparison TestSQL Function

True returns ex2

False returns ex1

ex1 = NULLISNULL(ex1,ex2)

True returns ex2

False returns NULL

ex1 = NULLIFNULL(ex1,ex2) [two-argument
form]

True returns ex2

False returns ex3

ex1 = NULLIFNULL(ex1,ex2,ex3)
[three-argument form]

True returns ex2

False returns ex1

ex1 = NULL{fn IFNULL(ex1,ex2)}

True returns ex2

False returns ex1

ex1 = NULLNVL(ex1,ex2)

True returns NULL

False returns ex1

ex1 = ex2NULLIF(ex1,ex2)

True tests next ex argument. If all
ex arguments are True (NULL),
returns NULL.

False returns ex

ex = NULL for each argumentCOALESCE(ex1,ex2,...)

Examples
In the following example, the first ISNULL returns the second expression (99) because the first expression is NULL. The
second ISNULL returns the first expression (33) because the first expression is not NULL:

SQL

SELECT ISNULL(NULL,99) AS IsNullT,ISNULL(33,99) AS IsNullF

The following example returns the string 'No Preference' if FavoriteColors is NULL; otherwise, it returns the value of
FavoriteColors:

SQL

SELECT Name,
ISNULL(FavoriteColors,'No Preference') AS ColorChoice
FROM Sample.Person

Compare the behavior of ISNULL with IFNULL:

SQL

SELECT Name,
IFNULL(FavoriteColors,'No Preference') AS ColorChoice
FROM Sample.Person

708 InterSystems SQL Reference

SQL Functions

See Also
• CASE command

• COALESCE function

• IFNULL function

• NULLIF function

• NVL function

InterSystems SQL Reference 709

ISNULL (SQL)

ISNUMERIC (SQL)
A numeric function that tests for a valid number.

Synopsis

ISNUMERIC(check-expression)

Description
ISNUMERIC evaluates check-expression and returns one of the following values:

• Returns 1 if check-expression is a valid number. A valid number can either be a numeric expression or a string that
represents a valid number.

– A numeric expression is first converted to canonical form, resolving multiple leading signs; therefore, a numeric
expression such as +-+++34 is a valid number.

– A numeric string is not converted before evaluation. A numeric string must have at most one leading sign to
evaluate as a valid number. A numeric string with a trailing decimal point evaluates as a valid number.

• Returns 0 if check-expression is not a valid number. Any string that contains a non-numeric character is not a valid
number. A numeric string with more than one leading sign, such as '+-+++34', is not evaluated as a valid number.
An InterSystems IRIS encoded list always returns 0, even if its element(s) are valid numbers. An empty string
ISNUMERIC('') returns 0.

• Returns NULL if check-expression is NULL. ISNUMERIC(NULL) returns null.

ISNUMERIC generates an SQLCODE -7, exponent out of range error if a scientific notation exponent is greater than 308
(308 – (number of integers - 1)). For example, ISNUMERIC(1E309) and ISNUMERIC(111E307) both generate this
error code. If an exponent numeric string less than or equal to '1E145' returns 1; an exponent numeric string greater than
'1E145' returns 0.

The ISNUMERIC function is very similar to the ObjectScript $ISVALIDNUM function. However, these two functions
return different values when the input value is NULL.

Arguments

check-expression

The expression to be evaluated.

Examples
In the following example, all of the ISNUMERIC functions return 1:

SQL

SELECT ISNUMERIC(99) AS MyInt,
 ISNUMERIC('-99') AS MyNegInt,
 ISNUMERIC('-0.99') AS MyNegFrac,
 ISNUMERIC('-0.00') AS MyNegZero,
 ISNUMERIC('-0.09'+7) AS MyAdd,
 ISNUMERIC('5E2') AS MyExponent

The following example returns NULL if FavoriteColors is NULL; otherwise, it returns 0, because FavoriteColors is not a
numeric field:

710 InterSystems SQL Reference

SQL Functions

SQL

SELECT Name,
ISNUMERIC(FavoriteColors) AS ColorPref
FROM Sample.Person

See Also
• IFNULL function

• ISNULL function

• NULLIF function

• ObjectScript function: $ISVALIDNUM

InterSystems SQL Reference 711

ISNUMERIC (SQL)

JSON_ARRAY (SQL)
A conversion function that returns data as a JSON array.

Synopsis

JSON_ARRAY(expression [,expression][,...]
 [NULL ON NULL | ABSENT ON NULL])

Description
JSON_ARRAY takes an expression or (more commonly) a comma-separated list of expressions and returns a JSON array
containing those values. JSON_ARRAY can be combined in a SELECT statement with other types of select-items.
JSON_ARRAY can be specified in other locations where an SQL function can be used, such as in a WHERE clause.

The returned JSON array has the following format:

[element1 , element2 , element3]

JSON_ARRAY returns each array element value as either a string (enclosed in double quotes), or a number. Numbers are
returned in canonical format. A numeric string is returned as a literal, enclosed in double quotes. All other data types (for
example, Date or $List) are returned as a string.

JSON_ARRAY does not support asterisk (*) syntax as a way to specify all fields in a table. It does support the COUNT(*)
aggregate function.

The returned JSON array column is labeled as an Expression (by default); you can specify a column alias for a
JSON_ARRAY.

Select Mode and Collation

The current %SelectMode property determines the format of the returned JSON array values. By changing the Select Mode,
all Date and %List elements are included in the JSON array as strings with that Select Mode format.

You can override the current Select Mode by applying a format-transformation function (%EXTERNAL, %INTERNAL,
%ODBCIN, %ODBCOUT) to individual field names within JSON_ARRAY. Applying a format-transformation function
to a JSON_ARRAY has no effect, because the elements of a JSON array are strings.

You can apply a collation function to individual field names within JSON_ARRAY or to an entire JSON_ARRAY:

• A collation function applied to a JSON_ARRAY applies the collation after JSON array formatting. Therefore,
%SQLUPPER(JSON_ARRAY(f1,f2)) converts all the JSON array element values to uppercase.
%SQLUPPER(JSON_ARRAY(f1,f2)) inserts a space before the JSON array, not before the elements of the array;
therefore it does not force numbers to be parsed as strings.

• A collation function applied to an element within a JSON_ARRAY applies that collation. Therefore
JSON_ARRAY('Abc',%SQLUPPER('Abc')) returns ["Abc"," ABC"] (note leading space); and
JSON_ARRAY(007,%SQLSTRING(007)) returns [7," 7"]. Because %SQLUPPER inserts a space before the
value, it is generally preferable to specify a case transformation function such as LCASE or UCASE. You can apply
collation to both an element and to the whole array: %SQLUPPER(JSON_ARRAY('Abc',%SQLSTRING('Abc')))
returns ["ABC"," ABC"]

ABSENT ON NULL

If you specify the optional ABSENT ON NULL keyword phrase, a column value which is NULL (or the NULL literal) is
not included in the JSON array. No placeholder is included in the JSON array. This can result in JSON arrays with different

712 InterSystems SQL Reference

SQL Functions

numbers of elements. For example, the following program returns JSON arrays where for some records the 3rd array element
is Age, and for other records the 3rd element is FavoriteColors:

SELECT JSON_ARRAY(%ID,Name,FavoriteColors,Age ABSENT ON NULL) FROM Sample.Person

If you specify no keyword phrase, the default is NULL ON NULL: NULL is represented by the word null (not delimited
by quotes) as a comma-separated array element. Thus all JSON arrays returned by a JSON_ARRAY function will have
the same number of array elements.

Arguments

expression

An expression or a comma-separated list of expressions. These expressions can include column names, aggregate functions,
arithmetic expressions, literals, and the literal NULL.

ABSENT ON NULL/NULL ON NULL

An optional keyword phrase specifying how to represent NULL values in the returned JSON array. NULL ON NULL (the
default) represents NULL (absent) data with the word null (not quoted). ABSENT ON NULL omits NULL data from the
JSON array; it does not leave a placeholder comma. This keyword phrase has no effect on empty string values.

Examples
The following example applies JSON_ARRAY to format a JSON array containing a comma-separated list of field values:

SQL

SELECT TOP 3 JSON_ARRAY(%ID,Name,Age,Home_State) FROM Sample.Person

The following example applies JSON_ARRAY to format a JSON array with a single element containing the Name field
values:

SQL

SELECT TOP 3 JSON_ARRAY(Name) FROM Sample.Person

The following example applies JSON_ARRAY to format a JSON array containing literals and field values:

SQL

SELECT TOP 3 JSON_ARRAY('Employee from',%TABLENAME,Name,SSN) FROM Sample.Employee

The following example applies JSON_ARRAY to format a JSON array containing nulls and field values:

SQL

SELECT JSON_ARRAY(Name,FavoriteColors) FROM Sample.Person
WHERE Name %STARTSWITH 'S'

The following example applies JSON_ARRAY to format a JSON array containing field values from joined tables:

SQL

SELECT TOP 3 JSON_ARRAY(E.%TABLENAME,E.Name,C.%TABLENAME,C.Name)
FROM Sample.Employee AS E,Sample.Company AS C

The following Dynamic SQL example sets the ODBC %SelectMode, which determines how all fields, including JSON
array values are represented. The query overrides this Select Mode for specific JSON array elements by applying the
%EXTERNAL format-transformation function:

InterSystems SQL Reference 713

JSON_ARRAY (SQL)

ObjectScript

 SET myquery = 3
 SET myquery(1) = "SELECT TOP 8 DOB,JSON_ARRAY(Name,DOB,FavoriteColors) AS ODBCMode, "
 SET myquery(2) = "JSON_ARRAY(Name,DOB,%EXTERNAL(DOB),%EXTERNAL(FavoriteColors)) AS ExternalTrans
"
 SET myquery(3) = "FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 WRITE "SelectMode is ODBC",!
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 { WRITE !,"Executed query",! }
 ELSE { SET badSQL=##class(%Exception.SQL).%New(,rset.%SQLCODE,,rset.%Message)}
 DO rset.%Display()
 WRITE !,"End of data"

The following example uses JSON_ARRAY in a WHERE clause to perform a Contains test on multiple columns without
using OR syntax:

SQL

SELECT Name,Home_City,Home_State FROM Sample.Person
WHERE JSON_ARRAY(Name,Home_City,Home_State) ['X'

See Also
• SELECT statement

• WHERE clause

• JSON_OBJECT function

• IS JSON predicate condition

• Overview of Predicates

• Querying the Database

714 InterSystems SQL Reference

SQL Functions

JSON_OBJECT (SQL)
A conversion function that returns data as a JSON object.

Synopsis

JSON_OBJECT(key:value [,key:value][,...]
 [NULL ON NULL | ABSENT ON NULL])

Description
JSON_OBJECT takes a comma-separated list of key:value pairs (for example, 'mykey':colname) and returns a JSON
object containing those values. You can specify any single-quoted string as a key name; JSON_OBJECT does not enforce
any naming conventions or uniqueness check for key names. You can specify for value a column name or other expression.

JSON_OBJECT can be combined in a SELECT statement with other types of select-items. JSON_OBJECT can be
specified in other locations where an SQL function can be used, such as in a WHERE clause.

A returned JSON object has the following format:

{ "key1" : "value1" , "key2" : "value2" , "key3" : "value3"
}

JSON_OBJECT returns object values as either a string (enclosed in double quotes), or a number. Numbers are returned
in canonical format. A numeric string is returned as a literal, enclosed in double quotes. All other data types (for example,
Date or $List) are returned as a string, with the current %SelectMode determining the format of the returned value.
JSON_OBJECT returns both key and value values in DISPLAY or ODBC mode if that is the select mode for the query.

JSON_OBJECT does not support asterisk (*) syntax as a way to specify all fields in a table.

The returned JSON object column is labeled as an Expression (by default); you can specify a column alias for a
JSON_OBJECT.

Select Mode and Collation

The current %SelectMode property determines the format of the returned JSON object values. By changing the Select
Mode, all Date and %List values are included in the JSON object as strings with that Select Mode format. You can override
the current Select Mode by applying a format-transformation function (%EXTERNAL, %INTERNAL, %ODBCIN,
%ODBCOUT) to individual field names within JSON_OBJECT. Applying a format-transformation function to a
JSON_OBJECT has no effect, because the key:value pairs of a JSON object are strings.

The default collation determines the collation of the returned JSON object values. You can apply a collation function to a
JSON_OBJECT, converting both keys and values. Generally, you should not apply a collation function to JSON_OBJECT
because keys are case-sensitive. InterSystems IRIS applies the collation after JSON object formatting. Therefore,
%SQLUPPER(JSON_OBJECT('k1':f1,'k2':f2)) converts all the JSON object key and value strings to uppercase.
%SQLUPPER inserts a space before the JSON object, not before the values within the object.

Within JSON_OBJECT, you can apply a collation function to the value portion of a key:value pair. Because %SQLUPPER
inserts a space before the value, it is generally preferable to specify a case transformation function such as LCASE or
UCASE.

ABSENT ON NULL

If you specify the optional ABSENT ON NULL keyword phrase, a column value which is NULL (or the NULL literal) is
not included in the JSON object. No placeholder is included in the JSON object. This can result in JSON objects with dif-

InterSystems SQL Reference 715

JSON_OBJECT (SQL)

ferent numbers of key:value pairs. For example, the following program returns JSON objects where for some records the
3rd key:value pair is Age, and for other records the 3rd key:value pair is FavoriteColors:

SELECT JSON_OBJECT('id':%ID,'name':Name,'colors':FavoriteColors,'years':Age ABSENT ON NULL) FROM
Sample.Person

If you specify no keyword phrase, the default is NULL ON NULL: NULL is represented by the word null (not delimited
by quotes) as the value of the key:value pair. Thus all JSON objects returned by a JSON_OBJECT function will have the
same number of key:value pairs.

Arguments

key:value

A key:value pair or a comma-separated list of key:value pairs. A key is a user-specified literal string delimited with single
quotes. A value can be a column name, an aggregate function, an arithmetic expression, a numeric or string literal, or the
literal NULL.

ABSENT ON NULL/NULL ON NULL

An optional keyword phrase specifying how to represent NULL values in the returned JSON object. NULL ON NULL
(the default) represents NULL (absent) data with the word null (not quoted). ABSENT ON NULL omits NULL data from
the JSON object; it removes the key:value pair when value is NULL and does not leave a placeholder comma. This keyword
phrase has no effect on empty string values.

Examples
This example applies JSON_OBJECT to format a JSON object containing field values:

SQL

SELECT TOP 3 JSON_OBJECT('id':%ID,'name':Name,'birth':DOB) FROM Sample.Person

This example applies JSON_OBJECT to format a JSON object containing literals and field values:

SQL

SELECT TOP 3 JSON_OBJECT('lit':'Employee from','t':%TABLENAME,
 'name':Name,'num':SSN) FROM Sample.Employee

This example applies JSON_OBJECT to format a JSON object containing nulls and field values:

SQL

SELECT JSON_OBJECT('name':Name,'colors':FavoriteColors) FROM Sample.Person
WHERE Name %STARTSWITH 'S'

This example applies JSON_OBJECT to format a JSON object containing field values from joined tables:

SQL

SELECT TOP 3 JSON_OBJECT('e.t':E.%TABLENAME,'e.name':E.Name,'c.t':C.%TABLENAME,
'c.name':C.Name) FROM Sample.Employee AS E,Sample.Company AS C

The following example uses JSON_OBJECT in a WHERE clause to perform a Contains test on multiple columns without
using OR syntax:

SQL

SELECT Name,Home_City,Home_State FROM Sample.Person
WHERE JSON_OBJECT('name':Name,'city':Home_City,'state':Home_State) ['X'

716 InterSystems SQL Reference

SQL Functions

The following Dynamic SQL example sets the ODBC %SelectMode, which determines how all fields, including JSON
object values are represented. The query overrides this Select Mode for specific JSON_OBJECT values by applying the
%EXTERNAL format-transformation function:

ObjectScript

 SET myquery = 3
 SET myquery(1) = "SELECT TOP 8 JSON_OBJECT('ODBCBday':DOB,'DispBday':%EXTERNAL(DOB)),"
 SET myquery(2) = "JSON_OBJECT('ODBCcolors':FavoriteColors,'DispColors':%EXTERNAL(FavoriteColors))
 "
 SET myquery(3) = "FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 WRITE "SelectMode is ODBC",!
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 { WRITE !,"Executed query",! }
 ELSE { SET badSQL=##class(%Exception.SQL).%New(,rset.%SQLCODE,,rset.%Message)}
 DO rset.%Display()
 WRITE !,"End of data"

See Also
• SELECT statement

• WHERE clause

• JSON_ARRAY function

• IS JSON predicate condition

• Overview of Predicates

• Querying the Database

InterSystems SQL Reference 717

JSON_OBJECT (SQL)

$JUSTIFY (SQL)
A function that right-aligns a value within a specified width, optionally rounding to a specified number of fractional digits.

Synopsis

$JUSTIFY(expression,width[,decimal])

Description
$JUSTIFY returns the value specified by expression right-aligned within the specified width. You can include the decimal
argument to decimal-align numbers within width.

• $JUSTIFY(expression,width): the 2-argument syntax right-justifies expression within width. It does not perform
any conversion of expression. The expression can be a numeric or a nonnumeric string.

• $JUSTIFY(expression,width,decimal): the 3-argument syntax converts expression to a canonical number,
rounds or zero pads fractional digits to decimal, then right-justifies the resulting numeric value within width. If expression
is a nonnumeric string or NULL, InterSystems IRIS converts it to 0, pads it, then right-justifies it.

$JUSTIFY recognizes the DecimalSeparator character for the current locale. It adds or deletes a DecimalSeparator character
as needed. The DecimalSeparator character depends upon the locale; commonly it is either a period (.) for American-format
locales, or a comma (,) for European-format locales. To determine the DecimalSeparator character for your locale, invoke
the following method:

ObjectScript

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator")

SQLCODE -380 is issued if you specify too few arguments. SQLCODE -381 is issued if you specify too many arguments.

$JUSTIFY, ROUND, and TRUNCATE

When rounding to a fixed number of fractional digits is important — for example, when representing monetary amounts
— use $JUSTIFY, which returns the specified number of trailing zeros following the rounding operation. When decimal
is larger than the number of fractional digits in expression, $JUSTIFY zero-pads. $JUSTIFY also right-aligns the numbers,
so that the DecimalSeparator characters align in a column of numbers.

ROUND also rounds to a specified number of fractional digits, but its return value is always normalized, removing trailing
zeros. For example, ROUND(10.004,2) returns 10, not 10.00. Unlike $JUSTIFY, ROUND allows you to specify either
rounding (the default), or truncation.

TRUNCATE truncates to a specified number of fractional digits. Unlike ROUND, if the truncation results in trailing zeros,
these trailing zeros are preserved. However, unlike $JUSTIFY, TRUNCATE does not zero-pad.

ROUND and TRUNCATE allow you to round (or truncate) to the left of the decimal separator. For example,
ROUND(128.5,-1) returns 130.

$JUSTIFY and LPAD

The two-argument form of LPAD and the two-argument form of $JUSTIFY both right-align a string by padding it with
leading spaces. These two-argument forms differ in how they handle an output width that is shorter than the length of the
input expression: LPAD truncates the input string to fit the specified output length. $JUSTIFY expands the output length
to fit the input string. This is shown in the following example:

718 InterSystems SQL Reference

SQL Functions

SQL

SELECT '>'||LPAD(12345,10)||'<' AS lpadplus,
 '>'||$JUSTIFY(12345,10)||'<' AS justifyplus,
 '>'||LPAD(12345,3)||'<' AS lpadminus,
 '>'||$JUSTIFY(12345,3)||'<' AS justifyminus

The three-argument form of LPAD allows you to left pad with characters other than spaces.

Arguments

expression

The value to be right-justified, and optionally expressed as a numeric with a specified number of fractional digits.

• If string justification is desired, do not specify decimal. The expression can contain any characters. $JUSTIFY right-
justifies expression, as described in width.

• If numeric justification is desired, specify decimal. If decimal is specified, InterSystems IRIS supplies expression to
$JUSTIFY as a canonical number. It resolves leading plus and minus signs and removes leading and trailing zeros. It
truncates expression at the first nonnumeric character. If expression begins with a nonnumeric character (such as a
currency symbol), InterSystems IRIS converts the expression value to 0. Canonical conversion does not recognize
NumericGroupSeparator characters, currency symbols, multiple DecimalSeparator characters, or trailing plus or minus
signs. For further details on how InterSystems IRIS converts a numeric to a canonical number, and InterSystems IRIS
handling of a numeric string containing nonnumeric characters, refer to Numbers.

After $JUSTIFY receives expression as a canonical number, $JUSTIFY performs its operation and either rounds or
zero-pads this canonical number to decimal number of fractional digits, then right-justifies the result, as described in
width.

width

The width in which to right-justify the converted expression. If width is greater than the length of expression (after numeric
and fractional digit conversion), InterSystems IRIS right-justifies to width, left-padding as needed with blank spaces. If
width is less than the length of expression (after numeric and fractional digit conversion), InterSystems IRIS sets width to
the length of the expression value.

Specify width as a positive integer. A width value of 0, the empty string (''), NULL, or a nonnumeric string is treated as a
width of 0, which means that InterSystems IRIS sets width to the length of the expression value.

decimal

The number of fractional digits. If expression contains more fractional digits, $JUSTIFY rounds the fractional portion to
this number of fractional digits. If expression contains fewer fractional digits, $JUSTIFY pads the fractional portion with
zeros to this number of fractional digits, adding a Decimal Separator character, if needed. If decimal=0, $JUSTIFY rounds
expression to an integer value and deletes the Decimal Separator character.

If the expression value is less than 1, $JUSTIFY inserts a leading zero before the DecimalSeparator character.

The $DOUBLE values INF, -INF, and NAN are returned unchanged by $JUSTIFY, regardless of the decimal value.

Examples
The following example performs right-justification on strings. No numeric conversion is performed:

SQL

SELECT TOP 20 Age,$JUSTIFY(Name,18),DOB FROM Sample.Person

The following example performs numeric right-justification with a specified number of fractional digits:

InterSystems SQL Reference 719

$JUSTIFY (SQL)

SQL

SELECT TOP 20 $JUSTIFY(Salary,10,2) AS FullSalary,
$JUSTIFY(Salary/7,10,2) AS SeventhSalary FROM Sample.Employee

The following example performs numeric right-justification with a specified number of fractional digits, and string right-
justification of the same numeric value:

ObjectScript

"SELECT $JUSTIFY({fn ACOS(-1)},8,3) AS ArcCos3,
$JUSTIFY({fn ACOS(-1)},8) AS ArcCosAll

The following Dynamic SQL example performs numeric right-justification with the $DOUBLE values INF and NAN:

ObjectScript

 DO ##class(%SYSTEM.Process).IEEEError(0)
 SET x=$DOUBLE(1.2e500)
 SET y=x-x
 SET myquery = 2
 SET myquery(1) = "SELECT $JUSTIFY(?,12,2) AS INFtest,"
 SET myquery(2) = "$JUSTIFY(?,12,2) AS NANtest"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(x,y)
 DO rset.%Display()

See Also
• LPAD function

• ROUND function

• TRUNCATE function

720 InterSystems SQL Reference

SQL Functions

LAST_DAY (SQL)
A date function that returns the date of the last day of the month for a date expression.

Synopsis

LAST_DAY(date-expression)

Description
LAST_DAY returns the date of the last day of the specified month as an integer in $HOROLOG format. Leap year differences
are calculated, including century day adjustments: 2000 is a leap year, 1900 and 2100 are not leap years.

The date-expression can be an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC format
date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of a %TimeStamp string is optional.

LAST_DAY returns 0 (in Display mode 12/31/1840) when an invalid date is specified: the day or month as zero; the
month greater than 12; or the day larger than the number of days in that month on that year. The year must be in the range
0001 through 9999.

This function can also be invoked from ObjectScript using the LASTDAY() method call:

ObjectScript

 WRITE $SYSTEM.SQL.Functions.LASTDAY("2018-02-22"),!
 WRITE $SYSTEM.SQL.Functions.LASTDAY(64701)

Arguments

date-expression

An expression that is the name of a column, the result of another scalar function, or a date or timestamp literal.

Examples
The following examples return the last day of the month as an InterSystems IRIS date integer. Whether this value is displayed
as an integer or as a date string depends on the current SQL Display Mode setting.

The following two examples both return the number 59594 (which corresponds to '2004–02–29') because the last day of
the month on the specified date is February 29 (2004 is a leap year):

SQL

SELECT LAST_DAY('2004-02-25')

SQL

SELECT LAST_DAY(59590)

The following examples all return the InterSystems IRIS date integer corresponding to the last day of the current month:

InterSystems SQL Reference 721

LAST_DAY (SQL)

SQL

SELECT LAST_DAY({fn NOW()}) AS LD_Now,
 LAST_DAY(CURRENT_DATE) AS LD_CurrDate,
 LAST_DAY(CURRENT_TIMESTAMP) AS LD_CurrTstamp,
 LAST_DAY($ZTIMESTAMP) AS LD_ZTstamp,
 LAST_DAY($HOROLOG) AS LD_Horolog

See Also
• SQL functions: DATENAME, DATEPART, DAY, DAYOFYEAR, MONTH, YEAR, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

722 InterSystems SQL Reference

SQL Functions

LAST_IDENTITY (SQL)
A scalar function that returns the identity of the last row inserted, updated, deleted, or fetched.

Synopsis

LAST_IDENTITY()

Description
The LAST_IDENTITY function returns the %ROWID local variable value. The %ROWID local variable is set to a value
in Embedded SQL or ODBC. The %ROWID local variable is not set to a value by Dynamic SQL, the SQL Shell, or the
Management Portal SQL interface. Dynamic SQL instead sets a %ROWID object property.

The LAST_IDENTITY function takes no arguments. Note that the argument parentheses are required.

LAST_IDENTITY returns the IDENTITY field value of the last row affected by the current process. If the table has no
IDENTITY field, it returns the row ID (%ROWID) of the last row affected by the current process. The returned value is
data type INTEGER.

• For an Embedded SQL INSERT, UPDATE, DELETE or TRUNCATE TABLE statement, LAST_IDENTITY returns
the IDENTITY or %ROWID value of the last row modified.

• For an Embedded SQL cursor-based SELECT statement, LAST_IDENTITY returns the IDENTITY or %ROWID
value of the last row retrieved. However, if the cursor-based SELECT statement includes a DISTINCT keyword or a
GROUP BY clause, LAST_IDENTITY is not changed; it returns its prior value (if any).

• For an Embedded SQL single-row (non-cursor) SELECT statement, LAST_IDENTITY is not changed. The prior
value (if any) is returned.

At process initiation, LAST_IDENTITY returns NULL. Following a NEW %RowID, LAST_IDENTITY returns NULL.

If no rows were affected by an operation, LAST_IDENTITY is not changed; LAST_IDENTITY returns its prior value
(if any). Following a NEW %RowID, invoking LAST_IDENTITY returns NULL, but invoking %ROWID generates an
<UNDEFINED> error.

For further details on IDENTITY fields, see CREATE TABLE. Also see %ROWID.

Examples
The following example uses two Embedded SQL programs to return LAST_IDENTITY. The first example creates a new
table Sample.Students, The second example populates this table with data, then performs a cursor-based SELECT on the
data, returning LAST_IDENTITY for each operation.

Please run the two Embedded SQL programs in the order shown. (It is necessary to use two embedded SQL programs here
because embedded SQL cannot compile an INSERT statement unless the referenced table already exists.)

ObjectScript

 WRITE !,"Creating table"
 &sql(CREATE TABLE Sample.Students (
 StudentName VARCHAR(30),
 StudentAge INTEGER,
 StudentID IDENTITY))
 IF SQLCODE=0 {
 WRITE !,"Created table, SQLCODE=",SQLCODE }
 ELSEIF SQLCODE=-201 {
 WRITE !,"Table already exists, SQLCODE=",SQLCODE }

InterSystems SQL Reference 723

LAST_IDENTITY (SQL)

ObjectScript

 WRITE !,"Populating table"
 NEW %ROWCOUNT,%ROWID
 &sql(INSERT INTO Sample.Students (StudentName,StudentAge)
 SELECT Name,Age FROM Sample.Person WHERE Age <= '21')
 IF SQLCODE=0 {
 WRITE !,%ROWCOUNT," records added, last RowID is ",%ROWID,! }
 ELSE {
 WRITE !,"Insert failed, SQLCODE=",SQLCODE }
 &sql(SELECT LAST_IDENTITY()
 INTO :insertID
 FROM Sample.Students)
 WRITE !,"INSERT Last Identity is: ",insertID,!!
 /* Cursor-based SELECT Query */
 &sql(DECLARE C1 CURSOR FOR
 SELECT StudentName INTO :name FROM Sample.Students
 WHERE StudentAge = '17')
 &sql(OPEN C1)
 QUIT:(SQLCODE'=0)
 &sql(FETCH C1)
 WHILE (SQLCODE = 0) {
 WRITE name," is seventeen",!
 &sql(FETCH C1) }
 &sql(CLOSE C1)
 WRITE !,%ROWCOUNT," records queried, last RowID is ",%ROWID,!
 &sql(SELECT LAST_IDENTITY()
 INTO :qId)
 WRITE !,"SELECT Last Identity is: ",qId,!
 &sql(DROP TABLE Sample.Students)

See Also
• INSERT, UPDATE, DELETE, TRUNCATE TABLE

• DECLARE, OPEN, FETCH, CLOSE

• Embedded SQL

724 InterSystems SQL Reference

SQL Functions

LCASE (SQL)
A case-transformation function that converts all uppercase letters in a string to lowercase letters.

Synopsis

LCASE(string-expression)

{fn LCASE(string-expression)}

Description
LCASE converts uppercase letters to lowercase for display purposes. It has no effects on non-alphabetic characters. It
leaves unchanged punctuation and leading and trailing blank spaces.

LCASE does not force numerics to be interpreted as a string. InterSystems SQL converts numerics to canonical form,
removing leading and trailing zeros. InterSystems SQL does not convert numeric strings to canonical form.

The LOWER function can also be used convert uppercase letters to lowercase.

LCASE does not affect collation. The %SQLUPPER function is the preferred way in SQL to convert a data value for not
case-sensitive collation. Refer to %SQLUPPER for further information on case transformation for collation.

Arguments

string-expression

The string expression whose characters are to be converted to lowercase. The expression can be the name of a column, a
string literal, or the result of another scalar function, where the underlying data type can be represented as any character
type (such as CHAR or VARCHAR).

Examples
The following example returns each person’s name in lowercase letters:

SQL

SELECT TOP 10 Name,{fn LCASE(Name)} AS LowName
 FROM Sample.Person

LCASE also works on Unicode (non-ASCII) alphabetic characters, as shown in the following example, which converts
Greek letters from uppercase to lowercase:

SQL

SELECT LCASE($CHAR(920,913,923,913,931,931,913))

See Also
• SQL functions: LOWER, UCASE

• ObjectScript function: $ZCONVERT

InterSystems SQL Reference 725

LCASE (SQL)

LEAST (SQL)
A function that returns the least value from a series of expressions.

Synopsis

LEAST(expression,expression[,...])

Description
LEAST returns the smallest (least) value from a comma-separated series of expressions. Expressions are evaluated in left-
to-right order. If only one expression is provided, LEAST returns that value. If any expression is NULL, LEAST returns
NULL.

If all of the expression values resolve to canonical numbers, they are compared in numeric order. If a quoted string contains
a number in canonical format, it is compared in numeric order. However, if a quoted string contains a number not in
canonical format (for example, '00', '0.4', or '+4'), it is compared as a string. String comparisons are performed character-
by-character in collation order. Any string value is greater than any numeric value.

The empty string is greater than any numeric value, but less than any other string value.

If the returned value is a number, LEAST returns it in canonical format (leading and trailing zeros removed, etc.). If the
returned value is a string, LEAST returns it unchanged, including any leading or trailing blanks.

LEAST returns the least value from a comma-separated series of expressions. GREATEST returns the greatest value from
a comma-separated series of expressions. COALESCE returns the first non-NULL value from a comma-separated series
of expressions.

Data Type of Returned Value

If the data types of the expression values are different, the data type returned is the type most compatible with all of the
possible return values, the data type with the highest data type precedence. For example, if one expression is an integer and
another expression is a fractional number, LEAST returns a value with data type NUMERIC. This is because NUMERIC
is the data type with the highest precedence that is compatible with both. If, however, an expression is a literal number or
string, LEAST returns data type VARCHAR.

Arguments

expression

An expression that resolves to a number or a string. The values of these expressions are compared to each other and the
least value returned. An expression can be a field name, a literal, an arithmetic expression, a host variable, or an object
reference. You can list up to 140 comma-separated expressions.

Examples
In the following example, each LEAST compares three canonical numbers:

SQL

SELECT LEAST(22,2.2,-21) AS HighNum,
 LEAST('2.2','22','-21') AS HighNumStr

In the following example, each LEAST compare three numeric strings. However, each LEAST contains one string that is
non-canonical; these non-canonical values are compared as character strings. A character string is always greater than a
number:

726 InterSystems SQL Reference

SQL Functions

SQL

SELECT LEAST('22','+2.2','21'),
 LEAST('0.2','22','21')

In the following example, each LEAST compare three strings and returns the value with the lowest collation sequence:

SQL

SELECT LEAST('A','a',''),
 LEAST('a','aa','abc'),
 LEAST('#','0','7'),
 LEAST('##','00','77')

The following example compares two dates, treated as canonical numbers: the date of birth as a $HOROLOG integer, and
the integer 58074 converted to a date. It returns the date of birth for each person born in the 20th century. Anyone born
after December 31, 1999 is displayed with the default birth date of January 1, 2000:

SQL

SELECT Name,LEAST(DOB,TO_DATE(58074)) AS NewMillenium
FROM Sample.Person

See Also
• GREATEST function

• COALESCE function

• CONVERT function

• TO_NUMBER function

InterSystems SQL Reference 727

LEAST (SQL)

LEFT (SQL)
A scalar string function that returns a specified number of characters from the beginning (leftmost position) of a string
expression.

Synopsis

{fn LEFT(string-expression,count)}

Description
LEFT returns the specified number of characters from the beginning of a string. LEFT does not pad strings; if you specify
a larger number of characters than are in the string, LEFT returns the string. LEFT returns NULL if passed a NULL value
for either argument.

LEFT can only be used as an ODBC scalar function (with the curly brace syntax).

Arguments

string-expression

A string expression, which can be the name of a column, a string literal, or the result of another scalar function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR).

count

An integer that specifies the number of characters to return from the starting position of string-expression.

Examples
The following example returns the seven leftmost characters from each name in the Sample.Person table:

SQL

SELECT Name,{fn LEFT(Name,7)}AS ShortName
 FROM Sample.Person

The following example shows how LEFT handles a count that is longer than the string itself:

SQL

SELECT Name,{fn LEFT(Name,40)}
 FROM Sample.Person

No padding is performed.

See Also
LTRIM RIGHT RTRIM

728 InterSystems SQL Reference

SQL Functions

LEN (SQL)
A string function that returns the number of characters in a string expression.

Synopsis

LEN(string-expression)

Description
LEN returns the number of characters in a string expression

The LEN function is an alias for the LENGTH function. LEN is provided for TSQL compatibility. Refer to LENGTH for
further details.

Arguments

string-expression

A string expression, which can be the name of a column, a string literal, or the result of another scalar function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR).

LEN returns the INTEGER data type.

See Also
• LENGTH

InterSystems SQL Reference 729

LEN (SQL)

LENGTH (SQL)
A string function that returns the number of characters in a string expression.

Synopsis

LENGTH(string-expression)

{fn LENGTH(string-expression)}

Description
LENGTH returns an integer that denotes the number of characters, not the number of bytes, of the given string expression.
The string-expression can be a string (from which trailing blanks are removed), or a number (which InterSystems IRIS
converts to canonical form).

Note that LENGTH can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

LENGTH and the other length functions ($LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and
DATALENGTH) all perform the following operations:

• LENGTH returns the length of the Logical (internal data storage) value of a field, not the display value, regardless of
the SelectMode setting. All SQL functions always use the internal storage value of a field.

• LENGTH returns the length of the canonical form of a number. A number in canonical form excludes leading and
trailing zeros, leading signs (except a single minus sign), and a trailing decimal separator character. LENGTH returns
the string length of a numeric string. A numeric string is not converted to canonical form.

• LENGTH does not exclude leading blanks from strings. You can remove leading blanks from a string using the LTRIM
function.

LENGTH differs from the other length functions ($LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and
DATALENGTH) when performing the following operations:

• LENGTH excludes trailing blanks and the string-termination character.

$LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH do not exclude trailing blanks
and terminators.

• LENGTH returns NULL if passed a NULL value, and 0 if passed an empty string.

CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH also return NULL if passed a NULL value,
and 0 if passed an empty string. $LENGTH returns 0 if passed a NULL value, and 0 if passed an empty string.

• LENGTH does not support data stream fields. Specifying a stream field for string-expression results in an SQLCODE
-37.

$LENGTH also does not support stream fields. CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH
functions do support data stream fields.

Arguments

string-expression

A string expression, which can be the name of a column, a string literal, or the result of another scalar function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR).

730 InterSystems SQL Reference

SQL Functions

Examples
In the following example, InterSystems IRIS first converts each number to canonical form (removing leading and trailing
zeros, resolving leading signs, and removing a trailing decimal separator character). Each LENGTH returns a length of 1:

SQL

SELECT {fn LENGTH(7.00)} AS CharCount,
 {fn LENGTH(+007)} AS CharCount,
 {fn LENGTH(007.)} AS CharCount,
 {fn LENGTH(00000.00)} AS CharCount,
 {fn LENGTH(-0)} AS CharCount

In the following example, the first LENGTH removes the leading zero, returning a length value of 2; the second LENGTH
treats the numeric value as a string, and does not remove the leading zero, returning a length value of 3:

SQL

SELECT LENGTH(0.7) AS CharCount,
 LENGTH('0.7') AS CharCount

The following example returns the value 12:

SQL

SELECT LENGTH('INTERSYSTEMS') AS CharCount

The following example shows how LENGTH handles leading and trailing blanks. The first LENGTH returns 15, because
LENGTH excludes trailing blanks, but not leading blanks. The second LENGTH returns 12, because LTRIM excludes
the leading blanks:

SQL

SELECT LENGTH(' INTERSYSTEMS ') AS CharCount,
 LENGTH(LTRIM(' INTERSYSTEMS ')) AS CharCount

The following example returns the number of characters in each Name value in the Sample.Person table:

SQL

SELECT Name,{fn LENGTH(Name)} AS CharCount
FROM Sample.Person
ORDER BY CharCount

The following example returns the number of characters in the DOB (date of birth) field. Note that the length returned (by
LENGTH, CHAR_LENGTH, and CHARACTER_LENGTH) is the internal ($HOROLOG) format of the date, not the
display format. The display length of DOB is ten characters; all three length functions return the internal length of 5:

SQL

SELECT DOB,{fn LENGTH(DOB)} AS LenCount,
CHAR_LENGTH(DOB) AS CCount,
CHARACTER_LENGTH(DOB) AS CtrCount
FROM Sample.Person

The following Embedded SQL example gives the length of a string of Unicode characters. The length returned is the
number of characters (7), not the number of bytes.

InterSystems SQL Reference 731

LENGTH (SQL)

ObjectScript

 SET a=$CHAR(920,913,923,913,931,931,913)
 &sql(SELECT LENGTH(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The Greek Sea: ",a,!,$LENGTH(a),!,b }

See Also
• SQL functions: CHAR_LENGTH, CHARACTER_LENGTH, DATALENGTH, LEN, $LENGTH

• ObjectScript function: $LENGTH

732 InterSystems SQL Reference

SQL Functions

$LENGTH (SQL)
A string function that returns the number of characters or the number of delimited substrings in a string.

Synopsis

$LENGTH(expression[,delimiter])

Description
$LENGTH returns the number of characters in a specified string or the number of substrings in a specified string,
depending on the arguments used.

• $LENGTH(expression) returns the number of characters in the string. If the expression is an empty string (''), $LENGTH
returns 0. If the expression is NULL, $LENGTH returns 0.

• $LENGTH(expression,delimiter) returns the number of substrings within the string. $LENGTH returns the number
of substrings separated from one another by the indicated delimiter. This number is always equal to the number of
delimiter instances found in the expression string, plus one.

$LENGTH(expression) and other Length Functions

$LENGTH(expression) and the other length functions (LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and
DATALENGTH) all perform the following operations:

• $LENGTH returns the length of the Logical (internal data storage) value of a field, not the display value, regardless
of the SelectMode setting. All SQL functions always use the internal storage value of a field.

• $LENGTH returns the length of the canonical form of a number. A number in canonical form excludes leading and
trailing zeros, leading signs (except a single minus sign), and a trailing decimal separator character. $LENGTH returns
the string length of a numeric string. A numeric string is not converted to canonical form.

• $LENGTH does not exclude leading blanks from strings. You can remove leading blanks from a string using the
LTRIM function.

$LENGTH differs from the other length functions (LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and
DATALENGTH) when performing the following operations:

• $LENGTH does not exclude trailing blanks and terminators.

CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH also do not exclude trailing blanks and termi-
nators. LENGTH excludes trailing blanks and the string-termination character.

• $LENGTH returns 0 if passed a NULL value, and 0 if passed an empty string.

LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH return NULL if passed a NULL
value, and 0 if passed an empty string.

• $LENGTH does not support data stream fields. Specifying a stream field for string-expression results in an SQLCODE
-37.

LENGTH also does not support stream fields. CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH
functions do support data stream fields.

• $LENGTH returns data type SMALLINT. All the other length functions return data type INTEGER.

InterSystems SQL Reference 733

$LENGTH (SQL)

NULL and Empty String Arguments

$LENGTH(expression) does not distinguish between the empty string ('') and NULL (the absence of a value). It returns a
length of 0 for both an empty string ('') value and for NULL.

$LENGTH(expression,delimiter) with a non-null delimiter returns a delimited substring count of 1 if no match occurred.
The full string is a single substring containing no delimiters. This is true even when expression is the empty string (''), or
expression is NULL. However, an empty string does match itself, returning a value of 2.

The following table shows the possible combinations of a string ('abc'), empty string (''), or NULL expression value paired
with a non-matching string ('^'), empty string (''), or NULL delimiter value:

$LENGTH('abc') = 3$LENGTH('') = 0$LENGTH(NULL) = 0

$LENGTH(’abc‘,NULL) = 0$LENGTH('',NULL) = 0$LENGTH(NULL,NULL) = 0

$LENGTH(’abc‘,'') = 1$LENGTH('','') = 2$LENGTH(NULL,'') = 1

$LENGTH('abc','^') = 1$LENGTH(’‘,'^') = 1$LENGTH(NULL,'^') = 1

Arguments

expression

The target string. It can be a numeric value, a string literal, the name of any variable, or any valid expression.

delimiter

An optional string that demarcates separate substrings in the target string. It must be a string literal, but can be of any length.
The enclosing quotation marks are required.

$LENGTH returns the SMALLINT data type.

Examples
The following example returns 6, the length of the string:

SQL

SELECT $LENGTH('ABCDEG') AS StringLength

The following example returns 3, the number of substrings within the string, as delimited by the dollar sign ($) character.

SQL

SELECT $LENGTH('ABC$DEF$EFG','$') AS SubStrings

If the specified delimiter is not found in the string $LENGTH returns 1, because the only substring is the string itself:

SQL

SELECT $LENGTH('ABCDEG','$') AS SubStrings

In the following example, the first $LENGTH function returns 11, the number of characters in a (including, of course, the
space character). The second $LENGTH function returns 2, the number of substrings in a using b, the space character, as
the substring delimiter.

SQL

SELECT $LENGTH("HELLO WORLD"), $LENGTH("HELLO WORLD"," ")

734 InterSystems SQL Reference

SQL Functions

The following example returns 0 because the string tested is the null string:

SQL

SELECT $LENGTH(NULL) AS StringLength

The following example returns 1 because a delimiter is specified and not found. There is one substring, which is the null
string:

SQL

SELECT $LENGTH(NULL,'$') AS SubStrings

The following example returns 0 because the delimiter is the null string:

SQL

SELECT $LENGTH('ABCDEFG',NULL) AS SubStrings

Notes

$LENGTH, $PIECE, and $LIST

• $LENGTH with one argument returns the number of characters in a string. This function can be used with the
$EXTRACT function, which locates a substring by position and returns the substring value.

• $LENGTH with two arguments returns the number of substrings in a string, based on a delimiter. This function can
be used with the $PIECE function, which locates a substring by a delimiter and returns the substring value.

• $LENGTH should not be used on encoded lists created using $LISTBUILD or $LIST. Use $LISTLENGTH to
determine the number of substrings (list elements) in an encoded list string.

The $LENGTH, $FIND, $EXTRACT, and $PIECE functions operate on standard character strings. The various $LIST
functions operate on encoded character strings, which are incompatible with standard character strings. The only exceptions
are the $LISTGET function and the one-argument and two-argument forms of $LIST, which take an encoded character
string as input, but output a single element value as a standard character string.

See Also
• SQL functions: CHAR_LENGTH, CHARACTER_LENGTH, DATALENGTH, $EXTRACT, $FIND, LENGTH,

$LIST, $LISTGET, $PIECE

• ObjectScript functions: $EXTRACT, $FIND, $LENGTH, $LIST, $LISTBUILD, $LISTGET, $PIECE

InterSystems SQL Reference 735

$LENGTH (SQL)

$LIST (SQL)
A list function that returns elements in a list.

Synopsis

$LIST(list[,position[,end]])

Description
$LIST returns elements from a list. The elements returned depend on the arguments used.

• $LIST(list) returns the first element in the list as a text string.

• $LIST(list,position) returns the element indicated by the specified position as a text string, where a position value of
1 represents the first element in the list. The position argument must evaluate to an integer.

• $LIST(list,position,end) returns a “sublist” (an encoded list string) containing the elements of the list from the specified
start position through the specified end position.

This function returns data of type VARCHAR.

Arguments

list

An encoded character string containing one or more elements. You can create a list using the SQL $LISTBUILD function
or the ObjectScript $LISTBUILD function. You can convert a delimited string into a list using the SQL $LISTFROMSTRING
function or the ObjectScript $LISTFROMSTRING function. You can extract a list from an existing list using the SQL
$LIST function or the ObjectScript $LIST function.

position

The position of a list element to return. List elements are counted from 1. If position is omitted, the first element is returned.
If the value of position is 0 or greater than the number of elements in the list, InterSystems SQL does not return a value. If
the value of position is negative one (–1), $LIST returns the final element in the list. For example, the following command
will return “Green”:

SQL

SELECT $LIST($LISTBUILD("Red","Blue","Green"),-1)

If the end argument is specified, position specifies the first element in a range of elements. Even when only one element
is returned (when position and end are the same number) this element is returned as an encoded list string. Thus, $LIST(x,2)
(which returns the element as an ordinary string) is not identical to $LIST(x,2,2) (which returns the element as an
encoded list string).

end

The position of the last element in a range of elements. You must specify position to specify end. When end is specified,
the value returned is an encoded list string. Because of this encoding, such strings should only be processed by other $LIST
functions.

If the value of end is:

• greater than position, an encoded string containing a list of elements is returned.

• equal to position, an encoded string containing the one element is returned.

736 InterSystems SQL Reference

SQL Functions

• less than position, no value is returned.

• greater than the number of elements in list, it is equivalent to specifying the final element in the list.

• negative one (–1), it is equivalent to specifying the final element in the list.

When specifying end, you can specify a position value of zero (0). In this case, 0 is equivalent to 1.

Working with Lists
A table can contain one or more List fields. Because a list is an encoded string, these fields can be defined as data type
%List (%Library.List) or data type VARCHAR. A field of data type %List can be identified as CType (client data type) =
6.

The data type does not restrict the field’s permitted values upon insert or update. The user must therefore make sure that
all data values in a List field are List encoded character strings. If the SQL $LIST function encounters a non-encoded string
data value, the SELECT operation fails with an SQLCODE -400 alongside a %msg such as the following: Unexpected
error occurred: <LIST>%0AmBuncommitted+1^%sqlcq.USER.cls61.1.

A list can be supplied to the SQL $LIST function by using a host variable, or by specifying a $LISTBUILD within SQL.
Both are shown in the following Embedded SQL example:

ObjectScript

 SET mylist=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:mylist,2),$LIST($LISTBUILD('Red','Blue','Green'),3)
 INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE "Error code ",SQLCODE,! }
 ELSE {
 WRITE !,"The host varable list element is ",a,!
 WRITE !,"The SQL $LISTBUILD list element is ",b,! }

A list can be extracted from another list by using the $LIST function:

SQL

SELECT $LIST($LISTBUILD("Red","Blue","Green"),2,3)

In the following Embedded SQL example, sublist is not a valid list argument, because it is a single element returned as an
ordinary string, not an encoded list string. Only the three-argument form of $LIST returns an encoded list string. In this
case, an SQLCODE -400 fatal error is generated:

ObjectScript

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a,2)
 INTO :sublist)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 &sql(SELECT $LIST(:sublist,1)
 INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The sublist is"
 ZZDUMP c ; Variable not set
 }
 }

Examples
In the following example, both commands return “Red”, the first element in the list. The first returns the first element by
default, and the second returns the first element because the position argument is set to 1:

InterSystems SQL Reference 737

$LIST (SQL)

SQL

SELECT $LIST($LISTBUILD("Red","Blue","Green"))
SELECT $LIST($LISTBUILD("Red","Blue","Green"),1)

The following example returns “Blue”, the second element in the list:

ObjectScript

SELECT $LIST($LISTBUILD("Red","Blue","Green"),2)

The following Embedded SQL example returns “Red Blue”, a two-element list string beginning with the first element and
ending with the second element in the list. ZZDUMP is used rather than WRITE, because a list string contains special
(non-printing) encoding characters:

ObjectScript

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a,1,2)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The encoded sublist is"
 ZZDUMP b ; Prints "Red Blue "
 }

The following example returns the last element in a list of unknown length. The first SELECT statement returns the last
element as an ordinary string, whereas the second statement returns it as an encoded list string:

SQL

SELECT $LIST($LISTBUILD("Red","Blue","Green"),-1)
SELECT $LIST($LISTBUILD("Red","Blue","Green"),$LISTLENGTH($LISTBUILD("Red","Blue","Green")),-1)

Notes

Invalid Argument Values

If the expression in the list argument does not evaluate to a valid list, an SQLCODE -400 fatal error is generated:

SQL

SELECT $LIST("the quick brown fox",1)

If the value of the position argument or the end argument is less than -1, an SQLCODE -400 fatal error is generated:

ObjectScript

SELECT $LIST($LISTBUILD("Red","Blue","Green"),-2,3)

If the value of the position argument refers to a nonexistent list member and no end argument is used, an SQLCODE -400
fatal error is generated:

SQL

SELECT $LIST($LISTBUILD("Red","Blue","Green"),7)

However, if an end argument is used, no error occurs, and the null string is returned.

SQL

SELECT $LIST($LISTBUILD("Red","Blue","Green"),7,-1)

738 InterSystems SQL Reference

SQL Functions

If the value of the position argument identifies an element with an undefined value, an SQLCODE –400 fatal error is gen-
erated:

SQL

SELECT $LIST($LISTBUILD("Red",,"Green"),2)

Two-Argument and Three-Argument $LIST

$LIST(list,1) is not equivalent to $LIST(list,1,1) because the former returns a string, while the latter returns a single-element
list string. If there are no elements to return, the two-argument form does not return a value; the three-argument form returns
a null string.

Unicode

If one Unicode character appears in a list element, that entire list element is represented as Unicode (wide) characters. Other
elements in the list are not affected.

The following Embedded SQL example shows two lists. The a list consists of two elements which contain only ASCII
characters. The b list consists of two elements: the first element contains a Unicode character ($CHAR(960) = the pi
symbol); the second element contains only ASCII characters.

ObjectScript

 SET a=$LISTBUILD("ABC"_$CHAR(68),"XYZ")
 SET b=$LISTBUILD("ABC"_$CHAR(960),"XYZ")
 &sql(SELECT $LIST(:a,1),$LIST(:a,2),$LIST(:b,1),$LIST(:b,2)
 INTO :a1,:a2,:b1,:b2)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The ASCII list a elements: "
 ZZDUMP a1
 ZZDUMP a2
 WRITE !,"The Unicode list b elements: "
 ZZDUMP b1
 ZZDUMP b2 }

Note that InterSystems IRIS encodes the first element of b entirely in wide Unicode characters. The second element of b
contains no Unicode characters, and thus InterSystems IRIS encodes it using narrow ASCII characters.

See Also
• SQL functions: $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET, $LISTLENGTH,

$LISTSAME, $LISTTOSTRING, $PIECE

• ObjectScript functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET,
$LISTLENGTH, $LISTNEXT, $LISTSAME, $LISTTOSTRING, $LISTVALID

InterSystems SQL Reference 739

$LIST (SQL)

$LISTBUILD (SQL)
A list function that builds a list from strings.

Synopsis

$LISTBUILD(element [,...])

Description
$LISTBUILD takes one or more expressions and returns a list with one element for each expression.

The following functions can be used to create a list:

• $LISTBUILD, which creates a list from multiple strings, one string per element.

• $LISTFROMSTRING, which creates a list from a single string containing multiple delimited elements.

• $LIST, which extracts a sublist from an existing list.

$LISTBUILD is used with the other InterSystems SQL list functions: $LIST, $LISTDATA, $LISTFIND,
$LISTFROMSTRING, $LISTGET, $LISTLENGTH, and $LISTTOSTRING.

Note: $LISTBUILD and the other $LIST functions use an optimized binary representation to store data elements. For
this reason, equivalency tests may not work as expected with some $LIST data. Data that might, in other contexts,
be considered equivalent, may have a different internal representation. For example, $LISTBUILD(1) is not
equal to $LISTBUILD('1').

For the same reason, a list string value returned by $LISTBUILD should not be used in character search and
parse functions that use a delimiter character, such as $PIECE and the two-argument form of $LENGTH. Elements
in a list created by $LISTBUILD are not marked by a character delimiter, and thus can contain any character.

Arguments

element

Any expression, or comma-separated list of expressions.

Examples
The following example takes three strings and produces a three-element list:

SQL

SELECT $LISTBUILD("Red","White","Blue")

Notes

Omitting Arguments

Omitting an element expression yields an element whose value is NULL. For example, the following example contains
two $LISTBUILD statements that both produce a three-element list whose second element has an undefined (NULL)
value:

SQL

SELECT $LISTBUILD("Red",,"Blue"), $LISTBUILD("Red",'',"Blue")

740 InterSystems SQL Reference

SQL Functions

Additionally, if a $LISTBUILD expression is undefined, the corresponding list element has an undefined value. The fol-
lowing example produces a two-element list whose first element is "Red" and whose second element has an undefined
value:

SQL

SELECT $LISTBUILD('Red',:z)

The following example produces a two-element list. The trailing comma indicates the second element has an undefined
value:

SQL

SELECT $LISTBUILD('Red',)

Providing No Arguments

Invoking the $LISTBUILD function with no arguments returns a list with one element whose data value is undefined. This
is not the same as NULL. The following are valid $LISTBUILD statements that create “empty” lists:

SQL

SELECT $LISTBUILD(), $LISTBUILD(NULL)

The following are valid $LISTBUILD statements that create a list element that contains an empty string:

SQL

SELECT $LISTBUILD(''), $LISTBUILD(CHAR(0))

Nesting Lists

An element of a list may itself be a list. For example, the following statement produces a three-element list whose third
element is the two-element list, "Walnut,Pecan":

SQL

SELECT $LISTBUILD('Apple','Pear',$LISTBUILD('Walnut','Pecan'))

Concatenating Lists

The result of concatenating two lists with the SQL Concatenate operator (||) is another list. For example, the following
SELECT items produce the same list, "A,B,C":

SQL

SELECT $LISTBUILD('A','B','C') AS List,
 $LISTBUILD('A','B')||$LISTBUILD('C') AS CatList

In the following example, the first two select items result in the same two-element list; the third select item results in NULL
(because concatenating NULL to anything results in NULL); the fourth and fifth select items result in the same three-element
list:

SQL

SELECT
 $LISTBUILD('A','B') AS List,
 $LISTBUILD('A','B')||'' AS CatEStr,
 $LISTBUILD('A','B')||NULL AS CatNull,
 $LISTBUILD('A','B')||$LISTBUILD('') AS CatEList,
 $LISTBUILD('A','B')||$LISTBUILD(NULL) AS CatNList

InterSystems SQL Reference 741

$LISTBUILD (SQL)

Unicode

If one or more characters in a list element is a wide (Unicode) character, all characters in that element are represented as
wide characters. To ensure compatibility across systems, $LISTBUILD always stores these bytes in the same order,
regardless of the hardware platform. Wide characters are represented as byte strings. For further details, refer to the
ObjectScript $LISTBUILD function.

See Also
• SQL functions: $LIST, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET, $LISTLENGTH, $LISTSAME,

$LISTTOSTRING, $PIECE

• ObjectScript functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET,
$LISTLENGTH, $LISTNEXT, $LISTSAME, $LISTTOSTRING, $LISTVALID

742 InterSystems SQL Reference

SQL Functions

$LISTDATA (SQL)
A list function that indicates whether the specified element exists and has a data value.

Synopsis

$LISTDATA(list[,position])

Description
$LISTDATA checks for data in the requested element in a list. $LISTDATA returns a value of 1 if the element indicated
by the position argument is in the list and has a data value. $LISTDATA returns a value of a 0 if the element is not in the
list or does not have a data value.

This function returns data of type SMALLINT.

Arguments

list

An encoded character string containing one or more elements. You can create a list using the SQL $LISTBUILD function
or the ObjectScript $LISTBUILD function. You can convert a delimited string into a list using the SQL $LISTFROMSTRING
function or the ObjectScript $LISTFROMSTRING function. You can extract a list from an existing list using the SQL
$LIST function or the ObjectScript $LIST function.

position

If you omit the position argument, $LISTDATA evaluates the first element. If the value of the position argument is -1, it
is equivalent to specifying the final element of the list. If the value of the position argument refers to a nonexistent list
member, $LISTDATA returns 0.

Examples
The following Embedded SQL examples show the results of the various values of the position argument.

All of the following $LISTDATA statements return a value of 1:

ObjectScript

 KILL Y
 SET a=$LISTBUILD("Red",,Y,"","Green")
 &sql(SELECT $LISTDATA(:a), $LISTDATA(:a,1),
 $LISTDATA(:a,4), $LISTDATA(:a,5), $LISTDATA(:a,-1)
 INTO :b,:c, :d, :e, :f)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"1st element status ",b ; 1st element default
 WRITE !,"1st element status ",c ; 1st element specified
 WRITE !,"4th element status ",d ; 4th element null string
 WRITE !,"5th element status ",e ; 5th element in 5-element list
 WRITE !,"last element status ",f ; last element in 5-element list
 }

The following $LISTDATA statements return a value of 0 for the same five-element list:

InterSystems SQL Reference 743

$LISTDATA (SQL)

ObjectScript

 KILL Y
 SET a=$LISTBUILD("Red",,Y,"","Green")
 &sql(SELECT $LISTDATA(:a,2), $LISTDATA(:a,3),
 $LISTDATA(:a,0), $LISTDATA(:a,6)
 INTO :b,:c, :d, :e)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"2nd element status ",b ; 2nd element is undefined
 WRITE !,"3rd element status ",c ; 3rd element is killed variable
 WRITE !,"0th element status ",d ; zero position nonexistent
 WRITE !,"6th element status ",e ; 6th element in 5-element list
 }

Notes

Invalid Argument Values

If the expression in the list argument does not evaluate to a valid list, an SQLCODE -400 fatal error occurs:

ObjectScript

 &sql(SELECT $LISTDATA('fred') INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The the element is ",b }

If the value of the position argument is less than -1, an SQLCODE -400 fatal error occurs:

ObjectScript

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTDATA(:a,-3) INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"A neg-num position status ",c }

This does not occur when position is a nonnumeric value:

ObjectScript

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTDATA(:a,'g') INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Error code ",SQLCODE
 WRITE !,"A nonnumeric position status ",c }

See Also
• SQL functions: $LIST, $LISTBUILD, $LISTFIND, $LISTFROMSTRING, $LISTGET, $LISTLENGTH, $LISTSAME,

$LISTTOSTRING, $PIECE

• ObjectScript functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET,
$LISTLENGTH, $LISTNEXT, $LISTSAME, $LISTTOSTRING, $LISTVALID

744 InterSystems SQL Reference

SQL Functions

$LISTFIND (SQL)
A list function that searches a specified list for the requested value.

Synopsis

$LISTFIND(list,value[,startafter])

Description
$LISTFIND searches the specified list for the first instance of the requested value. The search begins with the element
after the position indicated by the startafter argument. If you omit the startafter argument, $LISTFIND assumes a startafter
value of 0 and starts the search with the first element (element 1). If the value is found, $LISTFIND returns the position
of the matching element. If the value is not found or if the value of the startafter argument refers to a nonexistent list
member, $LISTFIND returns a 0.

This function returns data of type SMALLINT.

Arguments

list

An expression that evaluates to a valid list. A list is an encoded character string containing one or more elements. You can
create a list using the SQL or ObjectScript $LISTBUILD or $LISTFROMSTRING functions. You can extract a list from
an existing list using the SQL or ObjectScript $LIST function.

value

An expression containing the search element. A character string.

startafter

An optional integer expression interpreted as a list position. The search starts with the element after this position. Zero and
–1 are valid values; –1 never returns an element. Zero is the default.

Examples
The following example returns 2, the position of the first occurrence of the requested string:

SQL

SELECT $LISTFIND($LISTBUILD("Red","Blue","Green"),'Blue')

The following example returns 0, indicating the requested string was not found:

ObjectScript

SELECT $LISTFIND($LISTBUILD("Red","Blue","Green"),'Orange')

The following three examples show the effect of using the startafter argument. The first example does not find the requested
string and returns 0 because the requested string occurs at the startafter position:

SQL

SELECT $LISTFIND($LISTBUILD("Red","Blue","Green"),'Blue',2)

The second example finds the requested string at the first position by setting startafter to zero (the default value):

InterSystems SQL Reference 745

$LISTFIND (SQL)

SQL

SELECT $LISTFIND($LISTBUILD("Red","Blue","Green"),'Red',0)

The third example finds the second occurrence of the requested string and returns 5, because the first occurs before the
startafter position:

SQL

SELECT $LISTFIND($LISTBUILD("Red","Blue","Green","Yellow","Blue"),'Blue',3)

The $LISTFIND function only matches complete elements. Thus, the following example returns 0 because no element of
the list is equal to the string “B”, though all of the elements contain “B”:

ObjectScript

SELECT $LISTFIND($LISTBUILD("ABC","BCD","BBB"),'B')

Notes

Invalid Argument Values

If the expression in the list argument does not evaluate to a valid list, the $LISTFIND function generates an SQLCODE -
400 fatal error.

SQL

SELECT $LISTFIND("Blue",'Blue')

If the value of the startafter argument is -1, $LISTFIND always returns zero (0).

SQL

SELECT $LISTFIND($LISTBUILD("Red","Blue","Green"),'Blue',-1)

If the value of the startafter argument is less than -1, invoking the $LISTFIND function generates an SQLCODE -400
fatal error.

ObjectScript

SELECT $LISTFIND($LISTBUILD("Red","Blue","Green"),'Blue',-3)

See Also
• SQL functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFROMSTRING, $LISTGET, $LISTLENGTH, $LISTSAME,

$LISTTOSTRING, $PIECE

• ObjectScript functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET,
$LISTLENGTH, $LISTNEXT, $LISTSAME, $LISTTOSTRING, $LISTVALID

746 InterSystems SQL Reference

SQL Functions

$LISTFROMSTRING (SQL)
A list function that creates a list from a string.

Synopsis

$LISTFROMSTRING(string[,delimiter])

Description
$LISTFROMSTRING takes a quoted string containing delimited elements and returns a list. A list represents data in an
encoded format which does not use delimiter characters. Thus a list can contain all possible characters, and is ideally suited
for bitstring data. Lists are handled using the ObjectScript and InterSystems SQL $LIST functions.

Arguments

string

A string literal (enclosed in single quotation marks), a numeric, or a variable or expression that evaluates to a string. This
string can contain one or more substrings (elements), separated by a delimiter. The string data elements must not contain
the delimiter character (or string), because the delimiter character is not included in the output list.

delimiter

An optional character (or string of characters) used to delimit substrings within the input string. It can be a numeric or string
literal (enclosed in single quotation marks), the name of a variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character string, the individual characters of which can be
used within string data. If you specify no delimiter, the default delimiter is the comma (,) character.

Examples
The following example takes a string of names which are separated by a blank space, and creates a list:

SQL

SELECT $LISTFROMSTRING("Deborah Noah Martha Bowie",' ')

The following example uses the default delimiter (the comma character), and creates a list:

SQL

SELECT $LISTFROMSTRING("Deborah,Noah,Martha,Bowie")

See Also
• SQL functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTGET $LISTLENGTH $LISTSAME $LIST-

TOSTRING $PIECE

• ObjectScript functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET
$LISTLENGTH $LISTNEXT $LISTSAME $LISTTOSTRING $LISTVALID

InterSystems SQL Reference 747

$LISTFROMSTRING (SQL)

$LISTGET (SQL)
A list function that returns an element in a list or a specified default value.

Synopsis

$LISTGET(list[,position[,default]])

Description
$LISTGET returns the requested element in the specified list as a standard character string. If the value of the position
argument refers to a nonexistent member or identifies an element with an undefined value, the specified default value is
returned.

The $LISTGET function is identical to the one- and two-argument forms of the $LIST function except that, under conditions
that would cause $LIST to return a null string, $LISTGET returns a default value.

This function returns data of type VARCHAR.

You can use $LISTGET to retrieve a field value from a serial container field. In the following example, Home is a serial
container field, the third element of which is Home_State:

SQL

SELECT Name,$LISTGET(Home,3) AS HomeState
FROM Sample.Person

Arguments

list

An encoded character string containing one or more elements. You can create a list using the SQL $LISTBUILD function
or the ObjectScript $LISTBUILD function. You can convert a delimited string into a list using the SQL $LISTFROMSTRING
function or the ObjectScript $LISTFROMSTRING function. You can extract a list from an existing list using the SQL
$LIST function or the ObjectScript $LIST function.

position

The position argument must evaluate to an integer. If it is omitted, by default, the function examines the first element of
the list. If the value of the position argument is -1, it is equivalent to specifying the last element of the list.

default

A character string. If you omit the default argument, a zero-length string is assumed for the default value.

Examples
The $LISTGET functions in the following Embedded SQL example both return “Red”, the first element in the list:

ObjectScript

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a),$LISTGET(:a,1)
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The one-arg element returned is ",b
 WRITE !,"The two-arg element returned is ",c }

748 InterSystems SQL Reference

SQL Functions

The $LISTGET functions in the following Embedded SQL example both return “Green”, the third and last element in the
list:

ObjectScript

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a,3),$LISTGET(:a,-1)
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The third element is ",b
 WRITE !,"The last element is ",c }

The $LISTGET functions in the following Embedded SQL example both return a value upon encountering the undefined
2nd element in the list. The first returns a question mark (?), which the user defined as the default value. The second returns
a null string because a default value is not specified:

ObjectScript

 SET a=$LISTBUILD("Red",,"Green")
 &sql(SELECT $LISTGET(:a,2,'?'),$LISTGET(:a,2)
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The default value is ",b
 WRITE !,"The no-default value is ",c }

The $LISTGET functions in the following Embedded SQL example both specify a position greater than the last element
in the three-element list. The first returns a null string because the default value is not specified. The second returns the
user-specified default value, “ERR”:

ObjectScript

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a,4),$LISTGET(:a,4,'ERR')
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The no-default 4th element is ",b
 WRITE !,"The default for 4th element is ",c }

The $LISTGET functions in the following Embedded SQL example both return a null string:

ObjectScript

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a,0),$LISTGET(NULL)
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The zero element is ",b
 WRITE !,"The NULL element is ",c }

Notes

Invalid Argument Values

If the expression in the list argument does not evaluate to a valid list, an SQLCODE -400 fatal error occurs because the
$LISTGET return variable remains undefined. This occurs even when a default value is supplied, as in the following
Embedded SQL example:

InterSystems SQL Reference 749

$LISTGET (SQL)

ObjectScript

 &sql(SELECT $LISTGET('fred',1,'failsafe') INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The non-list element is ",b ; Variable not set
 }

If the value of the position argument is less than -1, an SQLCODE -400 fatal error occurs because the $LISTGET return
variable remains undefined. This occurs even when a default value is supplied, as in the following Embedded SQL example:

ObjectScript

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a,-3,'failsafe') INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"A neg-num position returns ",c ; Variable not set
 }

This does not occur when position is a nonnumeric value:

ObjectScript

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a,'g','failsafe') INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"A nonnumeric position returns ",c }

See Also
• SQL functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTLENGTH $LISTSAME

$LISTTOSTRING $PIECE

• ObjectScript functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET
$LISTLENGTH $LISTNEXT $LISTSAME $LISTTOSTRING $LISTVALID

750 InterSystems SQL Reference

SQL Functions

$LISTLENGTH (SQL)
A list function that returns the number of elements in a specified list.

Synopsis

$LISTLENGTH(list)

Description
$LISTLENGTH returns the number of elements in list.

This function returns data of type SMALLINT.

Arguments

list

An expression that evaluates to a valid list. A list is an encoded character string containing one or more elements. You can
create a list using the SQL or ObjectScript $LISTBUILD or $LISTFROMSTRING functions. You can extract a list from
an existing list using the SQL or ObjectScript $LIST function.

Examples
The following example returns 3, because there are 3 elements in the list:

SQL

SELECT $LISTLENGTH($LISTBUILD("Red","Blue","Green"))

The following SQL example also returns 3, because there are 3 elements in the list:

SQL

SELECT $LISTLENGTH($LISTBUILD('Red','Blue','Green'))

The following example also returns 3. There are 3 elements in the list, though the second element contains no data:

SQL

SELECT $LISTLENGTH($LISTBUILD("Red",,"Green"))

In the following SQL example, each $LISTLENGTH returns 3, because there are 3 elements in the list, though the second
element contains no data:

SQL

SELECT $LISTLENGTH($LISTBUILD('Red','','Green')),
 $LISTLENGTH($LISTBUILD('Red',NULL,'Green')),
 $LISTLENGTH($LISTBUILD('Red',,'Green'))

Notes

Invalid Lists

If list is not a valid list, an SQLCODE -400 fatal error is generated:

InterSystems SQL Reference 751

$LISTLENGTH (SQL)

SQL

SELECT $LISTLENGTH("fred")

If the ObjectScript $LISTBUILD function is used to build a list that contains only the null string, this is a valid list, con-
taining one element:

ObjectScript

SELECT $LISTLENGTH($LISTBUILD(""))

Null Lists

The SQL $LISTLENGTH function and the ObjectScript $LISTLENGTH function differ in how they handle a null list
(a list containing no elements).

The following three examples show how the $LISTLENGTH SQL function handles a null list. In the first two examples,
list is the null string, and a null string is returned:

SQL

SELECT $LISTLENGTH("")

SQL

SELECT $LISTLENGTH(NULL)

In the third example, list is the value $CHAR(0), which is an invalid list; an SQLCODE -400 fatal error is generated:

SQL

SELECT $LISTLENGTH('')

Note that this differs from how the ObjectScript $LISTLENGTH function handles a null list. In ObjectScript, the null
string ("") is used to represent a null list, a list containing no elements. Because it contains no list elements, it has a
$LISTLENGTH count of 0, as shown in the following example:

ObjectScript

 WRITE $LISTLENGTH("")

$LISTLENGTH and Nested Lists

The following example returns 3, because $LISTLENGTH does not recognize the individual elements in nested lists:

ObjectScript

SELECT $LISTLENGTH($LISTBUILD("Apple","Pear",$LISTBUILD("Walnut","Pecan")))

See Also
• SQL list functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET, $LISTSAME,

$LISTTOSTRING

• Other SQL functions: $PIECE

• ObjectScript list functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET,
$LISTLENGTH, $LISTNEXT, $LISTSAME, $LISTTOSTRING, $LISTVALID

752 InterSystems SQL Reference

SQL Functions

$LISTSAME (SQL)
A list function that compares two lists and returns a boolean value.

Synopsis

$LISTSAME(list1,list2)

Description
$LISTSAME compares the contents of two lists and returns 1 if the lists are the same. If the lists are not the same,
$LISTSAME returns 0. $LISTSAME compares the two lists element-by-element. For two lists to be the same, they must
contain the same number of elements and each element in list1 must match the corresponding element in list2.

$LISTSAME compares list elements using their string representations. $LISTSAME comparisons are case-sensitive.
$LISTSAME compares the two lists element-by-element in left-to-right order. Therefore $LISTSAME returns a value of
0 when it encounters the first non-matching pair of list elements; it does not check subsequent items to determine if they
are valid list elements.

This function returns data of type SMALLINT.

Arguments

list (list1 and list2)

A list is an encoded character string containing one or more elements. You can create a list using the SQL $LISTBUILD
function or the ObjectScript $LISTBUILD function. You can convert a delimited string into a list using the SQL $LIST-
FROMSTRING function or the ObjectScript $LISTFROMSTRING function. You can extract a list from an existing list
using the SQL $LIST function or the ObjectScript $LIST function.

The following are examples of valid lists:

• $LISTBUILD('a','b','c'): a three-element list.

• $LISTBUILD('a','','c'): a three-element list, the second element of which has a null string value.

• $LISTBUILD('a',,'c') or $LISTBUILD('a',NULL,'c'): a three-element list, the second element of which
has no value.

• $LISTBUILD(NULL,NULL) or $LISTBUILD(,NULL): a two-element list, the elements of which have no values.

• $LISTBUILD(NULL) or $LISTBUILD(): a one-element list, the element has no value.

If a list argument is NULL, $LISTSAME returns NULL. If a list argument is not a valid list (and is not NULL), InterSystems
SQL generates an SQLCODE -400 fatal error.

Examples
The following embedded SQL example uses $LISTSAME to compare two list arguments:

ObjectScript

 SET a=$LISTBUILD("Red",,"Yellow","Green","","Violet")
 SET b=$LISTBUILD("Red",,"Yellow","Green","","Violet")
 &sql(SELECT $LISTSAME(:a,:b)
 INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSEIF c=1 { WRITE "lists a and b are the same",! }
 ELSE { WRITE "lists a and b are not the same",! }

InterSystems SQL Reference 753

$LISTSAME (SQL)

The following SQL example compares lists with NULL, absent, or empty string elements:

SQL

 SELECT $LISTSAME($LISTBUILD('Red',NULL,'Blue'),$LISTBUILD('Red',,'Blue')) AS NullAbsent,
 $LISTSAME($LISTBUILD('Red',NULL,'Blue'),$LISTBUILD('Red','','Blue')) AS NullEmpty,
 $LISTSAME($LISTBUILD('Red',,'Blue'),$LISTBUILD('Red','','Blue')) AS AbsentEmpty

$LISTSAME comparison is not the same equivalence test as the one used by the ObjectScript equal sign. An equal sign
compares the two lists as encoded strings (character-by-character); $LISTSAME compares the two lists element-by-element.
This distinction is easily seen when comparing a number and a numeric string, as in the following example:

ObjectScript

 SET a = $LISTBUILD("365")
 SET b = $LISTBUILD(365)
 IF a=b
 { WRITE "Equal sign: lists a and b are the same",! }
 ELSE { WRITE "Equal sign: lists a and b are not the same",! }
 &sql(SELECT $LISTSAME(:a,:b)
 INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSEIF c=1 { WRITE "$LISTSAME: lists a and b are the same",! }
 ELSE { WRITE "$LISTSAME: lists a and b are not the same",! }

The following SQL example compares lists containing numbers and numeric strings in canonical and non-canonical forms.
When comparing a numeric list element and a string list element, the string list element must represent the numeric in
canonical form; this is because InterSystems IRIS always reduces numbers to canonical form before performing a compar-
ison. In the following example, $LISTSAME compares a string and a number. The first three $LISTSAME functions
return 1 (identical); the fourth $LISTSAME function returns 0 (not identical) because the string representation is not in
canonical form:

SQL

 SELECT $LISTSAME($LISTBUILD('365'),$LISTBUILD(365)),
 $LISTSAME($LISTBUILD('365'),$LISTBUILD(365.0)),
 $LISTSAME($LISTBUILD('365.5'),$LISTBUILD(365.5)),
 $LISTSAME($LISTBUILD('365.0'),$LISTBUILD(365.0))

See Also
• SQL functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET $LISTLENGTH

$LISTTOSTRING $PIECE

• ObjectScript functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET
$LISTLENGTH $LISTNEXT $LISTSAME $LISTTOSTRING $LISTVALID

754 InterSystems SQL Reference

SQL Functions

$LISTTOSTRING (SQL)
A list function that creates a string from a list.

Synopsis

$LISTTOSTRING(list[,delimiter])

Description
$LISTTOSTRING takes an InterSystems IRIS list and converts it to a string. In the resulting string, the elements of the
list are separated by the delimiter.

A list represents data in an encoded format which does not use delimiter characters. Thus a list can contain all possible
characters, and is ideally suited for bitstring data. $LISTTOSTRING converts this list to a string with delimited elements.
It sets aside a specified character (or character string) to serve as a delimiter. These delimited elements can be handled
using the $PIECE function.

Note: The delimiter specified here must not occur in the source data. InterSystems IRIS makes no distinction between
a character serving as a delimiter and the same character as a data character.

You can use $LISTTOSTRING to retrieve field values from a serial container field as a delimited string. In the following
example, Home is a serial container field. It contains the list elements Home_Street, Home_City, Home_State, and Home_Zip:

SQL

SELECT Name,$LISTTOSTRING(Home,'^') AS HomeAddress
FROM Sample.Person

Arguments

list

An encoded character string containing one or more elements. You can create a list using the SQL $LISTBUILD function
or the ObjectScript $LISTBUILD function. You can convert a delimited string into a list using the SQL $LISTFROMSTRING
function or the ObjectScript $LISTFROMSTRING function. You can extract a list from an existing list using the SQL
$LIST function or the ObjectScript $LIST function.

If the expression in the list argument does not evaluate to a valid list, an SQLCODE -400 error occurs.

delimiter

An optional character (or string of characters) used to delimit substrings within the output string. It can be a numeric or
string literal (enclosed in single quotation marks), a host variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character string, the individual characters of which can be
used within string data.

If you specify no delimiter, the default delimiter is the comma (,) character. You can specify a null string ('') as a delimiter;
in this case, substrings are concatenated with no delimiter. To specify the single quote character as the delimiter, duplicate
the quote character thus: '''' — four single quote characters.

Example
The following example converts the values of a list field to a string with the elements delimited by the colon (:) character:

InterSystems SQL Reference 755

$LISTTOSTRING (SQL)

SQL

SELECT
Name,
FavoriteColors AS ColorList,
$LISTTOSTRING(FavoriteColors,':') AS ColorStrings
FROM Sample.Person
WHERE FavoriteColors IS NOT NULL

See Also
• SQL functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET $LISTLENGTH

$LISTSAME $PIECE

• ObjectScript functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET
$LISTLENGTH $LISTNEXT $LISTSAME $LISTTOSTRING $LISTVALID

756 InterSystems SQL Reference

SQL Functions

LOG (SQL)
A scalar numeric function that returns the natural logarithm of a given numeric expression.

Synopsis

{fn LOG(expression)}

Description
LOG returns the natural logarithm (base e) of expression. LOG returns a value with a precision of 21 and a scale of 18.

LOG can only be used as an ODBC scalar function (with the curly brace syntax).

Arguments

expression

A numeric expression.

LOG returns either the NUMERIC or DOUBLE data type. If expression is data type DOUBLE, LOG returns DOUBLE;
otherwise, it returns NUMERIC.

Examples
The following example returns the natural logarithm of an integer:

SQL

SELECT {fn LOG(5)} AS Logarithm

returns 1.60943791...

The following Embedded SQL example shows the relationship between the LOG and EXP functions for the integers 1
through 10:

ObjectScript

 SET a=1
 WHILE a<11 {
 &sql(SELECT {fn LOG(:a)} INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"Logarithm of ",a," = ",b }
 &sql(SELECT ROUND({fn EXP(:b)},12) INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"Exponential of log ",b," = ",c
 SET a=a+1 }
 }

Note that the ROUND function is needed here to correct for very small discrepancies caused by system calculation limitations.
In the above example, ROUND is set arbitrarily to 12 decimal digits for this purpose.

See Also
• SQL functions: EXP, LOG10, ROUND

• ObjectScript function: $ZLN

InterSystems SQL Reference 757

LOG (SQL)

LOG10 (SQL)
A scalar numeric function that returns the base-10 logarithm of a given numeric expression.

Synopsis

{fn LOG10(expression)}

Description
LOG10 returns the base-10 logarithm value of expression. LOG10 returns a value with a precision of 21 and a scale of
18.

LOG10 can only be used as an ODBC scalar function (with the curly brace syntax).

Arguments

expression

A numeric expression.

LOG10 returns either the NUMERIC or DOUBLE data type. If expression is data type DOUBLE, LOG10 returns DOUBLE;
otherwise, it returns NUMERIC.

Examples
The following example returns the base-10 logarithm of an integer:

SQL

SELECT {fn LOG10(5)} AS Log10

returns .69897000433...

The following Embedded SQL example returns the base-10 logarithm values for the integers 1 through 10:

ObjectScript

 SET a=1
 WHILE a<11 {
 &sql(SELECT {fn LOG10(:a)} INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"Log-10 of ",a," = ",b
 SET a=a+1 }
 }

See Also
• SQL functions: EXP, LOG, ROUND

• ObjectScript function: $ZLOG

758 InterSystems SQL Reference

SQL Functions

LOWER (SQL)
A case-transformation function that converts all uppercase letters in a string expression to lowercase letters.

Synopsis

LOWER(string-expression)

Description
The LOWER function converts uppercase letters to lowercase for display purposes. This is the inverse of the UPPER
function. LOWER has no effects on non-alphabetic characters. It leave unchanged punctuation, numbers, and leading and
trailing blank spaces.

LOWER does not force a numeric to be interpreted as a string. InterSystems SQL converts numerics to canonical form,
removing leading and trailing zeros. A numeric specified as a string is not converted to canonical form, and retains leading
and trailing zeros.

The LCASE function can also be used convert uppercase letters to lowercase.

LOWER has no effect on collation. The %SQLUPPER function is the preferred way in SQL to convert a data value for
not case-sensitive collation. Refer to %SQLUPPER for further information on case transformation for collation.

Arguments

string-expression

The string expression whose characters are to be converted to lowercase. The expression can be the name of a column, a
string literal, or the result of another scalar function, where the underlying data type can be represented as any character
type (such as CHAR or VARCHAR).

Examples
The following example returns each person’s name in lowercase letters:

SQL

SELECT Name,LOWER(Name) AS LowName
 FROM Sample.Person

LOWER also works on Unicode (non-ASCII) alphabetic characters, as shown in the following example, which converts
Greek letters from uppercase to lowercase:

SQL

SELECT LOWER($CHAR(920,913,923,913,931,931,913))
 FROM Sample.Person

See Also
• SQL functions: LCASE, UCASE

• ObjectScript function: $ZCONVERT

InterSystems SQL Reference 759

LOWER (SQL)

LPAD (SQL)
A string function that returns a string left-padded to a specified length.

Synopsis

LPAD(string-expression,length[,padstring])

Description
LPAD pads a string expression with leading pad characters. It returns a copy of the string padded to length number of
characters. If the string expression is longer than length number of characters, the return string is truncated to length number
of characters.

If string-expression is NULL, LPAD returns NULL. If string-expression is the empty string ('') LPAD returns a string
consisting entirely of pad characters. The returned string is type VARCHAR.

LPAD can be used in queries against a linked table.

LPAD does not remove leading or trailing blanks; it pads the string including any leading or trailing blanks. To remove
leading or trailing blanks before padding a string, use LTRIM, RTRIM, or TRIM.

LPAD and $JUSTIFY

The two-argument form of LPAD and the two-argument form of $JUSTIFY both right-align a string by padding it with
leading spaces. These two-argument forms differ in how they handle an output length that is shorter than the length of the
input string-expression: LPAD truncates the input string to fit the specified output length while $JUSTIFY expands the
output length to fit the input string. This is shown in the following example:

SQL

SELECT '>'||LPAD(12345,10)||'<' AS lpadplus,
 '>'||$JUSTIFY(12345,10)||'<' AS justifyplus,
 '>'||LPAD(12345,3)||'<' AS lpadminus,
 '>'||$JUSTIFY(12345,3)||'<' AS justifyminus

Arguments

string-expression

A string expression, which can be the name of a column, a string literal, a host variable, or the result of another scalar
function. Can be of any data type convertible to a VARCHAR data type. string-expression cannot be a stream.

length

An integer specifying the number of characters in the returned string.

padstring

An optional string consisting of a character or a string of characters used to pad the input string-expression. The padstring
character or characters are appended to the left of string-expression to supply as many characters as need to create an output
string of length characters. padstring may be a string literal, a column, a host variable, or the result of another scalar function.
If omitted, the default is a blank space character.

Examples
The following example left pads column values with ^ characters (when needed) to return strings of length 16. Note that
some Name strings are left padded, some Name strings are right truncated to return strings of length 16.

760 InterSystems SQL Reference

SQL Functions

SQL

 SELECT TOP 15 Name,LPAD(Name,16,'^') AS Name16
 FROM Sample.Person

The following example left pads column values with the ^=^ pad string (when needed) to return strings of length 20. Note
that the pad name string is repeated as many times as needed, and that some return strings contain partial pad strings:

SQL

 SELECT TOP 15 Name,LPAD(Name,20,'^=^') AS Name20
 FROM Sample.Person

See Also
• $JUSTIFY function

• RPAD function

• LTRIM function

• RTRIM function

• TRIM function

InterSystems SQL Reference 761

LPAD (SQL)

LTRIM (SQL)
A string function that returns a string with the leading blanks removed.

Synopsis

LTRIM(string-expression)

{fn LTRIM(string-expression)}

Description
LTRIM removes the leading blanks from a string expression, and returns the string as type VARCHAR. If string-expression
is NULL, LTRIM returns NULL. If string-expression is a string consisting entirely of blank spaces, LTRIM returns the
empty string ('').

LTRIM leaves trailing blanks; to remove trailing blanks, use RTRIM. To remove leading and/or trailing characters of any
type, use TRIM. To pad a string with leading blanks or other characters, use LPAD. To create a string of blanks, use
SPACE.

Note that LTRIM can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

Arguments

string-expression

A string expression, which can be the name of a column, a string literal, or the result of another scalar function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR).

Examples
The following example removes the five leading blanks from the string. It leaves the five trailing blanks:

SQL

SELECT {fn LTRIM(" Test string with 5 leading and 5 trailing spaces. ")}

Returns:

Before LTRIM
start: Test string with 5 leading and 5 trailing spaces. :end
After LTRIM
start:Test string with 5 leading and 5 trailing spaces. :end

See Also
RTRIM TRIM LPAD SPACE

762 InterSystems SQL Reference

SQL Functions

%MINUS (SQL)
A collation function that converts numbers to canonical collation format, then inverts the sign.

Synopsis

%MINUS(expression)

%MINUS expression

Description
%MINUS converts numbers or numeric strings to canonical form, inverts the sign, then returns these expression values
in numeric collation sequence.

%MINUS and %PLUS are functionally identical, except that %MINUS inverts the sign. It prefixes a minus sign to any
number that resolves to a positive number, and removes the minus sign from any number that resolves to a negative number.
Zero is never signed.

A number can contain leading and trailing zeros, multiple leading plus and minus signs, a single decimal point indicator
(.), and the E exponent indicator. In canonical form, all arithmetic operations are performed, exponents are expanded, signs
are resolved to either a single leading minus sign or no sign, and leading and trailing zeros are stripped.

A numeric literal can be specified with or without enclosing string delimiters. If a string contains non-numeric characters,
%MINUS truncates the number at the first non-numeric character, and returns the numeric part in canonical form. A non-
numeric string (any string that begins with a non-numeric character) is returned as 0. %MINUS also returns NULLs as 0.

%MINUS is an InterSystems SQL extension and is intended for SQL lookup queries.

You can perform the same collation conversion in ObjectScript using the Collation() method of the %SYSTEM.Util class:

ObjectScript

 WRITE $SYSTEM.Util.Collation("++007.500",4)

Compare %MINUS to %MVR collation, which sorts a string based on the numeric substrings within the string.

Arguments

expression

An expression, which can be the name of a column, a number or a string literal, an arithmetic expression, or the result of
another function, where the underlying data type can be represented as any character type.

Example
The following example uses %MINUS to return records in descending numeric order of the home street number:

SQL

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY %MINUS(Home_Street)

Note that the above example orders the integer part of the street address in numerical order. Compare this with the following
ORDER BY DESC example, which orders records by street addresses in collation sequence:

InterSystems SQL Reference 763

%MINUS (SQL)

SQL

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY Home_Street DESC

See Also
• %EXACT collation function

• %PLUS collation function

• Collation

764 InterSystems SQL Reference

SQL Functions

MINUTE (SQL)
A time function that returns the minute for a datetime expression.

Synopsis

{fn MINUTE(time-expression)}

Description
MINUTE returns an integer specifying the minutes for a given time or datetime value. Minutes are calculated for a
$HOROLOG or $ZTIMESTAMP value, an ODBC format date string, or a timestamp.

A time-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

To change the default time format, use the SET OPTION command.

Note that you can supply a time integer (number of elapsed seconds), but not a time string (hh:mm:ss). You must supply
a datetime string (yyyy-mm-dd hh:mm:ss).

The time portion of the datetime string must be a valid time. Otherwise, an SQLCODE -400 error <ILLEGAL VALUE>
is generated. The minutes (mm) portion must be an integer in the range from 0 through 59. Leading zeros are optional on
input; leading zeros are suppressed on output. You can omit the seconds (:ss) portion of a datetime string and still return
the minutes portion.

The date portion of the datetime string is not validated.

MINUTE returns zero minutes when the minutes portion is '0' or '00’. Zero minutes is also returned if no time expression
is supplied, or the minutes portion of the time expression is omitted entirely ('hh', 'hh:', 'hh::', or 'hh::ss').

The same time information can be returned using DATEPART or DATENAME.

This function can also be invoked from ObjectScript using the MINUTE() method call:

$SYSTEM.SQL.Functions.MINUTE(time-expression)

Arguments

time-expression

An expression that is the name of a column, the result of another scalar function, or a string or numeric literal. It must
resolve either to a datetime string or a time integer, where the underlying data type can be represented as %Time,
%TimeStamp, or %PosixTime.

Examples
The following examples both return the number 45 because it is the forty-fifth minute of the time expression in the datetime
string:

SQL

SELECT {fn MINUTE('2018-02-16 18:45:38')} AS ODBCMinutes

SQL

SELECT {fn MINUTE(67538)} AS HorologMinutes

The following example also returns 45. As shown here, the seconds portion of the time value can be omitted:

InterSystems SQL Reference 765

MINUTE (SQL)

SQL

SELECT {fn MINUTE('2018-02-16 18:45')} AS Minutes_Given

The following example returns 0 minutes because the time expression has been omitted from the datetime string:

SQL

SELECT {fn MINUTE('2018-02-16')} AS Minutes_Given

The following examples all return the minutes portion of the current time:

SQL

SELECT {fn MINUTE(CURRENT_TIME)} AS Min_CurrentT,
 {fn MINUTE({fn CURTIME()})} AS Min_CurT,
 {fn MINUTE({fn NOW()})} AS Min_Now,
 {fn MINUTE($HOROLOG)} AS Min_Horolog,
 {fn MINUTE($ZTIMESTAMP)} AS Min_ZTS

The following example shows that leading zeros are suppressed. The first MINUTE function returns a length 2, the others
return a length of 1. An omitted time is considered to be 0 minutes, which has a length of 1:

SQL

SELECT LENGTH({fn MINUTE('2018-02-22 11:45:00')}),
 LENGTH({fn MINUTE('2018-02-22 03:05:00')}),
 LENGTH({fn MINUTE('2018-02-22 3:5:0')}),
 LENGTH({fn MINUTE('2018-02-22')})

The following Embedded SQL example shows that the MINUTE function recognizes the TimeSeparator character specified
for the locale:

ObjectScript

 DO ##class(%SYS.NLS.Format).SetFormatItem("TimeSeparator",".")
 &sql(SELECT {fn MINUTE('2018-02-22 18.45.38')} INTO :a)
 QUIT:(SQLCODE '= 0)
 WRITE "minutes=",a

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL functions: HOUR, SECOND, CURRENT_TIME, CURTIME, NOW, DATEPART, DATENAME

• ObjectScript function: $ZTIME

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

766 InterSystems SQL Reference

SQL Functions

MOD (SQL)
A scalar numeric function that returns the modulus (remainder) of a number divided by another.

Synopsis

MOD(dividend,divisor)

{fn MOD(dividend,divisor)}

Description
MOD returns the mathematical remainder (modulus) from the dividend by the divisor.

MOD can be specified as either a standard scalar function or an ODBC scalar function with curly brace syntax.

• If dividend and divisor are positive, it returns a positive modulo, or zero.

• If dividend and divisor are both negative, it returns a negative modulo, or zero.

• If dividend or divisor is NULL, it returns a NULL.

• If divisor is 0, it generates a SQLCODE -400 with a %msg <DIVIDE> error.

• If divisor is larger than dividend, it returns dividend.

The precision reported for MOD (either syntax form) is the same as the precision report for the arithmetic expression
dividend/divisor.

ANSI Operator Precedence

The behavior of the MOD function with a single negative operand depends on the Apply ANSI Operator Precedence config-
uration setting:

• If Apply ANSI Operator Precedence is not applied, the behavior of MOD with a negative operand is the same as the #
modulo operator. Both return the short count (the amount required to reach the next multiple), not the modulo. For
example, 12#7 returns a modulo of 5; –12#7 returns a short count of 2. If dividend is negative, the short count is a
positive value, or zero. If divisor is negative, the short count is a negative value, or zero.

• If Apply ANSI Operator Precedence is applied (the default at InterSystems IRIS 2019.1 and subsequent), the behavior
of MOD with a negative operand is to always return a modulo. If dividend is negative, it returns a negative modulo,
or zero. If divisor is negative, it returns a positive modulo, or zero.

The behavior of the # modulo operator is not affected by the Apply ANSI Operator Precedence configuration setting.

Arguments

dividend

A number that is the numerator (dividend) of the division.

divisor

A number that is the denominator (divisor) of the division.

MOD returns the NUMERIC data type unless the dividend is data type DOUBLE. If dividend is DOUBLE, MOD returns
DOUBLE.

Examples
The following example shows the remainder returned by MOD.

InterSystems SQL Reference 767

MOD (SQL)

SQL

SELECT MOD(5,3) AS Remainder

returns 2.

SQL

SELECT MOD(5.3,.5) AS Remainder

returns .3.

See Also
CEILING, FLOOR, ROUND, TRUNCATE

768 InterSystems SQL Reference

SQL Functions

MONTH (SQL)
A date function that returns the month as an integer for a date expression.

Synopsis

MONTH(date-expression)

{fn MONTH(date-expression)}

Description
MONTH returns an integer specifying the month. The month integer is calculated for an InterSystems IRIS date integer,
a $HOROLOG or $ZTIMESTAMP value, an ODBC format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The month (mm) portion of a date string must be an integer in the range 1 through 12. Leading zeros are optional on input.
Leading and trailing zeros are suppressed on output.

The date portion of date-expression is validated and must include a month within the range 1 through 12 and a valid day
value for the specified month and year. Otherwise, an SQLCODE -400 error <ILLEGAL VALUE> is generated.

The time portion of date-expression is not validated and can be omitted.

Note that MONTH can be invoked as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

This function can also be invoked from ObjectScript using the MONTH() method call:

$SYSTEM.SQL.Functions.MONTH(date-expression)

The elements of a datetime string can be returned using the following SQL functions: YEAR, MONTH, DAY (or
DAYOFMONTH), HOUR, MINUTE, and SECOND. The same elements can be returned by using the DATEPART or
DATENAME function. Date elements can be returned using TO_DATE. DATEPART and DATENAME performs value
and range checking on month values.

The LAST_DAY function returns the date of the last day of the specified month.

Arguments

date-expression

An expression that is the name of a column, the result of another scalar function, or a date or timestamp literal.

Examples
The following examples both return the number 2 because February is the second month of the year:

SQL

SELECT MONTH('2018-02-22') AS Month_Given

SQL

SELECT {fn MONTH(64701)} AS Month_Given

The following example sorts records in birthday order by month and day, ignoring the year component of the DOB:

InterSystems SQL Reference 769

MONTH (SQL)

SQL

SELECT Name,DOB AS Birthdays
FROM Sample.Person
ORDER BY MONTH(DOB),DAY(DOB),Name

The following examples all return the current month:

SQL

SELECT {fn MONTH({fn NOW()})} AS MNow,
 MONTH(CURRENT_DATE) AS MCurrD,
 {fn MONTH(CURRENT_TIMESTAMP)} AS MCurrTS,
 MONTH($HOROLOG) AS MHorolog,
 {fn MONTH($ZTIMESTAMP)} AS MZTS

See Also
• SQL functions: DATEPART, DATENAME, DAYOFMONTH, LAST_DAY, MONTHNAME, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

770 InterSystems SQL Reference

SQL Functions

MONTHNAME (SQL)
A date function that returns the name of the month for a date expression.

Synopsis

{fn MONTHNAME(date-expression)}

Description
MONTHNAME takes as input an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC
format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

MONTHNAME returns the name of the corresponding calendar month, January through December. The returned value
is a character string with a maximum length of 15.

MONTHNAME checks that the date supplied is a valid date. The year must be between 0001 and 9999 (inclusive), the
month 01 through 12, and the day appropriate for that month (for example, 02/29 is only valid on leap years). If the date
is not valid, MONTHNAME issues an SQLCODE -400 <ILLEGAL VALUE> error.

The names of months default to the full-length American English month names. To change these month name values, use
the SET OPTION command with the MONTH_NAME option.

The same month name information can be returned by using the DATENAME function. You can use TO_DATE to retrieve
a month name or a month name abbreviation with other date elements. To return an integer corresponding to the month,
use MONTH DATEPART or TO_DATE.

This function can also be invoked from ObjectScript using the MONTHNAME() method call:

$SYSTEM.SQL.Functions.MONTHNAME(date-expression)

Arguments

date-expression

An expression that evaluates to either an InterSystems IRIS date integer, an ODBC date, or a timestamp. This expression
can be the name of a column, the result of another scalar function, or a date or timestamp literal.

Examples
The following examples both return the character string "February" because it is the month of the date expression (February
22, 2018):

SQL

SELECT {fn MONTHNAME('2018-02-22')} AS NameOfMonth

SQL

SELECT {fn MONTHNAME(64701)} AS NameOfMonth

The following examples all return the current month:

InterSystems SQL Reference 771

MONTHNAME (SQL)

SQL

SELECT {fn MONTHNAME({fn NOW()})} AS MnameNow,
 {fn MONTHNAME(CURRENT_DATE)} AS MNameCurrDate,
 {fn MONTHNAME(CURRENT_TIMESTAMP)} AS MNameCurrTS,
 {fn MONTHNAME($HOROLOG)} AS MNameHorolog,
 {fn MONTHNAME($ZTIMESTAMP)} AS MNameZTS

The following example shows how MONTHNAME responds to an invalid date (the year 2017 was not a leap year):

SQL

SELECT {fn MONTHNAME("2017-02-29")}

The SQLCODE -400 error code is issued with the %msg indicating <ILLEGAL VALUE>.

See Also
• SQL functions: DATEPART, DATENAME, DAYOFMONTH, MONTH, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

772 InterSystems SQL Reference

SQL Functions

NOW (SQL)
A date/time function that returns the current local date and time.

Synopsis

NOW()

{fn NOW}
{fn NOW()}

Description
NOW takes no arguments. The argument parentheses are optional for the ODBC scalar syntax; they are mandatory for the
SQL standard function syntax.

NOW returns the current local date and time for this timezone as a timestamp; it adjusts for local time variants, such as
Daylight Saving Time.

NOW can return a timestamp in either %TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) or %PosixTime data
type format (an encoded 64-bit signed integer). The following rules determine which timestamp format is returned:

1. If the current timestamp is being supplied to a field of data type %PosixTime, the current timestamp value is returned
in POSIXTIME data type format. For example, WHERE PosixField=NOW() or INSERT INTO MyTable
(PosixField) VALUES (NOW()).

2. If the current timestamp is being supplied to a field of data type %TimeStamp, the current timestamp value is returned
in TIMESTAMP data type format (yyyy-mm-dd hh:mm:ss). Its ODBC type is TIMESTAMP, LENGTH is 16, and
PRECISION is 19. Hours are represented in 24–hour format. Leading zeros are retained for all fields. For example,
WHERE TSField=NOW() or INSERT INTO MyTable (TSField) VALUES (NOW()).

3. If the current timestamp is being supplied without context, the current timestamp value is returned in TIMESTAMP
data type format. For example, SELECT NOW().

To change the default datetime string format, use the SET OPTION command with the various date and time options.

You can use the CAST or CONVERT function to change the data type of timestamps, dates, and times.

Fractional Seconds of Precision

By default, NOW does not return fractional seconds of precision. It does not support a precision argument. However, by
changing the system-wide default time precision, you can cause all NOW functions system-wide to return this configured
number of digits of fractional second precision. The initial configuration setting of the system-wide default time precision
is 0 (no fractional seconds); the highest setting is 9.

GETDATE is functionally identical to NOW, except that GETDATE provides a precision argument that allows you to
override the system-wide default time precision; if you omit the precision argument, GETDATE takes the configured
system-wide default time precision.

CURRENT_TIMESTAMP has two syntax forms: Without argument parentheses, CURRENT_TIMESTAMP is functionally
identical to NOW. With argument parentheses, CURRENT_TIMESTAMP(precision), is functionally identical to
GETDATE, except that the CURRENT_TIMESTAMP() precision argument is mandatory. CURRENT_TIMESTAMP()
always returns its specified precision and ignores the configured system-wide default time precision.

Fractional seconds are always truncated, not rounded, to the specified precision.

SYSDATE is functionally identical to the argumentless CURRENT_TIMESTAMP function.

InterSystems SQL Reference 773

NOW (SQL)

Other Current Time and Date Functions

NOW, GETDATE, CURRENT_TIMESTAMP, and SYSDATE all return the current local date and time, based on the
local time zone setting.

GETUTCDATE returns the current Universal Time Constant (UTC) date and time as a timestamp. Because UTC time does
not depend on the local timezone and is not subject to local time variants (such as Daylight Saving Time), this function is
useful for applying consistent timestamps when users in different time zones access the same database. GETUTCDATE
supports fractional seconds of precision. The current UTC timestamp is also provided by the ObjectScript $ZTIMESTAMP
special variable.

To return just the current date, use CURDATE or CURRENT_DATE. To return just the current time, use CURRENT_TIME
or CURTIME. The functions use the DATE or TIME data type. The TIME and DATE data types store their values as
integers in $HOROLOG format. None of these functions support precision.

Examples
The following example shows the three syntax forms are equivalent; all return the current local date and time as a timestamp:

SQL

SELECT NOW(),{fn NOW},{fn NOW()}

The following example compares local (time zone specific) and universal (time zone independent) timestamps:

SQL

SELECT NOW(), GETUTCDATE()

The following example sets the LastUpdate field in the selected row of the Orders table to the current system date and time:

SQL

UPDATE Orders SET LastUpdate = {fn NOW()}
 WHERE Orders.OrderNumber=:ord

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL timestamp functions: CAST, CONVERT, CURRENT_TIMESTAMP, GETDATE, GETUTCDATE, SYSDATE,
TIMESTAMPADD, TIMESTAMPDIFF, TO_TIMESTAMP

• SQL current date and time functions: CURDATE, CURRENT_DATE, CURRENT_TIME, CURTIME

• ObjectScript: $ZDATETIME function, $HOROLOG special variable, $ZTIMESTAMP special variable

774 InterSystems SQL Reference

SQL Functions

NULLIF (SQL)
A function that returns NULL if two expressions have the same value.

Synopsis

NULLIF(expression1,expression2)

Description
The NULLIF function returns NULL if the value of expression1 is equal to the value of expression2. Otherwise, it returns
the expression1 value.

NULLIF is equivalent to:

SQL

SELECT CASE
WHEN value1 = value2 THEN NULL
ELSE value1
END
FROM MyTable

Arguments

expression1

An expression, which can be the name of a column, a numeric or string literal, a host variable, or the result of another scalar
function.

expression2

An expression, which can be the name of a column, a numeric or string literal, a host variable, or the result of another scalar
function.

NULLIF returns the same data type as expression1.

NULL Handling Functions Compared
The following table shows the various SQL comparison functions. Each function returns one value if the logical comparison
tests True (A same as B) and another value if the logical comparison tests False (A not same as B). These functions allow
you to perform NULL logical comparisons. You cannot specify NULL in an actual equality (or non-equality) condition
comparison.

InterSystems SQL Reference 775

NULLIF (SQL)

Return ValueComparison TestSQL Function

True returns NULL

False returns ex1

ex1 = ex2NULLIF(ex1,ex2)

True returns ex2

False returns ex1

ex1 = NULLISNULL(ex1,ex2)

True returns ex2

False returns NULL

ex1 = NULLIFNULL(ex1,ex2) [two-argument
form]

True returns ex2

False returns ex3

ex1 = NULLIFNULL(ex1,ex2,ex3)
[three-argument form]

True returns ex2

False returns ex1

ex1 = NULL{fn IFNULL(ex1,ex2)}

True returns ex2

False returns ex1

ex1 = NULLNVL(ex1,ex2)

True tests next ex argument. If all
ex arguments are True (NULL),
returns NULL.

False returns ex

ex = NULL for each argumentCOALESCE(ex1,ex2,...)

Examples
The following example uses the NULLIF function to set to null the display field of all records with Age=20:

SQL

SELECT Name,Age,NULLIF(Age,20) AS Nulled20
FROM Sample.Person

See Also
• CASE command

• COALESCE function

• IFNULL function

• ISNULL function

• NVL function

776 InterSystems SQL Reference

SQL Functions

NVL (SQL)
A function that tests for NULL and returns the appropriate expression.

Synopsis

NVL(check-expression,replace-expression)

Description
NVL evaluates check-expression and returns one of two values:

• If check-expression is NULL, replace-expression is returned.

• If check-expression is not NULL, check-expression is returned.

The arguments check-expression and replace-expression can have any data type. If their data types are different, SQL
converts replace-expression to the data type of check-expression before comparing them. The data type of the return value
is always the same as the data type of check-expression, unless check-expression is character data, in which case the return
value’s data type is VARCHAR2.

Note that NVL is supported for Oracle compatibility, and is the same as the ISNULL function.

Refer to NULL for further details on NULL handling.

DATE and TIME Display Conversion

Some check-expression data types require conversion from Logical mode to ODBC mode or Display mode. For example
the DATE and TIME data types. If the replace-expression value is not the same data type, this value cannot be converted
in ODBC mode or Display mode, and an SQLCODE error is generated: -146 for DATE data type; -147 for TIME data
type. For example, ISNULL(DOB,'nodate') cannot be executed in ODBC mode or Display mode; it issue an SQLCODE
-146 error with the %msg Error: 'nodate' is an invalid ODBC/JDBC Date value or Error: 'nodate'
is an invalid DISPLAY Date value. To execute this statement in ODBC mode or Display mode, you must CAST
the value as the appropriate data type: ISNULL(DOB,CAST('nodate' as DATE)). This results in a date 0, which
displays as 1840-12-31.

Arguments

check-expression

The expression to be evaluated.

replace-expression

The expression that is returned if check-expression is NULL.

NVL returns the same data type as check-expression.

NULL Handling Functions Compared
The following table shows the various SQL comparison functions. Each function returns one value if the logical comparison
tests True (A same as B) and another value if the logical comparison tests False (A not same as B). These functions allow
you to perform NULL logical comparisons. You cannot specify NULL in an actual equality (or non-equality) condition
comparison.

InterSystems SQL Reference 777

NVL (SQL)

Return ValueComparison TestSQL Function

True returns ex2

False returns ex1

ex1 = NULLNVL(ex1,ex2)

True returns ex2

False returns NULL

ex1 = NULLIFNULL(ex1,ex2) [two-argument
form]

True returns ex2

False returns ex3

ex1 = NULLIFNULL(ex1,ex2,ex3)
[three-argument form]

True returns ex2

False returns ex1

ex1 = NULL{fn IFNULL(ex1,ex2)}

True returns ex2

False returns ex1

ex1 = NULLISNULL(ex1,ex2)

True returns NULL

False returns ex1

ex1 = ex2NULLIF(ex1,ex2)

True tests next ex argument. If all
ex arguments are True (NULL),
returns NULL.

False returns ex

ex = NULL for each argumentCOALESCE(ex1,ex2,...)

Examples
This following example returns the replace-expression (99) because the check-expression is NULL:

SQL

SELECT NVL(NULL,99) AS NullTest

This following example returns the check-expression (33) because check-expression is not NULL:

SQL

SELECT NVL(33,99) AS NullTest

The following example returns the string 'No Preference' if FavoriteColors is NULL; otherwise, it returns the value of
FavoriteColors:

SQL

SELECT Name, NVL(FavoriteColors,'No Preference') AS ColorChoice
FROM Sample.Person

See Also
• CASE command

• COALESCE function

778 InterSystems SQL Reference

SQL Functions

• IFNULL function

• ISNULL function

• NULLIF function

InterSystems SQL Reference 779

NVL (SQL)

%OBJECT (SQL)
A scalar function that opens a stream object and returns the corresponding OREF.

Synopsis

%OBJECT(stream)

Description
%OBJECT is used to open a stream object and return the OREF (object reference) of the stream field.

A SELECT on a stream field returns the fully formed OID (object ID) value of the stream field. A SELECT %OBJECT
on a stream field returns the OREF (object reference) of the stream field.

If stream is not a stream field, %OBJECT generates an SQLCODE -128 error.

%OBJECT can be used as an argument to the following functions:

• CHARACTER_LENGTH(%OBJECT(streamfield)), CHAR_LENGTH(%OBJECT(streamfield)), or
DATALENGTH(%OBJECT(streamfield)).

• SUBSTRING(%OBJECT(streamfield),start,length).

You can perform the same operation by issuing a SELECT on a stream field, then opening the stream OID by calling the
$Stream.Object.%Open() class method, which generates an OREF from the OID:

SET oref = ##class(%Stream.Object).%Open(oid)

For information on OREFs, see OREF Basics. For information on OIDs, see Identifiers for Saved Objects: ID and OID.

Arguments

stream

An expression that is the name of a stream field.

Examples
The following example shows how a SELECT %OBJECT on a stream field returns the OREF, in which Notes and Picture
are both stream fields:

SQL

SELECT TOP 3 Title,Notes,%OBJECT(Picture) AS Photo FROM Sample.Employee

See Also
• SELECT

• Introduction to the Default SQL Projection

• Using Streams with SQL

• Storing and Using BLOBs and CLOBs

780 InterSystems SQL Reference

SQL Functions

%ODBCIN (SQL)
A format-transformation function that returns an expression in Logical format.

Synopsis

%ODBCIN(expression)

%ODBCIN expression

Description
%ODBCIN returns expression in the Logical format after passing the value through the field or data type’s OdbcToLogical
method. The Logical format is the in-memory format of data (the format upon which operations are performed).

%ODBCIN is an InterSystems SQL extension.

For further details on display format options, refer to Data Display Options.

Arguments

expression

The expression to be converted.

Examples
The following example shows the default display format, the %ODBCIN, and the %ODBCOUT formats for the same
field.

SQL

SELECT FavoriteColors,%ODBCIN(FavoriteColors) AS InVal,
%ODBCOUT(FavoriteColors) AS OutVal
FROM Sample.Person

The following example uses %ODBCIN in the WHERE clause:

SQL

SELECT Name,DOB,%ODBCOUT(DOB) AS Birthdate
FROM Sample.Person
WHERE DOB BETWEEN %ODBCIN('2000-01-01') AND %ODBCIN('2018-01-01')

See Also
%EXTERNAL, %INTERNAL, %ODBCOUT

InterSystems SQL Reference 781

%ODBCIN (SQL)

%ODBCOUT (SQL)
A format-transformation function that returns an expression in ODBC format.

Synopsis

%ODBCOUT(expression)

%ODBCOUT expression

Description
%ODBCOUT returns expression in the ODBC format after passing the value through the field or data type’s LogicalToOdbc
method. The ODBC format is the format in which data can be presented via ODBC. This format is used when data is
exposed to ODBC/SQL. The available formats correspond to those defined by ODBC.

%ODBCOUT is commonly used on a SELECT list select-item. It can be used in a WHERE clause, but this use is dis-
couraged because using %ODBCOUT prevents the use of indexes on the specified field.

Applying %ODBCOUT changes the column header name to a value such as “Expression_1”; it is therefore usually
desirable to specify a column name alias, as shown in the examples below.

Whether %ODBCOUT converts a date depends on the data type returned by the date field or function. %ODBCOUT
converts CURDATE, CURRENT_DATE, CURTIME, and CURRENT_TIME values. It does not convert CURRENT_TIMES-
TAMP, GETDATE, GETUTCDATE, NOW, and $HOROLOG values.

%ODBCOUT is an InterSystems SQL extension.

For further details on display format options, refer to Data Display Options.

Arguments

expression

The expression to be converted. A field name, an expression containing a field name, or a function that returns a value in
a convertible data type, such as DATE or %List. Cannot be a stream field.

Examples
The following example shows the default display format, the %ODBCIN, and the %ODBCOUT formats for the same
field.

SQL

SELECT FavoriteColors,%ODBCIN(FavoriteColors) AS InVal,
%ODBCOUT(FavoriteColors) AS OutVal
FROM Sample.Person

See Also
• %EXTERNAL, %INTERNAL, %ODBCIN

• SQL concepts: Data Types, Date and Time Constructs

782 InterSystems SQL Reference

SQL Functions

%OID (SQL)
A scalar function that returns OID of an ID field.

Synopsis

%OID(id_field)

Description
%OID takes a field name and returns the fully formed OID (object ID) for the object. The field must be either an ID field
or a reference field (a foreign key field). Specifying any other type of field in id_field generates an SQLCODE -1 error.

Arguments

id_field

The field name of an ID field, or a reference field.

Examples
The following example shows %OID used with a reference field:

SQL

SELECT Name, Spouse, %OID(Spouse)
FROM Sample.Person
WHERE Spouse IS NOT NULL

See Also
• SELECT

• %OBJECT

InterSystems SQL Reference 783

%OID (SQL)

PI (SQL)
A scalar numeric function that returns the constant value of pi.

Synopsis

{fn PI()}
{fn PI}

Description
PI takes no arguments. It returns the mathematical constant pi as data type NUMERIC with a precision of 19 and a scale
of 18.

PI can only be invoked using ODBC scalar function (curly brace) syntax. Note that the argument parentheses are optional.

Examples
The following examples both return the value of pi:

SQL

SELECT {fn PI()} AS ExactPi

SQL

SELECT {fn PI} AS ExactPi

returns 3.141592653589793238.

See Also
• SQL functions: ROUND

• ObjectScript special variable: $ZPI

784 InterSystems SQL Reference

SQL Functions

$PIECE (SQL)
A string function that returns a substring identified by a delimiter.

Synopsis

$PIECE(string-expression,delimiter[,from[,to]])

Description
$PIECE returns the specified substring (piece) from string-expression. The substring returned depends on the arguments
used:

• $PIECE(string-expression,delimiter) returns the first substring in string-expression. If delimiter occurs in
string-expression, the substring that precedes the first occurrence of delimiter is returned. If delimiter does not occur
in string-expression, the returned substring is string-expression.

• $PIECE(string-expression,delimiter,from) returns the substring which is the nth piece of string-expression, where the
integer n is specified by the from argument, and pieces are separated by a delimiter. The delimiter is not returned.

• $PIECE(string-expression,delimiter,from,to) returns a range of substrings including the substring specified in from
through the substring specified in to. This four-argument form of $PIECE returns a string that includes any intermediate
occurrences of delimiter that occur between the from and to substrings. If to is greater than the number of substrings,
the returned substring includes all substrings to the end of the string-expression string.

Arguments

string-expression

The string from which the substring is to be returned. It can be a string literal, a variable name, or any valid expression that
evaluates to a string.

A string usually contains instances of a character (or character string) which are used as delimiters. This character or string
cannot also be used as a data value within string-expression.

If you specify the null string (NULL) as the target string, $PIECE returns <null>, the null string.

delimiter

The search string to be used to delimit substrings within string-expression. It can be a numeric or string literal (enclosed
in quotation marks), the name of a variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character search string, the individual characters of which
can be used within string data.

If you specify the null string (NULL) as the delimiter, $PIECE returns <null>, the null string.

from

An optional argument specifying the number of a substring within string-expression, counting from 1. It must be a positive
integer, the name of an integer variable, or an expression that evaluates to a positive integer. Substrings are separated by
delimiters.

• If the from argument is omitted or set to 1, $PIECE returns the first substring of string-expression. If string-expression
does not contain the specified delimiter, a from value of 1 returns string-expression.

• If the from argument identifies by count the last substring in string-expression, this substring is returned, regardless
of whether it is followed by a delimiter.

InterSystems SQL Reference 785

$PIECE (SQL)

• If no to argument is specified and the value of from is NULL, the empty string, zero, or a negative number, $PIECE
returns a null string. However, if a to argument is specified, $PIECE treats these from values the same as from=1.

• If the value of from is greater than the number of substrings in string-expression, $PIECE returns a null string.

If the from argument is used with the to argument, it identifies the start of a range of substrings to be returned as a string,
and should be less than the value of to.

to

An optional argument specifying the number of the substring within string-expression that ends the range initiated by the
from argument. The returned string includes both the from and to substrings, as well as any intermediate substrings and the
delimiters separating them. The to argument must be a positive integer, the name of an integer variable, or an expression
that evaluates to a positive integer. The to argument must be used with from and should be greater than the value of from.

• If from is less than to, $PIECE returns a string consisting of all of the delimited substrings within this range, including
the from and to substrings. This returned string contains the substrings and the delimiters within this range.

• If to is greater than the number of delimited substrings, the returned string contains all the string data (substrings and
delimiters) beginning with the from substring and continuing to the end of the string-expression string.

• If from is equal to to, the from substring is returned.

• If from is greater than to, $PIECE returns a null string.

• If to is the null string (NULL), $PIECE returns a null string.

Examples
The following example returns 'Red', the first substring as identified by the "," delimiter:

SQL

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black',',')

The following example returns 'Blue', the third substring as identified by the "," delimiters:

SQL

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black',',',3)

The following example returns 'Blue,Yellow,Orange', the third through fifth elements in colorlist, as delimited by ",":

SQL

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black',',',3,5)

The following $PIECE functions both return '123', showing that the two-argument form is equivalent to the three-argument
form when from is 1:

SQL

SELECT $PIECE('123#456#789','#') AS TwoArg

SQL

SELECT $PIECE('123#456#789','#',1) AS ThreeArg

786 InterSystems SQL Reference

SQL Functions

The following example uses the multi-character delimiter string '#-#' to return the third substring '789'. Here, the component
characters of the delimiter string, '#' and '-', can be used as data values; only the specified sequence of characters (#-#) is
set aside:

SQL

SELECT $PIECE('1#2-3#-#45##6#-#789','#-#',3)

The following example returns 'MAR;APR;MAY'. These comprise the third through the fifth substrings, as identified by
the ';' delimiter:

SQL

SELECT $PIECE('JAN;FEB;MAR;APR;MAY;JUN',';',3,5)

The following example uses $PIECE to extract the surname from employee names and vendor contact names, and then
perform a JOIN which return instances where an employee has the same surname as a vendor contact:

SQL

SELECT E.Name,V.Contact
FROM Sample.Employee AS E INNER JOIN Sample.Vendor AS V
ON $PIECE(E.Name,',')=$PIECE(V.Contact,',')

Notes

Using $PIECE to Unpack Data Values

$PIECE is typically used to "unpack" data values that contain multiple fields delimited by a separator character. Typical
delimiter characters include the slash (/), the comma (,), the space (), and the semicolon (;). The following sample values
are good candidates for use with $PIECE:

'John Jones/29 River St./Boston MA, 02095'
'Mumps;Measles;Chicken Pox;Diptheria'
'45.23,52.76,89.05,48.27'

$PIECE and $LENGTH

The two-argument form of $LENGTH returns the number of substrings in a string, based on a delimiter. Use $LENGTH
to determine the number of substrings in a string, and then use $PIECE to extract individual substrings.

$PIECE and $LIST

The data storage techniques used by $PIECE and the $LIST functions are incompatible and should not be combined. For
example, attempting to use $PIECE on a list created using $LISTBUILD yields unpredictable results and should be
avoided. This is true for both SQL functions and the corresponding ObjectScript functions.

The $LIST functions specify substrings without using a designated delimiter. If setting aside a delimiter character or
character sequence is not appropriate to the type of data (for example, bitstring data), you should use the $LISTBUILD
and $LIST SQL functions to store and retrieve substrings.

Null Values

$PIECE does not distinguish between a delimited substring with a null string value (NULL), and a nonexistent substring.
Both return <null>, the null string value. For example, the following examples both return the null string for a from value
of 7:

SQL

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black',',',7)

InterSystems SQL Reference 787

$PIECE (SQL)

SQL

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black,',',',7)

In the first case, there is no seventh substring; a null string is returned. In the second case there is a seventh substring, as
indicted by the delimiter at the end of the string-expression string; the value of this seventh substring is the null string.

The following example shows null values within a string-expression. It extracts substrings 3. This substring exists, but
contains a null string:

SQL

SELECT $PIECE('Red,Green,,Blue,Yellow,Orange,Black,',',',3)

The following examples also returns a null string, because the specified substrings do not exist:

SQL

SELECT $PIECE('Red,Green,,Blue,Yellow,Orange,Black,',',',0)

SQL

SELECT $PIECE('Red,Green,,Blue,Yellow,Orange,Black,',',',8,20)

In the following example, the $PIECE function returns the entire string-expression string, because there are no occurrences
of delimiter in the string-expression string:

SQL

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black,','#')

Nested $PIECE Operations

To perform complex extractions, you can nest $PIECE references within each other. The inner $PIECE returns a substring
that is operated on by the outer $PIECE. Each $PIECE uses its own delimiter. For example, the following returns the state
abbreviation 'MA':

SQL

SELECT $PIECE($PIECE('John Jones/29 River St./Boston MA 02095','/',3),' ',2)

The following is another example of nested $PIECE operations, using a hierarchy of delimiters. First, the inner $PIECE
uses the caret (^) delimiter to find the second piece, 'A,B,C', of the string. Then the outer $PIECE uses the comma (,)
delimiter to return the first and second pieces ('A,B') of the substring 'A,B,C':

SQL

SELECT $PIECE($PIECE('1,2,3^A,B,C^@#!','^',2),',',1,2)

See Also
• SQL functions: $EXTRACT $FIND $LENGTH $LIST

• ObjectScript functions: $EXTRACT $FIND $LENGTH $LIST $PIECE

788 InterSystems SQL Reference

SQL Functions

%PLUS (SQL)
A collation function that converts numbers to canonical collation format.

Synopsis

%PLUS(expression)

%PLUS expression

Description
%PLUS converts numbers or numeric strings to canonical form, then returns these expression values in numeric collation
sequence.

A number can contain leading and trailing zeros, multiple leading plus and minus signs, a single decimal point indicator
(.), and the E exponent indicator. In canonical form, all arithmetic operations are performed, exponents are expanded, signs
are resolved to either a single leading minus sign or no sign, and leading and trailing zeros are stripped.

A numeric literal can be specified with or without enclosing string delimiters. If a string contains non-numeric characters,
%PLUS truncates the number at the first non-numeric character, and returns the numeric part in canonical form. A non-
numeric string (any string that begins with a non-numeric character) is returned as 0. %PLUS also returns NULLs as 0.

%PLUS is an InterSystems SQL extension and is intended for SQL lookup queries.

You can perform the same collation conversion in ObjectScript using the Collation() method of the %SYSTEM.Util class:

ObjectScript

 WRITE $SYSTEM.Util.Collation("++007.500",3)

Compare %PLUS to %MVR collation, which sorts a string based on the numeric substrings within the string.

Arguments

expression

An expression, which can be the name of a column, a number or a string literal, an arithmetic expression, or the result of
another function, where the underlying data type can be represented as any character type.

Examples
The following examples uses %PLUS to return Home_Street addresses in numeric order:

SQL

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY %PLUS(Home_Street)

Note that the above example orders the integer part of the street address in ascending numerical order. Compare this with
the following ORDER BY example, which orders records by street addresses in collation sequence:

SQL

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY Home_Street

InterSystems SQL Reference 789

%PLUS (SQL)

See Also
• %EXACT collation function

• %MINUS collation function

• Collation

790 InterSystems SQL Reference

SQL Functions

POSITION (SQL)
A string function that returns the position of a substring within a string.

Synopsis

POSITION(substring IN string)

Description
POSITION returns the position of the first location of substring within string. The position is returned as an integer. If
substring is not found, 0 (zero) is returned. If a NULL value is passed for either argument, POSITION returns NULL.

POSITION is case-sensitive. Use one of the case-conversion functions to locate both uppercase and lowercase instances
of a letter or character string.

POSITION, INSTR, CHARINDEX, and $FIND

POSITION, INSTR, CHARINDEX, and $FIND all search a string for a specified substring and return an integer position
corresponding to the first match. CHARINDEX, POSITION, and INSTR return the integer position of the first character
of the matching substring. $FIND returns the integer position of the first character after the end of the matching substring.
CHARINDEX, $FIND, and INSTR support specifying a starting point for substring search. INSTR also supports speci-
fying the substring occurrence from that starting point.

The following example demonstrates these four functions, specifying all optional arguments. Note that the positions of
string and substring differ in these functions:

SQL

SELECT POSITION('br' IN 'The broken brown briefcase') AS Position,
 CHARINDEX('br','The broken brown briefcase',6) AS Charindex,
 $FIND('The broken brown briefcase','br',6) AS Find,
 INSTR('The broken brown briefcase','br',6,2) AS Inst

For a list of functions that search for a substring, refer to String Manipulation.

Arguments

substring

The substring to search for. It can be the name of a column, a string literal, or the result of another scalar function, where
the underlying data type can be represented as any character type (such as CHAR or VARCHAR2).

IN string

The string expression within which to search for substring.

Examples
The following example returns 11, because “b” is the 11th character in the string:

SQL

SELECT POSITION('b' IN 'The quick brown fox') AS PosInt

The following example returns the length of the last name (surname) for each name in the Sample.Person table. It locates
the comma used to separate the last name from the rest of the name field, then subtracts 1 from that position:

InterSystems SQL Reference 791

POSITION (SQL)

SQL

SELECT Name,
POSITION(',' IN Name)-1 AS LNameLen
FROM Sample.Person

The following example returns the position of the first instance of the letter “B” in each name in the Sample.Person table.
Because POSITION is case-sensitive, the %SQLUPPER function is used to convert all name values to uppercase before
performing the search. Because %SQLUPPER adds a blank space at the beginning of a string, this example subtracts 1
to get the actual letter position. Searches that do not locate the specified string return zero (0); in this example, because of
the subtraction of 1, the value displayed for these searches is –1:

SQL

SELECT Name,
POSITION('B' IN %SQLUPPER(Name))-1 AS BPos
FROM Sample.Person

See Also
• CHARINDEX function

• $FIND function

• INSTR function

• String Manipulation

792 InterSystems SQL Reference

SQL Functions

POWER (SQL)
A numeric function that returns the value of a given expression raised to the specified power.

Synopsis

POWER(numeric-expression,power)

{fn POWER(numeric-expression,power)}

Description
POWER calculates one number raised to the power of another. It returns a value with a precision of 36 and a scale of 18.

Note that POWER can be invoked as an ODBC scalar function (with the curly brace syntax) or as an SQL general scalar
function.

POWER interprets a non-numeric string as 0 for either argument. For further details, refer to Strings as Numbers. POWER
returns NULL if passed a NULL value for either argument.

All combinations of numeric-expression and power are valid except:

• POWER(0,-m): a 0 numeric-expression and a negative power results in an SQLCODE -400 error.

• POWER(-n,.m): a negative numeric-expression and a fractional power results in an SQLCODE -400 error.

Arguments

numeric-expression

The base number. Can be a positive or negative integer or fractional number.

power

The exponent, which is the power to which to raise numeric-expression. Can be a positive or negative integer or fractional
number.

POWER returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, POWER
returns DOUBLE; otherwise, it returns NUMERIC.

Examples
The following example raises 5 to the 3rd power:

SQL

SELECT POWER(5,3) AS Cubed

returns 125.

The following embedded SQL example returns the first 16 powers of 2:

InterSystems SQL Reference 793

POWER (SQL)

ObjectScript

 SET a=1
 WHILE a<17 {
 &sql(SELECT {fn POWER(2,:a)}
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"2 to the ",a," = ",b
 SET a=a+1 }
 }

See Also
• SQL functions: EXP LOG10 SQRT SQUARE

• ObjectScript function: $ZPOWER

• ObjectScript Exponentiation Operator (**)

794 InterSystems SQL Reference

SQL Functions

PREDICT (SQL)
A function that applies a specified trained model to predict the result for each input row provided.

Synopsis

PREDICT(model-name)
PREDICT(model-name USE trained-model-name)
PREDICT(model-name WITH feature-columns-clause)
PREDICT(model-name USE trained-model-name \
 WITH feature-columns-clause)

Description
PREDICT returns the result of applying a trained machine learning model onto a specified query. This is performed on a
row-by-row basis.

USE

If a trained model is not explicitly named by USE, PREDICT uses the default trained model for the specified model defi-
nition.

For example, if multiple models are trained:

CREATE MODEL MyModel PREDICTING(label) FROM data
TRAIN MODEL MyModel AS FirstModel
TRAIN MODEL MyModel AS SecondModel NOT DEFAULT

FirstModel is the default model for MyModel. This means that PREDICT queries would use FirstModel for predictions.
To specify use of SecondModel:

PREDICT(MyModel USE SecondModel)

WITH

When using a FROM clause to specify a dataset, the PREDICT function implicitly maps the feature columns of the
specified dataset to those in the model. You can use a WITH clause to either:

• Specify the mapping of columns between the dataset and your model. For example:

SELECT PREDICT(Trained_Model WITH age = year) FROM dataset

This query matches the age column from Trained_Model to the year column from dataset.

You can use braces to map multiple columns:

SELECT PREDICT(Trained_Model WITH {age = year, income = salary}) FROM dataset

The order of these columns in your WITH clause does not matter, and any missing column names are taken from the
FROM clause.

• Specify a list of arguments to make a prediction with. When using this form of WITH, you do not provide a FROM
clause. For example:

SELECT PREDICT(Flower_Model WITH (5.1, 3.5, 1.4, 0.2, 'setosa'))

This query makes a prediction using Flower_Model on the expression (5.1, 3.5, 1.4, 0.2, 'setosa').

InterSystems SQL Reference 795

PREDICT (SQL)

Arguments must be ordered exactly as specified in your CREATE MODEL statement. Missing arguments can be
specified by empty commas. For example:

SELECT PREDICT(Flower_Model WITH (5.1, , 1.4, , 'setosa'))

You can use braces to provide multiple sets of arguments:

SELECT PREDICT(Flower_Model WITH ({5.1, 3.5, 1.4, 0.2, 'setosa'}, {6.4, 3.2, 4.3, 1.2, 'versicolor'}))

Required Security Privileges

Calling PREDICT requires %USE_MODEL privileges; otherwise, there is a SQLCODE –99 error (Privilege Violation).
To assign %USE_MODEL privileges, use the GRANT command.

Arguments

model-name

The name of the model.

USE trained-model-name

An optional argument that specifies the name of a non-default trained model. See details above.

WITH feature-columns-clause

An optional argument. The specific columns to provide as input for your trained model. See details above.

Examples

CREATE MODEL HousePriceModel PREDICTING(HousePrice) FROM housing_data_2019
TRAIN MODEL HousePriceModel
SELECT * FROM housing_data_2020 WHERE PREDICT(HousePriceModel) > 500000

CREATE MODEL PatientReadmission PREDICTING (IsReadmitted) FROM patient_data
TRAIN MODEL PatientReadmission
SELECT *, PREDICT(PatientReadmission) FROM new_patient_data

See Also
• TRAIN MODEL, PROBABILITY

796 InterSystems SQL Reference

SQL Functions

PROBABILITY (SQL)
A function that applies a specified trained model to return the probability that the specified label is the predicted label value.
This allows you to evaluate the relative strength of predictions of that value.

Synopsis

PROBABILITY (model-name FOR label-value)

PROBABILITY (model-name USE trained-model-name
 FOR label-value)

PROBABILITY (model-name FOR label-value
 WITH feature-columns-clause)

PROBABILITY (model-name USE trained-model-name
 FOR label-value WITH feature-columns-clause])

Arguments

The name of the trained model.model-name

The output value. See details below.FOR label-value

Optional — The name of a non-default trained model. See details below.USE trained-model-name

Optional — The specific columns to provide as input for your trained model.
See details below.

WITH
feature-columns-clause

Description
The PROBABILITY function applies a given model to a given table, returning the probability that, for each row in the
table, the model would predict the specified value. This probability is returned as a value from 0 to 1. This function can
only be used with classification models (not regression models).

FOR

FOR provides the output value that PROBABILITY finds the probability of.

For example:

SELECT * FROM flower_dataset WHERE PROBABILITY(iris_flower FOR 'iris-setosa') > 0.6

Uses the iris_flower model to return each row in flower_dataset where the probability of the result being “iris-
setosa” is greater than 0.6.

Omitting FOR implies a value of 1. For example:

SELECT PROBABILITY(IsSpam) FROM email_data

Implicitly forms this query:

SELECT PROBABILITY(IsSpam FOR 1) FROM email_data

When the value provided for FOR is invalid for the specified trained model, there is a SQLCODE –400 error with the fol-
lowing message:

[%msg: <PREDICT execution error: ERROR #2853: Specified positive label value not found

in the dataset.>]

InterSystems SQL Reference 797

PROBABILITY (SQL)

USE

If a trained model is not explicitly named by USE, PROBABILITY uses the default trained model for the specified model
definition.

For example, if multiple models are trained:

CREATE MODEL MyModel PREDICTING(label) FROM data
TRAIN MODEL MyModel AS FirstModel
TRAIN MODEL MyModel AS SecondModel NOT DEFAULT

FirstModel is the default model for MyModel. This means that PROBABILITY queries would use FirstModel for
predictions. To specify use of SecondModel:

PROBABILITY(MyModel FOR label-value USE SecondModel)

WITH

PROBABILITY is a smart function, mapping the feature columns of the specified dataset to those in the model implicitly
when there is no WITH clause. You can use a WITH clause to specify the mapping of columns between the dataset and
your model. For example:

SELECT PROBABILITY(iris_flower FOR 'iris-setosa' WITH petal_length = length_petal) FROM flower_dataset

This query matches the petal_length column from the iris_flower model to the length_petal column from
flower_dataset.

Required Security Privileges

Calling PROBABILITY requires %USE_MODEL privileges; otherwise, there is a SQLCODE –99 error (Privilege Violation).
To assign %USE_MODEL privileges, use the GRANT command.

Examples

CREATE MODEL PatientReadmission PREDICTING (IsReadmitted) FROM patient_data
TRAIN MODEL PatientReadmission
SELECT * FROM new_patient_data WHERE PROBABILITY(PatientReadmission FOR 1) > 0.8

See Also
• TRAIN MODEL, PREDICT

798 InterSystems SQL Reference

SQL Functions

QUARTER (SQL)
A date function that returns the quarter of the year as an integer for a date expression.

Synopsis

{fn QUARTER(date-expression)}

Description
QUARTER returns an integer from 1 to 4. The quarter is calculated for an InterSystems IRIS date integer, a $HOROLOG
or $ZTIMESTAMP value, an ODBC format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time periods for the four quarters are as follows:

Period (inclusive)Quarter

January 1 to March 31 (90 or 91 days)1

April 1 to June 30 (91 days)2

July 1 to September 30 (92 days)3

October 1 to December 31 (92 days)4

QUARTER is based on the month portion of a datetime string. However, all of date-expression is validated and must
include a month within the range 1 through 12 and a valid day value for the specified month and year. Otherwise, an
SQLCODE -400 error <ILLEGAL VALUE> is generated. The time portion of date-expression can be omitted, but if present
must be valid.

The same quarter information can be returned by using the DATEPART or DATENAME function. You can use the
DATEADD or TIMESTAMPADD function to increment a date by a specified number of quarters.

This function can also be invoked from ObjectScript using the QUARTER() method call:

$SYSTEM.SQL.Functions.QUARTER(date-expression)

Arguments

date-expression

An expression that is the name of a column, the result of another scalar function, or a date or timestamp literal.

Examples
The following examples both return the number 1 because the date (February 22) is in the first quarter of the year:

SQL

SELECT {fn QUARTER('2018-02-22')} AS ODBCDateQ

SQL

SELECT {fn QUARTER(64701)} AS HorologDateQ

The following examples all return the current quarter:

InterSystems SQL Reference 799

QUARTER (SQL)

SQL

SELECT {fn QUARTER({fn NOW()})} AS Q_Now,
 {fn QUARTER(CURRENT_DATE)} AS Q_CurrD,
 {fn QUARTER(CURRENT_TIMESTAMP)} AS Q_CurrTstamp,
 {fn QUARTER($ZTIMESTAMP)} AS Q_ZTstamp,
 {fn QUARTER($HOROLOG)} AS Q_Horolog

See Also
• SQL functions: DATENAME, DATEPART, DATEADD, MONTH, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

800 InterSystems SQL Reference

SQL Functions

RADIANS (SQL)
A numeric function that converts degrees to radians.

Synopsis

RADIANS(numeric-expression)

{fn RADIANS(numeric-expression)}

Description
RADIANS takes an angle measurement in degrees and returns the corresponding angle measurement in radians. RADIANS
returns NULL if passed a NULL value.

The returned value has a default precision of 36 and a default scale of 18.

You can use the DEGREES function to convert radians to degrees.

Arguments

numeric-expression

The measure of an angle in degrees. An expression that resolves to a numeric value.

RADIANS returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, RADIANS
returns DOUBLE; otherwise, it returns NUMERIC.

RADIANS can be specified as either a standard scalar function or an ODBC scalar function with curly brace syntax.

Example
The following Embedded SQL example returns the radians equivalents corresponding to the degree values from 0 through
365 in 30-degree increments:

ObjectScript

 SET a=0
 WHILE a<366 {
 &sql(SELECT RADIANS(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"degrees ",a," = radians ",b
 SET a=a+30 }
 }

See Also
• SQL functions: CONVERT, DEGREES, TO_NUMBER

InterSystems SQL Reference 801

RADIANS (SQL)

REPEAT (SQL)
A string function that repeats a string a specified number of times.

Synopsis

REPEAT(expression,repeat-count)

{fn REPEAT(expression,repeat-count)}

Description
REPEAT returns a string of repeat-count instances of expression, concatenated together.

If expression is NULL, REPEAT returns NULL. If expression is the empty string, REPEAT returns an empty string.

If repeat-count is a fractional number, only the integer part is used. If repeat-count is 0, REPEAT returns an empty string.
If repeat-count is a negative number, NULL, or a non-numeric string, REPEAT returns NULL.

Arguments

expression

The string expression to be repeated.

repeat-count

The number of times to repeat, expressed as an integer.

Examples
The following examples show the two forms of REPEAT. Both examples return the string 'BANGBANGBANG':

SQL

SELECT REPEAT('BANG',3) AS Tripled

SQL

SELECT {fn REPEAT('BANG',3)} AS Tripled

See Also
• REPLICATE

802 InterSystems SQL Reference

SQL Functions

REPLACE (SQL)
A string function that replaces a substring within a string.

Synopsis

REPLACE(string,oldsubstring,newsubstring)

Description
REPLACE searches a string for a substring and replaces all matches. Matching is case-sensitive. If a match is found, it
replaces every instance of oldsubstring with newsubstring. The replacement substring may be longer or shorter than the
substring it replaces. If the substring cannot be found, REPLACE returns the original string unchanged.

The value returned by REPLACE is always of data type VARCHAR, regardless of the data type of string. This allows for
replacement operations such as REPLACE(12.3,'.','_').

REPLACE cannot use a %Stream.GlobalCharacter field for the string, oldsubstring, or newsubstring argument. Attempting
to do so generates an SQLCODE -37 error.

The empty string is a string value. You can, therefore, use the empty string for any argument value. However, note that the
ObjectScript empty string is passed to InterSystems SQL as NULL.

NULL is not a data value in InterSystems SQL. For this reason, specifying NULL for any of the REPLACE arguments
returns NULL, regardless of whether or not a match occurs.

This function provides compatibility with Transact-SQL implementations.

REPLACE, STUFF, and $TRANSLATE

Both REPLACE and STUFF perform substring replacement. REPLACE searches for a substring by data value. STUFF
searches for a substring by string position and length.

REPLACE performs a single string-for-string matching and replacement. $TRANSLATE performs character-for-character
matching and replacement; it can replace all instances of one or more specified single characters with corresponding spec-
ified replacement single characters. It can also remove all instances of one or more specified single characters from a string.

By default, all three functions are case-sensitive and replace all matching instances.

For a list of functions that search for a substring, refer to String Manipulation.

Arguments

string

A string expression that is the target for the substring search.

oldsubstring

The substring to match within string.

newsubstring

The substring used to replace oldsubstring.

Examples
The following example searches for every instance of the substring 'P' and replaces it with the substring 'K':

InterSystems SQL Reference 803

REPLACE (SQL)

SQL

SELECT REPLACE('PING PONG','P','K')

The following example searches for every instance of the substring 'KANSAS' and replaces it with the substring
'NEBRASKA':

SQL

SELECT REPLACE('KANSAS, ARKANSAS, NEBRASKA','KANSAS','NEBRASKA')

The following example show that REPLACE handles the empty string ('') just like any other string value:

SQL

SELECT REPLACE('','','Nothing'),
 REPLACE('PING PONG','','K'),
 REPLACE('PING PONG','P','')

The following example shows that REPLACE handles any NULL argument by returning NULL. All of the following
REPLACE functions return NULL, including the last, in which no match occurs:

SQL

SELECT REPLACE(NULL,'K','P'),
 REPLACE(NULL,NULL,'P'),
 REPLACE('PING PONG',NULL,'K'),
 REPLACE('PING PONG','P',NULL),
 REPLACE('PING PONG','Z',NULL)

The following Embedded SQL example is identical to the previous NULLs example. It shows how the ObjectScript empty
string host variable is treated as NULL within SQL:

ObjectScript

 SET a=""
 &sql(SELECT
 REPLACE(:a,'K','P'),
 REPLACE(:a,:a,'P'),
 REPLACE('PING PONG',:a,'K'),
 REPLACE('PING PONG','P',:a),
 REPLACE('PING PONG','Z',:a)
 INTO :v,:w,:x,:y,:z)
 WRITE !,"SQLCODE=",SQLCODE
 WRITE !,"Output string=",v
 WRITE !,"Output string=",w
 WRITE !,"Output string=",x
 WRITE !,"Output string=",y
 WRITE !,"Output string=",z

See Also
• CHARINDEX function

• $FIND function

• STUFF function

• $TRANSLATE function

• String Manipulation

804 InterSystems SQL Reference

SQL Functions

REPLICATE (SQL)
A string function that repeats a string a specified number of times.

Synopsis

REPLICATE(expression,repeat-count)

Description
REPLICATE repeats a string a specified number of times.

Note: The REPLICATE function is an alias for the REPEAT function. REPLICATE is provided for TSQL compati-
bility. Refer to REPEAT for further details.

Arguments

expression

The string expression to be repeated.

repeat-count

The number of times to repeat, expressed as an integer.

See Also
• REPEAT

InterSystems SQL Reference 805

REPLICATE (SQL)

REVERSE (SQL)
A scalar string function that returns a character string in reverse character order.

Synopsis

REVERSE(string-expression)

Description
REVERSE returns string-expression with its character order reversed. For example, 'Hello World!' is returned as '!dlroW
olleH'. This is a simple string-order reversal, with no additional processing.

The string returned is data type VARCHAR, regardless of the data type of the input value. Numbers are converted to
canonical form, numeric strings are not converted to canonical form before reversing.

Leading and trailing blanks are unaffected by reversing.

Reversing a NULL value results in a NULL.

Note: Because REVERSE always returns a VARCHAR string, some types of data become invalid when reversed:

• A reversed list is no longer a valid list and cannot be converted from storage format to display format.

• A reversed date is no longer a valid date, and cannot be converted from storage format to display format.

Arguments

string-expression

The string expression to be reversed. The expression can be the name of a column, a string literal, a numeric, or the result
of another scalar function, where the underlying data type can be represented as any character type (such as CHAR or
VARCHAR).

Examples
The following example reverses the Name field values. In this case, this results in names sorted by middle initial:

SQL

SELECT Name,REVERSE(Name) AS RevName
FROM Sample.Person
ORDER BY RevName

Note that because Name and RevName are just different representations of the same field, ORDER BY RevName and
ORDER BY RevName,Name perform the same ordering.

The following example reverses a number and a numeric string:

SQL

SELECT REVERSE(+007.10) AS RevNum,
 REVERSE('+007.10') AS RevNumStr

The following example reverses a $DOUBLE number:

806 InterSystems SQL Reference

SQL Functions

SQL

SELECT
 CAST(1.1 AS DOUBLE) AS DoubleNumber,
 REVERSE(CAST(1.1 AS DOUBLE)) AS ReverseDouble

The following example shows what happens when you reverse a list:

SQL

SELECT FavoriteColors,REVERSE(FavoriteColors) AS RevColors
FROM Sample.Person

The following example shows what happens when you reverse a date:

SQL

SELECT DOB,%INTERNAL(DOB) AS IntDOB,REVERSE(DOB) AS RevDOB
FROM Sample.Person

See Also
• CHAR

• STRING

• SUBSTRING

InterSystems SQL Reference 807

REVERSE (SQL)

RIGHT (SQL)
A scalar string function that returns a specified number of characters from the end (rightmost position) of a string expression.

Synopsis

{fn RIGHT(string-expression,count)}

Description
RIGHT returns count number of characters from the end (rightmost position) of string-expression. RIGHT returns NULL
if passed a NULL value for either argument.

RIGHT can only be used as an ODBC scalar function (with the curly brace syntax).

Arguments

string-expression

A string expression, which can be the name of a column, a string literal, or the result of another scalar function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR).

count

An integer that specifies the number of characters to return from the ending (rightmost) position of string-expression.

Examples
The following example returns the two rightmost characters of each name in the Sample.Person table:

SQL

SELECT Name,{fn RIGHT(Name,2)}AS MiddleInitial
 FROM Sample.Person

The following example shows how RIGHT handles a count that is longer than the string itself:

SQL

SELECT Name,{fn RIGHT(Name,40)} FROM Sample.Person

No padding is performed.

See Also
• LEFT LTRIM RTRIM

808 InterSystems SQL Reference

SQL Functions

ROUND (SQL)
A numeric function that rounds or truncates a number at a specified number of digits.

Synopsis

ROUND(numeric-expr,scale[,flag])

{fn ROUND(numeric-expr,scale[,flag])}

Description
This function can be used to either round or truncate a number to the specified number of decimal digits.

ROUND rounds or truncates numeric-expr to scale places, counting from the decimal point. When rounding, the number
5 is always rounded up. Trailing zeroes are removed after a ROUND round or truncate operation. Leading zeros are not
returned.

• If scale is a positive number, rounding is performed at that number of digits to the right of the decimal point. If scale
is equal to or larger than the number of decimal digits, no rounding or zero filling occurs.

• If scale is zero, rounding is to the closest whole integer. In other words, rounding is performed at zero digits to the
right of the decimal point; all decimal digits and the decimal point itself are removed.

• If scale is a negative number, rounding is performed at that number of digits to the left of the decimal point. If scale
is equal to or larger than the number of integer digits in the rounded result, zero is returned.

• If numeric-expr is zero (however expressed: 00.00, -0, etc.) ROUND returns 0 (zero) with no decimal digits, regardless
of the scale value.

• If numeric-expr or scale is NULL, ROUND returns NULL.

Note that the ROUND return value is always normalized, removing trailing zeros.

ROUND,TRUNCATE, and $JUSTIFY

ROUND and TRUNCATE are numeric functions that perform similar operations; they both can be used to decrease the
number of significant decimal or integer digits of a number. ROUND allows you to specify either rounding (the default),
or truncation; TRUNCATE does not perform rounding. ROUND returns the same data type as numeric-expr; TRUNCATE
returns numeric-expr as data type NUMERIC, unless numeric-expr is data type DOUBLE, in which case it returns data
type DOUBLE.

ROUND rounds (or truncates) to a specified number of fractional digits, but its return value is always normalized, removing
trailing zeros. For example, ROUND(10.004,2) returns 10, not 10.00.

TRUNCATE truncates to a specified number of fractional digits. If the truncation results in trailing zeros, these trailing
zeros are preserved. However, if scale is larger than the number of fractional decimal digits in the canonical form of
numeric-expr, TRUNCATE does not zero-pad.

Use $JUSTIFY when rounding to a fixed number of fractional digits is important — for example, when representing
monetary amounts. $JUSTIFY returns the specified number of trailing zeros following the rounding operation. When the
number of digits to round is larger than the number of fractional digits, $JUSTIFY zero-pads. $JUSTIFY also right-aligns
the numbers, so that the DecimalSeparator characters align in a column of numbers. $JUSTIFY does not truncate.

$DOUBLE Numbers

$DOUBLE IEEE floating point numbers are encoded using binary notation. Most decimal fractions cannot be exactly
represented in this binary notation. When a $DOUBLE value is input to ROUND with a scale value and the rounding flag
(flag=0, the default), the return value frequently contains more fractional digits than specified in scale because the fractional

InterSystems SQL Reference 809

ROUND (SQL)

decimal result is not representable in binary, so the return value must be rounded to the nearest representable $DOUBLE
value, as shown in the following example:

SQL

SELECT ROUND(1234.5678,2),ROUND($DOUBLE(1234.5678),2)

If you are using ROUND to truncate a $DOUBLE value (flag=1), the return value for the $DOUBLE is truncated to the
number of fractional digits specified by scale. The TRUNCATE function also truncates a $DOUBLE to the number of
fractional digits specified by scale.

If you are using ROUND to round a $DOUBLE value and wish to return a specific scale, you should convert the $DOUBLE
value to decimal representation before rounding the result.

ROUND with flag=0 (round, the default) returns $DOUBLE("INF") and $DOUBLE("NAN") as the empty string.

ROUND with flag=1 (truncate) returns $DOUBLE("INF") and $DOUBLE("NAN") as INF and NAN.

Arguments

numeric-expr

The number to be rounded. A numeric expression.

scale

An expression that evaluates to an integer that specifies the number of places to round to, counting from the decimal point.
Can be zero, a positive integer, or a negative integer. If scale is a fractional number, InterSystems IRIS rounds it to the
nearest integer.

flag

An optional boolean flag that specifies whether to round or truncate the numeric-expr: 0=round, 1=truncate. The default is
0.

Examples
The following example uses a scale of 0 (zero) to round several fractions to integers. It shows that 5 is always rounded up:

SQL

SELECT ROUND(5.99,0) AS RoundUp,
 ROUND(5.5,0) AS Round5,
 {fn ROUND(5.329,0)} AS Roundoff

The following example truncates the same fractional numbers as the previous example:

SQL

SELECT ROUND(5.99,0,1) AS Trunc1,
 ROUND(5.5,0,1) AS Trunc2,
 {fn ROUND(5.329,0,1)} AS Trunc3

The following ROUND functions round and truncate a negative fractional number:

SQL

SELECT ROUND(-0.987,2,0) AS Round1,
 ROUND(-0.987,2,1) AS Trunc1

The following example rounds off pi to four decimal digits:

810 InterSystems SQL Reference

SQL Functions

SQL

SELECT {fn PI()} AS ExactPi, ROUND({fn PI()},4) AS ApproxPi

The following example specifies a scale larger than the number of decimal digits:

SQL

SELECT {fn ROUND(654.98700,9)} AS Rounded

it returns 654.987 (InterSystems IRIS removed the trailing zeroes before the rounding operation; no rounding or zero
padding occurred).

The following example rounds off the value of Salary to the nearest thousand dollars:

SQL

SELECT Salary,ROUND(Salary, -3) AS PayBracket
FROM Sample.Employee
ORDER BY Salary

Note that if Salary is less than five hundred dollars, it is rounded to 0 (zero).

In the following example each ROUND specifies a negative scale as large or larger than the number to be rounded:

SQL

SELECT {fn ROUND(987,-3)} AS Round1,
 {fn ROUND(487,-3)} AS Round2,
 {fn ROUND(987,-4)} AS Round3,
 {fn ROUND(987,-5)} AS Round4

The first ROUND function returns 1000, because the rounded result has more digits than the scale. The other three ROUND
functions return 0 (zero).

See Also
• $JUSTIFY function

• TRUNCATE function

• CEILING function

• FLOOR function

• MOD function

• ObjectScript functions: $DOUBLE, $NORMALIZE, $NUMBER

InterSystems SQL Reference 811

ROUND (SQL)

RPAD (SQL)
A string function that returns a string right-padded to a specified length.

Synopsis

RPAD(string-expression,length[,padstring])

Description
RPAD pads a string expression with trailing pad characters. It returns a copy of the string padded to length number of
characters. If the string expression is longer than length number of characters, the return string is truncated to length number
of characters.

If string-expression is NULL, RPAD returns NULL. If string-expression is the empty string ('') RPAD returns a string
consisting entirely of pad characters. The returned string is type VARCHAR.

RPAD can be used in queries against a linked table.

RPAD does not remove leading or trailing blanks; it pads the string including any leading or trailing blanks. To remove
leading or trailing blanks before padding a string, use LTRIM, RTRIM, or TRIM.

Arguments

string-expression

A string expression, which can be the name of a column, a string literal, a host variable, or the result of another scalar
function. Can be of any data type convertible to a VARCHAR data type. string-expression cannot be a stream.

length

An integer specifying the number of characters in the returned string.

padstring

An optional string consisting of a character or a string of characters used to pad the input string-expression. The padstring
character or characters are appended to the right of string-expression to supply as many characters as need to create an
output string of length characters. padstring may be a string literal, a column, a host variable, or the result of another scalar
function. If omitted, the default is a blank space character.

Examples
The following example right pads column values with ^ characters (when needed) to return strings of length 16. Note that
some Name strings are right padded, some Name strings are right truncated to return strings of length 16.

SQL

 SELECT TOP 15 Name,RPAD(Name,16,'^') AS Name16
 FROM Sample.Person

The following example right pads column values with the ^=^ pad string (when needed) to return strings of length 20. Note
that the pad name string is repeated as many times as needed, and that some return strings contain partial pad strings:

SQL

 SELECT TOP 15 Name,RPAD(Name,20,'^=^') AS Name20
 FROM Sample.Person

812 InterSystems SQL Reference

SQL Functions

See Also
• $JUSTIFY function

• LPAD function

• LTRIM function

• RTRIM function

• TRIM function

InterSystems SQL Reference 813

RPAD (SQL)

RTRIM (SQL)
A string function that returns a string with the trailing blanks removed.

Synopsis

RTRIM(string-expression)

{fn RTRIM(string-expression)}

Description
RTRIM strips the trailing blanks from a string expression, and returns the string as type VARCHAR. If string-expression
is NULL, RTRIM returns NULL. If string-expression is a string consisting entirely of blank spaces, RTRIM returns the
empty string ('').

RTRIM always returns data type VARCHAR, regardless of the data type of the input expression to be trimmed.

RTRIM leaves leading blanks; to remove leading blanks, use LTRIM. To remove leading and/or trailing characters of
any type, use TRIM. To pad a string with trailing blanks or other characters, use RPAD. To create a string of blanks, use
SPACE.

Note that RTRIM can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

Arguments

string-expression

A string expression, which can be the name of a column, a string literal, or the result of another scalar function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR).

Example
The following example removes the five trailing blanks from the string. It leaves the five leading blanks:

SQL

SELECT {fn RTRIM(" Test string with 5 leading and 5 trailing spaces. ")}

Returns:

Before RTRIM
start: Test string with 5 leading and 5 trailing spaces. :end
After RTRIM
start: Test string with 5 leading and 5 trailing spaces.:end

See Also
• LTRIM TRIM RPAD SPACE

814 InterSystems SQL Reference

SQL Functions

SEARCH_INDEX (SQL)
A function that returns a set of values from the index’s Find() method.

Synopsis

SEARCH_INDEX([[schema_name.]table-name.]index-name
 [,findparam[,...]])

Description
SEARCH_INDEX invokes the index-name Find() method and returns a set of values. You can optionally pass parameters
to this Find() method. For example, SEARCH_INDEX(Sample.Person.NameIDX) invokes the
Sample.Person.NameIDXFind() method.

SEARCH_INDEX can be used with the %FIND predicate in a WHERE clause to supply the OREF of an object that
provides an abstract representation encapsulating a set of values. These values are commonly row IDs returned by a method
called at query run time. SEARCH_INDEX invokes the index’s Find() method to return this OREF.

The index must be found within the tables referenced by the SQL statement. An SQLCODE -151 error is generated if the
specified index-name does not exist within the tables used by the SQL statement. An SQLCODE -152 error is generated
if the specified index-name is not fully qualified, and is therefore ambiguous (could refer to more than one existing index)
within the tables used by the SQL statement.

If the index exists, but it has no corresponding Find() method, a runtime SQLCODE -149 error is generated “SQL Function
encountered an error” , the error being <METHOD DOES NOT EXIST>.

For further details on the use of SEARCH_INDEX, refer to the SQL Search text search tool.

Arguments

table-name

An optional argument specifying the name of an existing table for which index-name is defined. Cannot be a view. The
table’s schema_name is optional. If omitted, all tables specified in the FROM clause are searched.

index-name

The index to be searched. The SqlName of the index map of an existing index.

findparam

An optional parameter or a comma-separated list of parameters to be passed to the index’s Find() method.

Examples
The following example shows the usage of the %FIND predicate with SEARCH_INDEX:

SQL

SELECT Name FROM Sample.Person AS P
WHERE P.Name %FIND SEARCH_INDEX(Sample.Person.NameIDX)

See Also
• CREATE INDEX

• %FIND predicate

• %INSET predicate

InterSystems SQL Reference 815

SEARCH_INDEX (SQL)

• Defining and Building Indexes

• Using Indexes

816 InterSystems SQL Reference

SQL Functions

SECOND (SQL)
A time function that returns the second for a datetime expression.

Synopsis

{fn SECOND(time-expression)}

Description
SECOND returns an integer from 0 to 59, and may return fractional seconds as well. The seconds are calculated for a
$HOROLOG or $ZTIMESTAMP value, an ODBC format date string (with no time value), or a timestamp.

A time-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

To change the default time format, use the SET OPTION command.

You must supply either a timestamp string (yyyy-mm-dd hh:mm:ss) or a $HOROLOG string. A $HOROLOG string may
be a full datetime string (63274,37279) or only the time integer portion of $HOROLOG (37279). You cannot supply a
time string (hh:mm:ss); this always returns 0, regardless of the actual number of seconds.

The time portion of the datetime string must be a valid time. Otherwise, an SQLCODE -400 error <ILLEGAL VALUE>
is generated. The seconds (ss) portion must be an integer in the range from 0 through 59. Leading zeros are optional on
input; leading zeros are suppressed on output.

The date portion of the datetime string is not validated.

SECOND returns 0 seconds when the seconds portion is '0' or '00'. Zero seconds is also returned if an ODBC date with no
time expression is supplied, or if the seconds portion of the time expression is omitted entirely ('hh', 'hh:mm', 'hh:mm:', or
'hh::').

The same time information can be returned using DATEPART or DATENAME.

This function can also be invoked from ObjectScript using the SECOND() method call:

$SYSTEM.SQL.Functions.SECOND(time-expression)

Fractional Seconds

SECOND returns fractions of a second if supplied in time-expression. Trailing zeros are truncated. If no fractional seconds
are specified (for example: 38.00) the decimal separator is also truncated.

The standard InterSystems IRIS internal representation of time values ($HOROLOG) does not support fractional seconds.
Timestamps do support fractional seconds.

The following SQL functions support fractional seconds: SECOND, CURRENT_TIMESTAMP, DATENAME,
DATEPART, and GETDATE. CURTIME, CURRENT_TIME, and NOW do not support fractional seconds.

The SQL SET OPTION statement permits you to set the default precision (number of decimal digits) for fractional seconds.

The ObjectScript $ZTIMESTAMP special variable can be used to represent fractional seconds. The ObjectScript functions
$ZDATETIME, $ZDATETIMEH, $ZTIME, and $ZTIMEH support fractional seconds.

InterSystems SQL Reference 817

SECOND (SQL)

Arguments

time-expression

An expression that is the name of a column, the result of another scalar function, or a string or numeric literal. It must
resolve either to a timestamp string or a $HOROLOG string, where the underlying data type can be represented as %Time,
%TimeStamp, or %PosixTime.

Examples
The following examples both return the number 38 because it is the thirty-eighth second of the time expression:

SQL

SELECT {fn SECOND('2018-02-16 18:45:38')} AS ODBCSeconds

SQL

SELECT {fn SECOND(67538)} AS HorologSeconds

The following example returns .9 seconds. The leading and trailing zeros are truncated:

SQL

SELECT {fn SECOND('2018-02-16 18:45:00.9000')} AS Seconds_Given

The following example returns 0 seconds because the seconds portion of the datetime string has been omitted:

SQL

SELECT {fn SECOND('2018-02-16 18:45')} AS Seconds_Given

The following example returns 0 seconds because the time expression has been omitted from the datetime string:

SQL

SELECT {fn SECOND('2018-02-16')} AS Seconds_Given

The following examples all return the seconds portion of the current time, in whole seconds:

SQL

SELECT {fn SECOND(CURRENT_TIME)} AS Sec_CurrentT,
 {fn SECOND({fn CURTIME()})} AS Sec_CurT,
 {fn SECOND({fn NOW()})} AS Sec_Now,
 {fn SECOND($HOROLOG)} AS Sec_Horolog,
 {fn SECOND($ZTIMESTAMP)} AS Sec_ZTS

The following example shows that leading zeros are suppressed. The first SECOND function returns a length 2, the others
return a length of 1. An omitted time is considered to be 0 seconds, which has a length of 1:

SQL

SELECT LENGTH({fn SECOND('2018-02-15 11:45:22')}),
 LENGTH({fn SECOND('2018-02-15 03:05:06')}),
 LENGTH({fn SECOND('2018-02-15 3:5:6')}),
 LENGTH({fn SECOND('2018-02-15')})

The following example shows that the SECOND function recognizes the TimeSeparator character specified for the locale:

818 InterSystems SQL Reference

SQL Functions

SQL

SELECT {fn SECOND('2018-02-16 18.45.38')}

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL functions: HOUR, MINUTE, CURRENT_TIME, CURTIME, NOW, DATEPART, DATENAME

• ObjectScript function: $ZTIME

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 819

SECOND (SQL)

SIGN (SQL)
A numeric function that returns the sign of a given numeric expression.

Synopsis

SIGN(numeric-expression)

{fn SIGN(numeric-expression)}

Description
SIGN returns the following:

• -1 if numeric-expression is less than zero.

• 0 (zero) if numeric-expression is zero: 0, +0, or -0.

• 1 if numeric-expression is greater than zero.

• NULL if numeric-expression is NULL, or if it is a non-numeric string.

SIGN can be used as either an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

SIGN converts numeric-expression to canonical form before determining its value. For example, SIGN(-+-+3) and
SIGN(-3+5) both return 1, indicating a positive number.

Note: In InterSystems SQL, two negative signs (hyphens) are the in-line comment indicator. For this reason, a SIGN
argument specifying two successive negative signs must be presented as a numeric string enclosed in quotes.

Arguments

numeric-expression

A number for which the sign is to be returned.

Examples
The following examples shows the effects of SIGN:

SQL

SELECT SIGN(-49) AS PosNeg

returns -1.

SQL

SELECT {fn SIGN(-0.0)} AS PosNeg

returns 0.

SQL

SELECT SIGN(-+-16.748) AS PosNeg

returns 1.

820 InterSystems SQL Reference

SQL Functions

SQL

SELECT {fn SIGN(NULL)} AS PosNeg

returns <null>.

See Also
• + (Positive) and – (Negative) unary operators

• ABS function

• ISNUMERIC function

• %PLUS and %MINUS collation functions

InterSystems SQL Reference 821

SIGN (SQL)

SIN (SQL)
A scalar numeric function that returns the sine, in radians, of an angle.

Synopsis

{fn SIN(numeric-expression)}

Description
SIN takes any numeric value and returns its sine as a floating point number. SIN returns NULL if passed a NULL value.
SIN treats nonnumeric strings as the numeric value 0.

SIN returns a value with a precision of 19 and a scale of 18.

SIN can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Arguments

numeric-expression

A numeric expression. This is an angle expressed in radians.

SIN returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, SIN returns
DOUBLE; otherwise, it returns NUMERIC.

Example
The following example shows the effect of SIN:

SQL

SELECT {fn SIN(0.52)} AS Sine

returns 0.496880.

See Also
• SQL functions: ACOS, ASIN, ATAN, COS, COT, TAN

• ObjectScript function: $ZSIN

822 InterSystems SQL Reference

SQL Functions

SPACE (SQL)
A string function that returns a string of spaces.

Synopsis

SPACE(count)

{fn SPACE(count)}

Description
SPACE returns a string of blank spaces count spaces long. If count is a numeric string, a decimal number, or a mixed
numeric string, InterSystems IRIS resolves it to its integer portion. If count is a negative number or a nonnumeric string,
InterSystems IRIS resolves it to 0.

To remove blank spaces from a string, use LTRIM (leading blanks) or RTRIM (trailing blanks).

Note: The SPACE function should not be confused with the SPACE collation type. SPACE collation prepends a single
space to a value, forcing it to be evaluated as a string. To establish SPACE collation, CREATE TABLE provides
a %SPACE collation keyword, and ObjectScript provides the Collation() method of the %SYSTEM.Util class.

Arguments

count

An integer expression specifying the number of blank spaces to return.

Examples
The following example returns a string of spaces the length of the name field:

SQL

SELECT SPACE(LENGTH(name))
 FROM Sample.Person

See Also
• LTRIM RTRIM TRIM

InterSystems SQL Reference 823

SPACE (SQL)

%SQLSTRING (SQL)
A collation function that sorts values as strings.

Synopsis

%SQLSTRING(expression[,maxlen])

%SQLSTRING expression

Description
%SQLSTRING converts expression to format that is sorted as a (case-sensitive) string. %SQLSTRING strips trailing
whitespace (spaces, tabs, and so on) from the string, then adds one leading blank space to the beginning of the string. This
appended blank space forces NULL and numeric values to be collated as strings. Leading and trailing zeros are removed
from numbers.

Because %SQLSTRING appends a blank space to all values, it collates a NULL value as a blank space, with a string
length of 1. %SQLSTRING collates any value containing only whitespace (spaces, tabs, and so on) as the SQL empty
string (''). When %SQLSTRING appends a blank space to an empty (zero-length) string, it collates as a blank space plus
the internal representation of an empty string, $CHAR(0), resulting in a string length of 2.

The optional maxlen argument truncates the expression string to the specified number of characters when indexing or col-
lating. For example, if you insert a string with maxlen truncation, the full string is inserted and can be retrieved by a SELECT
statement; the index global for this string is truncated to the specified length. This means that ORDER BY and comparison
operations only evaluate the truncated index string. Such truncation is especially useful for indexing on strings that exceed
the maximum character length for InterSystems IRIS subscripts. With the maxlen argument, if you need to index on a long
field, you can use the truncation length parameter.

%SQLSTRING performs maxlen truncation after converting expression; if maxlen exceeds the length of the converted
expression no padding is added. Note that within InterSystems IRIS, no string can exceed the string length limit. No maximum
is enforced for maxlen explicitly but InterSystems IRIS will issue a <MAXSTRING> error if applicable.

You can perform the same collation conversion in ObjectScript using the Collation() method of the %SYSTEM.Util class:

ObjectScript

 WRITE $SYSTEM.Util.Collation("The quick, BROWN fox.",8)

This function can also be invoked from ObjectScript using the SQLSTRING() method call:

ObjectScript

 WRITE $SYSTEM.SQL.Functions.SQLSTRING("The quick, BROWN fox.")

Both of these methods support truncation after SQLSTRING conversion. Note that the truncation length must include the
appended blank:

ObjectScript

 WRITE $SYSTEM.Util.Collation("The quick, BROWN fox.",8,6),!
 WRITE $SYSTEM.SQL.SQLSTRING("The quick, BROWN fox.",6)

For a not case-sensitive string conversion, refer to %SQLUPPER.

824 InterSystems SQL Reference

SQL Functions

Note: To change the system-wide default collation from %SQLUPPER (which is not case-sensitive) to %SQLSTRING
(which is case-sensitive), use the following command:

ObjectScript

 WRITE $$SetEnvironment^%apiOBJ("collation","%Library.String","SQLSTRING")

After issuing this command, you must purge indexes, recompile all classes, then rebuild indexes. Do not rebuild
indexes while the table’s data is being accessed by other users. Doing so may result in inaccurate query results.

Arguments

expression

A string expression, which can be the name of a column, a string literal, or the result of another function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR). expression can be a subquery.

maxlen

An optional date or timestamp expression from which the day of the month value is to be returned. An expression that is
the name of a column, the result of another scalar function, or a date or timestamp literalA positive integer, which specifies
that the collated value will be truncated to the value of maxlen. Note that maxlen includes the appended leading blank space.
You can enclose maxlen with double parentheses to suppress literal substitution: ((maxlen)).

Examples
The following query uses %SQLSTRING in the WHERE clause to perform a case-sensitive select:

SQL

SELECT Name FROM Sample.Person
WHERE %SQLSTRING Name %STARTSWITH %SQLSTRING 'Al'
ORDER BY Name

By default, %STARTSWITH string comparisons are not case-sensitive. This example uses the %SQLSTRING format
to make this comparison case-sensitive. It returns all names that begin with “Al” (such as Allen, Alton, etc.). Note when
using %STARTSWITH, you should apply %SQLSTRING collation to both sides of the statement.

The following example uses %SQLSTRING with a string truncation to return the first two characters of each name. Note
that the string truncation is 3 (not 2) because of the leading blank added by %SQLSTRING. The ORDER BY clause uses
this two-character field to put the rows in a rough collation sequence:

SQL

SELECT Name, %SQLSTRING(Name,3) AS FirstTwo
FROM Sample.Person
ORDER BY FirstTwo

This example returns the truncated values without changing the case of letters.

The following example applies %SQLSTRING to a subquery:

SQL

SELECT TOP 5 Name, %SQLSTRING((SELECT Name FROM Sample.Company),10) AS Company
FROM Sample.Person

See Also
• CREATE TABLE

InterSystems SQL Reference 825

%SQLSTRING (SQL)

• %STARTSWITH predicate

• %SQLUPPER collation function

• %TRUNCATE collation function

• Collation

826 InterSystems SQL Reference

SQL Functions

%SQLUPPER (SQL)
A collation function that sorts values as uppercase strings.

Synopsis

%SQLUPPER(expression[,maxlen])
%SQLUPPER expression

Description
SQLUPPER is the default collation.

%SQLUPPER converts expression to a format that is sorted as a (not case-sensitive) uppercase string. %SQLUPPER
converts all alphabetic characters to uppercase, strips trailing whitespace (spaces, tabs, and so on) from the string, then
adds one leading blank space to the beginning of the string. This prepended blank space causes NULL and numeric values
to be collated as strings.

SQL converts numeric values to canonical form (removing leading and trailing zeros, expanding exponents, etc.) before
passing the number to the function. SQL does not convert numeric strings to canonical form.

Because %SQLUPPER prepends a blank space to all values, it collates a NULL value as a blank space, with a string
length of 1. %SQLUPPER collates any value containing only whitespace (spaces, tabs, and so on) as the SQL empty string
(''). When %SQLUPPER prepends a blank space to an empty (zero-length) string, it collates as a blank space plus the
internal representation of an empty string, $CHAR(0), resulting in a string length of 2.

The optional maxlen argument truncates the converted expression string to the specified number of characters when
indexing or collating. For example, if you insert a string with maxlen truncation, the full string is inserted and can be
retrieved by a SELECT statement; the index global for this string is truncated to the specified length. This means that
ORDER BY and comparison operations only evaluate the truncated index string. Such truncation is especially useful for
indexing on strings that exceed the maximum character length for InterSystems IRIS subscripts. With the maxlen argument,
if you need to index on a long field, you can use the truncation length parameter.

%SQLUPPER performs maxlen truncation after converting expression; if maxlen exceeds the length of the converted
expression no padding is added. Note that within InterSystems IRIS, no string can exceed the string length limit. No maximum
is enforced for maxlen explicitly but InterSystems IRIS will issue a <MAXSTRING> error if applicable.

You can perform the same collation conversion in ObjectScript using the Collation() method of the %SYSTEM.Util class:

ObjectScript

 WRITE $SYSTEM.Util.Collation("The quick, BROWN fox.",7)

This function can also be invoked from ObjectScript using the SQLUPPER() method call:

ObjectScript

 WRITE $SYSTEM.SQL.Functions.SQLUPPER("The quick, BROWN fox.")

Both of these methods support truncation after SQLUPPER conversion. Note that the truncation length must include the
prepended blank:

ObjectScript

 WRITE $SYSTEM.Util.Collation("The quick, BROWN fox.",7,6),!
 WRITE $SYSTEM.SQL.SQLUPPER("The quick, BROWN fox.",6)

For a case-sensitive string conversion, refer to %SQLSTRING.

InterSystems SQL Reference 827

%SQLUPPER (SQL)

Note: To change the system-wide default collation from %SQLUPPER (which is not case-sensitive) to %SQLSTRING
(which is case-sensitive), use the following command:

ObjectScript

 WRITE $$SetEnvironment^%apiOBJ("collation","%Library.String","SQLSTRING")

After issuing this command, you must purge indexes, recompile all classes, then rebuild indexes. Do not rebuild
indexes while the table’s data is being accessed by other users. Doing so may result in inaccurate query results.

Other Case Conversion Functions

The %SQLUPPER function is the preferred way in SQL to convert a data value for not case-sensitive comparison or
collation. %SQLUPPER adds a leading blank space to the beginning of the data, which forces numeric data and the NULL
value to be interpreted as strings.

The following are other functions for converting the case of a data value:

• UPPER and UCASE: converts letters to uppercase, has no effect on number characters, punctuation characters,
embedded spaces, and leading and trailing blank spaces. Does not force numerics to be interpreted as a string.

• LOWER and LCASE: converts letters to lowercase, has no effect on number characters, punctuation characters,
embedded spaces, and leading and trailing blank spaces. Does not force numerics to be interpreted as a string.

• %SQLSTRING: does not convert letter case. However, it adds a leading blank space to the beginning of the data,
which forces numeric data and the NULL value to be interpreted as strings.

Alphanumeric Collation Order

The case conversion functions collate data values that begin with a number using different algorithms, as follows:

%SQLUPPER, %SQLSTRING, and all other case
conversion functions

%MVR

5988 Clinton Avenue,
6 Oak Avenue,
6023 Washington Court,
6090 Elm Court,
6185 Clinton Drive,
6209 Clinton Street,
6284 Oak Drive,
6310 Franklin Street,
6406 Maple Place,
641 First Place,
6572 First Avenue,
66 Main Street,
66 Oak Street,
6643 First Street,
665 Ash Drive,
672 Main Court,
6754 Oak Court,
6986 Madison Blvd,
7000 Ash Court,
709 Oak Avenue,

6 Oak Avenue,
66 Main Street,
66 Oak Street,
641 First Place,
665 Ash Drive,
672 Main Court,
709 Oak Avenue,
5988 Clinton Avenue,
6023 Washington Court,
6090 Elm Court,
6185 Clinton Drive,
6209 Clinton Street,
6284 Oak Drive,
6310 Franklin Street,
6406 Maple Place,
6572 First Avenue,
6643 First Street,
6754 Oak Court,
6986 Madison Blvd,
7000 Ash Court,

Arguments

expression

A string expression, which can be the name of a column, a string literal, or the result of another function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR). expression can be a subquery.

828 InterSystems SQL Reference

SQL Functions

maxlen

An optional integer, which specifies that the collated value will be truncated to the value of maxlen. Note that maxlen
includes the prepended leading blank space. You can enclose maxlen with double parentheses to suppress literal substitution:
((maxlen)).

Examples
The following query uses %SQLUPPER with a string truncation to return the first two characters of each name in uppercase.
Note that the string truncation is 3 (not 2) because of the leading blank added by %SQLUPPER. The ORDER BY clause
uses this two-character field to put the rows in a rough collation sequence:

SQL

SELECT Name, %SQLUPPER(Name,3) AS FirstTwo
FROM Sample.Person
ORDER BY FirstTwo

The following example applies %SQLUPPER to a subquery:

SQL

SELECT TOP 5 Name, %SQLUPPER((SELECT Name FROM Sample.Company),10) AS Company
FROM Sample.Person

See Also
• CREATE TABLE

• %STARTSWITH predicate

• %SQLSTRING collation function

• %TRUNCATE collation function

• Collation

InterSystems SQL Reference 829

%SQLUPPER (SQL)

SQRT (SQL)
A numeric function that returns the square root of a given numeric expression.

Synopsis

SQRT(numeric-expression)

{fn SQRT(numeric-expression)}

Description
SQRT returns the square root of numeric-expression. The numeric-expression must be a positive number. A negative
numeric-expression (other than -0) generates an SQLCODE -400 error. SQRT returns NULL if passed a NULL value.

SQRT returns a value with a precision of 36 and a scale of 18.

SQRT can be specified as a regular scalar function or as an ODBC scalar function (with the curly brace syntax).

Arguments

numeric-expression

An expression that resolves to a positive number from which the square root is calculated.

SQRT returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, SQRT returns
DOUBLE; otherwise, it returns NUMERIC.

Examples
The following example shows the two SQRT syntax forms. Both return the square root of 49:

SQL

SELECT SQRT(49) AS SRoot,{fn SQRT(49)} AS ODBCSRoot

The following embedded SQL example returns the square roots of the integers 0 through 10:

ObjectScript

 SET a=0
 WHILE a<11 {
 &sql(SELECT SQRT(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"The square root of ",a," = ",b
 SET a=a+1 }
 }

See Also
• SQL functions: POWER ROUND SQUARE

• ObjectScript function: $ZSQR

830 InterSystems SQL Reference

SQL Functions

SQUARE (SQL)
A scalar numeric function that returns the square of a number.

Synopsis

SQUARE(numeric-expression)

Description
SQUARE returns the square of numeric-expression. SQUARE returns NULL if passed a NULL value.

The precision and scale returned by SQUARE are the same as those returned by the SQL multiplication operator.

Arguments

numeric-expression

An expression that resolves to a numeric value.

SQUARE returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, SQUARE
returns DOUBLE; otherwise, it returns NUMERIC.

Examples
The following Embedded SQL example returns the squares of the integers 0 through 10:

ObjectScript

 SET a=0
 WHILE a<11 {
 &sql(SELECT SQUARE(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"The square of ",a," = ",b
 SET a=a+1 }
 }

See Also
• SQL functions: POWER, ROUND, SQRT

• ObjectScript function: $ZPOWER

InterSystems SQL Reference 831

SQUARE (SQL)

STR (SQL)
A function that converts a numeric to a string.

Synopsis

STR(number[,length[,decimals]])

Description
STR converts a numeric to the STRING format, truncating the numeric based on the values of length and decimals. The
length argument must be large enough to include the entire integer portion of the number, and, if decimals is specified, that
number of decimal digits plus 1 (for the decimal point). If length is not large enough, STR returns a string of asterisks (*)
equal to length.

STR converts numerics to their canonical form before string conversion. It therefore performs arithmetic operations,
removes leading and trailing zeros and leading plus signs from numbers.

If the number argument is NULL, STR returns NULL. If the number argument is the empty string (''), STR returns the
empty string. STRING retains whitespace.

Arguments

number

An expression that resolves to a numeric. It can be a field name, a numeric, or the result of another function. If a field name
is specified, the logical value is used.

length

An optional integer specifying the total length of the desired output string, including all characters (digits, decimal point,
sign, blank spaces). The default is 10.

decimals

An optional integer specifying the number of places to the right of the decimal point to include. The default is 0.

Example
In the following example, STR converts numerics into a string:

SQL

SELECT STR(123),
 STR(123,4),
 STR(+00123.45,3),
 STR(+00123.45,3,1),
 STR(+00123.45,5,1)

The first STR function returns a string consisting of 7 leading blanks and the number 123; the seven leading blanks are
because the default string length is 10. The second STR function returns the string “ 123”; note the leading blank needed
to return a string of length 4. The third STR function returns the string “123”; the numeric is put into canonical form, and
decimals defaults to 0. The fourth STR function returns “***” because the string length is not long enough to encompass
the entire number as specified; the number of asterisks indicates the string length. The fifth STR function returns “123.4”;
note that the length must be 5 to include the decimal digit.

See Also
• STRING, %SQLUPPER, %SQLSTRING

832 InterSystems SQL Reference

SQL Functions

STRING (SQL)
A function that converts and concatenates expressions into a string.

Synopsis

STRING(string1[,string2][,...][,stringN])

Description
STRING converts one or more strings to the STRING format, and then concatenates these strings into a single string. No
case transformation is performed.

STRING converts numerics to their canonical form before string conversion. It therefore performs arithmetic operations,
removes leading and trailing zeros and leading plus signs from numbers.

If any of the string arguments is NULL or the empty string (''), STRING concatenates all other arguments and removes
NULL and the empty string from the concatenation. If all of the string arguments are NULL, STRING returns NULL. If
all of the string arguments are the empty string (''), STRING returns the empty string. STRING retains whitespace.

You can use the %SQLSTRING function to convert a data value for case-sensitive string comparison, or the %SQLUPPER
function to convert a data value for not case-sensitive string comparison.

Arguments

string

An expression, which can be a field name, a string literal, a numeric, or the result of another function, where the underlying
data type can be represented as any character type (such as CHAR or VARCHAR). If a field name is specified, the logical
value is used.

Examples
In the following example, STRING concatenates three substrings into a single string. The example shows the handling of
blank spaces, the empty string, and NULL:

SQL

SELECT STRING('a','b','c'),
 STRING('a',' ','c'),
 STRING('a','','c'),
 STRING('a',NULL,'c')

In the following example, STRING converts numerics into a string. All of these STRING functions return the string '123':

SQL

SELECT STRING(123),
 STRING(+00123.00),
 STRING('1',23),
 STRING(1,(10*2)+3)

In the following example, STRING retrieves sample data from fields and concatenates it into a string:

SQL

SELECT STRING(Name,Age)
FROM Sample.Person

InterSystems SQL Reference 833

STRING (SQL)

See Also
• %SQLUPPER, %SQLSTRING, STR

834 InterSystems SQL Reference

SQL Functions

STUFF (SQL)
A string function that replaces a substring within a string.

Synopsis

STUFF(string,start,length,substring)

Description
STUFF replaces a substring with another substring. It identifies the substring to be replaced by location and length, and
replaces it with substring.

This function provides compatibility with Transact-SQL implementations.

The replacement substring may be longer or shorter than the original value. To delete the original value, substring can be
the empty string ('').

The start value must be within the current length of string. You can append a substring to the beginning of string by spec-
ifying a start value of 0. The empty string or a nonnumeric value is treated as 0.

Specifying NULL for the start, length, or substring argument returns NULL.

STUFF cannot use a %Stream.GlobalCharacter field for either the string or substring argument. Attempting to do so gen-
erates an SQLCODE -37 error.

REPLACE and STUFF

Both REPLACE and STUFF perform substring replacement. REPLACE searches for a substring by data value. STUFF
searches for a substring by string position and length.

For a list of functions that search for a substring, refer to String Manipulation.

Arguments

string

A string expression that is the target for the substring replacement.

start

The starting point for replacement, specified as a positive integer. A character count from the beginning of string, counting
from 1. Permitted values are 0 through the length of string. To append characters, specify a start of 0 and a length of 0.
The empty string or a nonnumeric value is treated as 0.

length

The number of characters to replace, specified as a positive integer. To insert characters, specify a length of 0. To replace
all characters after start, specify a length greater than the number of existing characters. The empty string or a nonnumeric
value is treated as 0.

substring

A string expression used to replace the substring identified by its starting point and length. Can be longer or shorter than
the substring it replaces. Can be the empty string.

Examples
The following example shows a single-character substitution, turning BOLT into BELT:

InterSystems SQL Reference 835

STUFF (SQL)

SQL

SELECT STUFF('BOLT',2,1,'E')

The following examples replace an 8-character substring (Kentucky) with a longer 12-character substring and a shorter 2-
character substring:

SQL

SELECT STUFF('In my old Kentucky home',11,8,'Rhode Island'),
 STUFF('In my old Kentucky home',11,8,'KY')

The following example inserts a substring:

SQL

SELECT STUFF('In my old Kentucky home',19,0,' (KY)')

The following example appends a substring to the beginning of the string:

SQL

SELECT STUFF('In my old Kentucky home',0,0,'The sun shines bright ')

The following example deletes an 8-character substring by replacing it with the empty string:

SQL

SELECT STUFF('In my old Kentucky home',11,8,'')

See Also
• REPLACE function

• $EXTRACT function

• SUBSTRING function

• SUBSTR function

• String Manipulation

836 InterSystems SQL Reference

SQL Functions

SUBSTR (SQL)
A string function that returns a substring derived from a specified string expression.

Synopsis

SUBSTR(string-expression,start[,length])

Arguments

DescriptionArgument

The string expression from which the substring is to be derived. The
expression can be the name of a column, a string literal, or the result of
another scalar function, where the underlying data type can be
represented as any character type (such as CHAR or VARCHAR).

string-expression

An integer that specifies where in string-expression the substring will
begin. A positive starting position specifies the number of characters
from the beginning of the string.The first character in string-expression1
is at position 1. A negative starting position specifies the number of
characters from the end of the string. If start is 0 (zero), it is treated as
1.

start

Optional — A positive integer that specifies the length of the substring
to return. This value specifies that the substring ends length characters
to the right of the starting position. If omitted, substring goes from start
to the end of string-expression. If length is 0 or a negative number,
InterSystems IRIS returns NULL.

length

Description
Because start can be negative, you can obtain a substring from either the beginning or end of the original string.

Floating-point numbers passed as arguments to SUBSTR are converted to integers by truncating the fractional portion.

• If start is 0, –0, or 1, the returned substring begins with the first character of the string.

• If start is a negative number the returned substring begins that number of characters from the end of the string, with -
1 representing the last character of the string. If the negative number is so large that its value counted backwards from
the end of the string would position before the beginning of the string, the returned substring begins with the first
character of the string.

• If start is past the end of the string, NULL is returned.

• If length larger than the remaining characters in the string, the substring from start to the end of the string is returned.

• If length is less than 1, NULL is returned.

• If either start or length is NULL, NULL is returned.

SUBSTR cannot be used with stream data. If string-expression is a stream field, SUBSTR generates an SQLCODE -37.
Use SUBSTRING to extract a substring from stream data.

SUBSTR is supported for Oracle compatibility.

InterSystems SQL Reference 837

SUBSTR (SQL)

Examples
The following example returns the substring CDEFG because it specifies that the substring begin at the third character (C)
and continue to the end of the string:

SQL

SELECT SUBSTR('ABCDEFG',3) AS Sub

The following example returns the substring CDEF because it specifies that the substring begin at the third character (C)
and continue for four characters (until F):

SQL

SELECT SUBSTR('ABCDEFG',3,4) AS Sub

The following example returns the substring CDEF because it specifies that InterSystems IRIS should first count five
characters backwards from the end of the original string, and then return the next four characters:

SQL

SELECT SUBSTR('ABCDEFG',-5,4) AS Sub

See Also
• SQL function: SUBSTRING

• ObjectScript functions: $EXTRACT $PIECE

838 InterSystems SQL Reference

SQL Functions

SUBSTRING (SQL)
A string function that returns a substring from data of any data type, including stream data.

Synopsis

SUBSTRING(string-expression,start[,length])
SUBSTRING(string-expression FROM start [FOR length])

{fn SUBSTRING(string-expression,start[,length])}

Arguments

DescriptionArgument

The string expression from which the substring is to be derived. An
expression, which can be the name of a column, a string literal, or the
result of another scalar function. This field can be of any data type: a
string (such as CHAR or VARCHAR), a numeric, or a data stream field
of data type %Stream.GlobalCharacter or %Stream.GlobalBinary.

string-expression

An integer that specifies the position in string-expression to begin the
substring. The first character in string-expression is at position 1. If the
start position is higher than the length of the string, SUBSTRING returns
an empty string (''). If the start position is lower than 1 (zero, or a negative
number) the substring begins at position 1, but the length of the substring
is reduced by the start position.

start

Optional — An integer that specifies the length of the substring to return.
If length is not specified, the default is to return the rest of the string.

length

Description
SUBSTRING takes data of any data type and returns a substring of that data as data type %String. The substring can, of
course, be the full data value returned as a string.

The value of start controls the starting point of the substring:

• If start is 1, the substring begins at the beginning of string-expression.

• If start is greater than 1, the substring begins at that character position counted from the beginning of string-expression.

• If start is less than 1, the substring begins at the beginning of string-expression, but the value of length is decremented
by a corresponding amount. Thus, if start is 0, the value of length is diminished by 1; if start is –1, the value of length
is diminished by 2.

The value of length controls the size of the substring:

• If length is a positive value (1 or greater), the substring ends length number of characters to the right of the start position.
(This effective length may be diminished if the start number is less than 1.)

• If length is larger than the number of character remaining in the string, all characters to the right of the starting position
through the end of string-expression are returned.

• If length is zero, NULL is returned.

• If length is a negative number, InterSystems IRIS issues an SQLCODE –140 error.

SUBSTRING can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

InterSystems SQL Reference 839

SUBSTRING (SQL)

Return Value

If string-expression is any %String data type, the SUBSTRING return value is the same data type as the string-expression
data type. This allows SUBSTRING to handle user-defined string data types with special encoding.

If string-expression is not a %String data type (for example, %Stream.GlobalCharacter), the SUBSTRING return value is
%String.

If any SUBSTRING argument value is NULL, SUBSTRING returns NULL.

Stream Data

Unlike most SQL string functions, SUBSTRING can be used with stream data. The string-expression can be a field of
data type %Stream.GlobalCharacter or %Stream.GlobalBinary. SUBSTRING returns the extracted subset of the stream
data as %String data type. If start is 1 and length is omitted, SUBSTRING returns the full stream data value as a %String.

SUBSTRING can therefore be used to supply character stream data as a string to other SQL string functions. The following
example uses SUBSTRING to allow CHARINDEX to search the first 1000 characters of a %Stream.GlobalCharacter
field containing DNA nucleotide sequences for the first occurrence of the substring TTAGGG and returns that position as
an integer:

SQL

SELECT CHARINDEX('TTAGGG',SUBSTRING(DNASeq,1,1000)) FROM Sample.DNASequences

SUBSTRING vs. SUBSTR

• SUBSTRING extracts a substring from a start position counted from the beginning of a string-expression. SUBSTR
can extract a substring from either the beginning or the end of a string.

• SUBSTRING can be used with stream data; SUBSTR cannot be used with stream data.

Examples
This example returns the string “forward”:

SQL

SELECT {fn SUBSTRING('forward pass',1,7)} AS SubText

This example returns the string “pass”:

SQL

SELECT {fn SUBSTRING('forward pass',9,4)} AS SubText

The following example returns the first four characters of each name:

SQL

SELECT Name,SUBSTRING(Name,1,4) AS FirstFour
FROM Sample.Person

The following example demonstrates another syntactical form of SUBSTRING. This example is functionally the same as
the previous example:

SQL

SELECT Name,SUBSTRING(Name FROM 1 FOR 4) AS FirstFour
FROM Sample.Person

840 InterSystems SQL Reference

SQL Functions

The following example shows how the length is reduced by a start value of less than 1. (A start value of 0 reduces length
by 1, a start value of -1 reduces length by 2, and so forth.) In this case, length is reduced by 3, so only one character (“A”)
is returned:

SQL

SELECT {fn SUBSTRING('ABCDEFG',-2,4)} AS SubText

See Also
• SQL function: SUBSTR

• ObjectScript functions: $EXTRACT, $PIECE

InterSystems SQL Reference 841

SUBSTRING (SQL)

SYSDATE (SQL)
A date/time function that returns the current local date and time.

Synopsis

SYSDATE

Description
SYSDATE takes no arguments and returns the current local date and time as a timestamp in either %TimeStamp data type
format (yyyy-mm-dd hh:mm:ss.ffff) or %PosixTime data type format (an encoded 64-bit signed integer). SYSDATE returns
the current local date and time for this timezone; it adjusts for local time variants, such as Daylight Saving Time.

By default, SYSDATE returns time in whole second increments. This default can be configured.

Note: SYSDATE is a synonym for the argumentless CURRENT_TIMESTAMP function. The
CURRENT_TIMESTAMP function is preferred for use in InterSystems SQL. The SYSDATE function is provided
for compatibility with other versions of SQL.

See Also
• CURRENT_TIMESTAMP

842 InterSystems SQL Reference

SQL Functions

%SYSTEM_SQL.DefaultSchema()
A function that returns the default schema for the current process in the current namespace.

Synopsis

%SYSTEM_SQL.DefaultSchema()

Description
%SYSTEM_SQL.DefaultSchema() takes no arguments. It returns the default schema for the current process in the current
namespace. Argument parentheses are required.

See Also
• Class reference

InterSystems SQL Reference 843

%SYSTEM_SQL.DefaultSchema()

TAN (SQL)
A scalar numeric function that returns the tangent, in radians, of an angle.

Synopsis

{fn TAN(numeric-expression)}

Description
TAN takes any numeric value and returns its tangent. TAN returns NULL if passed a NULL value. TAN treats nonnumeric
strings as the numeric value 0.

TAN returns a value with a precision of 36 and a scale of 18.

TAN can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Arguments

numeric-expression

A numeric expression. This is an angle expressed in radians.

TAN returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, TAN returns
DOUBLE; otherwise, it returns NUMERIC.

Example
The following example shows the effect of TAN.

SQL

SELECT {fn TAN(0.52)} AS Tangent

returns 0.572561.

See Also
• SQL functions: ACOS, ASIN, ATAN, COS, COT, SIN

• ObjectScript function: $ZTAN

844 InterSystems SQL Reference

SQL Functions

TIMESTAMPADD (SQL)
A scalar date/time function that returns a new timestamp calculated by adding a number of intervals of a specified date part
to a timestamp.

Synopsis

{fn TIMESTAMPADD(interval-type,integer-exp,timestamp-exp)}

Arguments

DescriptionArgument

The type of time/date interval that integer-exp represents, specified as a keyword.interval-type

An integer value expression that is to be added to timestamp-exp.integer-exp

A timestamp value expression, which will be increased by the value of integer-exp.timestamp-exp

Description
The TIMESTAMPADD function modifies a date/time expression by incrementing the specified date part by the specified
number of units. For example, if interval-type is SQL_TSI_MONTH and integer-exp is 5, TIMESTAMPADD increments
timestamp-exp by five months. You can also decrement a date part by specifying a negative integer for integer-exp.

TIMESTAMPADD returns a timestamp of the same data type as the input timestamp-exp. This timestamp can be in either
%Library.TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) or %Library.PosixTime data type format (an encoded
64-bit signed integer).

Note that TIMESTAMPADD can only be used as an ODBC scalar function (with the curly brace syntax).

Similar time/date modification operations can be performed on a timestamp using the DATEADD general function.

Interval Types

The interval-type argument can be one of the following timestamp intervals:

• SQL_TSI_FRAC_SECOND

• SQL_TSI_SECOND

• SQL_TSI_MINUTE

• SQL_TSI_HOUR

• SQL_TSI_DAY

• SQL_TSI_WEEK

• SQL_TSI_MONTH

• SQL_TSI_QUARTER

• SQL_TSI_YEAR

These timestamp intervals may be specified with or without enclosing quotation marks, using single quotes or double
quotes. They are not case-sensitive.

Incrementing or decrementing a timestamp interval causes other intervals to be modified appropriately. For example,
incrementing the hour past midnight automatically increments the day, which may in turn increment the month, and so
forth. TIMESTAMPADD always returns a valid date, taking into account the number of days in a month, and calculating

InterSystems SQL Reference 845

TIMESTAMPADD (SQL)

for leap year. For example, incrementing January 31 by one month returns February 28 (the highest valid date in the month),
unless the specified year is a leap year, in which case it returns February 29.

You can increment or decrement by fractional seconds of three digits of precision. Specify fractional seconds as an integer
count of thousandths of a second (001 through 999).

DATEADD and TIMESTAMPADD handle quarters (3-month intervals); DATEDIFF and TIMESTAMPDIFF do not
handle quarters.

%TimeStamp Format

If the timestamp-exp argument is in %Library.TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) the following rules
apply:

• If timestamp-exp specifies only a time value, the date portion of timestamp-exp is set to '1900–01–01' before calculating
the resulting timestamp.

• If timestamp-exp specifies only a date value, the time portion of timestamp-exp is set to '00:00:00' before calculating
the resulting timestamp.

• The timestamp-exp can include or omit fractional seconds. The timestamp-exp can include any number of digits of
precision, but interval-type SQL_TSI_FRAC_SECOND specifies exactly three digits of precision. Attempting to
specify a SQL_TSI_FRAC_SECOND of less than or more than three digits can have unpredictable results.

Range and Value Checking

TIMESTAMPADD performs the following checks on %Library.TimeStamp input values:

• All specified parts of the timestamp-exp must be valid before any TIMESTAMPADD operation can be performed.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. Years must be specified as four digits. An invalid date value results
in an SQLCODE -400 error.

• Date values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through 31. Hours:
00 through 23. Minutes: 0 through 59. Seconds: 0 through 59. The number of days in a month must match the month
and year. For example, the date '02–29' is only valid if the specified year is a leap year. An invalid date value results
in an SQLCODE -400 error.

• The incremented (or decremented) year value returned must be within the range 0001 through 9999. Incrementing or
decrementing beyond this range returns <null>.

• Date values less than 10 may include or omit a leading zero. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid. Date values less than 10 are always
returned with a leading zero.

• Time values may be wholly or partially omitted. If timestamp-exp specifies an incomplete time, zeros are supplied for
the unspecified parts.

• An hour value less than 10 must include a leading zero. Omitting this leading zero results in an SQLCODE -400 error.

Examples
The following example adds 1 week to the original timestamp:

SQL

SELECT {fn TIMESTAMPADD(SQL_TSI_WEEK,1,'2017-12-20 12:00:00')}

returns 2017-12-27 12:00:00, because adding 1 week adds 7 days.

846 InterSystems SQL Reference

SQL Functions

The following example adds 5 months to the original timestamp:

SQL

SELECT {fn TIMESTAMPADD(SQL_TSI_MONTH,5,'2017-12-20 12:00:00')}

returns 2018-05-20 12:00:00 because in this case adding 5 months also increments the year.

The following example also adds 5 months to the original timestamp:

SQL

SELECT {fn TIMESTAMPADD(SQL_TSI_MONTH,5,'2018-01-31 12:00:00')}

returns 2018-06-30 12:00:00. Here TIMESTAMPADD modified the day value as well as the month, because simply
incrementing the month would result in June 31, which is an invalid date.

The following example increments the original timestamp by 45 minutes:

SQL

SELECT {fn TIMESTAMPADD(SQL_TSI_MINUTE,45,'2017-12-20 00:00:00')}

returns 2017-12-20 00:45:00.

The following example decrements the original timestamp by 45 minutes:

SQL

SELECT {fn TIMESTAMPADD(SQL_TSI_MINUTE,-45,'2017-12-20 00:00:00')}

returns 2017-12-19 23:15:00. Note that in this case decrementing the time also decremented the day.

See Also
• TIMESTAMPDIFF, DATEADD, DATENAME, DATEPART, TO_POSIXTIME, TO_TIMESTAMP

InterSystems SQL Reference 847

TIMESTAMPADD (SQL)

TIMESTAMPDIFF (SQL)
A scalar date/time function that returns an integer count of the difference between two timestamps for a specified date part.

Synopsis

{fn TIMESTAMPDIFF(interval,startDate,endDate)}

Description
• {fn TIMESTAMPDIFF(interval,startDate,endDate)} returns the difference between the starting and ending timestamps

(startDate minus endDate) for the specified date part interval (seconds, days, weeks, and so on). The function returns
an INTEGER value representing the number of intervals between the two timestamps. If endDate is earlier than
startDate, TIMESTAMPDIFF returns a negative INTEGER value.

This statement returns 12 because the second timestamp is 12 days greater than the first one. Both timestamps have a
default time of 00:00:00.

SQL

SELECT {fn TIMESTAMPDIFF(SQL_TSI_DAY,'2022-4-1','2022-4-13')}

Example: Calculate Difference Between Timestamps

Arguments

interval

The type of time or date interval that the returned timestamp difference represents, specified as one of these timestamp
intervals:

• SQL_TSI_FRAC_SECOND — Fractional second intervals

• SQL_TSI_SECOND — Second intervals

• SQL_TSI_MINUTE — Minute intervals

• SQL_TSI_HOUR — Hour intervals

• SQL_TSI_DAY — Day intervals

• SQL_TSI_WEEK — Week intervals

• SQL_TSI_MONTH — Month intervals

• SQL_TSI_YEAR — Year intervals

startDate,endDate

Timestamp value expressions representing the start and end date being compared, specified as one of these values:

• %Library.TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff)

• %Library.PosixTime data type format (an encoded 64-bit signed integer)

You can specify these timestamp intervals with or without enclosing quotation marks, using single quotes or double quotes.
They are not case-sensitive.

If either startDate or endDate uses the %Library.TimeStamp format, these rules apply:

848 InterSystems SQL Reference

SQL Functions

• If either timestamp expression specifies only a time value and interval specifies a date interval (days, weeks, months,
or years), the missing date portion of the timestamp defaults to '1900–01–01' before calculating the resulting interval
count.

• If either timestamp expression specifies only a date value and interval specifies a time interval (hours, minutes, seconds,
fractional seconds), the missing time portion of the timestamp defaults to '00:00:00.000' before calculating the resulting
interval count.

• You can include or omit fractional seconds of any number of digits of precision. SQL_TSI_FRAC_SECOND returns a
difference of fractional seconds as an integer count of thousandths of a second (three digits of precision).
%Library.PosixTime values always includes six digits of precision.

Examples

Calculate Difference Between Timestamps

This statement returns 7 because the second timestamp (2021-12-20 12:00:00) is 7 months greater than the first one:

SQL

SELECT {fn TIMESTAMPDIFF(SQL_TSI_MONTH,
 '2021-5-19 00:00:00','2021-12-20 12:00:00')}

This statement returns 566 because the second timestamp ('12:00:00') is 566 minutes greater than the first one (02:34:12):

SQL

SELECT {fn TIMESTAMPDIFF(SQL_TSI_MINUTE,'02:34:12','12:00:00')}

This statement returns -1440 because the second timestamp is one day (1440 minutes) less than the first one:

SQL

SELECT {fn TIMESTAMPDIFF(SQL_TSI_MINUTE,'2021-12-06','2021-12-05')}

Limitations
• You can use TIMESTAMPDIFF only as an ODBC scalar function, which requires the curly brace syntax. To perform

similar time and date comparison operations on a timestamp, use the DATEDIFF function.

More About

Range and Value Checking

Prior to performing the difference calculation, TIMESTAMPDIFF performs these checks on input values:

• All specified parts of startDate and endDate are valid. Time values can be wholly or partially omitted. If startDate or
endDate specifies an incomplete time, TIMESTAMPDIFF supplies zeros for the unspecified parts.

• Date strings are complete and properly formatted with the appropriate number of elements, number of digits for each
element, and the appropriate separator character. Years must be specified as four digits. An invalid date value results
in an SQLCODE -8 error.

• Date values are within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through 31. Hours: 00
through 23. Minutes: 0 through 59. Seconds: 0 through 59. The number of days in a month must match the month and
year. For example, the date '02–29' is valid only if the specified year is a leap year. An invalid date value results in an
SQLCODE -8 error.

InterSystems SQL Reference 849

TIMESTAMPDIFF (SQL)

• Date values contain only canonical integer values. Exception: Months and days with values less than 10 (month and
day) can include a leading zero. Therefore, a day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

• Hour values less than 10 include a leading zero. Omitting this leading zero results in an SQLCODE -8 error.

See Also
• TIMESTAMPADD

• DATEDIFF

• TO_POSIXTIME

• TO_TIMESTAMP

850 InterSystems SQL Reference

SQL Functions

TO_CHAR (SQL)
A string function that converts a date, timestamp, or number to a formatted character string.

Synopsis

TO_CHAR(expression,format)

TO_CHAR(expression)

TOCHAR(...)

Description
• TO_CHAR(expression,format) converts a date, time, timestamp (date and time), or number expression to a character

string according to the specified format string.

This statement converts the current date to the format 'MONTH DD, YYYY', where MONTH is the full month name,
DD is the two-digit day of the month, and YYYY is the four-digit year.

SQL

SELECT TO_CHAR(CURRENT_DATE,'MONTH DD, YYYY')

Examples:

– Convert Dates to Formatted Date Strings

– Convert Times to Formatted Time Strings

– Convert Timestamps to Formatted Date and Time Strings

– Convert Numbers to Formatted Numeric Strings

TO_CHAR(expression) converts a date, time, timestamp, or number expression according to the default Logical mode
format for the expression type.

– Date expressions and time expressions convert to the InterSystems SQL Logical $HOROLOG format, which is a
string of two comma-separated integers that represent a date and time. The first integer is the number of days since
December 31, 1840. The second integer is the number of seconds since midnight of the current day.

– Timestamp expressions convert to the format YYYY-MM-DD HH:MI:SS.

– Number expressions convert to integers. Any leading zeros or plus signs are removed, and the number is truncated
at the first nonnumeric character, such as a comma or period.

This statement converts the current date and time, represented as a timestamp, to a character string of the format
YYYY-MM-DD HH:MI:SS.

SQL

SELECT TO_CHAR(CURRENT_TIMESTAMP)

• TOCHAR(...) is equivalent to TO_CHAR(...).

InterSystems SQL Reference 851

TO_CHAR (SQL)

Arguments

expression

A logical date, time, timestamp, or number expression to be converted to a character string according to the format specified
by format. If expression is null, TO_CHAR returns null.

Date Expressions

To convert date expressions, expression must be an integer or string in $HOROLOG format.

If expression is an invalid date, (for example, February 30), InterSystems IRIS® issues an SQLCODE -400 error.

If expression represents a date before 12/31/1840, then to convert the date, you must use the Julian date format (format
argument = 'J'). For more details, see Julian Date Conversion.

Time Expressions

To convert time expressions, expression must be in one of these formats:

• A $HOROLOG time integer (the time component of $HOROLOG), where expression is a valid Logical time integer
in the range 0 through 86399. Do not supply a full $HOROLOG value with both date and time components (such as
64701,42152). TO_CHAR time conversion converts only the first component of $HOROLOG, the date component,
to a formatted time string and ignores the second component, the time component.

• A Logical timestamp value. The value for expression must be of the %TimeStamp data type (not a string data type) in
the format YYYY-MM-DD hh:mm:ss. If you specify only a time format in format, then TO_CHAR ignores the date
component of the timestamp converts only the time component. For example, SYSDATE is a Logical timestamp.

• A time value in standard ODBC time format. The value for expression must be in the format hh:mm:ss and can be
a string.

• A time value in local time format using the current NLS locale settings. For example, if the NLS TimeSeparator is set
to “^”, the value for expression can be in the format hh^mm^ss and can be a string.

If expression is an invalid time, (for example, 6:61 P.M.), InterSystems IRIS issues an SQLCODE -400 error.

Timestamp Expressions

To convert timestamp expressions, expression must be of the format YYYY-MM-DD HH:MI:SS, or one of the following
valid variants:

• For month and date values less than 10, leading zeros are optional. If the leading zero is omitted, it is also omitted in
the returned date.

• The seconds value can be omitted, but you must specify the colon indicating its place (for example, HH:MI:). In the
returned time, the seconds default to 00.

• The seconds value can include fractional seconds (for example, HH:MI:SS.fff). In the returned time, these fractional
seconds are truncated.

• A timestamp must include a time portion, even if format does not specify time formatting.

If expression is not a valid timestamp format, TO_CHAR interprets it as an integer, ending interpretation when it
encounters the first non-integer character.

If format is a date or timestamp format, TO_CHAR interprets expression as a $HOROLOG date integer. Thus 2010-03-23
12-15:23 (note erroneous hyphen in time value) is interpreted as the $HOROLOG date 2010 (1846-07-03 12:00:00
AM).

If expression is an invalid date or time, (for example, February 30 or 6:61 P.M.), InterSystems IRIS issues an SQLCODE
-400 error.

852 InterSystems SQL Reference

SQL Functions

Number Expressions

To convert number expressions, expression must be a numeric data type or a numeric string. TO_CHAR truncates strings
at the first nonnumeric integer. It interprets a string with no leading numeric values as 0.

format

A character code that specifies a date, timestamp, or number format for the expression conversion.

• If you specify format with an invalid date, time, or timestamp code element (for example, YYYYY, MIN, HH48),
TO_CHAR returns the format code literal for the invalid code element. For all other valid code elements, it returns
the date, time, or timestamp conversion values.

• If TO_CHAR cannot recognize any format code elements (for example, format is an empty string) or if a number
format has fewer digits than the expression value, TO_CHAR returns pound signs (#) in place of the original characters.
This is true when expression begins with at least two integer digits. Otherwise, TO_CHAR returns NULL.

These tables list the valid format codes that you can specify for each expression type: date, time, date and time (timestamp),
and number.

Table G–11: Date Formats

MeaningFormat Code

Day of week (1–7). By default, 1 is Sunday (the first day of the week), but
you can configure this value. For more details, see DAYOFWEEK.

D

Two-digit day of month (01–31).DD

Abbreviated name of day, as specified by the WeekdayAbbr property in
the current locale.

Defaults: Sun Mon Tue Wed Thu Fri Sat

DY

Name of day, as specified by the WeekdayName property in the current
locale.

Defaults: Sunday Monday Tuesday Wednesday Thursday Friday Saturday

DAY

Two-digit month number (01–12; 01 = JAN).MM

Abbreviated name of month, as specified by the MonthAbbr property in
the current locale.

Defaults (case-insensitive): Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Nov Dec

MON

Full name of the month, as specified by the MonthName property in the
current locale.

Defaults (case-insenitive) January February March April May June July
August September October November December

MONTH

Four-digit year.YYYY

Last 3 digits of the year.YYY

Last 2 digits of the year.YY

Last digit of the year.Y

Four-digit year.RRRR

InterSystems SQL Reference 853

TO_CHAR (SQL)

MeaningFormat Code

Last 2 digits of the year.RR

Day of the year (number of days since January 1 of specified year)DDD

Julian date (number of days since January 1, 4712 BCE). For more details,
see Julian Date Conversion.

J

Separator characters are required between the date format elements, with the exception of the following format strings:
YYYYMMDD, DDMMYYYY, and YYYYMM. The last of these returns the year and month values and ignores the day of the month.

Locales mentioned in the format code definitions refer to the same locales described in the ObjectScript $ZDATE and
$ZDATEH documentation.

Table G–12:Time Formats

MeaningFormat Code

Hour of day (1–12)HH

Hour of day (1–12)HH12

Hour of day (0–23)HH24

Minute (0– 59)MI

Second (0–59)SS

Seconds since midnight (0–86388)SSSSS

Meridian Indicator (AM = before noon, PM = after noon). Converts a
time value to 12-hour format with the appropriate AM or PM suffix.
The returned AM or PM suffix is derived from the time value, not from
the format code you specified. In format, you can use either AM or
PM. They are functionally identical.

AM / PM

When converting times to strings, format must be a string that contains only the time format codes shown in the table. If
format includes any other codes, then TO_CHAR interprets the expression as a date instead.

When converting timestamps to formatted datetime strings, format must be a string containing the date and time format
codes shown in the "Date Formats" and "Time Formats" tables. To perform this conversion, expression must be a valid
Logical timestamp value.

Table G–13: Number Formats

ExampleDescriptionFormat Code

9999Return value with the specified number of digits.

• Positive values include a leading space.

• Negative values include a minus sign.

• Leading zeros are blank, except for a zero value, which
returns a zero for the integer part of the fixed-point num-
ber.

9

09999

99990

Return leading or trailing zeros.0

854 InterSystems SQL Reference

SQL Functions

ExampleDescriptionFormat Code

$9999Return value with a leading dollar sign. For positive numbers,
the dollar sign is preceded by a blank space.

$

B9999Return blanks for the integer part of a fixed-point number when
the integer part is zero (regardless of 0 in the format
argument).

B

S9999

9999S

Return value with a leading or trailing plus sign "+" if positive
and a leading or trailing minus sign "-" if negative.

S

99D99Return a decimal separator character in the specified position.
The DecimalSeparator used is the one defined for the locale.
The default is a period ".". Only one "D" is allowed in the format
argument.

D

9G999Return a numeric group separator character in the specified
positions.The NumericGroupSeparator used is the one defined
for the locale. The default is a comma ",". No numeric group
separators can appear to the right of the decimal separator.

G

FM90.9Return a value with no leading or trailing blanks.FM

9,999Return a comma in the specified position. No comma can
appear to the right of the decimal.The format argument cannot
begin with a comma.

,

99.99Return a decimal point (that is, a period ".") in the specified
position. Only one "." is allowed in the format argument.

.

format can specify the decimal separator and the numeric group separator either as a literal character, or as the current value
of the locale’s DecimalSeparator and NumericGroupSeparator. You can determine the current locale values using
ObjectScript as follows:

ObjectScript

 write ##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator"),!
 write ##class(%SYS.NLS.Format).GetFormatItem("NumericGroupSeparator")

If format contains fewer integer digits than the input numeric expression, TO_CHAR does not return a number. Instead,
it returns a string of two or more pound signs (##). The number of pound signs represents the length of the current format
argument, plus one.

If format contains fewer decimal digits than the input numeric expression, TO_CHAR rounds the number to the specified
number of decimal digits. If no decimal format is provided, TO_CHAR rounds the number to an integer.

Examples

Convert Dates to Formatted Date Strings

This statement uses TO_CHAR to convert $HOROLOG date integers or full $HOROLOG string values to formatted
date strings or date and time strings:

InterSystems SQL Reference 855

TO_CHAR (SQL)

SQL

SELECT
 TO_CHAR(66256,'YYYY-MM-DD') AS Date2FormattedDate,
 TO_CHAR(66256,'YYYY-MM-DD HH24:MI:SS') AS Date2FormattedDateTime,
 TO_CHAR('66256,50278','YYYY-MM-DD') AS DateTime2FormattedDate,
 TO_CHAR('66256,50278','YYYY-MM-DD HH24:MI:SS') AS DateTime2FormattedDateTime

In this statement, each TO_CHAR call takes a date integer and returns a date string formatted according to the format
string argument:

SQL

SELECT
 TO_CHAR(66256,'MM/DD/YYYY'), /* returns 02/22/2018 */
 TO_CHAR(66256,'DAY MONTH DD, YYYY') /* returns Thursday February 22, 2018 */

This statement converts a date integer to a formatted date string. Invalid format characters are passed through to the output
string as literals. It returns the string The date 05/27/2022 should be noted.

SQL

SELECT TO_CHAR(66256,'The date MM/DD/YYYY should be noted')

This statement converts date expressions to the day of the year, defined as the number of days elapsed since January 1 of
the specified year. To use this syntax, the date expression must be in $HOROLOG format. The time value in the second
TO_CHAR call is ignored. In the two TO_CHAR calls, the day-of-year format element (DDD) and the year elements
(YYYY and YY) appear in a different order.

SQL

SELECT
 TO_CHAR('66235','DDD days into YYYY'),
 TO_CHAR('66235,12345','Year YY: DDD days elapsed')

In this statement, TO_CHAR returns an incorrect date value, because it interprets the separators as minus signs. Therefore,
it evaluates the expression as 2022 – 5 – 2 = 2015, which in $HOROLOG integer format corresponds to the date 1846-
07–08.

SQL

SELECT TO_CHAR(2022-05-02,'YYYY-MM-DD') -- Incorrect usage

Convert Times to Formatted Time Strings

This statement causes '66256' to be interpreted as the time value 06:24:16 PM.

SQL

SELECT TO_CHAR('66256','HH12:MI:SS PM')

This statement converts the time portions of two Logical timestamps to formatted time strings. Because format does not
support fractional seconds, the fractional seconds in expression are truncated.

SQL

SELECT TO_CHAR(SYSDATE,'HH12:MI:SS PM'),
 TO_CHAR(CURRENT_TIMESTAMP(6),'HH12:MI:SS PM')

856 InterSystems SQL Reference

SQL Functions

Convert Timestamps to Formatted Date and Time Strings

This statement returns the current system date (a timestamp), and the current system date converted for display with two
different formats:

SQL

SELECT
 SYSDATE,
 TO_CHAR(SYSDATE,'MM/DD/YYYY HH:MI:SS'),
 TO_CHAR(SYSDATE,'DD MONTH YYYY at SSSSS seconds')

Any characters used in the format string that are not format codes are returned in place in the resulting string.

Convert Numbers to Formatted Numeric Strings

This statement converts the number 1000 to strings with varying numbers of digit format codes.

• In the first conversion, the number has more digits than specified digit format codes. TO_CHAR returns pound symbols
equal to the number of digits in the number.

• In the second conversion, the number has the same number of digits as specified digit format codes. TO_CHAR returns
the number in character string form. Because the number is an unsigned positive integer, TO_CHAR prepends a
leading zero to the numeric string.

• In the third conversion, the number has fewer digits than specified digit format codes. TO_CHAR returns the number
in character string form and prepends two leading zeros: one because the number is an unsigned positive integer one
for the extra digit format code.

SQL

SELECT
 TO_CHAR(1000,'999'), -- '####'
 TO_CHAR(1000,'9999'), -- ' 1000'
 TO_CHAR(1000,'99999') -- ' 1000'

The statement shows the use of separator characters:

• The first conversion returns the string: ' 1,000.00'.

• The second conversion might return the same value, but the separator characters displayed depend on the locale setting.

SQL

SELECT
 TO_CHAR(1000,'9,999.99'),
 TO_CHAR(1000,'9G999D99')

This statement shows the use of positive and negative signs. The leading space appears only before a positive number with
no sign formatting. No leading space appears before a negative number or any signed number, regardless of the placement
of the sign.

SQL

SELECT
 TO_CHAR(10,'99.99'), -- ' 10.00'
 TO_CHAR(-10,'99.99'), -- '-10.00'
 TO_CHAR(10,'S99.99'), -- '+10.00'
 TO_CHAR(-10,'S99.99'), -- '-10.00'
 TO_CHAR(10,'99.99S'), -- '10.00+'
 TO_CHAR(-10,'99.99S') -- '10.00-'

This statement shows the use of the "FM" format to override the default leading blank for unsigned positive numbers:

InterSystems SQL Reference 857

TO_CHAR (SQL)

SQL

SELECT
 TO_CHAR(12345678.90,'99,999,999.99'), -- ' 12,345,678,90'
 TO_CHAR(12345678.90,'FM99,999,999.99') -- '12,345,678,90'

This statement shows the use of the leading dollar sign. The dollar sign is always preceded either by a sign or by a blank
character.

SQL

SELECT
 TO_CHAR(1234567890,'$9G999G999G999'), -- ' $1,234,567,890'
 TO_CHAR(1234567890,'S$9G999G999G999'), -- '+$1,234,567,890'
 TO_CHAR(12345678.90,'$99G999G999D99') -- ' $1,234,567,8.90'

The statement shows what happens when the format argument contains fewer decimal (fractional) digits than the input
numeric expression. The returned numbers are rounded to 1234567.5 and 1234568, respectively.

SQL

SELECT
 TO_CHAR(1234567.4999,'9999999.9'),
 TO_CHAR(1234567.91,'9999999')

More About

Julian Date Conversion

The Julian date format enables you to convert dates before December 31, 1840 to character strings. To use this format,
specify the format argument of TO_CHAR as 'J' or 'j'. Using this format, you can convert a date value for data type
%Date or %TimeStamp to a seven-digit Julian date integer, with leading zeros added when necessary. For example:

SQL

SELECT
 TO_CHAR('1776-07-04','J') AS UnitedStatesStart, --2369916
 TO_CHAR('-0031-09-02','J') AS RomanEmpireStart --1709980

The returned integer is a count of days from January 1, 4712 BCE. The maximum expression value that you can convert
to a Julian date is '9999-12-31' (Julian day count 5373484). The minimum value is '-4712-01-01' (Julian day count 0000001).

By default, the %Date data type does not represent dates prior to December 31, 1840. However, you can redefine the
MINVAL parameter for this data type to permit representation of earlier dates as negative integers, with the limit of January
1, Year 1. This representation of dates as negative integers is not compatible with the Julian date format described here.
For more details, see Data Types.

The Julian day count value of 1721424 returns January 1st of Year 1 (1–01–01) in the Julian calendar. Julian day counts
less than this values return BCE dates, which are displayed with the year preceded by a minus sign.

TO_CHAR permits you to return a Julian day count corresponding to a date expression. TO_DATE permits you to return
a date expression corresponding to a Julian day count, as shown in this example:

SQL

SELECT
 TO_CHAR('1776-07-04','J') AS JulianCount, -- 2369916
 TO_DATE(2369916,'J') AS JulianDate -- 1776-07-04

Related SQL Functions

• TO_CHAR converts a date integer, timestamp, or a number to a string.

858 InterSystems SQL Reference

SQL Functions

• TO_DATE performs the reverse operation for dates. It converts a formatted date string to a date integer.

• TO_TIMESTAMP performs the reverse operation for timestamps. It converts a formatted date and time string to a
standard timestamp.

• TO_NUMBER performs the reverse operation for numbers. It converts a numeric string to a number.

• CAST and CONVERT perform DATE, TIMESTAMP, and NUMBER data type conversions.

Alternatives
To perform equivalent conversions in ObjectScript, use the TOCHAR() method:

$SYSTEM.SQL.Functions.TOCHAR(expression,format)

See Also
• SQL functions: CONVERT, TO_DATE, TO_NUMBER

• ObjectScript functions: $FNUMBER, $ZDATE

InterSystems SQL Reference 859

TO_CHAR (SQL)

TO_DATE (SQL)
A date function that converts a formatted string to a date.

Synopsis

TO_DATE(dateString)
TO_DATE(dateString,format)
TODATE(...)

Description
The TO_DATE function converts date strings in various formats to a date integer value of data type DATE. This function
is used to input dates in various string formats and store them using a standard InterSystems IRIS® representation.

TO_DATE returns an integer count of the number of days since December 31, 1840, where 0 represents December 31,
1840, the minimum value of -672045 represents January 1, 0001, and the maximum value of 2980013 represents December
31, 9999.

• TO_DATE(dateString) parses the date string using the default format of DD MON YYYY.

This statement converts the date string 22 Feb 2022 to the integer 66162.

SQL

SELECT TO_DATE('22 FEB 2022')

Example: Default Date Format

• TO_DATE(dateString,format) parses the date string using the specified format string. The date elements of dateString
must correspond to the format elements of format.

This statement performs the same conversion as in the previous syntax, but it enables you to specify the date string
using a custom format.

SQL

SELECT TO_DATE('2-22-22','M-DD-YY')

Examples:

– Specified Date Format

– Standalone Date Element Formats

– Day of the Year Conversion (DDD Format)

– Two-Digit Year Conversion (RR and RRRR Formats)

– Set Default Date Column Values

• TODATE(...) is equivalent to TO_DATE(...).

Arguments

dateString

The dateString argument is a string expression that specifies the date string to be converted to a date. The underlying data
type of dateString must be CHAR or VARCHAR2.

860 InterSystems SQL Reference

SQL Functions

Each character of dateString must correspond to the format string, with these exceptions:

• Leading zeros can be included or omitted, with the exception of a dateString without separator characters.

• Years can be specified with two digits or four digits.

• Month names can be specified in full or as the first three letters of the name. Only the first three letters must be correct.
Month names are not case-sensitive.

• Time values appended to a date are ignored.

The earliest date you can specify is December 31, 1840, which InterSystems IRIS represents as logical integer 0. To specify
earlier dates, use the Julian data format. See Julian Dates (J Format).

format

The format argument is a date string that specifies the format of the dateString. TO_DATE converts the date elements of
dateString according to the format elements in the corresponding positions of format. The elements of format follow these
rules:

• Format elements are not case-sensitive.

• Almost any sequence or number of format elements is permitted.

• Format strings separate their elements with non-alphanumeric separator characters (for example, a space, slash, or
hyphen) that match the separator characters in the dateString. This use of specified date separator characters does not
depend on the DateSeparator defined for your NLS (National Language Support) locale.

• The following date format strings do not require separator characters: MMDDYYYY, DDMMYYYY, YYYYMMDD, and
YYYYDDMM. The incomplete date format YYYYMM is also supported and assumes a DD value of 01. In these formats,
the MM and DD values require leading zeros.

This table lists the valid date format elements. The uppercase form is shown, but these elements are not case-sensitive.

MeaningElement

Two-digit day of month (01-31). Leading zeros are not required, unless format contains
no date separator characters.

DD

Two-digit month number (01-12; 01 = January). Leading zeros are not required, unless
format contains no date separator characters.

In Japanese and Chinese, a month number consists of a numeric value followed by the
ideogram for “month”.

MM

Abbreviated name of month, as specified by the MonthAbbr property in the current locale.
By default, in English, this is the first three letters of the month name. In other locales,
month abbreviations can be more than three letters long and might not consist of the first
letters of the month name. A period character is not permitted. Not case-sensitive.

MON

Full name of the month, as specified by the MonthName property in the current locale. Not
case-sensitive.

MONTH

Four-digit year.YYYY

Last two digits of the year. The first two digits of a two-digit year default to 19.YY

Two-digit year to four-digit year conversion. For more details, see Two-Digit Year
Conversion (RR and RRRR Formats).

RR / RRRR

InterSystems SQL Reference 861

TO_DATE (SQL)

MeaningElement

Day of the year.The count of days since January 1. See Day of the Year Conversion (DDD
Format).

DDD

Julian date. Used to represent dates prior to December 31, 1840. See Julian Dates (J
format).

J

A TO_DATE format can also include a D (day of week number), DY (day of week abbreviation), or DAY (day of week
name) element. However, these format elements are not validated or used to determine the return value. For more details
on these format elements, see TO_CHAR.

If you omit format, TO_DATE parses the date string using the default format of DD MON YYYY. For example, '22 Feb
2018'. To change the default date format system-wide, you can modify the TODATEDefaultFormat configuration parameter.

To view the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays the TO_DATE() Default Format
setting.

Examples

Default Date Format

This statement specifies date strings that are parsed using the default date format. Both of these are converted to the DATE
data type internal value of 60537:

SQL

SELECT
 TO_DATE('29 September 2018'),
 TO_DATE('29 SEP 2018')

This statement specifies date strings with two-digit years with format default. Note that two-digit years default to 1900
through 1999. Thus, the internal DATE value is 24012:

SQL

SELECT
 TO_DATE('29 September 06'),
 TO_DATE('29 SEP 06')

Specified Date Format

This statement specifies date strings in various formats. All of these are converted to the DATE data type internal value of
64701.

SQL

SELECT
 TO_DATE('2018 Feb 22','YYYY MON DD'),
 TO_DATE('FEBRUARY 22, 2018','month dd, YYYY'),
 TO_DATE('2018***02***22','YYYY***MM***DD'),
 TO_DATE('02/22/2018','MM/DD/YYYY')

This statement specifies date formats that do not require element separators. They return the date internal value of 64701.

SQL

SELECT
 TO_DATE('02222018','MMDDYYYY'),
 TO_DATE('22022018','DDMMYYYY'),
 TO_DATE('20182202','YYYYDDMM'),
 TO_DATE('20180222','YYYYMMDD')

862 InterSystems SQL Reference

SQL Functions

This statement specifies the YYYYMM date format. It does not require element separators. It supplies 01 for the missing
day element, returning the date 64800 (June 1, 2018):

SQL

SELECT TO_DATE('201806','YYYYMM')

Standalone Date Element Formats

In the format argument, you can specify DD, DDD, MM, or YYYY as standalone date strings. Because these format strings
omit the month, year, or both the month and year, InterSystems IRIS interprets them as referring to the current month and
year.

DD returns the date for the specified day in the current month of the current year. For example:

SQL

SELECT TO_DATE('24','DD')

DDD returns the date for the specified number of days elapsed in the current year. For example:

SQL

SELECT TO_DATE('300','DDD')

MM returns the date for the first day of the specified month in the current year. For example:

SQL

SELECT TO_DATE('8','MM')

YYYY returns the date for the first day of the current month of the specified year. For example:

SQL

SELECT TO_DATE('2022','YYYY')

Two-Digit Year Conversion (RR and RRRR Formats)

The YY format converts a two-digit year value to four digits by appending 19. For example, 07 becomes 1907 and 93
becomes 1993. The RR and RRRR formats provide more flexible two-digit to four-digit year conversion.

The RR format conversion is based on the current year.

• If the current year is in the first half of a century:

– Two-digit years from 00 through 49 are expanded to a four-digit year in the current century.

– Two-digit years from 50 through 99 are expanded to a four-digit year in the previous century.

This statement shows the display format of dates that TO_DATE returns when the current year is between 2000 and
2050.

SQL

SELECT
 TO_DATE('29 September 00','DD MONTH RR'), -- 09/29/2000
 TO_DATE('29 September 18','DD MONTH RR'), -- 09/29/2018
 TO_DATE('29 September 49','DD MONTH RR'), -- 09/29/2049
 TO_DATE('29 September 50','DD MONTH RR'), -- 09/29/1950
 TO_DATE('29 September 77','DD MONTH RR') -- 09/29/1977

InterSystems SQL Reference 863

TO_DATE (SQL)

• If the current year is in the second half of a century, all two-digit years are expanded to a four-digit year in the current
century.

This statement shows the display format of dates that TO_DATE returns when the current year is between 2050 and
2099.

SQL

SELECT
 TO_DATE('29 September 00','DD MONTH RR'), -- 09/29/2000
 TO_DATE('29 September 21','DD MONTH RR'), -- 09/29/2021
 TO_DATE('29 September 49','DD MONTH RR'), -- 09/29/2049
 TO_DATE('29 September 50','DD MONTH RR'), -- 09/29/2050
 TO_DATE('29 September 77','DD MONTH RR') -- 09/29/2077

Using the RRRR format, you can input a mix of two-digit and four-digit years. TO_DATE passes four-digit years through
unchanged. TO_DATE converts two-digit years to four-digit years by using the RR format algorithm described earlier in
this example.

This statement shows the display format of dates that TO_DATE returns when the current year is between 2000 and 2050.

SQL

SELECT
 TO_DATE('29 September 2021','DD MONTH RRRR'), -- 09/29/2021
 TO_DATE('29 September 21','DD MONTH RRRR'), -- 09/29/2021
 TO_DATE('29 September 1949','DD MONTH RRRR'), -- 09/29/1949
 TO_DATE('29 September 49','DD MONTH RRRR'), -- 09/29/2049
 TO_DATE('29 September 1950','DD MONTH RRRR'), -- 09/29/1950
 TO_DATE('29 September 50','DD MONTH RRRR') -- 09/29/1950

Day of the Year Conversion (DDD Format)

You can use the DDD format to convert the day of the year (that is, the number of days elapsed since January 1) to an actual
date. To perform this conversion:

• The format argument must contain the DDD format element and optionally a year format such as YYYY, YY, RR, or
RRRR. You can specify these elements in any order but they must include a separator character between them. If you
omit the year element, then TO_DATE defaults to the current year.

• The dateString argument must contain corresponding day and year values, where:

– day is an integer in the range 1 through 365 (366 if year is a leap year).

– year is a year within the standard InterSystems IRIS date range: 1841 through 9999.

This statement returns the 60th day of the year 2022.

SQL

SELECT TO_DATE('2022:60','YYYY:DDD') -- 03/01/2022

TO_DATE passes month elements through unchanged. If a format string contains both a DD and a DDD element, TO_DATE
processes the DDD element and ignores the DD element. For example, this statement returns 2/29/2020 (the 60th day of
2020), not 12/31/2020:

SQL

SELECT TO_DATE('2020-12-31-60','YYYY-MM-DD-DDD')

TO_DATE returns a date expression containing the day of the year, not the day of the year itself. To return this day value,
use TO_CHAR.

864 InterSystems SQL Reference

SQL Functions

Set Default Date Column Values

When creating a table using the CREATE TABLE command, you can use the TO_DATE function to set the default value
of a column. For example:

SQL

CREATE TABLE MyTable
(ID NUMBER(12,0) NOT NULL,
End_Year DATE DEFAULT TO_DATE('12-31-2021','MM-DD-YYYY') NOT NULL)

More About

Julian Dates (J Format)

The Julian date format enables you to represent dates before December 31, 1840. To use this format, specify the format
argument of TO_DATE as 'J' or 'j'. Using this format, you can convert a seven-digit internal numeric value (a Julian
day count) to a formatted date. For example, this statement returns 1585–01–31 in Logical or ODBC format and
01/31/1585 in Display format.

SQL

SELECT TO_DATE(2300000,'J')

The Julian day count value of 1721424 returns January 1st of Year 1 (1–01–01) in the Julian calendar. Julian day counts
less than this values return BCE dates, which are displayed with the year preceded by a minus sign.

By default, the %Date data type does not represent dates prior to December 31, 1840. However, you can redefine the
MINVAL parameter for this data type to permit representation of earlier dates as negative integers, with the limit of January
1, Year 1. This representation of dates as negative integers is not compatible with the Julian date format described here.
For more details, see Data Types.

A Julian day count is always represented internally as a seven-digit number, with leading zeros when necessary. TO_DATE
allows you to input a Julian day count without the leading zeros. The highest permitted Julian date is 5373484, which
returns 12/31/9999. The lowest permitted Julian date is 0000001, which returns 01/01/-4712 (01/01/4713 BCE). Any
value outside this range generates an SQLCODE -400 error.

Julian day counts prior to 1721424 (1/1/1) are compatible with other software implementations, such as Oracle. They are
not identical to BCE dates in ordinary usage. In ordinary usage, there is no Year 0 and dates go from 12/31/-1 to 1/1/1. In
Oracle usage, the Julian dates 1721058 through 1721423 are simply invalid, and return an error. In InterSystems IRIS,
these Julian dates return the non-existent Year 0 as a place holder. Thus calculations involving BCE dates must be adjusted
by one year to correspond to common usage. This should not affect the conversion of dates and Julian day counts using
TO_CHAR and TO_DATE, but it might affect some calculations made using Julian day counts. Also, be aware that these
date counts do not take into account changes in date caused by the Gregorian calendar reform.

TO_DATE permits you to return a date expression corresponding to a Julian day count. TO_CHAR permits you to return
a Julian day count corresponding to a date expression, as shown in this example:

SQL

SELECT
 TO_CHAR('1776-07-04','J') AS JulianCount, -- 2369916
 TO_DATE(2369916,'J') AS JulianDate -- 1776-07-04

Related SQL Functions

• TO_DATE converts a formatted date string to a date integer.

• TO_CHAR performs the reverse operation. It converts a date integer to a formatted date string.

InterSystems SQL Reference 865

TO_DATE (SQL)

• TO_TIMESTAMP converts a formatted date and time string to a standard timestamp.

• CAST and CONVERT perform DATE data type conversion.

Alternatives
To perform equivalent date conversions in ObjectScript, use the TODATE() method:

$SYSTEM.SQL.Functions.TODATE(dateString,format)

See Also
• SQL functions: CAST, CONVERT, TO_CHAR, TO_TIMESTAMP

• ObjectScript functions: $ZDATE, $ZDATEH

866 InterSystems SQL Reference

SQL Functions

TO_NUMBER (SQL)
A string function that converts a string expression to a value of NUMERIC data type.

Synopsis

TO_NUMBER(stringExpression)

TONUMBER(stringExpression)

Description
• TO_NUMBER(stringExpression) converts the input string expression to a canonical number of data type NUMERIC.

If the string expression is of data type DOUBLE, TO_NUMBER returns a number of data type DOUBLE. All other
types that do not appear in the following table return the type of stringExpression:

Type returnedType of stringExpression

NUMERICVARCHAR, VARBINARY, TIME

TINYINTBIT

INTEGERDATE

BIGINTTIMESTAMP POSIXTIME

This query returns the addresses of a specific street in ascending numerical order. If you do not convert the street
addresses by specifying ORDER BY Home_Street and do not convert to numbers, then the addresses follow string
collation order (1, 10, 100, 2, 20, 200, and so on).

SQL

SELECT Name,Home_Street FROM Sample.Person WHERE Home_Street LIKE '%Oakhurst%'
ORDER BY TO_NUMBER(Home_Street)

Examples:

– String-to-Number Conversion Operations

– Format Modes of Converted Strings

• TONUMBER(stringExpression) is equivalent to TO_NUMBER(stringExpression).

Arguments

stringExpression

The string expression to be converted. The expression can be the name of a column, a string literal, or the result of another
function that has an underlying data type of CHAR or VARCHAR2.

Examples

String-to-Number Conversion Operations

This example shows the different operations that TO_NUMBER performs to convert numeric strings into canonical
numbers. The returned results shown in the SQL comments are in Logical mode. For more details on how converted numbers
are displayed, see Format Modes of Converted Strings.

InterSystems SQL Reference 867

TO_NUMBER (SQL)

TO_NUMBER resolves leading plus and minus signs.

SQL

SELECT TO_NUMBER('-+123 feet') -- -123

SQL

SELECT TO_NUMBER('+-+-123 feet') -- 123

TO_NUMBER also expands exponential notation ("E" or "e").

SQL

SELECT TO_NUMBER('1e3') -- 1000

SQL

SELECT TO_NUMBER('1E-3') -- .001

TO_NUMBER halts conversion when it encounters a nonnumeric character, such as a letter or a numeric group separator.

SQL

SELECT TO_NUMBER('7dwarves') -- 7

If the first character of the string expression is not numeric, or if the expression is an empty string ('') or -0, TO_NUMBER
returns 0.

SQL

SELECT TO_NUMBER('question3') -- 0

SQL

SELECT TO_NUMBER('') -- 0

SQL

SELECT TO_NUMBER('-0') -- 0

TO_NUMBER does not resolve arithmetic operations. For example, in this string, TO_NUMBER halts conversion at the
"+" character and returns 2.

SQL

SELECT TO_NUMBER('2+4') -- 2

If NULL is specified for the string expression, TO_NUMBER returns null.

Format Modes of Converted Strings

The number format of the returned query results can differ depending on whether you use Logical mode, ODBC mode, or
Display mode.

Unless the string expression is a DOUBLE, the TO_NUMBER function returns a number of type NUMERIC. The
NUMERIC data type has a default scale of 2. Therefore, when running queries in Display mode, InterSystems SQL displays
the returned results with 2 decimal places.

SQL

SELECT TO_NUMBER('-15 degrees F') -- Display Mode: -15.00

868 InterSystems SQL Reference

SQL Functions

Additional fractional digits are rounded to two decimal places.

SQL

SELECT TO_NUMBER('-15.835 degrees F') -- Display Mode: -15.84

Trailing zeros are also resolved to two decimal places.

SQL

SELECT TO_NUMBER('-15.60000 degrees F') -- Display Mode: -15.60

When TO_NUMBER is used via a database driver, it also returns the type as NUMERIC with a scale of 2. In Logical
mode or ODBC mode, the returned value is a canonical number, no scale is imposed on fractional digits, and trailing zeros
are omitted.

SQL

SELECT TO_NUMBER('-15 degrees F') -- Logical/ODBC Mode: -15

SQL

SELECT TO_NUMBER('-15.835 degrees F') -- Logical/ODBC Mode: -15.835

SQL

SELECT TO_NUMBER('-15.60000 degrees F') -- Logical/ODBC Mode: -15.6

If the input string expression is of data type DOUBLE, then TO_NUMBER also returns the value as data type DOUBLE.
All format modes display the full precision of the converted number.

SQL

SELECT TO_NUMBER(CAST('-15.6 degrees F' AS DOUBLE)) -- -15.599999999999999644

More About

Related SQL Functions

• TO_NUMBER converts a string to a number of data type NUMERIC.

• TO_CHAR performs the reverse operation; it converts a number to a string.

• CAST and CONVERT can be used to convert a string to a number of any data type. For example, you can convert a
string to a number of data type INTEGER.

• TO_DATE converts a formatted date string to a date integer.

• TO_TIMESTAMP converts a formatted date and time string to a standard timestamp.

See Also
• Data Types

InterSystems SQL Reference 869

TO_NUMBER (SQL)

TO_POSIXTIME (SQL)
A date/time function that converts a formatted date string to a %PosixTime timestamp.

Synopsis

TO_POSIXTIME(date_string[,format])

TO_POSIXTIME(date_string[,format])

Description
The TO_POSIXTIME function converts date and time strings in various formats to a %PosixTime timestamp, with data
type %Library.PosixTime. TO_POSIXTIME returns a %PosixTime timestamp as a calculated value based on the number
of elapsed seconds from the arbitrary starting point of 1970-01-01 00:00:00, encoded as a 64-bit signed integer. The actual
number of elapsed seconds (and fractional seconds) from this date is the Unix®timestamp, a numeric value. InterSystems
IRIS encodes the Unix® timestamp to generate the %PosixTime timestamp. Because a %PosixTime timestamp value is
encoded, 1970-01-01 00:00:00 is represented as 1152921504606846976. Dates prior to 1970-01-01 00:00:00 have a negative
integer value. Refer to the %PosixTime data type for further details.

TO_POSIXTIME does not convert timezones; a local date and time is converted to a local %PosixTime timestamp; a
UTC date and time is converted to a UTC %PosixTime timestamp.

The earliest date supported by %PosixTime is 0001-01-01 00:00:00, which has a logical value of -6979664624441081856.
The last date supported is 9999-12-31 23:59:59.999999, which has a logical value of 1406323805406846975. These limits
correspond to the ODBC date format display limits. These values can be further limited using the %Library.PosixTime

MINVAL and MAXVAL parameters. You can use the IsValid() method to determine if a numeric value is a valid
%PosixTime value.

A %PosixTime value always encodes a precision of 6 decimal digits of fractional seconds. A date_string with fewer digits
of precision is zero-padded to 6 digits before %PosixTime conversion; a date_string with more than 6 digits of precision
is truncated to 6 digits before %PosixTime conversion.

If date_string omits components of the timestamp, TO_POSIXTIME supplies the missing components. If both date_string
and format omit the year, yyyy defaults to the current year; if only date_string omits the year, it defaults to 00, which is
expanded to a four-digit year according to the year format element. If a day or month value is omitted, dd defaults to 01;
mm-dd defaults to 01-01. A missing time component defaults to 00. Fractional seconds are supported, but must be explicitly
specified; no fractional seconds are provided by default.

TO_POSIXTIME supports conversion of two-digit years to four digits. TO_POSIXTIME supports conversion of 12-
hour clock time to 24-hour clock time. It provides range validation of date and time element values, including leap year
validation. Range validation violations generate an SQLCODE -400 error.

This function can also be invoked from ObjectScript using the TOPOSIXTIME() method call:

$SYSTEM.SQL.Functions.TOPOSIXTIME(date_string,format)

The TO_POSIXTIME function can be used in data definition when supplying a default value to a field. For example:

CREATE TABLE mytest
(ID NUMBER(12,0) NOT NULL,
End_Year DATE DEFAULT TO_POSIXTIME('12-31-2018','MM-DD-YYYY') NOT NULL)

TO_POSIXTIME can be used with the CREATE TABLE or ALTER TABLE ADD COLUMN statements. Only a literal
value for date_string can be used in this context. For further details, refer to the CREATE TABLE command.

870 InterSystems SQL Reference

SQL Functions

%PosixTime Representation

%PosixTime encodes 6 digits of precision for fractional seconds, regardless of the precision of the date_string. The ODBC
and Display modes truncate trailing zeros of precision.

• Logical Mode: an encoded 64-bit (19 characters) signed integer.

• ODBC Mode: YYYY–MM–DD HH:MM:SS.FFFFFF. Refer to the %PosixTime LogicalToOdbc() method.

• Display Mode: uses the default date/time formats (dformat -1 and tformat -1) for the current locale, as described in
$ZDATETIME. Refer to the %PosixTime LogicalToDisplay() method.

Related SQL Functions

• TO_POSIXTIME converts a formatted date and time string to a %PosixTime timestamp.

• TO_CHAR performs the reverse operation; it converts a %PosixTime timestamp to a formatted date and time string.

• UNIX_TIMESTAMP converts a formatted date and time string to a Unix® timestamp.

• TO_DATE converts a formatted date string to a date integer.

• CAST and CONVERT perform %PosixTime data type conversion.

Arguments

date-string

A string expression to be converted to a %PosixTime timestamp. This expression may contain a date value, a time value,
or a date and time value.

format

An optional date and time format string corresponding to date_string. If omitted, defaults to DD MON YYYY HH:MI:SS

Date and Time String
The date_string argument specifies a date and time string literal. If you supply a date string with no time component,
TO_POSIXTIME supplies the time value 00:00:00. If you supply a time string with no date component, TO_POSIXTIME
supplies the date of 01–01 (January 1) of the current year.

You can supply a date and time string of any kind for the input date_string. Each date_string character must correspond
to the format string, with the following exceptions:

• Leading zeros may be included or omitted (with the exception a date_string without separator characters).

• Years may be specified with two digits or four digits.

• Month abbreviations (with format MON) must match the month abbreviation for that locale. For some locales, a month
abbreviation may not be the initial sequential characters of the month name. Month abbreviations are not case-sensitive.

• Month names (with format MONTH) should be specified as full month names. However, TO_POSIXTIME does not
require full month names with format MONTH; it accepts the initial character(s) of the full month name and selects
the first month in the month list that corresponds to that initial letter sequence. Therefore, in English, “J” = “January”,
“Ju” = “June”, “Jul” = “July”. All characters specified must match the sequential characters of the full month name;
characters beyond the full month name are not checked. For example, “Fe”, “Febru”, and “FebruaryLeap” are all valid
values; “Febs” is not a valid value. Month names are not case-sensitive.

• Time values can be input with the time separator characters defined for the locale. The output timestamp always repre-
sents the time value with the ODBC standard time separator characters: colon (:) and period (.)). An omitted time element
defaults to zeroes.

InterSystems SQL Reference 871

TO_POSIXTIME (SQL)

Format
A format is a string of one or more format elements specified according to the following rules:

• Format elements are not case-sensitive.

• Almost any sequence or number of format elements is permitted.

• Format strings separate their elements with non-alphanumeric separator characters (for example, a space, slash, or
hyphen) that match the separator characters in the date_string. These separator characters do not appear in the output
string, which uses standard timestamp separators: hyphens for date values, colons for time values, and a period (when
required) for fractional seconds. This use of separator characters does not depend on the DateSeparator defined for
your NLS locale.

• The following date format strings do not require separator characters: MMDDYYYY, DDMMYYYY, YYYYMMDDHHMISS,
YYYYMMDDHHMI, YYYYMMDDHH, YYYYMMDD, YYYYDDMM, HHMISS, and HHMI. The incomplete date format YYYYMM
is also supported, and assume a DD value of 01. Note that in these cases leading zeros must be provided for all elements
(such as MM and DD), with the exception of the final element.

• Characters in format that are not valid format elements are ignored.

Format Elements

The following table lists the valid date format elements for the format argument:

MeaningElement

Two-digit day of month (01-31). Leading zeros are not required, unless format contains
no date separator characters.

DD

Two-digit month number (01-12; 01 = January). Leading zeros are not required, unless
format contains no date separator characters.

In Japanese and Chinese, a month number consists of a numeric value followed by the
ideogram for “month”.

MM

Abbreviated name of month, as specified by the MonthAbbr property in the current locale.
By default, in English this is the first three letters of the month name. In other locales,
month abbreviations may be more than three letters long and/or may not consist of the
first letters of the month name. A period character is not permitted. Not case-sensitive.

MON

Full name of the month, as specified by the MonthName property in the current locale. Not
case-sensitive.

MONTH

Four-digit year.YYYY

Last two digits of the year. The first 2 digits of a YY 2-digit year default to 19.YY

Two-digit year to four-digit year conversion. (See below.)RR / RRRR

Day of the year. The number of days since January 1. (See below.)DDD

Hour, specified as either 01–12 or 00–23, depending on whether a meridian indicator (AM
or PM) is specified. Can be specified as HH12 or HH24.

HH

Minute, specified as 00–59.MI

Second, specified as 00–59.SS

872 InterSystems SQL Reference

SQL Functions

MeaningElement

Fractions of a second. FF indicates that one or more fractional digits are provided;
date_string can specify any number of fractional digits. TO_POSIXTIME returns exactly
six digits of precision, regardless of the precision supplied in date_string.

FF

Meridian indicator, specifies a 12–hour clock. (See below.)AM / PM

Meridian indicator (with periods), specifies a 12–hour clock. (See below.)A.M. / P.M.

A TO_POSIXTIME format can also include a D (day of week number), DY (day of week abbreviation), or DAY (day of
week name) element to match the input date_string. However, these format elements are not validated or used to determine
the return value. For further details on these format elements, refer to TO_CHAR.

Two-Digit Year Conversion (RR and RRRR formats)

The RR format provides two-digit to four-digit year conversion. TO_POSIXTIME performs this conversion using the
default date format (dformat -1), which uses the YearOption property of current locale, as described in $ZDATETIME.

Day of the Year (DDD format)

You can use DDD to convert the day of the year (number of days elapsed since January 1) to an actual date. The format
string DDD YYYY must be paired with a corresponding date_string consisting of an integer number of days and a four-digit
year. (Two-digit years must be specified as RR (not YY) when used with DDD.) The format string DDD defaults to the
current year. The number of elapsed days must be a positive integer in the range 1 through 365 (366 if YYYY is a leap
year). The four-digit year must be within the standard InterSystems IRIS date range: 1841 through 9999. (If you omit the
year, it defaults to the current year.) The DDD and year (YYYY, RRRR, or RR) format elements can be specified in any
order; a separator character between them is mandatory; this separator can be a blank space. The following example shows
this use of Day of the Year:

SQL

SELECT TO_POSIXTIME('2018:160','YYYY:DDD')

If a format string contains both a DD and a DDD element, the DDD element is dominant. This is shown in the following
example, which returns 2008-02-29 00:00:00 (not 2008-12-31 00:00:00):

SQL

SELECT TO_POSIXTIME('2018-12-31-60','YYYY-MM-DD-DDD')

TO_POSIXTIME permits you to return a date expression corresponding to a day of the year. TO_CHAR permits you to
return the day of the year corresponding to a date expression.

Dates Before 1970

TO_POSIXTIME represents a date before January 1, 1970 as a negative number. %PosixTime cannot represent dates
before January 1, 0001 or after December 31, 9999. Attempted to input such a date results in an SQLCODE -400 error.
The TO_DATE function provides a Julian date format to represent BCE dates before January 1, 0001. Julian date conversion
converts a seven-digit internal positive integer value (a Julian day count) to a display-format or ODBC-format date. Time
values are not supported for Julian dates.

12-Hour Clock Time

A %PosixTime timestamp always represents time using a 24-hour clock. A date_string may represent time using a 12-hour
clock or a 24-hour clock. TO_POSIXTIME assumes a 24-hour clock, unless one of the following applies:

• The date_string time value is followed by 'am' or 'pm' (with no periods). These meridian indicators are not case-sensitive,
and may be appended to the time value, or be separated from it by one or more spaces.

InterSystems SQL Reference 873

TO_POSIXTIME (SQL)

• The format follows the time format with an 'a.m.' or 'p.m.' element (either one), separated from the time format by one
or more spaces. For example: DD MON YYYY HH:MI:SS.FF P.M. This format supports 12-hour clock date_string
values such as 2:23pm, 2:23:54.6pm, 2:23:54 pm, 2:23:54 p.m., and 2:23:54 (assumed to be AM).
Meridian indicators are not case-sensitive. When using a meridian indicator with periods, it must be separated from
the time value by one or more spaces.

Examples
The following Embedded SQL example converts the current local datetime to a %PosixTime value. (Note that format uses
“ff” to represent any number of fractional digits; in this case, 3 digits of precision. %PosixTime encodes this as 6 digits of
precision, supplying three trailing zeroes.) This example then uses the %Posix LogicalToOdbc() method to display this
value as an ODBC timestamp, trimming trailing zeroes of precision:

ObjectScript

 SET tstime=$ZDATETIME($ZTIMESTAMP,3,1,3)
 WRITE "local datetime in : ",tstime,!
 &sql(SELECT
 TO_POSIXTIME(:tstime,'yyyy-mm-dd hh:mi:ss.ff')
 INTO :ptime)
 IF SQLCODE=0 {
 WRITE "Posix encoded datetime: ",ptime,!
 SET ODBCout=##class(%PosixTime).LogicalToOdbc(ptime)
 WRITE "local datetime out: ",ODBCout }
 ELSE { WRITE "SQLCODE error:",SQLCODE }

The following example specifies date strings in various formats. The first one uses the default format, the others specify a
format. All of these convert date_string to the timestamp value of 2018–06–29 00:00:00:

SQL

SELECT
 TO_POSIXTIME('29 JUN 2018'),
 TO_POSIXTIME('2018 Jun 29','YYYY MON DD'),
 TO_POSIXTIME('JUNE 29, 2018','month dd, YYYY'),
 TO_POSIXTIME('2018***06***29','YYYY***MM***DD'),
 TO_POSIXTIME('06/29/2018','MM/DD/YYYY'),
 TO_POSIXTIME('29/6/2018','DD/MM/YYYY')

The following example specifies the YYYYMM date format. It does not require element separators. TO_POSIXTIME
supplies the missing day and time values:

SQL

 SELECT TO_POSIXTIME('201806','YYYYMM')

This example returns the timestamp 2018–06–01 00:00:00.

The following example specifies just the HH:MI:SS.FF time format. TO_POSIXTIME supplies the missing date value.
In each case, this example returns the date of 2018–01–01 (where 2018 is the current year):

SQL

SELECT TO_POSIXTIME('11:34','HH:MI:SS.FF'),
 TO_POSIXTIME('11:34:22','HH:MI:SS.FF'),
 TO_POSIXTIME('11:34:22.00','HH:MI:SS.FF'),
 TO_POSIXTIME('11:34:22.7','HH:MI:SS.FF'),
 TO_POSIXTIME('11:34:22.7000000','HH:MI:SS.FF')

Note that fractional seconds are passed through exactly as specified, with no padding or truncation.

See Also
• SQL commands: CREATE TABLE, ALTER TABLE

874 InterSystems SQL Reference

SQL Functions

• SQL functions: CAST, CONVERT, TO_CHAR, TO_DATE, TO_NUMBER, TO_TIMESTAMP, UNIX_TIMESTAMP

• ObjectScript functions: $ZDATETIME, $ZDATETIMEH

• ObjectScript special variable: $ZTIMESTAMP

InterSystems SQL Reference 875

TO_POSIXTIME (SQL)

TO_TIMESTAMP (SQL)
A date function that converts a formatted string to a timestamp.

Synopsis

TO_TIMESTAMP(dateString,format)
TO_TIMESTAMP(dateString)

Description
The TO_TIMESTAMP function converts date and time strings in various formats to the standard InterSystems IRIS®
representation of a timestamp. The returned timestamp is of data type TIMESTAMP and has this format, with leading zeros
included and a 24-hour clock time:

yyyy-mm-dd hh:mi:ss

The returned timestamp includes leading zeros and uses a 24-hour clock time by default.

TO_TIMESTAMP supports fractional seconds, two-digit to four-digit year conversions, and 12-hour to 24-hour clock
time conversions. It provides range validation of date and time element values, including leap year validation. Range vali-
dation violations generate an SQLCODE -400 error.

TO_TIMESTAMP returns a standard timestamp in ODBC format. To return an encoded 64-bit timestamp, use
TO_POSIXTIME instead. For details on other SQL functions that perform conversions, see Related SQL Functions.

• TO_TIMESTAMP(dateString,format) converts the date string using the specified format string. The date and time
elements of dateString must be compatible with the format elements in the corresponding positions of format.

This statement converts a string that specifies the date from the previous syntax in a different format.

SQL

SELECT TO_TIMESTAMP('June 29, 2022 12:34 PM', 'MONTH DD, YYYY')

Examples:

– Convert Date Strings to Multiple Timestamp Formats

– Set Default Timestamp Column Values

– Two-Digit Year Conversion (RR and RRRR Formats)

– Day of the Year Conversion (DDD Format)

• TO_TIMESTAMP(dateString) converts the date string using the default format of DD MON YYYY HH:MI:SS. The
dateString argument must be compatible with this format. If you omit the time, or specify only a portion of the time,
TO_TIMESTAMP returns the time as 00:00:00.

This statement converts the date string 29 Jun 2022 to the timestamp 2022-06-29 12:34:00.

SQL

SELECT TO_TIMESTAMP('29 Jun 2022 12:34')

Example: Convert Date Strings to Multiple Timestamp Formats

876 InterSystems SQL Reference

SQL Functions

Arguments

dateString

The dateString argument is a string expression that specifies the date string to be converted to a timestamp. dateString can
contain a date value, a time value, or both.

Each character of dateString must correspond to the format string, with the following exceptions:

• Leading zeros can be included or omitted, with the exception of a dateString without separator characters.

• Years can be specified with two digits or four digits.

• Month abbreviations (with format MON) must match the month abbreviation for that locale. For some locales, a month
abbreviation may not be the initial sequential characters of the month name. Month abbreviations are not case-sensitive.

• Month names (with format MONTH) should be specified as full month names. However, TO_TIMESTAMP does
not require full month names to match format MONTH. It accepts the initial characters of the full month name and
selects the first month in the month list that corresponds to that initial letter sequence. Therefore, in English, “J” =
“January”, “Ju” = “June”, and “Jul” = “July”. All characters specified must match the sequential characters of the full
month name. Characters beyond the full month name are not checked. For example, “Fe”, “Febru”, and “FebruaryLeap”
are all valid values, but “Febs” is not. Month names are not case-sensitive.

• Time values can be specified with the time separator characters defined for the locale. The output timestamp always
represents the time value with the ODBC standard time separator characters: colon (:) for hours, minutes, and seconds,
and period (.) for fractional seconds. An omitted time element defaults to zeros. By default, a timestamp is returned
without fractional seconds.

If dateString omits components of the timestamp, TO_TIMESTAMP supplies the missing components:

• If you specify a date without a time, TO_TIMESTAMP sets the returned time value to 00:00:00. If you omit only a
portion of the time, TO_TIMESTAMP sets that portion to 00. Fractional seconds are supported but must be explicitly
specified.

• If you specify a time without a date, TO_TIMESTAMP sets the returned date value to 01-01 (January 1) of the current
year. If you omit only the day, the day defaults to 01. If you also omit the month, the month and day default to 01-01

• If you omit the year, the year defaults to 00, which is expanded to a four-digit year according to the year element of
format. If you also omit the year in format, YYYY defaults to the current year.

You can specify TO_TIMESTAMP dates from January 1, 0001 to December 31, 9999. To represent earlier dates, use the
TO_DATE function.

format

The format argument is a date and time string that specifies the format of the dateString. TO_TIMESTAMP converts the
date elements of dateString according to the format elements in the corresponding positions of format. The elements of
format follow these rules:

• Format elements are not case-sensitive.

• Almost any sequence or number of format elements is permitted.

• Format strings separate their elements with non-alphanumeric separator characters (for example, a space, slash, or
hyphen) that match the separator characters in the dateString. These separator characters do not appear in the output
string, which uses standard timestamp separators: hyphens for date values, colons for time values, and a period (when
required) for fractional seconds. This use of separator characters does not depend on the DateSeparator defined for
your NLS (National Language Support) locale.

InterSystems SQL Reference 877

TO_TIMESTAMP (SQL)

• The following date format strings do not require separator characters: MMDDYYYY, DDMMYYYY, YYYYMMDDHHMISS,
YYYYMMDDHHMI, YYYYMMDDHH, YYYYMMDD, YYYYDDMM, HHMISS, and HHMI. The incomplete date format YYYYMM
is also supported and assumes a DD value of 01. In these formats, you specify leading zeros for all elements, with the
exception of the final element.

• Invalid format elements in format are ignored.

This table lists the valid date and time format elements. The uppercase form is shown, but these elements are not case-
sensitive.

MeaningElement

Two-digit day of month (01-31). Leading zeros are not required, unless format contains
no date separator characters.

DD

Two-digit month number (01-12; 01 = January). Leading zeros are not required, unless
format contains no date separator characters.

In Japanese and Chinese, a month number consists of a numeric value followed by the
ideogram for “month”.

MM

Abbreviated name of month, as specified by the MonthAbbr property in the current locale.
By default, in English, this is the first three letters of the month name. In other locales,
month abbreviations can be more than three letters long and might not consist of the first
letters of the month name. A period character is not permitted. Not case-sensitive.

MON

Full name of the month, as specified by the MonthName property in the current locale. Not
case-sensitive.

MONTH

Four-digit year in the range 0001 to 9999.YYYY

Last two digits of the year. The first two digits of a two-digit year default to 19.YY

Two-digit year to four-digit year conversion. For more details, see Two-Digit Year
Conversion (RR and RRRR Formats).

RR / RRRR

Day of the year. The count of days since January 1. For more details, Day of the Year
Conversion (DDD Format).

DDD

Hour (1–12 or 00–23), depending on whether a meridian indicator (AM or PM) is specified.
Can be specified as HH12 or HH24.

HH

Minute, specified as 00–59.MI

Second, specified as 00–59.SS

Fractions of a second. TO_TIMESTAMP returns the exact fractional value specified in
dateString, without padding or truncating the value. To specify FF, you must provide a
decimal separator format character (.). If you do not specify FF, fractional seconds specified
in dateString are ignored.

FF

878 InterSystems SQL Reference

SQL Functions

MeaningElement

Meridian indicator specifying a 12-hour clock time.

The TIMESTAMP data type always represents time using a 24-hour clock. A dateString
can represent time using a 12-hour clock or a 24-hour clock. TO_TIMESTAMP assumes
a 24-hour clock, unless the time part of dateString ends with a meridian indicator. For
example:

DD MON YYYY HH:MI:SS.FF P.M.

This format supports 12-hour clock values specified in dateString such as 2:23pm,
2:23:54.6pm, 2:23:54 pm, 2:23:54 p.m., and 2:23:54 (assumed to be AM). If you
specify periods in the meridian indictors, you must separate the indicator from the time
with at least one space.

AM

PM

A.M.

P.M.

A TO_TIMESTAMP format can also include a D (day of week number), DY (day of week abbreviation), or DAY (day
of week name) element. However, these format elements are not validated or used to determine the return value. For more
details on these format elements, see TO_CHAR.

If you omit format, TO_TIMESTAMP parses the date string using the default format of DD MON YYYY HH:MI:SS. For
example, '01 Feb 3456 07:08:09'.

Examples

Convert Date Strings to Multiple Timestamp Formats

This statement specifies date strings in various formats. The first one uses the default format, the others specify a format
argument that TO_TIMESTAMP uses to parse the date string. TO_TIMESTAMP converts all these date strings to the
timestamp 2022–06–29 00:00:00.

SQL

SELECT
 TO_TIMESTAMP('29 JUN 2022'),
 TO_TIMESTAMP('2022 Jun 29','YYYY MON DD'),
 TO_TIMESTAMP('JUNE 29, 2022','month dd, YYYY'),
 TO_TIMESTAMP('2022***06***29','YYYY***MM***DD'),
 TO_TIMESTAMP('06/29/2022','MM/DD/YYYY'),
 TO_TIMESTAMP('29/6/2022','DD/MM/YYYY')

This statement specifies the YYYYMM date format. It does not require element separators. TO_TIMESTAMP supplies
the missing day and time values and returns the timestamp 2022–06–01 00:00:00.

SQL

SELECT TO_TIMESTAMP('202206','YYYYMM')

This statement specifies just the HH:MI:SS.FF time format. TO_TIMESTAMP supplies the missing date value, returning
in all cases a date value of YYYY–01–01, where YYYY is the current year. The time value varies based on the fractional
seconds specified in the date string. TO_TIMESTAMP passes fractional seconds through exactly as specified, with no
padding or truncation.

SQL

SELECT TO_TIMESTAMP('11:34','HH:MI:SS.FF'),
 TO_TIMESTAMP('11:34:22','HH:MI:SS.FF'),
 TO_TIMESTAMP('11:34:22.00','HH:MI:SS.FF'),
 TO_TIMESTAMP('11:34:22.7','HH:MI:SS.FF'),
 TO_TIMESTAMP('11:34:22.7000000','HH:MI:SS.FF')

InterSystems SQL Reference 879

TO_TIMESTAMP (SQL)

This statement shows other ways to specify a time format with fractional seconds. All three calls to TO_TIMESTAMP
return an ODBC-format timestamp with the time portion value as 11:34:22.9678. In the first two calls, the omitted date
portion defaults to January 1 of the current year. The third call specifies a date portion.

SQL

SELECT TO_TIMESTAMP('113422.9678','HHMISS.FF'),
 TO_TIMESTAMP('9678.113422','FF.HHMISS'),
 TO_TIMESTAMP('9678.20220629113422','FF.YYYYMMDDHHMISS')

Set Default Timestamp Column Values

TO_TIMESTAMP can supply a default timestamp value to columns in a table. For example, this statement creates a table
that accepts default values for ReviewDate, a column of type TIMESTAMP.

CREATE TABLE Sample.MyEmpReviews (
 EmpNum INTEGER UNIQUE NOT NULL,
 ReviewDate TIMESTAMP DEFAULT TO_TIMESTAMP(365,'DDD'))

If you insert a row without specifying a ReviewDate value, then the ReviewDate is set to the default timestamp of the
365th day of the current year.

SQL

INSERT INTO Sample.MyEmpReviews (EmpNum) VALUES (1)

You can use TO_TIMESTAMP to set default column values in both CREATE TABLE and ALTER TABLE ADD
COLUMN statements. When setting these defaults, dateString must be a literal value.

Two-Digit Year Conversion (RR and RRRR Formats)

The YY format converts a two-digit year value to four digits by appending 19. For example, 07 becomes 1907 and 93
becomes 1993. The RR and RRRR formats provide more flexible two-digit to four-digit year conversions.

The RR format conversion is based on the current year.

• If the current year is in the first half of a century:

– Two-digit years from 00 through 49 are expanded to a four-digit year in the current century.

– Two-digit years from 50 through 99 are expanded to a four-digit year in the previous century.

This statement shows the display format of timestamps that TO_TIMESTAMP returns when the current year is
between 2000 and 2050.

SQL

SELECT
 TO_TIMESTAMP('29 September 00','DD MONTH RR'), -- 2000-09-29 00:00:00
 TO_TIMESTAMP('29 September 18','DD MONTH RR'), -- 2018-09-29 00:00:00
 TO_TIMESTAMP('29 September 49','DD MONTH RR'), -- 2049-09-29 00:00:00
 TO_TIMESTAMP('29 September 50','DD MONTH RR'), -- 1950-09-29 00:00:00
 TO_TIMESTAMP('29 September 77','DD MONTH RR') -- 1977-09-29 00:00:00

• If the current year is in the second half of a century, all two-digit years are expanded to a four-digit year in the current
century.

This statement shows the display format of dates that TO_TIMESTAMP returns when the current year is between
2050 and 2099.

880 InterSystems SQL Reference

SQL Functions

SQL

SELECT
 TO_TIMESTAMP('29 September 00','DD MONTH RR'), -- 2000-09-29 00:00:00
 TO_TIMESTAMP('29 September 21','DD MONTH RR'), -- 2021-09-29 00:00:00
 TO_TIMESTAMP('29 September 49','DD MONTH RR'), -- 2049-09-29 00:00:00
 TO_TIMESTAMP('29 September 50','DD MONTH RR'), -- 1950-09-29 00:00:00
 TO_TIMESTAMP('29 September 77','DD MONTH RR') -- 1977-09-29 00:00:00

Using the RRRR format, you can input a mix of two-digit and four-digit years. TO_TIMESTAMP passes four-digit years
through unchanged. TO_TIMESTAMP converts two-digit years to four-digit years by using the RR format algorithm
described earlier in this example.

This statement shows the display format of dates that TO_TIMESTAMP returns when the current year is between 2000
and 2050.

SQL

SELECT
 TO_TIMESTAMP('29 September 2021','DD MONTH RRRR'), -- 2021-09-29 00:00:00
 TO_TIMESTAMP('29 September 21','DD MONTH RRRR'), -- 2021-09-29 00:00:00
 TO_TIMESTAMP('29 September 1949','DD MONTH RRRR'), -- 1949-09-29 00:00:00
 TO_TIMESTAMP('29 September 49','DD MONTH RRRR'), -- 2049-09-29 00:00:00
 TO_TIMESTAMP('29 September 1950','DD MONTH RRRR'), -- 1950-09-29 00:00:00
 TO_TIMESTAMP('29 September 50','DD MONTH RRRR') -- 1950-09-29 00:00:00

Day of the Year Conversion (DDD Format)

You can use the DDD format to convert the day of the year (that is, the number of days elapsed since January 1) to an actual
timestamp. To perform this conversion:

• The date portion of the format argument must contain the DDD format element and optionally a year format such as
YYYY, YY, RR, or RRRR. You can specify these elements in any order but they must include a separator character
between them. If you omit the year element, then TO_TIMESTAMP defaults to the current year.

• The dateString argument must contain corresponding day and year values, where:

– day is an integer in the range 1 through 365 (366 if year is a leap year).

– year is a year in the range 0001 through 9999.

This statement returns the 60th day of the year 2022.

SQL

SELECT TO_TIMESTAMP('2022:60','YYYY:DDD') --2022-03-01 00:00:00

TO_TIMESTAMP passes month elements through unchanged. If a format string contains both a DD and a DDD element,
TO_TIMESTAMP processes the DDD element and ignores the DD element. For example, this statement returns a
timestamp for the date 2/29/2020 (the 60th day of 2020), not for 12/31/2020:

SQL

SELECT TO_TIMESTAMP('2020-12-31-60','YYYY-MM-DD-DDD')

TO_TIMESTAMP returns a timestamp expression containing the day of the year, not the day of the year itself. To return
this day value, use TO_CHAR.

InterSystems SQL Reference 881

TO_TIMESTAMP (SQL)

More About

Related SQL Functions

• TO_TIMESTAMP converts a formatted date and time string to a standard timestamp.

• TO_CHAR performs the reverse operation. It converts a standard timestamp to a formatted date and time string.

• TO_DATE converts a formatted date string to a date integer.

• CAST and CONVERT perform TIMESTAMP data type conversion.

Alternatives
To perform equivalent timestamp conversions in ObjectScript, use the TOTIMESTAMP() method:

$SYSTEM.SQL.Functions.TOTIMESTAMP(date_string,format)

See Also
• SQL commands: CREATE TABLE, ALTER TABLE

• SQL functions: CAST, CONVERT, TO_CHAR, TO_DATE, TO_NUMBER, TO_POSIXTIME

• ObjectScript functions: $ZDATE $ZDATEH

882 InterSystems SQL Reference

SQL Functions

$TRANSLATE (SQL)
A string function that performs character-for-character replacement.

Synopsis

$TRANSLATE(string,identifier[,associator])

Description
The $TRANSLATE function performs character-for-character replacement within a return value string. It processes the
string argument one character at a time. It compares each character in string with each character in the identifier argument.
If $TRANSLATE finds a match, it makes note of the position of that character.

• The two-argument form of $TRANSLATE removes all instances of the characters in the identifier argument from the
output string.

• The three-argument form of $TRANSLATE replaces all instances of each identifier character found in the string with
the positionally corresponding associator character. Replacement is performed on a character, not a string, basis. If
the identifier argument contains more characters than the associator argument, the excess characters in the identifier
argument are deleted from the output string. If the identifier argument contains fewer characters than the associator
argument, the excess character(s) in the associator argument are ignored.

$TRANSLATE is case-sensitive.

$TRANSLATE cannot be used to replace NULL with a character.

SQLCODE -380 is issued if you specify too few arguments. SQLCODE -381 is issued if you specify too many arguments.

$TRANSLATE and REPLACE

$TRANSLATE performs character-for-character matching and replacement. REPLACE performs string-for-string
matching and replacement. REPLACE can replace a single specified substring of one or more characters with another
substring, or remove multiple instances of a specified substring. $TRANSLATE can replace multiple specified characters
with corresponding specified replacement characters.

By default, both functions are case-sensitive, start at the beginning of string, and replace all matching instances. REPLACE
has arguments that can be used to change these defaults.

Arguments

string

The target string. It can be a field name, a literal, a host variable, or an SQL expression.

identifier

The character(s) to search for in string. It can be a string or numeric literal, a host variable, or an SQL expression.

associator

An optional argument. The replacement character(s) corresponding to each character in the identifier. It can be a string or
numeric literal, a host variable, or an SQL expression.

InterSystems SQL Reference 883

$TRANSLATE (SQL)

Examples
In the following example, a two-argument $TRANSLATE modifies Name values by removing punctuation (commas,
spaces, periods, apostrophes, hyphens), returning names that consist of only alphabetic characters. Note that the identifier
doubles the apostrophe to escape it as a literal character, rather than a string delimiter:

SQL

SELECT TOP 20 Name,$TRANSLATE(Name,', .''-') AS AlphaName
FROM Sample.Person
WHERE Name %STARTSWITH 'O'

In the following example, a three-argument $TRANSLATE modifies Name values by replacing commas and spaces with
caret (^) characters, returning names delimited in three pieces (surname, first name, middle initial). Note that the associator
must specify “^” as many times as the number of characters in identifier:

SQL

SELECT TOP 20 Name,$TRANSLATE(Name,', ','^^') AS PiecesNamePunc
FROM Sample.Person
WHERE Name %STARTSWITH 'O'

In the following example, a three-argument $TRANSLATE modifies Name values by both replacing commas and spaces
with caret (^) characters (specified in the identifier and associator) and removing periods, apostrophes, and hyphens
(specified in the identifier, omitted from the associator):

SQL

SELECT TOP 20 Name,$TRANSLATE(Name,', .''-','^^') AS PiecesNameNoPunc
FROM Sample.Person
WHERE Name %STARTSWITH 'O'

See Also
• REPLACE function

• STUFF function

• String Manipulation

884 InterSystems SQL Reference

SQL Functions

TRIM (SQL)
A string function that returns a character string with specified leading and/or trailing characters removed.

Synopsis

TRIM([end_keyword] [characters FROM] string-expression)

Description
TRIM strips the specified characters from the beginning and/or end of a supplied value. By default, stripping of letters is
case-sensitive. Character stripping from either end stops when a character not specified in characters is encountered. The
default is to strip blank spaces from both ends of string-expression.

TRIM always returns data type VARCHAR, regardless of the data type of the input expression to be trimmed.

Note that leading zeros are automatically stripped from numbers before they are supplied to TRIM or any other SQL
function. To retain leading zeros, a number must be specified as a string.

The optional end_keyword argument can take the following values:

A keyword that specifies that the characters in characters are to be removed from the
beginning of string-expression.

LEADING

A keyword that specifies that the characters in characters are to be removed from the
end of string-expression.

TRAILING

A keyword that specifies that the characters in characters are to be removed from both
the beginning and end of string-expression. BOTH is the default and is used if no
end_keyword is specified.

BOTH

Alternatively, you can use LTRIM to trim leading blanks, or RTRIM to trim trailing blanks.

To pad a string with leading or trailing blanks or other characters, use LPAD or RPAD.

You can use the LENGTH function to determine if blank spaces have been stripped from or added to a string.

Characters to Strip

• All characters: TRIM returns an empty string if characters contains all the characters in string-expression.

• Single quote characters: TRIM can trim single-quote characters if these characters are doubled in both characters and
string-expression. Thus, TRIM(BOTH 'a''b' FROM 'bb''ba''acaaa''') returns ‘c’.

• Blank spaces: TRIM trims blank spaces from string-expression if characters is omitted. If characters is specified, it
must include the blank space character to strip blank spaces.

• %List: If string-expression is a %List, TRIM can only trim trailing characters, not leading characters. This is because
a %List contains leading encoding characters. You must convert a %List to a string to apply TRIM to leading characters.

• NULL: TRIM returns NULL if either string expression is NULL.

Arguments

end_keyword

An optional keyword specifying the which end of string-expression to strip. Available values are LEADING, TRAILING,
or BOTH. The default is BOTH.

InterSystems SQL Reference 885

TRIM (SQL)

characters

An optional string expression specifying the characters to strip from string-expression. Every instance of the specified
character(s) is stripped from the specified end(s) until a character not specified here is encountered. Thus TRIM(BOTH
'ab' FROM 'bbbaacaaa') returns ‘c’. In this example, the BOTH keyword is optional.

If characters is not specified, TRIM strips blank spaces.

The FROM keyword is required if characters is specified. The FROM keyword is permitted (but not required) if end_keyword
is specified and characters is not specified. If neither of these arguments are specified, the FROM keyword is not permitted.

string-expression

The string expression to be stripped. A string-expression can be the name of a column, a string literal, or the result of
another function, where the underlying data type can be represented as any character type (such as CHAR or VARCHAR2).

The FROM keyword is omitted if both characters and end_keyword are omitted.

Examples
The following example uses the end_keyword and characters defaults; it removes leading and trailing blanks from "abc".
The select-items concatenate ‘^’ to both ends of the string to show blanks.

SQL

SELECT '^'||' abc '||'^' AS UnTrimmed,'^'||TRIM(' abc ')||'^' AS Trimmed

returns the strings ^ abc ^ and ^abc^.

The following examples are all valid syntax to strip leading blank spaces from string-expression:

SELECT TRIM(LEADING ' abc '),TRIM(LEADING FROM ' def '),TRIM(LEADING ' ' FROM ' ghi ')

The following example removes the character "x" from the beginning of the string "xxxabcxxx", resulting in "abcxxx":

SQL

SELECT TRIM(LEADING 'x' FROM 'xxxabcxxx') AS Trimmed

The following examples both remove the character "x" from the beginning and end of "xxxabcxxx", resulting in "abc". The
first specifies BOTH, the second takes BOTH as the default:

SQL

SELECT TRIM(BOTH 'x' FROM 'xxxabcxxx') AS Trimmed

SQL

SELECT TRIM('x' FROM 'xxxabcxxx') AS Trimmed

The following example removes all instances of the characters "xyz" from the end of "abcxzzxyyyyz", resulting in "abc":

SQL

SELECT TRIM(TRAILING 'xyz' FROM 'abcxzzxyyyyz') AS Trimmed

The following example trims FullName by stripping all of the letters in FirstName, returning the last name preceded by a
blank space. For example FirstName/Fullname ‘Fred’/’Fred Rogers’ returns ‘ Rogers’. In this example, FirstName ‘Annie’
would strip ‘Ann’, ‘Anne’, ‘Ani’, ‘Ain’, ‘Annee’, or ‘Annie’ from LastName, but would not completely strip ‘Anna’ because
TRIM is case-sensitive; only ‘A’, not ‘a’, would be stripped.

886 InterSystems SQL Reference

SQL Functions

SQL

SELECT TRIM(LEADING FirstName FROM FullName) FROM Sample.Person

The following example removes the leading letters "B" or "R" from the FavoriteColors values. Note that you must convert
a list to a string in order to apply TRIM to leading characters:

SQL

SELECT TOP 15 Name,FavoriteColors,
 TRIM(LEADING 'BR' FROM $LISTTOSTRING(FavoriteColors)) AS Trimmed
 FROM Sample.Person WHERE FavoriteColors IS NOT NULL

See Also
• SQL functions: LTRIM, RTRIM, LPAD, RPAD

• ObjectScript function: $ZSTRIP

InterSystems SQL Reference 887

TRIM (SQL)

TRUNCATE (SQL)
A scalar numeric function that truncates a number at a specified number of digits.

Synopsis

{fn TRUNCATE(numeric-expr,scale)}

Description
TRUNCATE truncates numeric-expr by truncating at the scale number of digits from the decimal point. It does not round
numbers or add padding zeroes. Leading and trailing zeroes are removed before the TRUNCATE operation.

• If scale is a positive number, truncation is performed at that number of digits to the right of the decimal point. If scale
is equal to or larger than the number of decimal digits, no truncation or zero filling occurs.

• If scale is zero, the number is truncated to a whole integer. In other words, truncation is performed at zero digits to the
right of the decimal point; all decimal digits and the decimal point itself are truncated.

• If scale is a negative number, truncation is performed at that number of digits to the left of the decimal point. If scale
is equal to or larger than the number of integer digits in the number, zero is returned.

• If numeric-expr is zero (however expressed: 00.00, -0, etc.) TRUNCATE returns 0 (zero) with no decimal digits,
regardless of the scale value.

• If numeric-expr or scale is NULL, TRUNCATE returns NULL.

TRUNCATE can only be used as an ODBC scalar function (with the curly brace syntax).

ROUND can be used to perform a similar truncation operation on numbers. TRIM can be used to perform a similar trun-
cation operation on strings.

TRUNCATE, ROUND, and $JUSTIFY

TRUNCATE and ROUND are numeric functions that perform similar operations; they both can be used to decrease the
number of significant decimal or integer digits of a number. ROUND allows you to specify either rounding (the default),
or truncation; TRUNCATE does not perform rounding. ROUND returns the same data type as numeric-expr; TRUNCATE
returns numeric-expr as data type NUMERIC, unless numeric-expr is data type DOUBLE, in which case it returns data
type DOUBLE.

TRUNCATE truncates to a specified number of fractional digits. If the truncation results in trailing zeros, these trailing
zeros are preserved. However, if scale is larger than the number of fractional decimal digits in the canonical form of
numeric-expr, TRUNCATE does not zero-pad.

ROUND rounds (or truncates) to a specified number of fractional digits, but its return value is always normalized, removing
trailing zeros. For example, ROUND(10.004,2) returns 10, not 10.00.

Use $JUSTIFY if rounding to a fixed number of fractional digits is important — for example, when representing monetary
amounts. $JUSTIFY returns the specified number of trailing zeros following the rounding operation. When the number
of digits to round is larger than the number of fractional digits, $JUSTIFY zero-pads. $JUSTIFY also right-aligns the
numbers, so that the DecimalSeparator characters align in a column of numbers. $JUSTIFY does not truncate.

Arguments

numeric-expr

The number to be truncated. A number or numeric expression.

888 InterSystems SQL Reference

SQL Functions

scale

An expression that evaluates to an integer that specifies the number of places to truncate, counting from the decimal point.
Can be zero, a positive integer, or a negative integer. If scale is a fractional number, InterSystems IRIS rounds it to the
nearest integer.

TRUNCATE returns the DOUBLE, INTEGER, or NUMERIC data type.

• If numeric-expr is of type DOUBLE, TRUNCATE returns DOUBLE.

• If numeric-expr is of type INTEGER and scale is less than or equal to 0, TRUNCATE returns INTEGER.

• If numeric-expr is of type NUMERIC, or of type INTEGER and scale is greater than 0, TRUNCATE returns NUMERIC.

Examples
The following two examples both truncate a number to two decimal digits, where scale is specified as an integer:

SQL

SELECT {fn TRUNCATE(654.321888,2)}

SQL

SELECT {fn TRUNCATE(654.321888,2)}

Both examples return 654.32 (truncation to two decimal places).

The following example specifies a scale larger than the number of decimal digits:

SQL

SELECT {fn TRUNCATE(654.321000,9)}

It returns 654.321 (InterSystems IRIS removed the trailing zeroes before the truncation operation; no truncation or zero
padding occurred).

The following example specifies a scale of zero:

SQL

SELECT {fn TRUNCATE(654.321888,0)}

It returns 654 (all decimal digits and the decimal point are truncated).

The following example specifies a negative scale:

SQL

SELECT {fn TRUNCATE(654.321888,-2)}

It returns 600 (two integer digits have been truncated and replaced by zeroes; note that no rounding has been done).

The following example specifies a negative scale as large as the integer portion of the number:

SQL

SELECT {fn TRUNCATE(654.321888,-3)}

It returns 0.

InterSystems SQL Reference 889

TRUNCATE (SQL)

See Also
• SQL functions: $JUSTIFY, ROUND, RTRIM, TRIM,

• ObjectScript function: $NORMALIZE

890 InterSystems SQL Reference

SQL Functions

%TRUNCATE (SQL)
A collation function that truncates a string to the specified length and applies EXACT collation.

Synopsis

%TRUNCATE(expression[,length])

Description
%TRUNCATE truncates expression to the specified length, then returns it in the EXACT collation sequence.

EXACT collation orders pure numeric values (values for which x=+x) in numeric order first, followed by all other characters
in string collation sequence. The EXACT string collation sequence is the same as the ANSI-standard ASCII collation
sequence: digits are collated before uppercase alphabetic characters and uppercase alphabetic characters are collated before
lowercase alphabetic characters. Punctuation characters occur at several places in the sequence.

%TRUNCATE passes through NULLs unchanged.

%TRUNCATE is an InterSystems SQL extension and is intended for SQL lookup queries.

This function can also be invoked from ObjectScript using the TRUNCATE() method call:

ObjectScript

 WRITE $SYSTEM.SQL.Functions.TRUNCATE("This long string",9)

Arguments

expression

A string expression, which can be the name of a column, a string literal, or the result of another function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR2). expression can be a subquery.

length

An optional argument denoting the truncation length, specified as an integer. The initial length characters of expression
are returned. If you omit length, %TRUNCATE collation is identical to %EXACT collation. You can enclose length with
double parentheses to suppress literal substitution: ((length)).

Examples
The following example uses %TRUNCATE to return the first four characters of Name values:

SQL

SELECT TOP 5 Name,%TRUNCATE(Name,4) AS ShortName
FROM Sample.Person

The following example applies %TRUNCATE to a subquery:

SQL

SELECT TOP 5 Name, %TRUNCATE((SELECT Name FROM Sample.Company),10) AS Company
FROM Sample.Person

The following example uses %TRUNCATE in the GROUP BY clause to create an alphabet list that returns the number
of names that begin with each letter:

InterSystems SQL Reference 891

%TRUNCATE (SQL)

SQL

SELECT Name AS FirstLetter,COUNT(Name) AS NameCount
FROM Sample.Person GROUP BY %TRUNCATE(Name,1) ORDER BY Name

The following two examples show how %TRUNCATE performs EXACT collation. The ORDER BY in the first example
truncates Home_Street to two characters. Because the first two characters of a street address are almost always numbers,
the Home_Street fields are ordered in the numeric sequence of their first two numbers.

SQL

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY %TRUNCATE(Home_Street,2)

The ORDER BY in the second example truncates Home_Street to four characters. Because the fourth character of some
street addresses is not a number (a blank space, for example), the Home_Street values that begin with four (or more) numbers
are ordered first in numeric sequence, then the Home_Street values that contain a non-numeric character within the first
four characters are ordered in string sequence:

SQL

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY %TRUNCATE(Home_Street,4)

See Also
• CREATE TABLE

• %STARTSWITH predicate

• %EXACT collation function

• %SQLSTRING collation function

• %TRUNCATE collation function

• Collation

892 InterSystems SQL Reference

SQL Functions

$TSQL_NEWID (SQL)
A function that returns a globally unique ID.

Synopsis

$TSQL_NEWID()

Description
$TSQL_NEWID returns a globally unique ID (GUID). A GUID is used to synchronize databases on occasionally connected
systems. A GUID is a 36-character string consisting of 32 hexadecimal digits separated into five groups by hyphens. Its
data type is %Library.UniqueIdentifier.

$TSQL_NEWID is provided in InterSystems SQL to support InterSystems Transact-SQL (TSQL). The corresponding
TSQL function is NEWID.

The $TSQL_NEWID function takes no arguments. Note that the argument parentheses are required.

The %Library.GUID abstract class provides support for globally unique IDs, including the AssignGUID() method, which
can be used to assign a globally unique ID to a class. To generate a GUID value, use the %SYSTEM.Util.CreateGUID()
method.

Examples
The following example returns a GUID:

SQL

SELECT $TSQL_NEWID()

See Also
• TSQL: NEWID function

InterSystems SQL Reference 893

$TSQL_NEWID (SQL)

UCASE (SQL)
A case-transformation function that converts all lowercase letters in a string to uppercase letters.

Synopsis

UCASE(string-expression)

{fn UCASE(string-expression)}

Description
UCASE converts lowercase letters to uppercase for display purposes. It has no effects on non-alphabetic characters; it
leaves numbers, punctuation, and leading or trailing blank spaces unchanged.

Note that UCASE can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

UCASE does not force a numeric to be interpreted as a string. InterSystems SQL removes leading and trailing zeros from
numerics. A numeric specified as a string retains leading and trailing zeros.

UCASE does not affect collation. The %SQLUPPER function is the preferred way in SQL to convert a data value for not
case-sensitive collation. Refer to %SQLUPPER for further information on case transformation for collation.

This function can also be invoked from ObjectScript using the UPPER() method call:

$SYSTEM.SQL.UPPER(expression)

Arguments

string-expression

The string whose characters are to be converted to uppercase. The expression can be the name of a column, a string literal,
or the result of another scalar function, where the underlying data type can be represented as any character type (such as
CHAR or VARCHAR).

Examples
The following example returns each person’s name in uppercase letters:

SQL

SELECT Name,{fn UCASE(Name)} AS CapName
 FROM Sample.Person

UCASE also works on Unicode (non-ASCII) alphabetic characters, as shown in the following example, which converts
Greek letters from lowercase to uppercase:

SQL

SELECT UCASE($CHAR(950,949,965,963))

See Also
• SQL functions: LCASE, %SQLUPPER, UPPER

• ObjectScript function: $ZCONVERT

894 InterSystems SQL Reference

SQL Functions

UNIX_TIMESTAMP (SQL)
A date/time function that converts a date expression to a UNIX timestamp.

Synopsis

UNIX_TIMESTAMP([date-expression])

Description
UNIX_TIMESTAMP returns a UNIX® timestamp, the count of seconds (and fractional seconds) since '1970-01-01
00:00:00'.

If you do not specify date-expression, date-expression defaults to the current UTC timestamp. Therefore,
UNIX_TIMESTAMP() is equivalent to UNIX_TIMESTAMP(GETUTCDATE(3)), assuming the system-wide default precision
of 3.

If you specify date-expression, UNIX_TIMESTAMP converts the specified date-expression value to a UNIX timestamp,
calculating the count of seconds to that timestamp. UNIX_TIMESTAMP can return a positive or negative count of seconds.

UNIX_TIMESTAMP returns its value as data type %Library.Numeric. It can return fractional seconds of precision. If
you do not specify date-expression, it takes the currently configured system-wide precision. If you specify date-expression
it takes its precision from date-expression.

date-expression Values

The optional date-expression can be specified as:

• An ODBC timestamp value (data type %Library.TimeStamp): YYYY-MM-DD HH:MI:SS.FFF

• A PosixTime timestamp value (data type %Library.PosixTime): an encoded 64-bit signed integer.

• A $HOROLOG date value (data type %Library.Date): a count of the number of days since December 31, 1840, where
day 1 is January 1, 1841.

• A $HOROLOG timestamp, with or without fractional seconds: 64412,54736.

UNIX_TIMESTAMP does not perform timezone conversion: if date-expression is in UTC time, UTC UnixTime is
returned; if date-expression is local time, a local UnixTime value is returned.

Fractional Seconds Precision

Fractional seconds are always truncated, not rounded, to the specified precision.

• A date-expression in %Library.TimeStamp data type format can have a maximum precision of nine. The actual number
of digits supported is determined by the date-expression precision argument, the configured default time precision,
and the system capabilities. If you specify a precision larger than the configured default time precision, the additional
digits of precision are returned as trailing zeros.

• A date-expression in %Library.PosixTime data type format has a maximum precision of six. Every POSIXTIME value
is computed using six digits of precision; these fractional digits default to zeros unless supplied.

Configuring Precision

The default precision can be configured using the following:

• SET OPTION with the TIME_PRECISION option.

InterSystems SQL Reference 895

UNIX_TIMESTAMP (SQL)

• The system-wide $SYSTEM.SQL.Util.SetOption() method configuration option DefaultTimePrecision. To
determine the current setting, call $SYSTEM.SQL.CurrentSettings() which displays Default time precision;
the default is 0.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Default time precision for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP.

Specify an integer 0 through 9 (inclusive) for the default number of decimal digits of precision to return. The default is 0.
The actual precision returned is platform dependent; precision digits in excess of the precision available on your system
are returned as zeroes.

Date and Time Functions Compared

UNIX_TIMESTAMP returns date and time expressed as a number of elapsed seconds from an arbitrary date.

TO_POSIXTIME returns an encoded 64-bit signed (a %PosixTime timestamp) that is calculated from the UNIX timestamp.

GETUTCDATE returns a universal (independent of time zone) date and time as either a %TimeStamp (ODBC timestamp)
data type or a %PosixTime (encoded 64-bit signed integer) data type value. A %PosixTime value is calculated from the
corresponding UNIX timestamp value. The %PosixTime encoding facilitates rapid timestamp comparisons and calculations.
The %Library.PosixTime class provides a UnixTimeToLogical() method to convert a UNIX timestamp to a PosixTime
timestamp, and a LogicalToUnixTime() method to convert a PosixTime timestamp to a UNIX timestamp. Neither of these
methods perform timezone conversion.

You can also use the ObjectScript $ZTIMESTAMP special variable to return a universal (time zone independent) timestamp.

The ObjectScript $ZDATETIME function dformat -2 takes an InterSystems IRIS $HOROLOG date and returns a UNIX
timestamp; $ZDATETIMEH dformat -2 takes a UNIX timestamp and returns an InterSystems IRIS %HOROLOG date.
These ObjectScript functions convert local time to UTC time. UNIX_TIMESTAMP does not convert local time to UTC
time.

Arguments

date-expression

An optional expression that is the name of a column, the result of another scalar function, or a date or timestamp literal.
UNIX_TIMESTAMP does not convert from one timezone to another. If date-expression is omitted, defaults to the current
UTC timestamp.

Examples
The following example returns a UTC UNIX timestamp. The first select-item takes the date-expression default, the second
specifies an explicit UTC timestamp:

SQL

SELECT
 UNIX_TIMESTAMP() AS DefaultUTC,
 UNIX_TIMESTAMP(GETUTCDATE(3)) AS ExplicitUTC

The following example returns a local UNIX timestamp for the current local date and time, and a UTC UNIX timestamp
for a UTC date and time value. The first select-item specifies the local CURRENT_TIMESTAMP, the second specifies
$HOROLOG (local date and time), the third specifies the current UTC date and time:

SQL

SELECT
 UNIX_TIMESTAMP(CURRENT_TIMESTAMP(2)) AS CurrTSLocal,
 UNIX_TIMESTAMP($HOROLOG) AS HorologLocal,
 UNIX_TIMESTAMP(GETUTCDATE(3)) AS ExplicitUTC

896 InterSystems SQL Reference

SQL Functions

The following example compares UNIX_TIMESTAMP (which does not convert local time) and $ZDATETIME (which
does convert local time):

ObjectScript

 SET unixutc=$ZDATETIME($HOROLOG,-2)
 SET myquery = "SELECT UNIX_TIMESTAMP($HOROLOG) AS UnixLocal,? AS UnixUTC"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(unixutc)
 DO rset.%Display()

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL timestamp functions: CAST, CONVERT, GETDATE, GETUTCDATE, NOW, SYSDATE, TIMESTAMPADD,
TIMESTAMPDIFF, TO_POSIXTIME, TO_TIMESTAMP

• ObjectScript: $ZDATETIME and $ZDATETIMEH functions, $HOROLOG special variable, $ZTIMESTAMP special
variable

InterSystems SQL Reference 897

UNIX_TIMESTAMP (SQL)

UPPER (SQL)
A case-transformation function that converts all lowercase letters in a string expression to uppercase letters.

Synopsis

UPPER(expression)

UPPER expression

Description
The UPPER function converts all alphabetic characters to uppercase letters. This is the inverse of the LOWER function.
UPPER does not change numbers, punctuation, and leading or trailing blank spaces.

UPPER does not force a numeric to be interpreted as a string. InterSystems SQL removes leading and trailing zeros from
numerics. A numeric specified as a string retains leading and trailing zeros.

This function can also be invoked from ObjectScript using the UPPER() method call:

$SYSTEM.SQL.Functions.UPPER(expression)

UPPER is a standard function for alphabetic case conversion, not for collation. For uppercase collation use %SQLUPPER,
which provides superior collation of numerics, NULL values and empty strings.

Arguments

expression

A string expression, which can be the name of a column, a string literal, or the result of another function, where the
underlying data type can be represented as any character type (such as CHAR or VARCHAR).

Examples
The following example returns all names, selecting those where the uppercase form of the name starts with “JO”:

SQL

SELECT Name
FROM Sample.Person
WHERE UPPER(Name) %STARTSWITH UPPER('JO')

The following example returns all names in uppercase, selecting those where the name starts with “JO”:

SQL

SELECT UPPER(Name) AS CapName
FROM Sample.Person
WHERE Name %STARTSWITH UPPER('JO')

The following example converts the lowercase Greek letter Delta to uppercase. This example uses the UPPER syntax that
uses a space, rather than parentheses, to separate keyword from argument:

SQL

SELECT UPPER {fn CHAR(948)},{fn CHAR(948)}
FROM Sample.Person

See Also
• %SQLUPPER collation function

898 InterSystems SQL Reference

SQL Functions

• %STARTSWITH predicate condition

• LOWER function

• UCASE function

• Collation

InterSystems SQL Reference 899

UPPER (SQL)

USER (SQL)
A function that returns the user name of the current user.

Synopsis

USER

{fn USER}
{fn USER()}

Description
USER takes no arguments and returns the user name (also referred to as the authorization ID) of the current user. The
general function does not allow parentheses; the ODBC scalar function can specify or omit the empty parentheses.

A user name is defined with the CREATE USER command.

Typical uses for USER are in the SELECT statement select list or in the WHERE clause of a query. In designing a report,
USER can be used to print the current user for whom the report is being produced.

Examples
The following example returns the current user name:

SQL

SELECT USER AS CurrentUser

The following example selects those records where the last name ($PIECE(Name,',',1) or the first name (without the middle
initial) matches the current user name:

SQL

SELECT Name FROM Sample.Person
WHERE %SQLUPPER(USER)=%SQLUPPER($PIECE(Name,',',1))
OR %SQLUPPER(USER)=%SQLUPPER($PIECE($PIECE(Name,',',2),' ',1))

See Also
• CREATE USER, GRANT

900 InterSystems SQL Reference

SQL Functions

WEEK (SQL)
A date function that returns the week of the year as an integer for a date expression.

Synopsis

{fn WEEK(date-expression)}

Description
WEEK takes a date-expression, and returns the number of weeks from the beginning of the year for that date.

By default, weeks are calculated using the $HOROLOG date (positive or negative integer number of days from Dec. 31,
1840). Therefore, weeks are counted from year to year, such that Week 1 is the days that complete the seven-day period
begun by the last week of the previous year. A week always begins with a Sunday; therefore, the first Sunday of the calendar
year marks the changing from Week 1 to Week 2. If the first Sunday of the year is January 1, then that Sunday is in Week
1; if the first Sunday of the year is later than January 1, then that Sunday is the first day of Week 2. For this reason, Week
1 is commonly less than seven days in length. You can determine the day of the week by using the DAYOFWEEK function.
The total number of weeks in a year is commonly 53, and can be 54 in leap years.

InterSystems IRIS also supports the ISO 8601 standard for determining the week of the year. This standard is principally
used in European countries. When InterSystems IRIS is configured for ISO 8601, WEEK begins counting a week with
Monday, and assigns the week to the year that contains that week’s Thursday. For example, Week 1 of 2004 ran from
Monday 29 December 2003 to Sunday 4 January 2004, because this week’s Thursday was 1 January 2004, which was the
first Thursday of 2004. Week 1 of 2005 ran from Monday 3 January 2005 to Sunday 9 January 2005, because its Thursday
was 6 January 2005, which was the first Thursday of 2005. The total number of weeks in a year is commonly 52, but can
occasionally be 53. To activate ISO 8601 counting, SET ^%SYS("sql","sys","week ISO8601")=1.

The date-expression can be an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC format
date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

The same week information can be returned by using the DATEPART or DATENAME function.

This function can also be invoked from ObjectScript using the WEEK() method call:

$SYSTEM.SQL.Functions.WEEK(date-expression)

Date Validation

WEEK performs the following checks on input values. If a value fails a check, the null string is returned.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. Years must be specified as four digits.

• Date values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through 31.

• The number of days in a month must match the month and year. For example, the date '02–29' is only valid if the
specified year is a leap year.

• Date values less than 10 may include or omit a leading zero. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

InterSystems SQL Reference 901

WEEK (SQL)

Arguments

date-expression

An expression that is the name of a column, the result of another scalar function, or a date or timestamp literal.

Examples
The following example returns the day of week and week of year for January 2, 2005 (which is a Sunday) and January 1,
2006 (which is a Sunday).

SQL

SELECT {fn DAYOFWEEK("2005-1-2")},{fn WEEK("2005-1-2")},
 {fn DAYOFWEEK("2006-1-1")},{fn WEEK("2006-1-1")}

The following examples return the number 9 because the date is the ninth week of the year 2004:

SQL

SELECT {fn WEEK('2004-02-25')} AS Wk_Date,
 {fn WEEK('2004-02-25 08:35:22')} AS Wk_Tstamp,
 {fn WEEK(59590)} AS Wk_DInt

The following example returns the number 54 because this particular date is in a leap year that began with Week 2 starting
on the second day, as demonstrated by the example immediately following it:

SQL

SELECT {fn WEEK('2000-12-31')} AS Week

SQL

SELECT {fn WEEK('2000-01-01')}||{fn DAYNAME('2000-01-01')} AS WeekofDay1,
 {fn WEEK('2000-01-02')}||{fn DAYNAME('2000-01-02')} AS WeekofDay2

The following examples all return the current week:

SQL

SELECT {fn WEEK({fn NOW()})} AS Wk_Now,
 {fn WEEK(CURRENT_DATE)} AS Wk_CurrD,
 {fn WEEK(CURRENT_TIMESTAMP)} AS Wk_CurrTS,
 {fn WEEK($HOROLOG)} AS Wk_Horolog,
 {fn WEEK($ZTIMESTAMP)} AS Wk_ZTS

The following Embedded SQL example shows the InterSystems IRIS default week of the year and the week of the year
with the ISO 8601 standard applied:

902 InterSystems SQL Reference

SQL Functions

ObjectScript

TestISO
 SET def=$DATA(^%SYS("sql","sys","week ISO8601"))
 IF def=0 {SET ^%SYS("sql","sys","week ISO8601")=0}
 ELSE {SET isoval=^%SYS("sql","sys","week ISO8601")}
 IF isoval=1 {GOTO UnsetISO }
 ELSE {SET isoval=0 GOTO WeekOfYear }
UnsetISO
 SET ^%SYS("sql","sys","week ISO8601")=0
WeekOfYear
 &sql(SELECT {fn WEEK($HOROLOG)} INTO :a)
 WRITE "For Today:",!
 WRITE "default week of year is ",a,!
 SET ^%SYS("sql","sys","week ISO8601")=1
 &sql(SELECT {fn WEEK($HOROLOG)} INTO :b)
 WRITE "ISO8601 week of year is ",b,!
ResetISO
 SET ^%SYS("sql","sys","week ISO8601")=isoval

See Also
• SQL functions: DATENAME, DATEPART, DAYOFWEEK, MONTH, QUARTER, TO_DATE, YEAR

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 903

WEEK (SQL)

XMLCONCAT (SQL)
A function that concatenates XML elements.

Synopsis

XMLCONCAT(XmlElement1,XmlElement2[,...])

Arguments

DescriptionArgument

An XMLELEMENT function. Specify two or more XmlElement to concatenate.XmlElement

Description
The XMLCONCAT function returns the values from several XMLELEMENT functions as a single string. XMLCONCAT
can be used in a SELECT query or subquery that references either a table or a view. XMLCONCAT can appear in a
SELECT list alongside ordinary field values.

Examples
The following query concatenates the values from two XMLELEMENT functions:

SQL

SELECT Name,XMLCONCAT(XMLELEMENT("Para",Name),
 XMLELEMENT("Para",Home_City)) AS ExportString
 FROM Sample.Person

A sample row of the data returned would appear as follows:

ExportString
<Para>Emerson,Molly N.</Para><Para>Boston</Para>

The following query nests an XMLCONCAT within an XMLELEMENT function:

SQL

SELECT XMLELEMENT("Item",Name,
 XMLCONCAT(
 XMLELEMENT("Para",Home_City,' ',Home_State),
 XMLELEMENT("Para",'is residence')))
 AS ExportString
FROM Sample.Person

A sample row of the data returned would appear as follows:

ExportString
<Item>Emerson,Molly N.<Para>Boston MA</Para><Para>is residence</Para></Item>

See Also
SELECT statement

XMLAGG function

XMLELEMENT function

904 InterSystems SQL Reference

SQL Functions

XMLELEMENT (SQL)
A function that formats an XML markup tag to enclose one or more expression values.

Synopsis

XMLELEMENT([NAME] tag,expression[,expression])

XMLELEMENT([NAME] tag,XMLATTRIBUTES(expression [AS alias]),expression, ...)

Description
The XMLELEMENT function returns the values of expression tagged with the XML (or HTML) markup start-tag and
end-tag specified in tag. For example, XMLELEMENT(NAME "Para",Home_City) returns values such as the following:
<Para>Chicago</Para>. XMLELEMENT cannot be used to generate an empty-element tag.

XMLELEMENT can be used in a SELECT query or subquery that references either a table or a view. XMLELEMENT
can appear in a SELECT list alongside ordinary field values.

The tag argument uses double quotes to enclose a literal string. In nearly all other contexts, InterSystems SQL uses single
quotes to enclose a literal string; it uses double quotes to specify a delimited identifier. Therefore, delimited identifier
support must be enabled to use this feature; delimited identifiers are enabled by default.

When SQL code is specified as a string delimited by double quotes, such as in a Dynamic SQL %Prepare() method, you
must escape the tag double quotes by specifying two double quotes, as follows:

ObjectScript

 SET myquery = "SELECT XMLELEMENT(""Para"",Name) FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)

Commonly, expression is the name of a field, (or an expression containing one or more field names) in the multiple rows
returned by a query. An expression can be a field of any type. The specified expression value is returned enclosed by a start
tag and an end tag, as shown in the following format:

<tag>value</tag>

If the value to be tagged is either the empty string ('') value or a NULL, the following is returned:

<tag></tag>

If the expression contains multiple comma-separated elements, the results are concatenated, as shown in the following
format:

<tag>value1value2</tag>

If the expression is a data stream field, the stream value is escaped within the resulting XML value using <![CDATA[...]]>:

<tag><![CDATA[value]]></tag>

XMLELEMENT functions can be nested. XMLELEMENT and XMLFOREST functions may be nested in any combi-
nation. XMLELEMENT functions can be concatenated using XMLCONCAT. However, XMLELEMENT does not do
XML type resolution of entire expressions. For example, XMLELEMENT cannot perform character conversion within a
clause of a CASE statement (see example below).

InterSystems SQL Reference 905

XMLELEMENT (SQL)

XMLATTRIBUTES Function

The XMLATTRIBUTES function can only be used within an XMLELEMENT function. If an element of expression is
an XMLATTRIBUTES function, the specified expression becomes an attribute of the tag, as shown in the following format:

<tag ID='63' >value</tag>

You can only specify one XMLATTRIBUTES function within an XMLELEMENT function. By convention it is the
first expression element, though it can be any element in expression. InterSystems IRIS encloses attribute values with single
quotes and inserts a space between the attribute value and the closing angle bracket (>) for the tag.

XMLELEMENT and XMLFOREST Compared

• XMLELEMENT concatenates the values of its expression list within a single tag. XMLFOREST assigns a separate
tag for each expression item.

• XMLELEMENT requires that you specify a tag value. XMLFOREST allows you to either take default tag values
or specify individual tag values.

• XMLELEMENT allows you to specify a tag attribute using XMLATTRIBUTES. XMLFOREST does not allow
you to specify a tag attribute.

• XMLELEMENT returns a tag string for NULL. XMLFOREST does not return a tag string for NULL.

Punctuation Character Values

If a data value contains a punctuation character that XML/HTML might interpret as a tag or other coding, XMLELEMENT
and XMLFOREST convert this character to the corresponding encoded form:

ampersand (&) becomes &

apostrophe (') becomes '

quotation mark (") becomes "

open angle bracket (<) becomes <

close angle bracket (>) becomes >

To represent an apostrophe in a supplied text string, specify two apostrophes, as in the following example: 'can''t'.
Doubling apostrophes is not necessary for column data.

Arguments

NAME tag

The name of an XML markup tag. The NAME keyword is optional. This argument has three syntactical forms: NAME
"tag", "tag", and NAME. The first two are functionally identical. If specified, tag must be enclosed in double quotes.
The case of letters in tag is preserved.

XMLELEMENT performs no validation of tag values. However, the XML standard requires that a valid tag name cannot
contain any of the characters !"#$%&'()*+,/;<=>?@[\]^`{|}~, nor a space character, and cannot begin with "-", ".",
or a numeric digit.

If you specify the NAME keyword without a tag value, InterSystems IRIS supplies the default tag value: <Name> ...
</Name>. The NAME keyword is not case-sensitive; the resulting tag is initial capitalized.

906 InterSystems SQL Reference

SQL Functions

expression

Any valid expression. Usually the name of a column that contains the data values to be tagged. You can specify a comma-
separated list of columns or other expressions, all of which will be enclosed within the same tag. The first comma-separated
element can be an XMLATTRIBUTES function. Only one XMLATTRIBUTES element can be specified.

Examples
The following example returns each person’s Name field value in Sample.Person as ordinary data and as xml tagged data:

SQL

SELECT Name,
 XMLELEMENT("Para",Name) AS ExportName
 FROM Sample.Person

A sample row of the data returned would appear as follows:

Name ExportName
Emerson,Molly N. <Para>Emerson,Molly N.</Para>

The following example returns every distinct Home_City and Home_State pair value in Sample.Person as xml tagged data
with the tag <Address> ... </Address>. A blank space expression is specified to prevent concatenation of the city name and
the state name:

SELECT DISTINCT
 XMLELEMENT(NAME "Address",Home_City,' ',Home_State) AS CityState
 FROM Sample.Person
 ORDER BY Home_City

Note that in the above example the optional NAME keyword is supplied. In the next example, the NAME keyword is provided
without the tag value:

SQL

SELECT DISTINCT
 XMLELEMENT(NAME,Home_City,' ',Home_State) AS CityState
 FROM Sample.Person
 ORDER BY Home_City

In this case the same data is returned, but is tagged with the default tag: <Name> ... </Name>.

The following example returns character stream data:

SQL

SELECT XMLELEMENT("Para",Name) AS XMLNotes,XMLELEMENT("Para",Notes) AS XMLText
 FROM Sample.Employee

A sample row of the data returned would appear as follows:

XMLName XMLText
<Para>Emerson,Molly N.</Para> <Para><![CDATA[Molly worked at DynaMatix Holdings Inc. as a Marketing
 Manager]]></Para>

The following example shows that XMLELEMENT functions can be nested:

SQL

SELECT XMLELEMENT("Para",Home_State,
 XMLELEMENT("Emphasis",Name),Age)
FROM Sample.Person

A sample row of the data returned would appear as follows:

InterSystems SQL Reference 907

XMLELEMENT (SQL)

<Para>CA<Emphasis>Emerson,Molly N.</Emphasis>24</Para>

The following example shows XMLELEMENT functions using a subquery value:

SQL

SELECT XMLELEMENT("Para",Name,DOB, XMLELEMENT("Emphasis",%ID),Age,
 (SELECT XMLELEMENT("NameSub",Name) FROM Sample.Person WHERE %ID=2)) AS ExportName
FROM Sample.Person WHERE %ID=1

A sample row of the data returned would appear as follows:

<Para>Zucherro,Rob F.38405<Emphasis>1</Emphasis>71<NameSub>Quixote,Mark N.</NameSub></Para>

The following example shows that XMLELEMENT can not tag a value within a CASE statement clause:

SQL

SELECT XMLELEMENT("Para",Home_State,
 XMLELEMENT("Para",Name),
 CASE WHEN Age < 21 THEN NULL
 ELSE XMLELEMENT("Para",Age) END)
FROM Sample.Person

A sample row of the data returned would appear as follows:

<Para>CA<Para>Emerson,Molly N.</Para><Para>24</Para></Para>

The following query returns the Name field values in Sample.Person as XML-tagged data in a tag that uses the ID field as
a tag attribute:

SQL

SELECT XMLELEMENT("Para",XMLATTRIBUTES(%ID),Name) AS ExportName
 FROM Sample.Person

A sample row of the data returned would appear as follows:

ExportName
<Para ID='101' >Emerson,Molly N.</Para>

You can specify an alias for an attribute, as shown in the following example:

SQL

SELECT XMLELEMENT("Para",XMLATTRIBUTES(%ID AS ItemKey),Name)
 FROM Sample.Person

A sample row of the data returned would appear as follows:

<Para ItemKey='101' >Emerson,Molly N.</Para>

See Also
XMLAGG function

XMLCONCAT function

XMLFOREST function

SELECT statement

908 InterSystems SQL Reference

SQL Functions

XMLFOREST (SQL)
A function that formats multiple XML markup tags to enclose expression values.

Synopsis

XMLFOREST(expression [AS tag], ...)

Description
The XMLFOREST function returns the values of each expression tagged with its own XML markup start-tag and end-tag,
as specified in tag. For example, XMLFOREST(Home_City AS City,Home_State AS State) returns values such
as the following: <City>Chicago</City><State>IL</State>. XMLFOREST cannot be used to generate an
empty-element tag.

XMLFOREST can be used in a SELECT query or subquery that references either a table or a view. XMLFOREST can
appear in a SELECT list alongside ordinary column values.

The specified expression value is returned enclosed by a start tag and an end tag, as shown in the following format:

<tag>value</tag>

Commonly, expression is the name of a column, or an expression containing one or more column names. An expression
can be a field of any type, including a data stream field. XMLFOREST tags each expression as follows:

• If AS tag is specified, XMLFOREST tags the resulting values with the specified tag. The tag value is case-sensitive.

• If AS tag is omitted, and expression is a column name, XMLFOREST tags the resulting values with the column name.
Column name default tags are always uppercase.

• If expression is not a column name (for example, an aggregate function, a literal, or a concatenation of two columns)
the AS tag clause is required.

• If expression is a stream field, the stream value is escaped within the resulting XML value using <![CDATA[...]]>:

<tag><![CDATA[value]]></tag>

XMLFOREST provides a separate tag for each item in a comma-separated list. XMLELEMENT concatenates all of the
items in a comma-separated list within a single tag.

XMLFOREST functions can be nested. Any combination of nested XMLFOREST and XMLELEMENT functions is
permitted. XMLFOREST functions can be concatenated using XMLCONCAT.

NULL Values

The XMLFOREST function only returns a tag for actual data values. It does not return a tag when the expression value
is NULL. For example:

SQL

INSERT INTO Sample.Xmltest (f1,f2,f3) values (NULL,'Row 1',NULL)

SQL

SELECT XMLFOREST(f1,f2,f3) from Sample.Xmltest

returns: <F2>Row 1</F2>.

InterSystems SQL Reference 909

XMLFOREST (SQL)

The empty string ('') is considered a data value for a string data type field. If the f3 value to be tagged is the empty string
(''), XMLFOREST returns:

<F3></F3>

XMLFOREST differs from XMLELEMENT in the handling of NULL. XMLELEMENT always returns a tag value,
even when the field value is NULL. XMLELEMENT therefore does not distinguish between a NULL or an empty string.
Both are represented as <tag></tag>.

Punctuation Character Values

If a data value contains a punctuation character that XML/HTML might interpret as a tag or other coding, XMLFOREST
and XMLELEMENT convert this character to the corresponding encoded form:

ampersand (&) becomes &

apostrophe (') becomes '

quotation mark (") becomes "

open angle bracket (<) becomes <

close angle bracket (>) becomes >

To represent an apostrophe in a supplied text string, specify two apostrophes, as in the following example: 'can''t'.
Doubling apostrophes is not necessary for column data.

Arguments

expression

Any valid expression. Usually the name of a column that contains the data values to be tagged. When specified as a comma-
separated list, each expression in the list will be enclosed in its own XML markup tag.

AS tag

An optional argument that specifies the name of an XML markup tag. The AS keyword is mandatory if tag is specified.
The case of letters in tag is preserved.

Enclosing tag with double quotes is optional. If you omit the double quotes, tag must follow XML naming standards.
Enclosing tag with double quotes removes these naming restrictions.

XMLFOREST enforces XML naming standards for a valid tag name. It cannot contain any of the characters
!"#$%&'()*+,/;<=>?@[\]^`{|}~, nor a space character, and cannot begin with "-", ".", or a numeric digit.

If you specify an expression without the AS tag clause, the tag value is the name of the expression column (in capital letters):
<HOME_CITY>Chicago</HOME_CITY>.

Examples
The following query returns the Name column values in Sample.Person as ordinary data and as xml tagged data:

SQL

SELECT Name,XMLFOREST(Name) AS ExportName
 FROM Sample.Person

A sample row of the data returned would appear as follows. Here the tag defaults to the name of the column:

Name ExportName
Emerson,Molly N. <NAME>Emerson,Molly N.</NAME>

The following example specifies multiple columns:

910 InterSystems SQL Reference

SQL Functions

SQL

SELECT XMLFOREST(Home_City,
 Home_State AS Home_State,
 AVG(Age) AS AvAge) AS ExportData
FROM Sample.Person

The Home_City field specifies no tag; the tag is generated from the column name in all capital letters: <HOME_CITY>.
The Home_State field’s AS clause is optional. It is specified here because specifying the tag name allows you to control
the case of the tag: <Home_State>, rather than <HOME_STATE>. The AVG(Age) AS clause is mandatory, because the
value is an aggregate, not a column value, and thus has no column name. A sample row of the data returned would appear
as follows.

ExportData
<HOME_CITY>Chicago</HOME_CITY><Home_State>IL</Home_State>
<AvAge>48.0198019801980198</AvAge>

The following example returns character stream data:

SQL

SELECT XMLFOREST(name AS Para,Notes AS Para) AS XMLJobHistory
 FROM Sample.Employee

A sample row of the data returned would appear as follows:

XMLJobHistory
<Para>Emerson,Molly N.</Para><Para><![CDATA[Molly worked at DynaMatix Holdings Inc. as a Marketing
Manager]]></Para>

The following example shows XMLFOREST functions using a subquery value:

SQL

SELECT XMLFOREST(Name,DOB,Age,
 (SELECT XMLFOREST(Name,DOB) FROM Sample.Person WHERE %ID=2) AS ExportName)
FROM Sample.Person where %ID=1

A sample row of the data returned would appear as follows:

<NAME>Zahn,Rob F.</NAME><DOB>38405</DOB><AGE>71</AGE><ExportName><NAME>Quinn,Mark
N.</NAME><DOB>30999</DOB></ExportName>

See Also
XMLAGG function

XMLELEMENT function

XMLCONCAT function

SELECT statement

InterSystems SQL Reference 911

XMLFOREST (SQL)

YEAR (SQL)
A date function that returns the year for a date expression.

Synopsis

YEAR(date-expression)

{fn YEAR(date-expression)}

Description
YEAR takes as input an InterSystems IRIS date integer ($HOROLOG date), an ODBC format date string, or a timestamp.
YEAR returns the corresponding year as an integer.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The year (yyyy) portion should be a four-digit integer in the range 0001 through 9999. Leading zeros are optional on input.
Leading zeros are suppressed on output. Two digit years are not expanded to four digits.

The date portion of date-expression is validated and must include a month within the range 1 through 12 and a valid day
value for the specified month and year. Otherwise, an SQLCODE -400 error <ILLEGAL VALUE> is generated.

The time portion of date-expression is validated if present, but can be omitted.

Note: For compatibility with InterSystems IRIS internal representation of dates, it is strongly recommended that all year
values be expressed as four-digit integers within the range of 0001 through 9999.

The TO_DATE and TO_CHAR SQL functions support “Julian dates,” which can be used to represent years
before 0001. ObjectScript provides method calls that support such Julian dates.

The year format default is four-digit years. To change this year display default, use the SET OPTION command with the
YEAR_OPTION option.

The elements of a datetime string can be returned using the following SQL scalar functions: YEAR, MONTH, DAY,
DAYOFMONTH, HOUR, MINUTE, SECOND. The same elements can be returned by using the DATEPART or
DATENAME function.

This function can also be invoked from ObjectScript using the YEAR() method call:

$SYSTEM.SQL.Functions.YEAR(date-expression)

Arguments

date-expression

An expression that evaluates to either an InterSystems IRIS date integer, an ODBC date string, or a timestamp. This
expression can be the name of a column, the result of another scalar function, or a date or timestamp literal.

Examples
The following examples return the integer 2018:

SQL

SELECT YEAR('2018-02-22 12:45:37') AS ODBCDate_Year

912 InterSystems SQL Reference

SQL Functions

SQL

SELECT {fn YEAR(64701)} AS HorologDate_Year

The following example returns the current year:

SQL

SELECT YEAR(GETDATE()) AS Year_Now

The following example returns the current year from two functions. The CURRENT_DATE function returns data type
DATE; the NOW function returns data type TIMESTAMP. YEAR returns a four-digit year integer for both input data
types:

SQL

SELECT {fn YEAR(CURRENT_DATE)}, {fn YEAR({fn NOW()})}

See Also
• SQL functions: DATENAME, DATEPART, DAYOFYEAR, QUARTER, WEEK, TO_DATE

• ObjectScript function: $ZDATE

InterSystems SQL Reference 913

YEAR (SQL)

SQL Unary Operators

InterSystems SQL Reference 915

- (Negative)
A unary operator that returns an expression as a negative, numeric value.

Synopsis

-expression

Arguments

DescriptionArgument

A numeric expression.expression

Description
Unary operators perform an operation on only one expression of any of the data types of the numeric data type category.

– (Negative) is an InterSystems SQL extension.

Examples
The following example returns three numeric fields: the Age column from Sample.Person; the – (Negative) value of the
average of Age; and the Age minus the average age:

SQL

SELECT Age,
 -(AVG(age)) AS NegAvg,
 Age-AVG(Age) AS AgeRelAvg
FROM Sample.Person

See Also
+ (Positive)

916 InterSystems SQL Reference

SQL Unary Operators

+ (Positive)
A unary operator that returns an expression as a positive, numeric value.

Synopsis

+expression

Description
Unary operators perform an operation on only one expression. This expression can be any of the data types of the numeric
data type category.

+ (Positive) is an InterSystems SQL extension.

Arguments

expression

A numeric expression.

See Also
- (Negative)

InterSystems SQL Reference 917

+ (Positive)

SQL Reference Material

InterSystems SQL Reference 919

Data Types (SQL)
Specifies the kind of data that an SQL column can contain.

Data Types in InterSystems SQL
A data type specifies the kind of value that a table column can hold. In InterSystems SQL, you specify the data type when
defining a field with CREATE TABLE or ALTER TABLE. You can define either a Data Definition Language (DDL)
data type or an InterSystems IRIS data type class. For example:

DDL Using SQL Data Types

CREATE TABLE Employees (
 FirstName VARCHAR(30),
 LastName VARCHAR(30),
 StartDate TIMESTAMP)

DDL Using InterSystems IRIS Data Types

CREATE TABLE Employees (
 FirstName %String(MAXLEN=30),
 LastName %String(MAXLEN=30),
 StartDate %TimeStamp)

View Data Type Mappings to InterSystems IRIS
Each DDL data type maps to an equivalent InterSystems IRIS data type. To view the standard mappings for your system:

1. From the Management Portal, select System Administration.

2. Under Configuration and then SQL and Object Settings, click System DDL Mappings.

The System-defined DDL Mappings page shows a table with these columns:

• Name — The name of a DDL data type that you can specify. DDL data type names are case insensitive.

• Datatype — The name of the InterSystems IRIS class data type that the DDL data type maps to. Class names are
case sensitive.

From the System-defined DDL Mappings page, you can modify and delete existing data types. This table explains the mappings,
including the literal data type parameters such as %1 and function parameters such as $$maxval^%apiSQL(%1,%2). For
more details about these parameters, see Data Type Mapping Parameters.

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.BigInt

If a BIGINT column can contain both NULLs and
extremely small negative numbers, you might need
to redefine the index null marker to support standard
index collation. For more details, see Indexing a
NULL.

BIGINT

%Library.BigInt

The %1 parameter is ignored and is provided for
MySQL compatibility. This data type is equivalent to
BIGINT.

BIGINT(%1)

%Library.Binary(MAXLEN=1)BINARY

920 InterSystems SQL Reference

SQL Reference Material

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.Binary(MAXLEN=1)BINARY VARYING

%Library.Binary(MAXLEN=%1)

%1 sets the maximum length of the data type.

BINARY VARYING(%1)

%Library.Binary(MAXLEN=%1)

%1 sets the maximum length of the data type.

BINARY(%1)

%Library.Boolean

For more details on this data type, see BIT Data Type.
BIT

%Stream.GlobalBinaryBLOB

%Library.String(MAXLEN=1)CHAR

%Library.String(MAXLEN=1)CHAR VARYING

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

CHAR VARYING(%1)

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

CHAR(%1)

%Library.Binary(MAXLEN=1)CHARACTER

%Library.String(MAXLEN=1)CHARACTER VARYING

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

CHARACTER VARYING(%1)

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

CHARACTER(%1)

%Stream.GlobalCharacterCLOB

%Library.DateDATE

%Library.DateTimeDATETIME

%Library.DateTimeDATETIME2

%Library.Numeric(MAXVAL=999999999999999, MIN-
VAL=-999999999999999, SCALE=0)

DEC

InterSystems SQL Reference 921

Data Types (SQL)

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.Numeric(MAXVAL=<|'$$max-
val^%apiSQL(%1,0)'|>,MINVAL=<|'$$min-
val^%apiSQL(%1,0)'|>,SCALE=0)

This data type uses function parameters to set MIN-
VAL and MAXVAL based on the input precision
parameter (%1) with the scale set to 0. For more
details on these parameters, see Precision and Scale.

Example: DEC(4) maps to%Library.Numeric(MAX-
VAL=9999,MINVAL=–9999,SCALE=0)

DEC(%1)

%Library.Numeric (MAXVAL=<|'$$max-
val^%apiSQL(%1,%2)'|>, MINVAL=<|'$$min-
val^%apiSQL(%1,%2)'|>, SCALE=%2)

This data type uses function parameters to set MIN-
VAL, MAXVAL, and SCALE based on the input preci-
sion (%1) and scale (%2) parameters. For more
details on these parameters, see Precision and Scale.

Example: DEC(8,4) maps to %Library.Numeric(MAX-
VAL=9999.9999,MINVAL=-9999.9999,SCALE=4)

DEC(%1,%2)

%Library.Numeric(MAXVAL=999999999999999, MIN-
VAL=-999999999999999, SCALE=0)

DECIMAL

%Library.Numeric(MAXVAL=<|'$$max-
val^%apiSQL(%1,0)'|>,MINVAL=<|'$$min-
val^%apiSQL(%1,0)'|>,SCALE=0)

This data type uses function parameters to set MIN-
VAL and MAXVAL based on the input precision
parameter (%1) with the scale set to 0. For more
details on these parameters, see Precision and Scale.
This data type is a 64-bit signed integer.

Example: DECIMAL(6) maps to
%Library.Numeric(MAXVAL=999999,MINVAL=-
999999,SCALE=0)

DECIMAL(%1)

%Library.Numeric (MAXVAL=<|'$$max-
val^%apiSQL(%1,%2)'|>, MINVAL=<|'$$min-
val^%apiSQL(%1,%2)'|>, SCALE=%2)

This data type uses function parameters to set MIN-
VAL, MAXVAL, and SCALE based on the input preci-
sion (%1) and scale (%2) parameters. For more
details on these parameters, see Precision and Scale.

Example: DECIMAL(8,4) maps
to%Library.Numeric(MAXVAL=9999.9999,MINVAL=-
9999.9999,SCALE=4)

DECIMAL(%1,%2)

922 InterSystems SQL Reference

SQL Reference Material

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.Double

This is the IEEE floating point standard. An SQL col-
umn with this data type returns a default precision of
20. For further details (including important max/min
value limits), see the $DOUBLE function.

DOUBLE

%Library.Double

This is the IEEE floating point standard. An SQL col-
umn with this data type returns a default precision of
20. For further details (including important max/min
value limits), see the $DOUBLE function.

DOUBLE PRECISION

%Library.Double

This is the IEEE floating point standard. An SQL col-
umn with this data type returns a default precision of
20.

FLOAT

%Library.Double

This is the IEEE floating point standard. An SQL col-
umn with this data type returns a default precision of
20.

FLOAT(%1)

%Stream.GlobalBinaryIMAGE

%Library.Integer (MAXVAL=2147483647, MINVAL=-
2147483648)

INT

%Library.Integer (MAXVAL=2147483647, MINVAL=-
2147483648)

The %1 parameter is ignored and is provided for
MySQL compatibility. This data type is equivalent to
INT.

INT(%1)

%Library.Integer (MAXVAL=2147483647, MINVAL=-
2147483648)

INTEGER

%Stream.GlobalCharacterLONG

%Stream.GlobalBinaryLONG BINARY

%Stream.GlobalBinaryLONG RAW

%Stream.GlobalCharacterLONG VARCHAR

%Stream.GlobalCharacter

The %1 parameter is ignored and is provided for
MySQL compatibility.

LONG VARCHAR(%1)

InterSystems SQL Reference 923

Data Types (SQL)

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Stream.GlobalCharacter

The %1 parameter is ignored and is provided for
MySQL compatibility.

LONGTEXT

%Stream.GlobalBinaryLONGVARBINARY

%Stream.GlobalBinary

The %1 parameter is ignored and is provided for
MySQL compatibility.

LONGVARBINARY(%1)

%Stream.GlobalCharacterLONGVARCHAR

%Stream.GlobalCharacterLONGVARCHAR(%1)

%Library.Integer(MAXVAL=8388607,MINVAL=-
8388608)

This data type is provided for MySQL compatibility.

MEDIUMINT

%Library.Integer(MAXVAL=8388607,MINVAL=-
8388608)

The %1 parameter is ignored and is provided for
MySQL compatibility.

MEDIUMINT(%1)

%Stream.GlobalCharacterMEDIUMTEXT

%Library.CurrencyMONEY

%Library.String(MAXLEN=1)NATIONAL CHAR

%Library.String(MAXLEN=1)NATIONAL CHAR VARYING

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

NATIONAL CHAR VARYING(%1)

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

NATIONAL CHAR(%1)

%Library.String(MAXLEN=1)NATIONAL CHARACTER

%Library.String(MAXLEN=1)NATIONAL CHARACTER VARYING

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

NATIONAL CHARACTER VARYING(%1)

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

NATIONAL CHARACTER(%1)

%Library.String(MAXLEN=1)NATIONAL VARCHAR

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

NATIONAL VARCHAR(%1)

924 InterSystems SQL Reference

SQL Reference Material

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.String(MAXLEN=1)NCHAR

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

NCHAR(%1)

%Stream.GlobalCharacterNTEXT

%Library.Numeric(SCALE=0)

This data type is a 64-bit signed integer.

NUMBER

%Library.Numeric(MAXVAL=<|'$$max-
val^%apiSQL(%1)'|>,MINVAL=<|'$$min-
val^%apiSQL(%1)'|>,SCALE=0)

This data type uses function parameters to set MIN-
VAL and MAXVAL based on the input precision
parameter (%1) with the scale set to 0.This data type
is a 64-bit signed integer.

Example: NUMBER(6) maps to
%Library.Numeric(MAXVAL=999999,MINVAL=-
999999,SCALE=0)

NUMBER(%1)

%Library.Numeric (MAXVAL=<|'$$max-
val^%apiSQL(%1,%2)'|>, MINVAL=<|'$$min-
val^%apiSQL(%1,%2)'|>, SCALE=%2)

This data type uses function parameters to set MIN-
VAL, MAXVAL, and SCALE based on the input preci-
sion (%1) and scale (%2) parameters.

Example: NUMBER(8,4) maps
to%Library.Numeric(MAXVAL=9999.9999,MINVAL=-
9999.9999,SCALE=4)

NUMBER(%1,%2)

%Library.Numeric(MAXVAL=999999999999999, MIN-
VAL=-999999999999999, SCALE=0)

NUMERIC

%Library.Numeric(MAXVAL=<|'$$max-
val^%apiSQL(%1,0)'|>,MINVAL=<|'$$min-
val^%apiSQL(%1,0)'|>,SCALE=0)

This data type uses function parameters to set MIN-
VAL and MAXVAL based on the input precision
parameter (%1) with the scale set to 0.This data type
is a 64-bit signed integer.

Example: NUMERIC(6) maps to
%Library.Numeric(MAXVAL=999999,MINVAL=-
999999,SCALE=0)

NUMERIC(%1)

InterSystems SQL Reference 925

Data Types (SQL)

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.Numeric (MAXVAL=<|'$$max-
val^%apiSQL(%1,%2)'|>, MINVAL=<|'$$min-
val^%apiSQL(%1,%2)'|>, SCALE=%2)

This data type uses function parameters to set MIN-
VAL, MAXVAL, and SCALE based on the input preci-
sion (%1) and scale (%2) parameters.

Example: NUMERIC(8,4) maps
to%Library.Numeric(MAXVAL=9999.9999,MINVAL=-
9999.9999,SCALE=4)

NUMERIC(%1,%2)

%Library.String(MAXLEN=1)NVARCHAR

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

NVARCHAR(%1)

%Library.String(MAXLEN=%1)NVARCHAR(%1,%2)

%Stream.GlobalCharacter

This data type is equivalent to LONGVARCHAR and
is provided for TSQL compatibility.

NVARCHAR(MAX)

%Library.PosixTimePOSIXTIME

%Library.Binary(MAXLEN=%1)

%1 sets the maximum length of the data type.

RAW(%1)

%Library.Double

This is the IEEE floating point standard. An SQL col-
umn with this data type returns a default precision of
20.

REAL

%Library.RowVersion

This data type is a system-assigned sequential inte-
ger. See ROWVERSION Data Type for details.

ROWVERSION

%Library.Counter

This data type is system-generated

SERIAL

%Library.DateTime(MINVAL="1900-01-01
00:00:00",MAXVAL="2079-06-06 23:59:59")

SMALLDATETIME

%Library.SmallIntSMALLINT

%Library.SmallInt

The %1 parameter is ignored and is provided for
MySQL compatibility. This data type is equivalent to
SMALLINT.

SMALLINT(%1)

926 InterSystems SQL Reference

SQL Reference Material

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.CurrencySMALLMONEY

%Library.String(MAXLEN=128)SYSNAME

%Stream.GlobalCharacterTEXT

%Library.TimeTIME

%Library.Time(PRECISION=%1)

PRECISION is the number of fractional second digits,
an integer value in the range 0 through 9.

TIME(%1)

%Library.PosixTimeTIMESTAMP

%Library.TimeStampTIMESTAMP2

%Library.TinyIntTINYINT

%Library.TinyInt

The %1 parameter is ignored and is provided for
MySQL compatibility. This data type is equivalent to
TINYINT.

TINYINT(%1)

%Library.UniqueIdentifierUNIQUEIDENTIFIER

%Library.Binary(MAXLEN=1)VARBINARY

%Library.Binary(MAXLEN=%1)

%1 sets the maximum length of the data type.

VARBINARY(%1)

%Library.String(MAXLEN=1)VARCHAR

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

VARCHAR(%1)

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

VARCHAR(%1,%2)

%Stream.GlobalCharacter

This data type is equivalent to LONGVARCHAR and
is provided for TSQL compatibility.

VARCHAR(MAX)

%Library.String(MAXLEN=%1)

%1 sets the maximum length of the data type.

VARCHAR2(%1)

Data Type Mapping Parameters
The System-defined DDL Mappings table often includes multiple entries for the same data type to show the different
parameters you can specify for that data type. The mapping table also shows parameter default values. Data type classes
commonly provide additional parameters to define allowed data values than the DDL data types. You can specify either
literal parameters or function parameters. You can also define additional data type class parameters.

InterSystems SQL Reference 927

Data Types (SQL)

Literal Parameters

Literal parameters are identified in the DDL data type and the InterSystems IRIS data type in the format %n, where n is
the number of the data type argument. For example, VARCHAR(%1) maps to %String(MAXLEN=%1)

Common literal parameters include maximum string length, minimum and maximum values, and precision and scale values.

Maximum Length

In data type classes, the MAXLEN parameter specifies the maximum length of string data types. DDL types often define
these values in a corresponding unnamed parameter.

In this field definition, the data type is a string with a maximum length of 64 characters.

DDL Using SQL Data Type

ProductName VARCHAR(64)

DDL Using InterSystems IRIS Data Type

ProductName %String(MAXLEN=64)

When specifying this parameter, keep these points in mind:

• A field with no MAXLEN value can take a value of any length, up to the maximum string length. To define a string
field of maximum length, specify VARCHAR(''), which create a property with data type %Library.String(MAXLEN="").
VARCHAR() creates a property with data type %Library.String(MAXLEN=1). To define a binary field with no
MAXLEN value, specify VARBINARY(''), which create a property with data type %Library.Binary(MAXLEN="").
VARBINARY() creates a property with data type %Library.Binary(MAXLEN=1).

• Large MAXLEN: ODBC applications may be affected by an overly large MAXLEN value. ODBC applications try to
make decisions about the size of a field needed based on metadata from the server, so the application may allocate
more buffer space than is actually needed. For this reason, InterSystems IRIS supplies a system-wide default ODBC
VARCHAR maximum length of 4096; this system-wide default is configurable using the Management Portal: from
System Administration, select Configuration, then SQL and Object Settings, then SQL. View or set the Default length

for VARCHAR option. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(). The InterSystems
ODBC driver takes the data from the TCP buffer and converts it into the applications buffer, so MAXLEN size does
not affect our ODBC client.

Maximum and Minimum Values

In data type classes, the MINVAL and MAXVAL parameters specify the minimum and maximum values of numeric data
types. Data type classes often define these values using function parameters instead of literal parameters. DDL types do
not have equivalent parameters.

In this field definition, the data type is an integer from 0 to 100.

Capacity %Integer(MINVAL=0,MAXVAL=100)

Precision and Scale

In data type classes, the PRECISION and SCALE parameters are integer values specifying the precision (maximum number
of digits) and scale (maximum number of decimal digits) of numeric data types. Data type classes often define these values
as function parameters instead of literal parameters. DDL data types such as NUMERIC often specify precision and scale
together as unnamed parameters.

This field definition defines a number that has a precision of 6 and a scale of 2.

DDL

UnitPrice NUMERIC(6,2) // Range: -9999.99 to 9999.99

928 InterSystems SQL Reference

SQL Reference Material

The precision and scale parameters define numeric data types as follows:

• Precision — The maximum and minimum permitted value, specified as an integer from 0 to 19 + s, where s is the
scale. Precision is commonly the total number of digits in the number, but its exact value is determined by the %Library

class data type mapping. The maximum integer value is 9223372036854775807. A precision larger than 19 + s defaults
to 19 + s.

• Scale — The maximum number of decimal (fractional) digits permitted, specified as an integer. If s is larger than or
equal to the precision, p, only a fractional value is permitted, and the actual p value is ignored. The largest permitted
scale is 18, which corresponds to .999999999999999999. A scale larger than 18 defaults to 18.

For information about numeric formatting, refer to the $FNUMBER function.

Function Parameters

Function parameters are used when a parameter in the DDL data type parameter must be transformed before it can be put
into the InterSystems IRIS data type. An example of this is the transformation of a DDL data type’s numeric precision and
scale parameters into an InterSystems IRIS data type’s MAXVAL, MINVAL parameters.

For example, consider the mapping between the DECIMAL DDL data type and the %Numeric class as it appears in the
System-defined DDL Mappings table in the Management Portal.

DDL Using SQL Data Type

DECIMAL(%1,%2)

DDL Using InterSystems IRIS Data Type

%Numeric(MAXVAL=<|'$$maxval^%apiSQL(%1,%2)'|>,MINVAL=<|'$$minval^%apiSQL(%1,%2)'|>,SCALE=%2)

The %1 and %2 parameters specify the precision and scale of numbers in that data type, respectively. For example, a field
of type DECIMAL(4,2) stores numbers using a precision of 4 and a scale of 2. InterSystems SQL uses these parameters
to derive the minimum value (–99.99) and maximum value (99.99) accepted by the field.

For the %Numeric class, InterSystems IRIS set the SCALE parameter (SCALE=%2) but it does not have a PRECISION
parameter to set. Instead, InterSystems IRIS sets the MAXVAL and MINVAL parameters using these transformation functions:

• maxval^%apiSQL(precision,scale) returns the maximum valid numeric value, MAXVAL, given the precision and
scale.

• minval^%apiSQL(precision,scale) returns the minimum valid numeric value, MINVAL, given the precision and scale.

The syntax for these transformation functions is as follows:

dataTypeClass(param=<|'func'|>, param2=<|func2|>, ...)

• dataTypeClass — Name of the data type class being mapped to. Example: %Numeric

• param — Name of the data type class parameter being set. Example: MAXVAL

• func — The function call used to set the parameter. Example: maxval^%apiSQL(%1,%2)

The <|'func'|> expression signals the DDL processor to replace the parameters within func using the supplied values
and then call the function with those values supplied. The <|'func'|> expression is then replaced with the value returned
from the function call.

InterSystems SQL Reference 929

Data Types (SQL)

Additional Parameters

A data type class may define additional data definition parameters that cannot be defined using a DDL data type. These
include data validation operations such as an enumerated list of permitted data values, pattern matching of permitted data
values, and automatic truncation of data values that exceed the MAXLEN maximum length.

Create New DDL Data Types
You can modify the set of data types either by overriding the data type mapping for a system data type parameter value,
or by defining a new user data type. You can modify system data types to override the InterSystems default mappings. You
can create user-defined data types to provide additional data type mappings that InterSystems does not supply.

To create a new DDL data type and its mapping:

1. From the Management Portal, select System Administration.

2. Under Configuration and then SQL and Object Settings, click User-defined DDL Mappings.

3. Click Create New User-defined DDL Mapping to open a form for entering your data type.

4. In the Name field of the form, enter a DDL data type specification. For example: VARCHAR(100).

5. In the Datatype field, enter the name of an existing InterSystems IRIS data type class or one that you created. For
example: MyString100(MAXLEN=100).

6. Click Save.

The User-defined DDL Mappings table displays the new entry. From this table, you can modify or delete the entry.

You can create a user-defined data type as a data type class. For example, you might wish to create a string data type that
takes up to 10 characters and then truncates the rest of the input data. You would create this data type Sample.TruncStr, as
follows:

Class Definition

Class Sample.TruncStr Extends %Library.String
 {
 Parameter MAXLEN=10;
 Parameter TRUNCATE=1;
 }

To use this data type in a table definition, specify the data type class name:

CREATE TABLE Sample.ShortNames (Name Sample.TruncStr)

When creating data type classes, keep these points in mind:

• To set parameters such as MINVAL and MAXVAL in your functions, you can use function parameters.

• If you need to map a DDL data type to an InterSystems IRIS property with a collection type of Stream, specify
%Stream.GlobalCharacter for Character Stream data and %Stream.GlobalBinary for Binary Stream data.

• If DDL encounters a data type not in the DDL data type column of the SystemDataTypes table, it next examines the
UserDataTypes table. If no mapping appears for the data type in either table, no conversion of the data type occurs,
and the data type passes directly to the class definition as specified in DDL.

For example, the following field definitions could appear in a DDL statement:

SQL

 CREATE TABLE TestTable (
 Field1 %String,
 Field2 %String(MAXLEN=45)
)

930 InterSystems SQL Reference

SQL Reference Material

Given the above definitions, if DDL finds no mappings for %String or %String(MAXLEN=%1) or
%String(MAXLEN=45) in SystemDataTypes or UserDataTypes, then the %String and %String(MAXLEN=45)
types are passed directly to the appropriate class definition.

Work With Specific Data Types

Date,Time, and Timestamp Data Types

Using standard InterSystems SQL date, time functions, you can define date, time, and timestamp data types. You can also
convert between dates and timestamps. For example, you can use CURRENT_DATE or CURRENT_TIMESTAMP as
input to a field defined with that data type, or use DATEADD, DATEDIFF, DATENAME, or DATEPART to manipulate
date values stored with this data type.

This table shows how date, time, and timestamp data type classes map to SQL types. The data type classes use this type
when performing calculations in SQL. When creating a custom data type class, you can use these mappings to determine
which SQL type to specify in the SqlCategory keyword of your class definition. For example:

Class Definition

Class MyApp.MyDateDT [ClassType = DataType, SQLCategory = DATE]
{
 // class members
}

InterSystems SQL Reference 931

Data Types (SQL)

NotesCorresponding SQL TypeData Type Class

932 InterSystems SQL Reference

SQL Reference Material

NotesCorresponding SQL TypeData Type Class

By default, the DATE and the correspond-
ing %Library.Date data types accept only

DATE• %Library.Date

classes
positive integers, with 0 representing

• Any property or
column that has a

1840-12-31.To support dates earlier than
1840-12-31 you must define a date field

logical value of
in the table with data type

+$HOROLOG
%Library.Date(MINVAL=-nnn), where the

(the date portion
of $HOROLOG)

MINVAL is a negative number of days
counting backwards from 1840-12-31 to
a maximum of -672045 (0001-01-01).
%Library.Date can store a date value as
an unsigned or negative integer in the
range -672045 to 2980013. Date values
can be input as follows:

• Logical mode accepts +HOROLOG
integer values, such as 65619
(August 28, 2020).

• Display mode uses the
DisplayToLogical() conversion
method. It accepts a date in the dis-
play format for the current locale, for
example ‘8/28/2020’. It also accepts
a logical date value (a +HOROLOG
integer value).

• ODBC mode uses the
OdbcToLogical() conversion
method. It accepts a date in ODBC
standard format, for example
‘2020–08–28’. It also accepts a logi-
cal date value (a +HOROLOG integer
value).

InterSystems SQL Reference 933

Data Types (SQL)

NotesCorresponding SQL TypeData Type Class

TIME• %Library.Time

classes

• Any class that has
a logical value of
$PIECE($HOROLOG,",",2),
that is, the time
portion of
$HOROLOG

934 InterSystems SQL Reference

SQL Reference Material

NotesCorresponding SQL TypeData Type Class

%Library.Time stores a time value as an
unsigned integer in the range 0 through
86399 (a count of seconds since mid-
night). Time values can be input as fol-
lows:

• Logical mode accepts
$PIECE($HOROLOG,”,”,2) integer
values, such as 84444 (23:27:24).

• Display mode uses the
DisplayToLogical() conversion
method. It accepts a time in the dis-
play format for the current locale, for
example ‘23:27:24’.

• ODBC mode uses the
OdbcToLogical() conversion
method. It accepts a time in ODBC
standard format, for example
‘23:27:24’. It also accepts a logical
time value (an integer in the range 0
through 86399).

TIME supports fractional seconds, so this
data type can also be used for
HH:MI:SS.FF to a user-specified number
of fractional digits of precision (F), up to
a maximum of 9. To support fractional
seconds set the PRECISION parameter.
For example, TIME(0)
(%Time(PRECISION=0)) rounds to the
nearest second; TIME(2)
(%Time(PRECISION=2)) rounds (or zero-
fills) to two fractional digits of precision.

If the supplied data also specifies a preci-
sion (for example, CURRENT_TIME(3)),
the fractional digits stored are as follows:

• If TIME specifies no precision and
the data specifies a precision, use
the precision of the data.

• If TIME specifies no precision and
the data specifies no precision, use
the system-wide configured time
precision.

• If TIME specifies a precision and the
data specifies no precision, use the
system-wide configured time preci-
sion as the data precision.

• If TIME specifies a precision and the

InterSystems SQL Reference 935

Data Types (SQL)

NotesCorresponding SQL TypeData Type Class

data precision is less than the TIME
precision, use the data precision.

• If TIME specifies a precision and the
data precision is greater than the
TIME precision, use the TIME preci-
sion.

SQL metadata reports fractional digits of
time precision as “scale”; it uses the
word “precision” for the overall length of
the data. A field using the TIME data type
reports precision and scale metadata as
follows:TIME(0) (%Time(PRECISION=0))
has a metadata precision of 8 (nn:nn:nn)
and a scale of 0. TIME(2)
(%Time(PRECISION=2)) has a metadata
precision of 11 (nn:nn:nn.ff) and a scale
of 2. TIME (%Time or
%Time(PRECISION="") take their frac-
tional seconds of precision from the sup-
plied data, and therefore have a metadata
precision of 18 and an undefined scale.
For details on returning data type, preci-
sion and scale metadata, refer to Select-
item Metadata.

%Library.TimeStamp derives its maximum
precision from the system platform’s
precision, up to a maximum of 9 fractional
second digits, while %Library.PosixTime

has a maximum precision of 6 digits.
Therefore, %Library.TimeStamp may be
more precise than %Library.PosixTime on
some platforms. %Library.TimeStamp nor-
malization automatically truncates input
values with more than 9 digits of precision
to 9 fractional second digits.

Note: %Library.DateTime is a subclass
of %Library.TimeStamp. It defines
a type parameter named DATE-
FORMAT and it overrides the
DisplayToLogical() and
OdbcToLogical() methods to
handle imprecise datetime input
that TSQL applications are
accustomed to.

TIMESTAMP• %Library.TimeStamp

classes

• Any class that has
a logical value of
YYYY-MM-DD
HH:MI:SS.FF

936 InterSystems SQL Reference

SQL Reference Material

NotesCorresponding SQL TypeData Type Class

This data type is supported only for Multi-
Value compatbility.

MVDATE• %MV.Date classes

• Any class that has
a logical date
value of
$HOROLOG-
46385, which is
the expression
used to convert
an ObjectScript
date to a Multi-
Value date.

When defining this class, define a
LogicalToDate() method to convert logi-
cal date values to %Library.Date logical
values, and a DateToLogical() method
that performs the reverse operation.

DATE• Any data type that
does not fit into
any of the preced-
ing logical values

InterSystems SQL Reference 937

Data Types (SQL)

NotesCorresponding SQL TypeData Type Class

POSIXTIME• %Library.PosixTime

classes

• Any user-defined
data type class
that has an
encoded signed
64-bit integer logi-
cal value

938 InterSystems SQL Reference

SQL Reference Material

NotesCorresponding SQL TypeData Type Class

%PosixTime is an encoded timestamp
calculated from the number of seconds
(and fractional seconds) since
1970–01–01 00:00:00.Timestamps after
that date are represented by a positive
%PosixTime value, timestamps before
that date are represented by a negative
%PosixTime value. %PosixTime supports
a maximum of 6 digits of precision for
fractional seconds. The earliest date
supported by %PosixTime is 0001-01-01
00:00:00, which has a logical value of -
6979664624441081856. The last date
supported is 9999-12-31
23:59:59.999999, which has a logical
value of 1406323805406846975.

Because a %PosixTime value is always
represented by a encoded 64-bit integer,
it can always be unambiguously differen-
tiated from a %Date or %TimeStamp
value. For example, the %PosixTime
value for 1970–01–01 00:00:00 is
1152921504606846976, the %PosixTime
value for 2017–01–01 00:00:00 is
1154404733406846976, and the
%PosixTime value for 1969–12–01
00:00:00 is -6917531706041081856.

%PosixTime is preferable to %TimeS-
tamp, because it takes up less disk space
and memory than the %TimeStamp data
type and provides better performance
than %TimeStamp.

You can integrate %PosixTime and
%TimeStamp values by using the ODBC
display mode:

• Logical mode values for %PosixTime
and %TimeStamp data types are
completely different: %PosixTime is
a signed integer, %TimeStamp is a
string containing an ODBC-format
timestamp.

• Display mode: %PosixTime display
uses the current locale time and date
format parameters (for example,
02/22/2018 08:14:11); %TimeStamp
displays as an ODBC-format times-
tamp.

InterSystems SQL Reference 939

Data Types (SQL)

NotesCorresponding SQL TypeData Type Class

ODBC mode: both %PosixTime and
%TimeStamp display as an ODBC-

•

format timestamp. The number of
fractional digits of precision may dif-
fer.

You can convert %TimeStamp values to
%PosixTime using the TO_POSIXTIME
function or the TOPOSIXTIME() method.
You can use the IsValid() method to
determine if a numeric value is a valid
%PosixTime value.

When creating this class, define a
LogicalToTime() method to convert log-
ical time values to %Library.Time logical
values, and a TimeToLogical() method
that performs the reverse operation.

TIMEAny time data type
that does not fit into
any of the preceding
logical values

When defining this class, define a
LogicalToTimeStamp() method to con-
vert logical timestamp values to
%Library.TimeStamp logical values, and a
TimeStampToLogical() method that
performs the reverse operation.

TIMESTAMPAny timestamp data
type that does not fit
into any of the
preceding logical
values

You can compare POSIXTIME to DATE or TIMESTAMP values using =, <>, >, or < operators. Refer to Overview of
Predicates for further details.

When comparing FMTIMESTAMP category values with DATE category values, InterSystems IRIS does not strip the time
from the FMTIMESTAMP value before comparing it to the DATE. This is identical behavior to comparing TIMESTAMP
with DATE values, and comparing TIMESTAMP with MVDATE values. It is also compatible with how other SQL vendors
compare timestamps and dates. This means a comparison of a FMTIMESTAMP 320110202.12 and DATE 62124 are equal
when compared using the SQL equality (=) operator. Applications must convert the FMTIMESTAMP value to a DATE
or FMDATE value to compare only the date portions of the values.

Dates Prior to December 31, 1840

A date is commonly represented by the DATE data type or the TIMESTAMP data type.

The DATE data type stores a date in $HOROLOG format, as a positive integer count of days from the arbitrary starting
date of December 31, 1840. By default, dates can only be represented by a positive integer (MINVAL=0), which corresponds
to the date December 31, 1840. However, you can change the %Library.Date MINVAL type parameter to enable storage
of dates prior to December 31, 1840. By setting MINVAL to a negative number, you can store dates prior to December 31,
1840 as negative integers. The earliest allowed MINVAL value is -672045. This corresponds to January 1 of Year 1 (CE).
DATE data type cannot represent BCE (also known as BC) dates.

The TIMESTAMP data type defaults to 1840–12–31 00:00:00 as the earliest allowed timestamp. However, you can change
the MINVAL parameter to define a field or property that can store dates prior to December 31, 1840. For example, MyTS
%Library.TimeStamp(MINVAL='1492-01-01 00:00:00'). The earliest allowed MINVAL value is 0001–01–01
00:00:00. This corresponds to January 1 of Year 1 (CE). The %TimeStamp data type cannot represent BCE (also known
as BC) dates.

940 InterSystems SQL Reference

SQL Reference Material

Note: Be aware that these date counts do not take into account changes in date caused by the Gregorian calendar reform
(enacted October 15, 1582, but not adopted in Britain and its colonies until 1752).

You can redefine the minimum date for your locale as follows:

ObjectScript

 SET oldMinDate = ##class(%SYS.NLS.Format).GetFormatItem("DATEMINIMUM")
 IF oldMinDate=0 {
 DO ##class(%SYS.NLS.Format).SetFormatItem("DATEMINIMUM",-672045)
 SET newMinDate = ##class(%SYS.NLS.Format).GetFormatItem("DATEMINIMUM")
 WRITE "Changed earliest date to ",newMinDate
 }
 ELSE { WRITE "Earliest date was already reset to ",oldMinDate}

The above example sets the MINVAL for your locale to the earliest permitted date (1/1/01). For more details on configuring
dates based on your locale, see Configuring National Language Support (NLS).

Note: InterSystems IRIS does not support using Julian dates with negative logical DATE values (%Library.Date values
with MINVAL<0). Thus, these MINVAL<0 values are not compatible with the Julian date format returned by
the TO_CHAR function.

Strings

InterSystems IRIS permits a fixed amount of memory to handle strings, so that there is a string length limit. Commonly,
extremely long strings should be assigned one of the %Stream.GlobalCharacter data types.

No string length limit is enforced over a database driver connection. If the InterSystems IRIS instance and the ODBC driver
facilities support different protocols, the lower of the two protocols is used. The protocol that was actually used is recorded
in the InterSystems ODBC log.

Note that, by default, InterSystems IRIS establishes a system-wide ODBC VARCHAR maximum length of 4096; this
ODBC maximum length is configurable.

List Structures

InterSystems IRIS supports the list structure data type %List (data type class %Library.List). This is a compressed binary
format, which does not map to a corresponding native data type for InterSystems SQL. In its internal representation it cor-
responds to data type VARBINARY with a default MAXLEN of 32749. InterSystems IRIS supports the list structure data
type %ListOfBinary (data type class %Library.ListOfBinary) corresponds to data type VARBINARY with a default
MAXLEN of 4096.

For this reason, Dynamic SQL cannot use %List data in a WHERE clause comparison. You also cannot use INSERT or
UPDATE to set a property value of type %List.

Dynamic SQL returns the data type of list structured data as VARCHAR. To determine if a field in a query is of data type
%List or %ListOfBinary you can use the select-item columns metadata isList boolean flag. The CType (client data type)
integer code for these data types is 6.

If you use an ODBC or JDBC client, %List data is projected to VARCHAR string data, using LogicalToOdbc conversion.
A list is projected as a string with its elements delimited by commas. Data of this type can be used in a WHERE clause,
and in INSERT and UPDATE statements. Note that, by default, InterSystems IRIS establishes a system-wide ODBC
VARCHAR maximum length of 4096; this ODBC maximum length is configurable.

Also see %Library.List for information on that class. For further details on using lists in a WHERE clause, see the %INLIST
predicate and the FOR SOME %ELEMENT predicate. For further details on handling list data as a string, see the
%EXTERNAL function.

InterSystems SQL supports eight list functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING,
$LISTGET, $LISTLENGTH, and $LISTTOSTRING. ObjectScript supports three additional list functions: $LISTVALID

InterSystems SQL Reference 941

Data Types (SQL)

to determine if an expression is a list, $LISTSAME to compare two lists, and $LISTNEXT to sequentially retrieve elements
from a list.

BIT Data Type

The BIT (%Library.Boolean) data type accepts 0, 1, and NULL as valid values.

• In Logical and ODBC modes the only accepted values are 0, 1, and NULL.

• In Display mode the DisplayToLogical method first translates a non-null input value to 0 or 1, as follows:

– Non-zero numbers or numeric strings = 1. For example, 3, '0.1', '-1', '7dwarves'.

– Non-numeric strings = 0. For example, 'true' or 'false'.

– Empty string = 0. For example, ''.

Stream Data Types

The Stream data types correspond to the InterSystems IRIS class property data types %Stream.GlobalCharacter (for CLOBs)
and %Stream.GlobalBinary (for BLOBs). These data type classes can define a stream field with a specified LOCATION
parameter, or omit this parameter and default to a system-defined storage location.

A field with a Stream data type cannot be used as an argument to most SQL scalar, aggregate, or unary functions.
Attempting to do so generates an SQLCODE -37 error code. The few functions that are exceptions are listed in Storing and
Using Stream Data (BLOBs and CLOBs).

A field with a Stream data type cannot be used as an argument to most SQL predicate conditions. Attempting to do so
generates an SQLCODE -313 error code. The predicates that accept a stream field are listed in Storing and Using Stream
Data (BLOBs and CLOBs).

A sharded table cannot contain stream data type fields.

The use of Stream data types in indexes, and when performing inserts and updates are also restricted. For further details
on Stream restrictions, refer to Storing and Using Stream Data (BLOBs and CLOBs).

SERIAL Data Type

A field with a SERIAL (%Library.Counter) data type can take a user-specified positive integer value, or InterSystems IRIS
can assign it a sequential positive integer value. %Library.Counter extends %Library.BigInt.

An INSERT operation specifies one of the following values for a SERIAL field:

• No value, 0 (zero), or a nonnumeric value: InterSystems IRIS ignores the specified value, and instead increments this
field's current serial counter value by 1, and inserts the resulting integer into the field.

• A positive integer value: InterSystems IRIS inserts the user-specified value into the field, and changes the serial counter
value for this field to this integer value.

Thus a SERIAL field contains a series incremental integer values. These values are not necessarily continuous or unique.
For example, the following is a valid series of values for a SERIAL field: 1, 2, 3, 17, 18, 25, 25, 26, 27. Sequential integers
are either InterSystems IRIS-generated or user-supplied; nonsequential integers are user-supplied. If you wish SERIAL
field values to be unique, you must apply a UNIQUE constraint on the field.

An UPDATE operation has no effect on automatically-assigned SERIAL counter field values. However, an update performed
using INSERT OR UPDATE causes a skip in integer sequence for subsequent insert operations for a SERIAL field.

An UPDATE operation can only change a serial field value if the field currently has no value (NULL), or its value is 0.
Otherwise, an SQLCODE -105 error is generated.

InterSystems IRIS imposes no restriction on the number of SERIAL fields in a table.

942 InterSystems SQL Reference

SQL Reference Material

ROWVERSION Data Type

The ROWVERSION data type defines a read-only field that contains a unique system-assigned positive integer, beginning
with 1. InterSystems IRIS assigns sequential integers as part of each insert, update, or %Save operation. These values are
not user-modifiable.

InterSystems IRIS maintains a single row version counter namespace-wide. All tables in a namespace that contain a
ROWVERSION field share the same row version counter. Thus, the ROWVERSION field provides row-level version
control, allowing you to determine the order in which changes were made to rows in one or more tables in a namespace.

You can only specify one field of ROWVERSION data type per table.

The ROWVERSION field should not be included in a unique key or primary key. The ROWVERSION field cannot be
part of an IDKey index.

For details on using ROWVERSION, refer to RowVersion Field.

ROWVERSION and SERIAL Counters

Both ROWVERSION and SERIAL (%Library.Counter) data type fields receive a sequential integer from an internal counter
as part of an INSERT operation. But these two counters are significantly different and are used for different purposes:

• The ROWVERSION counter is at the namespace level. The SERIAL counter is at the table level. These two counters
are completely independent of each other and independent of the RowID counter.

• The ROWVERSION counter is incremented by insert, update, or %Save operations. The SERIAL counter is only
incremented by insert operations. An update performed using INSERT OR UPDATE can cause a gap in the SERIAL
counter sequence.

• A ROWVERSION field value cannot be user-specified; the value is always supplied from the ROWVERSION counter.
A SERIAL field value is supplied from the table’s internal counter during an insert if you do not specify a value for
this field. If an insert supplies a SERIAL integer value, that value is inserted rather than the current counter value:

– If an insert supplies a SERIAL field value greater than the current internal counter value, InterSystems IRIS inserts
that value into the field and resets the internal counter to that value.

– If an insert supplies a SERIAL field value less than the current counter value, InterSystems IRIS does not reset
the internal counter.

– An insert can supply a SERIAL field value as a negative integer or a fractional number. InterSystems IRIS truncates
a fractional number to its integer component. If the supplied SERIAL field value is 0 or NULL, InterSystems IRIS
ignores the user-supplied value and inserts the current internal counter value.

You cannot update an existing SERIAL field value.

• A ROWVERSION field value is always unique. Because you can insert a user-specified SERIAL field value, you must
specify a UNIQUE field constraint to guarantee unique SERIAL field values.

• The ROWVERSION counter cannot be reset. A TRUNCATE TABLE resets the SERIAL counter; performing a
DELETE on all rows does not reset the SERIAL counter.

• Only one ROWVERSION field is allowed per table. You can specify multiple SERIAL fields in a table.

DDL Data Types Exposed by InterSystems ODBC / JDBC

InterSystems ODBC exposes a subset of the DDL data types, and maps other data types to this subset of data types. These
mappings are not reversible. For example, the statement CREATE TABLE mytable (f1 BINARY) creates an InterSystems
IRIS class that is projected to ODBC as mytable (f1 VARBINARY). An InterSystems IRIS list data type is projected
to ODBC as a VARCHAR string.

InterSystems SQL Reference 943

Data Types (SQL)

ODBC exposes the following data types: BIGINT, BIT, DATE, DOUBLE, GUID, INTEGER, LONGVARBINARY,
LONGVARCHAR, NUMERIC, OREF, POSIXTIME, SMALLINT, TIME, TIMESTAMP, TINYINT, VARBINARY,
VARCHAR. Note that, by default, InterSystems IRIS establishes a system-wide ODBC VARCHAR maximum length of
4096; this ODBC maximum length is configurable.

When one of these ODBC/JDBC data type values is mapped to InterSystems SQL, the following operations occur: DOUBLE
data is cast using $DOUBLE. NUMERIC data is cast using $DECIMAL.

The GUID data type corresponds to InterSystems SQL UNIQUEIDENTIFIER data type. Failing to specify a valid value
to a GUID / UNIQUEIDENTIFIER field generates a #7212 General Error. To generate a GUID value, use the
%SYSTEM.Util.CreateGUID() method.

Convert Between Data Types
To convert data from one data type to another, use the CAST or CONVERT function.

CAST supports conversion to several character string and numeric data types, as well as to DATE, TIME, and the
TIMESTAMP and POSIXTIME timestamp data types.

CONVERT has two syntactical forms. Both forms support conversion to and from DATE, TIME, and the TIMESTAMP
and POSIXTIME timestamp data types, as well as conversion between other data types.

When you CAST or CONVERT a value to VARCHAR, the default size mapping is 30 characters, even though VARCHAR
with no specified size maps to a MAXLEN of 1. This default size of 30 characters is provided for compatibility with non-
InterSystems IRIS software requirements.

Data Type Precedence
When an operation can return several different values, and these values may have different data types, InterSystems IRIS
assigns the return value whichever data type has the highest precedence. For example, a NUMERIC data type can contain
all possible INTEGER data type values, but an INTEGER data type cannot contain all possible NUMERIC data type values.
Thus NUMERIC has the higher precedence (is more inclusive).

For example, if a CASE statement has a possible result value of data type INTEGER, and a possible result value of data
type NUMERIC, the actual result is always of type NUMERIC, regardless of which of these two cases are taken.

The precedence for data types is as follows, from highest (most inclusive) to lowest:

LONGVARBINARY
LONGVARCHAR
VARBINARY
VARCHAR
GUID
TIMESTAMP
DOUBLE
NUMERIC
BIGINT
INTEGER
DATE
TIME
SMALLINT
TINYINT
BIT

Data Type Normalization and Validation
The %Library.DataType superclass has subclasses for the specific data types. These data type classes provide a Normalize()
method to normalize an input value to the data type format and an IsValid() method to determine if an input value is valid
for that data type, as well as various mode conversion methods such as LogicalToDisplay() and DisplayToLogical().

The following examples show the Normalize() method for the %TimeStamp data type:

944 InterSystems SQL Reference

SQL Reference Material

ObjectScript

 SET indate=64701
 SET tsdate=##class(%Library.TimeStamp).Normalize(indate)
 WRITE "%TimeStamp date: ",tsdate

ObjectScript

 SET indate="2018-2-22"
 SET tsdate=##class(%Library.TimeStamp).Normalize(indate)
 WRITE "%TimeStamp date: ",tsdate

The following examples show the IsValid() method for the %TimeStamp data type:

ObjectScript

 SET datestr="July 4, 2018"
 SET stat=##class(%Library.TimeStamp).IsValid(datestr)
 IF stat=1 {WRITE datestr," is a valid %TimeStamp",! }
 ELSE {WRITE datestr," is not a valid %TimeStamp",!}

ObjectScript

 SET leapdate="2016-02-29 00:00:00"
 SET noleap="2018-02-29 00:00:00"
 SET stat=##class(%Library.TimeStamp).IsValid(leapdate)
 IF stat=1 {WRITE leapdate," is a valid %TimeStamp",! }
 ELSE {WRITE leapdate," is not a valid %TimeStamp",!}
 SET stat=##class(%Library.TimeStamp).IsValid(noleap)
 IF stat=1 {WRITE noleap," is a valid %TimeStamp",! }
 ELSE {WRITE noleap," is not a valid %TimeStamp",!}

Returning Data Types Using Query Metadata
You can use Dynamic SQL to return metadata about a query, including the data type of a specified column in the query.

The following Dynamic SQL examples return the column name and the integer code for the ODBC data type for each of
the columns in Sample.Person and Sample.Employee:

ObjectScript

 SET myquery="SELECT * FROM Sample.Person"
 SET tStatement=##class(%SQL.Statement).%New()
 SET tStatus=tStatement.%Prepare(myquery)
 SET x=tStatement.%Metadata.columnCount
 WHILE x>0 {
 SET column=tStatement.%Metadata.columns.GetAt(x)
 WRITE !,x," ",column.colName," ",column.ODBCType
 SET x=x-1 }
 WRITE !,"end of columns"

ObjectScript

 SET myquery="SELECT * FROM Sample.Employee"
 SET tStatement=##class(%SQL.Statement).%New()
 SET tStatus=tStatement.%Prepare(myquery)
 SET x=tStatement.%Metadata.columnCount
 WHILE x>0 {
 SET column=tStatement.%Metadata.columns.GetAt(x)
 WRITE !,x," ",column.colName," ",column.ODBCType
 SET x=x-1 }
 WRITE !,"end of columns"

List structured data, such as the FavoriteColors column in Sample.Person, returns a data type of 12 (VARCHAR) because
ODBC represents an ObjectScript %List data type value as a string of comma-separated values.

Steams data, such as the Notes and Picture columns in Sample.Employee, return the data types -1 (LONGVARCHAR) or
-4 (LONGVARBINARY).

A ROWVERSION field returns data type -5 because %Library.RowVersion is a subclass of %Library.BigInt.

InterSystems SQL Reference 945

Data Types (SQL)

For further details, refer to Dynamic SQL and see %SQL.Statement.

Integer Codes for Data Types
In query metadata and other contexts, the defined data type for a column may be returned as an integer code. The CType
(client data type) integer codes are listed in the %SQL.StatementColumn clientType property. For further details, refer to
Select-item Metadata.

SQLType data type codes are used by ODBC and JDBC. ODBC data type codes are returned by
%SQL.Statement.%Metadata.columns.GetAt() method, as shown in the example above. SQL Shell metadata also returns
ODBC data type codes. The JDBC codes are the same as the ODBC codes, except in the representation of time and date
data types. These ODBC and JDBC values are listed below:

Data TypeJDBCODBC

GUID-11-11

BIT-7-7

TINYINT-6-6

BIGINT-5-5

LONGVARBINARY-4-4

VARBINARY-3-3

BINARY-2-2

LONGVARCHAR-1-1

Unknown type00

CHAR11

NUMERIC22

DECIMAL33

INTEGER44

SMALLINT55

FLOAT66

REAL77

DOUBLE88

DATE919

TIME9210

TIMESTAMP9311

VARCHAR1212

For further details, refer to Dynamic SQL.

InterSystems IRIS also supports Unicode SQL types for ODBC applications working with multibyte character sets, such
as in Chinese, Hebrew, Japanese, or Korean locales.

946 InterSystems SQL Reference

SQL Reference Material

Data TypeODBC

WLONGVARCHAR-10

WVARCHAR-9

To activate this functionality, refer to Using an InterSystems Database as an ODBC Data Source on Windows.

See Also
• CAST, CONVERT

• TO_CHAR, TO_DATE, TO_NUMBER

InterSystems SQL Reference 947

Data Types (SQL)

Date and Time Constructs (SQL)
Validates and converts an ODBC date, time, or timestamp.

Synopsis

{d 'yyyy-mm-dd'}
{d nnnnnn}

{t 'hh:mm:ss[.fff]'}
{t nnnnn.nnn}

{ts 'yyyy-mm-dd [hh:mm:ss.fff]'}
{ts 'mm/dd/yyyy [hh:mm:ss.fff]'}
{ts nnnnnn}

Description
These constructs take either an integer or a string in ODBC date, time, or timestamp format and convert it to the corresponding
InterSystems IRIS date, time, or timestamp format. They perform data typing and value and range checking.

{d 'string'}

The {d 'string'} date construct validates a date in ODBC format. If the date is valid, it stores it (logical mode) in InterSystems
IRIS $HOROLOG date format as an integer count value from 1840-12-31. InterSystems IRIS does not append a default
time value. To support dates earlier than 1840-12-31 you must define the date field in the table with data type
%Library.Date(MINVAL=-nnn), where the MINVAL is a negative number of days counting backwards from 1840-12-31
(day 0) to a maximum of -672045 (0001-01-01).

If you supply:

• An integer less than -672045 (0001-01-01) or greater than 2980013 (9999-12-31) generates an SQLCODE -400
<VALUE OUT OF RANGE> error.

• An invalid date (such as a date not in ODBC format or the date 02-29 in a non-leap year): InterSystems IRIS generates
an SQLCODE -146 error: “yyyy-mm-dd' is an invalid ODBC/JDBC Date value”.

• An ODBC timestamp value: InterSystems IRIS validates both the date and time portions of the timestamp. If both are
valid, it converts the date portion only. If either date or time are invalid, the system generates an SQLCODE -146 error.

{t 'string'}

The {t 'string'} time construct validates a time in ODBC format. If the time is valid, it stores it (logical mode) in InterSystems
IRIS $HOROLOG time format as an integer count of seconds from midnight, with the specified fractional seconds. Inter-
Systems IRIS Display mode and ODBC mode do not display the fractional seconds; the fractional seconds are truncated
from these display formats.

If you supply:

• An integer less than 0 (00:00:00) or greater than 86399.99 (23:59:59.99) generates an SQLCODE -400 <ILLEGAL
VALUE> error.

• An invalid time (such as a time not in ODBC format or a time with hour >23): InterSystems IRIS generates an SQLCODE
-147 error: “hh:mi:ss.fff' is an invalid ODBC/JDBC Time value”.

• An ODBC timestamp value: InterSystems IRIS generates an SQLCODE -147 error.

948 InterSystems SQL Reference

SQL Reference Material

{ts 'string'}

The {ts 'string'} timestamp construct validates a date/time and returns it in ODBC timestamp format; specified fractional
seconds are always preserved and displayed. The {ts 'string'} timestamp construct also validates a date and returns it in
ODBC timestamp format with a suppled time value of 00:00:00.

If you supply:

• A positive or negative integer date (-672045 through 2980013): InterSystems IRIS appends a time value of 00:00:00,
then stores the resulting timestamp in ODBC format. For example, 64701 returns 2018-02-22 00:00:00. This is a valid
$HOROLOG date integer. $HOROLOG 0 is 1840-12-31.

• A valid timestamp in ODBC format: InterSystems IRIS stores the supplied value unchanged This is because InterSystems
IRIS timestamp format is the same as ODBC timestamp format.

• A valid timestamp using the locale default date and time formats (for example, 2/29/2016 12:23:46.77): InterSystems
IRIS stores and displays the supplied value in ODBC format.

• An invalid timestamp (such as a timestamp with the date portion specifying 02-29 in a non-leap year, or with the time
portion specifying hour >23): InterSystems IRIS returns the string “error” as the value.

• A valid date (in ODBC or locale format) with no time value: InterSystems IRIS appends a time value of 00:00:00, then
stores the resulting timestamp in ODBC format. It supplies leading zeros where necessary. For example, 2/29/2016
returns 2016-02-29 00:00:00.

• A correctly formatted, but invalid, date (in ODBC or locale format) with no time value: InterSystems IRIS appends a
time value of 00:00:00. It then stores the date portion as supplied. For example, 02/29/2019 returns 02/29/2019
00:00:00.

• An incorrectly formatted and invalid, date (in ODBC, locale, or $HOROLOG format) with no time value: InterSystems
IRIS returns the string “error”. For example, 2/29/2019 (no leading zero and invalid date value) returns “error”.
00234 ($HOROLOG with leading zeros) returns “error”

See $HOROLOG for further information.

Examples
The following Dynamic SQL example validates dates supplied in ODBC format (with or without leading zeros) and stores
them as the equivalent $HOROLOG value 64701. This example displays %SelectMode 0 (logical) values:

ObjectScript

 SET myquery = 2
 SET myquery(1) = "SELECT {d '2018-02-22'} AS date1,"
 SET myquery(2) = "{d '2018-2-22'} AS date2"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=0
 SET tStatus = tStatement.%Prepare(.myquery)
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The following Dynamic SQL example validates times supplied in ODBC format (with or without leading zeros) and stores
them as the equivalent $HOROLOG value 43469. This example displays %SelectMode 0 (logical) values:

ObjectScript

 SET myquery = 3
 SET myquery(1) = "SELECT {t '12:04:29'} AS time1,"
 SET myquery(2) = "{t '12:4:29'} AS time2,"
 SET myquery(3) = "{t '12:04:29.00000'} AS time3"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=0
 SET tStatus = tStatement.%Prepare(.myquery)
 SET rset = tStatement.%Execute()
 DO rset.%Display()

InterSystems SQL Reference 949

Date and Time Constructs (SQL)

The following Dynamic SQL example validates times supplied in ODBC format with fractional seconds, and stores them
as the equivalent $HOROLOG value 43469 with the fractional seconds appended. Trailing zeros are truncated. This
example displays %SelectMode 0 (logical) values:

ObjectScript

 SET myquery = 3
 SET myquery(1) = "SELECT {t '12:04:29.987'} AS time1,"
 SET myquery(2) = "{t '12:4:29.987'} AS time2,"
 SET myquery(3) = "{t '12:04:29.987000'} AS time3"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=0
 SET tStatus = tStatement.%Prepare(.myquery)
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The following Dynamic SQL example validates time and date values in several formats and stores them as the equivalent
ODBC timestamp. A time value of 00:00:00 is supplied when necessary. This example displays %SelectMode 0 (logical)
values:

ObjectScript

 SET myquery = 6
 SET myquery(1) = "SELECT {ts '2018-02-22 01:43:38'} AS ts1,"
 SET myquery(2) = "{ts '2018-02-22'} AS ts2,"
 SET myquery(3) = "{ts '02/22/2018 01:43:38.999'} AS ts3,"
 SET myquery(4) = "{ts '2/22/2018 01:43:38'} AS ts4,"
 SET myquery(5) = "{ts '02/22/2018'} AS ts5,"
 SET myquery(6) = "{ts '64701'} AS ts6"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=0
 SET tStatus = tStatement.%Prepare(.myquery)
 SET rset = tStatement.%Execute()
 IF rset.%Next() {
 WRITE rset.ts1,!
 WRITE rset.ts2,!
 WRITE rset.ts3,!
 WRITE rset.ts4,!
 WRITE rset.ts5,!
 WRITE rset.ts6
 }

950 InterSystems SQL Reference

SQL Reference Material

Default user name and password (SQL)
Provides default login identity.

Description
The InterSystems IRIS® data platform provides a default user name and password for logging in to the database and getting
started. The default user name is “_SYSTEM” (uppercase) and “SYS” is its password.

InterSystems SQL Reference 951

Default user name and password (SQL)

SQLCODE Error Codes
SQL error codes.

Description
Attempting to execute most InterSystems SQL operations issues an SQLCODE value. The SQLCODE values issued are
0, 100, and negative integer values.

• SQLCODE=0 indicates successful completion of an SQL operation. For a SELECT statement, this usually means the
successful retrieval of data from a table. However, if the SELECT performs an aggregate operation, (for example:
SELECT SUM(myfield)) the aggregate operation is successful and an SQLCODE=0 is issued even when there is
no data in myfield; in this case SUM returns NULL and %ROWCOUNT=1.

• SQLCODE=100 indicates that the SQL operation was successful, but found no data to act upon. This can occur for a
number of reasons. For a SELECT these include: the specified table contains no data; the table contains no data that
satisfies the query criteria; or row retrieval has reached the final row of the table. For an UPDATE or DELETE these
include: the specified table contains no data; or the table contains no row of data that satisfies the WHERE clause
criteria. In these cases %ROWCOUNT=0.

• SQLCODE=-n indicates an error. The negative integer value specifies the kind of error that occurred. SQLCODE=-
400 is a general purpose fatal error code.

For further details on SQLCODE error codes and the corresponding error messages, and a full list of SQLCODE error code
values, refer to SQL Error Messages.

952 InterSystems SQL Reference

SQL Reference Material

Field constraint
Specifies rules about a field’s contents.

Description
A field constraint specifies rules governing the data values permitted for a field. A field may have the following constraints:

• NOT NULL: You must specify a value for this field in every record (empty strings acceptable).

• UNIQUE: If you specify a value for this field in a record, it must be a unique value (one empty string acceptable). You
can, however, create multiple records with no value (NULL) for the field.

• DEFAULT: You must either specify a value or InterSystems IRIS provides a default for this field in every record
(empty strings acceptable). The default may be NULL, an empty string, or any other value appropriate for the data
type.

• UNIQUE NOT NULL: You must specify a unique value for this field in every record (one empty string acceptable).
Can be used as a primary key.

• DEFAULT NOT NULL: You must either specify a value or InterSystems IRIS provides a default value for this field
in every record (empty strings acceptable).

• UNIQUE DEFAULT: Not Recommended — You must either specify a unique value or InterSystems IRIS provides a
default value for this field in every record (one empty string acceptable). The default may be NULL, an empty string,
or any other value appropriate for the data type. Use only if the default is a unique generated value (for example,
CURRENT_TIMESTAMP), or if the default is intended to be used only once.

• UNIQUE DEFAULT NOT NULL: Not Recommended — You must either specify a unique value or InterSystems
IRIS provides a default value for this field in every record (one empty string acceptable). The default may be an empty
string or any other value appropriate for the data type; it cannot be NULL. Use only if the default is a unique generated
value (for example, CURRENT_TIMESTAMP), or if the default is intended to be used only once. Can be used as a
primary key.

• IDENTITY: InterSystems IRIS provides a unique, system-generated, non-modifiable integer value for this field in
every record. Other field constraint keywords are ignored. Can be used as a primary key.

Data values must be appropriate for the field’s data type. An empty string is not an acceptable value for a numeric field.

These field constraints are further described in the page for the CREATE TABLE command.

InterSystems SQL Reference 953

Field constraint

Reserved words (SQL)
A list of SQL reserved words for InterSystems IRIS® data platform.

Synopsis

%AFTERHAVING | %ALLINDEX | %ALPHAUP | %ALTER | %BEGTRANS |
%CHECKPRIV | %CLASSNAME | %CLASSPARAMETER | %DBUGFULL | %DELDATA |
%DESCRIPTION | %EXACT | %EXTERNAL | %FILE | %FIRSTTABLE | %FLATTEN |
%FOREACH | %FULL | %ID | %IDADDED | %IGNOREINDEX | %IGNOREINDICES |
%INLIST | %INORDER | %INTERNAL | %INTEXT | %INTRANS | %INTRANSACTION |
%KEY | %MATCHES | %MCODE | %MERGE | %MINUS | %MVR | %NOCHECK |
%NODELDATA | %NOFLATTEN | %NOFPLAN | %NOINDEX | %NOLOCK |
%NOMERGE | %NOPARALLEL | %NOREDUCE | %NORUNTIME | %NOSVSO | %NOTOPOPT |
%NOTRIGGER | %NOUNIONOROPT | %NUMROWS | %ODBCIN | %ODBCOUT |
%PARALLEL | %PLUS | %PROFILE | %PROFILE_ALL | %PUBLICROWID | %ROUTINE |
%ROWCOUNT | %RUNTIMEIN | %RUNTIMEOUT | %STARTSWITH |
%STARTTABLE | %SQLSTRING | %SQLUPPER | %STRING | %TABLENAME |
%TRUNCATE | %UPPER | %VALUE | %VID
ABSOLUTE | ADD | ALL | ALLOCATE | ALTER | AND | ANY | ARE | AS |
ASC | ASSERTION | AT | AUTHORIZATION | AVG | BEGIN | BETWEEN |
BIT | BIT_LENGTH | BOTH | BY | CASCADE | CASE | CAST |
CHAR | CHARACTER | CHARACTER_LENGTH | CHAR_LENGTH |
CHECK | CLOSE | COALESCE | COLLATE | COMMIT | CONNECT |
CONNECTION | CONSTRAINT | CONSTRAINTS | CONTINUE | CONVERT |
CORRESPONDING | COUNT | CREATE | CROSS | CURRENT |
CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP |
CURRENT_USER | CURSOR | DATE | DEALLOCATE | DEC | DECIMAL |
DECLARE | DEFAULT | DEFERRABLE | DEFERRED | DELETE | DESC |
DESCRIBE | DESCRIPTOR | DIAGNOSTICS | DISCONNECT | DISTINCT |
DOMAIN | DOUBLE | DROP | ELSE | END | ENDEXEC | ESCAPE | EXCEPT |
EXCEPTION | EXEC | EXECUTE | EXISTS | EXTERNAL | EXTRACT |
FALSE | FETCH | FIRST | FLOAT | FOR | FOREIGN | FOUND | FROM | FULL |
GET | GLOBAL | GO | GOTO | GRANT | GROUP | HAVING | HOUR |
IDENTITY | IMMEDIATE | IN | INDICATOR | INITIALLY |
INNER | INPUT | INSENSITIVE | INSERT | INT | INTEGER | INTERSECT |
INTERVAL | INTO | IS | ISOLATION | JOIN | LANGUAGE | LAST |
LEADING | LEFT | LEVEL | LIKE | LOCAL | LOWER | MATCH | MAX | MIN |
MINUTE | MODULE | NAMES | NATIONAL | NATURAL | NCHAR |
NEXT | NO | NOT | NULL | NULLIF | NUMERIC | OCTET_LENGTH | OF | ON |
ONLY | OPEN | OPTION | OR | OUTER | OUTPUT | OVERLAPS |
PAD | PARTIAL | PREPARE | PRESERVE | PRIMARY | PRIOR | PRIVILEGES |
PROCEDURE | PUBLIC | READ | REAL | REFERENCES | RELATIVE |
RESTRICT | REVOKE | RIGHT | ROLE | ROLLBACK | ROWS |
SCHEMA | SCROLL | SECOND | SECTION | SELECT | SESSION_USER |
SET | SHARD | SMALLINT | SOME | SPACE | SQLERROR | SQLSTATE |
STATISTICS | SUBSTRING | SUM | SYSDATE | SYSTEM_USER | TABLE |
TEMPORARY | THEN | TIME | TIMEZONE_HOUR | TIMEZONE_MINUTE |
TO | TOP | TRAILING | TRANSACTION | TRIM | TRUE | UNION | UNIQUE |
UPDATE | UPPER | USER | USING | VALUES | VARCHAR | VARYING | WHEN |
WHENEVER | WHERE | WITH | WORK | WRITE

Description
Within SQL certain words are reserved. You cannot use an SQL reserved word as an SQL identifier (such as the name for
a table, a column, an AS alias, or other entity), unless:

• The word is delimited with double quotes ("word"), and

• Delimited identifiers are supported. For further details, refer to Identifiers.

This list contains only those words that are reserved in this sense; it does not contain all SQL keywords. Several of the
words listed above start with the "%" character, indicating that they are InterSystems SQL proprietary extension keywords.
In general, it is not recommended to use words that begin with "%" as identifiers such as table and column names, because
new InterSystems SQL extension keywords may be added in the future.

You can check if a word is an SQL reserved word by invoking the IsReservedWord() method, as shown in the following
example. Specify the reserved word as a quoted string; reserved words are not case-sensitive.
$SYSTEM.SQL.IsReservedWord() returns a boolean value.

954 InterSystems SQL Reference

SQL Reference Material

ObjectScript

 WRITE !,"Reserved?: ",$SYSTEM.SQL.IsReservedWord("VARCHAR")
 WRITE !,"Reserved?: ",$SYSTEM.SQL.IsReservedWord("varchar")
 WRITE !,"Reserved?: ",$SYSTEM.SQL.IsReservedWord("VarChar")
 WRITE !,"Reserved?: ",$SYSTEM.SQL.IsReservedWord("FRED")

This method can also be called as a stored procedure from ODBC or JDBC: %SYSTEM.SQL_IsReservedWord("nnnn").

InterSystems SQL Reference 955

Reserved words (SQL)

Special Variables
System-supplied variables.

Synopsis

$HOROLOG
$JOB
$NAMESPACE
$TLEVEL
$USERNAME
$ZHOROLOG
$ZJOB
$ZPI
$ZTIMESTAMP
$ZTIMEZONE
$ZVERSION

Description
InterSystems SQL directly supports a number of the ObjectScript special variables. These variables contain system-supplied
values. They can be used wherever a literal value can be specified in InterSystems SQL.

SQL special variable names are not case-sensitive. Most can be specified using an abbreviation.

UseData Type ReturnedAbbreviationVariable Name

Local date and time for the
current process

%String/VARCHARHHOROLOG

Job ID of the current process%String/VARCHARJJOB

Current namespace name%String/VARCHARnone$NAMESPACE

Current transaction nesting
level

%Integer/INTEGERTLTLEVEL

User name for the current
process

%String/VARCHARnone$USERNAME

Number of elapsed seconds
since InterSystems IRIS startup

%Numeric/NUMERIC(21,6)ZHZHOROLOG

Job status for the current
process

%Integer/INTEGERZJZJOB

The numeric constant PI%Numeric/NUMERIC(21,18)none$ZPI

Current date and time in
Coordinated Universal Time
format

%String/VARCHARZTSZTIMESTAMP

Local time zone offset from
GMT

%Integer/INTEGERZTZZTIMEZONE

The current version of
InterSystems IRIS

%String/VARCHARZVZVERSION

For further details, refer to the corresponding ObjectScript special variable, as described in the ObjectScript Reference.

956 InterSystems SQL Reference

SQL Reference Material

Examples
The following example returns a result set that includes the current date and time:

SQL

SELECT TOP 5 Name,$H
FROM Sample.Person

The following example only returns a result set if the time zone is within the continental United States:

SQL

SELECT TOP 5 Name,Home_State
FROM Sample.Person
WHERE $ZTIMEZONE BETWEEN 300 AND 480

InterSystems SQL Reference 957

Special Variables

String Manipulation (SQL)
String manipulation functions and operators.

Description
InterSystems SQL provides support for several types of string manipulation:

• Strings can be manipulated by length, character position, or substring value.

• Strings can be manipulated by a designated delimiter character or delimiter string.

• Strings can tested by pattern matching and word-aware searches.

• Specially encoded strings, called lists, contain embedded substring identifiers without using a delimiter character. The
various $LIST functions operate on these encoded character strings, which are incompatible with standard character
strings. The only exceptions are the $LISTGET function and the one-argument and two-argument forms of $LIST,
which take an encoded character string as input, but output a single element value as a standard character string.

InterSystems SQL supports string functions, string condition expressions, and string operators.

ObjectScript string manipulation is case-sensitive. Letters in strings can be converted to uppercase, to lowercase, or retained
as mixed case. String collation can be case-sensitive, or not case-sensitive; by default, SQL string collation is SQLUPPER
which is not case-sensitive. InterSystems SQL provides numerous letter case and collation functions and operators.

When a string is specified for a numeric argument, most InterSystems SQL functions perform the following string-to-
number conversions: a nonnumeric string is converted to the number 0; a numeric string is converted to a canonical number;
and a mixed-numeric string is truncated at the first nonnumeric character and then converted to a canonical number.

String Concatenation

The following functions concatenate substrings into a string:

• CONCAT: concatenates two substrings, returns a single string.

• STRING: concatenates two or more substrings, returns a single string.

• XMLAGG: concatenates all of the values of a column, returns a single string. For further details, see Aggregate
Functions.

• LIST: concatenates all of the values of a column, including a comma delimiter, returns a single string. For further
details, see Aggregate Functions.

The concatenate operator (||) can also be used to concatenate two strings.

String Length

The following functions can be used to determine the length of a string:

• CHARACTER_LENGTH and CHAR_LENGTH: return the number of characters in a string, including trailing blanks.
NULL returns NULL.

• LENGTH: returns the number of characters in a string, excluding trailing blanks. NULL returns NULL.

• $LENGTH: returns the number of characters in a string, including trailing blanks. NULL is returned as 0.

Truncation and Trimming

The following functions can be used to truncate or trim a string. Truncation limits the length of the string, deleting all
characters beyond the specified length. Trimming deletes leading and/or trailing blank spaces from a string.

• Truncation: CONVERT, %SQLSTRING, and %SQLUPPER.

958 InterSystems SQL Reference

SQL Reference Material

• Trimming: TRIM, LTRIM, and RTRIM.

Substring Search

The following functions search for a substring within a string and return a string position:

• POSITION: searches by substring value, finds first match, returns position of beginning of substring.

• CHARINDEX: searches by substring value, finds first match, returns position of beginning of substring. Starting point
can be specified.

• $FIND: searches by substring value, finds first match, returns position of end of substring. Starting point can be spec-
ified.

• INSTR: searches by substring value, finds first match, returns position of beginning of substring. Both starting point
and substring occurrence can be specified.

The following functions search for a substring by position or delimiter within a string and return the substring:

• $EXTRACT: searches by string position, returns substring specified by start position, or start and end positions.
Searches from beginning of string.

• SUBSTRING: searches by string position, returns substring specified by start position, or start and length. Searches
from beginning of string.

• SUBSTR: searches by string position, returns substring specified by start position, or start and length. Searches from
beginning or end of string.

• $PIECE: searches by delimiter character, returns first delimited substring. Starting point can be specified or defaults
to beginning of string.

• $LENGTH: searches by delimiter character, returns the number of delimited substrings. Searches from beginning of
string.

• $LIST: searches by substring count on a specially encoded list string. It locates a substring by substring count and
returns the substring value. Searches from beginning of string.

The contains operator ([) can also be used to determine if a substring appears in a string.

The %STARTSWITH comparison operator matches the specified character(s) against the beginning of a string.

Substring Search–and–Replace

The following functions search for a substring within a string and replace it with another substring.

• REPLACE: searches by string value, replaces substring with new substring. Searches from beginning of string.

• STUFF: searches by string position and length, replaces substring with new substring. Searches from beginning of
string.

Character-Type and Word-Aware Comparisons

The %PATTERN comparison operator matches a string to a specified pattern of character types.

You can perform a word-aware search of a string for specified words or phrases, including wildcard searching. For further
details refer to Using InterSystems SQL Search.

InterSystems SQL Reference 959

String Manipulation (SQL)

	Table of Contents
	Symbols and Syntax Conventions
	Symbols Used in InterSystems SQL
	Syntax Conventions

	SQL Commands
	ALTER FOREIGN SERVER (SQL)
	ALTER FOREIGN TABLE (SQL)
	ALTER ML CONFIGURATION (SQL)
	ALTER MODEL (SQL)
	ALTER TABLE (SQL)
	ALTER USER (SQL)
	ALTER VIEW (SQL)
	BUILD INDEX (SQL)
	CALL (SQL)
	CANCEL QUERY (SQL)
	CASE (SQL)
	%CHECKPRIV (SQL)
	CLOSE (SQL)
	COMMIT (SQL)
	CREATE AGGREGATE (SQL)
	CREATE DATABASE (SQL)
	CREATE FOREIGN SERVER (SQL)
	CREATE FOREIGN TABLE (SQL)
	CREATE FUNCTION (SQL)
	CREATE INDEX (SQL)
	CREATE METHOD (SQL)
	CREATE ML CONFIGURATION (SQL)
	CREATE MODEL (SQL)
	CREATE PROCEDURE (SQL)
	CREATE QUERY (SQL)
	CREATE ROLE (SQL)
	CREATE SCHEMA (SQL)
	CREATE TABLE (SQL)
	CREATE TABLE AS SELECT (SQL)
	CREATE TRIGGER (SQL)
	CREATE USER (SQL)
	CREATE VIEW (SQL)
	DECLARE (SQL)
	DELETE (SQL)
	DROP AGGREGATE (SQL)
	DROP DATABASE (SQL)
	DROP FOREIGN SERVER (SQL)
	DROP FOREIGN TABLE (SQL)
	DROP FUNCTION (SQL)
	DROP INDEX (SQL)
	DROP METHOD (SQL)
	DROP ML CONFIGURATION (SQL)
	DROP MODEL (SQL)
	DROP PROCEDURE (SQL)
	DROP QUERY (SQL)
	DROP ROLE (SQL)
	DROP SCHEMA (SQL)
	DROP TABLE (SQL)
	DROP TRIGGER (SQL)
	DROP USER (SQL)
	DROP VIEW (SQL)
	EXPLAIN (SQL)
	FETCH (SQL)
	FREEZE PLANS (SQL)
	GRANT (SQL)
	INSERT (SQL)
	INSERT OR UPDATE (SQL)
	%INTRANSACTION (SQL)
	JOIN (SQL)
	LOAD DATA (SQL)
	LOCK (SQL)
	OPEN (SQL)
	PURGE CACHED QUERIES (SQL)
	REVOKE (SQL)
	ROLLBACK (SQL)
	SAVEPOINT (SQL)
	SELECT (SQL)
	SET ML CONFIGURATION (SQL)
	SET OPTION (SQL)
	SET TRANSACTION (SQL)
	START TRANSACTION (SQL)
	TRAIN MODEL (SQL)
	TRUNCATE TABLE (SQL)
	TUNE TABLE (SQL)
	UNFREEZE PLANS (SQL)
	UNLOCK (SQL)
	UPDATE (SQL)
	USE DATABASE (SQL)
	VALIDATE MODEL (SQL)

	SQL Clauses
	DISTINCT (SQL)
	FROM (SQL)
	GROUP BY (SQL)
	HAVING (SQL)
	INTO (SQL)
	ORDER BY (SQL)
	TOP (SQL)
	UNION (SQL)
	VALUES (SQL)
	WHERE (SQL)
	WHERE CURRENT OF (SQL)

	SQL Predicate Conditions
	Overview of Predicates
	ALL (SQL)
	ANY (SQL)
	BETWEEN (SQL)
	EXISTS (SQL)
	%FIND (SQL)
	FOR SOME (SQL)
	FOR SOME %ELEMENT (SQL)
	IN (SQL)
	%INLIST (SQL)
	%INSET (SQL)
	IS JSON (SQL)
	IS NULL (SQL)
	LIKE (SQL)
	%MATCHES (SQL)
	%PATTERN (SQL)
	SOME (SQL)
	%STARTSWITH (SQL)

	SQL Aggregate Functions
	Overview of Aggregate Functions
	AVG (SQL)
	COUNT (SQL)
	%DLIST (SQL)
	JSON_ARRAYAGG (SQL)
	LIST (SQL)
	MAX (SQL)
	MIN (SQL)
	STDDEV, STDDEV_SAMP, STDDEV_POP (SQL)
	SUM (SQL)
	VARIANCE, VAR_SAMP, VAR_POP (SQL)
	XMLAGG (SQL)

	SQL Window Functions
	Overview of Window Functions
	AVG (SQL)
	COUNT (SQL)
	CUME_DIST() (SQL)
	DENSE_RANK() (SQL)
	FIRST_VALUE (SQL)
	LAG (SQL)
	LAST_VALUE (SQL)
	LEAD (SQL)
	MAX (SQL)
	MIN (SQL)
	NTH_VALUE (SQL)
	NTILE (SQL)
	PERCENT_RANK() (SQL)
	RANK() (SQL)
	ROW_NUMBER() (SQL)
	SUM (SQL)

	SQL Functions
	ABS (SQL)
	ACOS (SQL)
	ASCII (SQL)
	ASIN (SQL)
	ATAN (SQL)
	ATAN2 (SQL)
	CAST (SQL)
	CEILING (SQL)
	CHAR (SQL)
	CHARACTER_LENGTH (SQL)
	CHARINDEX (SQL)
	CHAR_LENGTH (SQL)
	COALESCE (SQL)
	CONCAT (SQL)
	CONVERT (SQL)
	COS (SQL)
	COT (SQL)
	CURDATE (SQL)
	CURRENT_DATE (SQL)
	CURRENT_TIME (SQL)
	CURRENT_TIMESTAMP (SQL)
	CURTIME (SQL)
	DATABASE
	DATALENGTH (SQL)
	DATE (SQL)
	DATEADD (SQL)
	DATEDIFF (SQL)
	DATENAME (SQL)
	DATEPART (SQL)
	DATE_TRUNC (SQL)
	DAY (SQL)
	DAYNAME (SQL)
	DAYOFMONTH (SQL)
	DAYOFWEEK (SQL)
	DAYOFYEAR (SQL)
	DECODE (SQL)
	DEGREES (SQL)
	%EXACT (SQL)
	EXP (SQL)
	%EXTERNAL (SQL)
	$EXTRACT (SQL)
	$FIND (SQL)
	FLOOR (SQL)
	GETDATE (SQL)
	GETUTCDATE (SQL)
	GREATEST (SQL)
	HOUR (SQL)
	IFNULL (SQL)
	INSTR (SQL)
	%INTERNAL (SQL)
	ISNULL (SQL)
	ISNUMERIC (SQL)
	JSON_ARRAY (SQL)
	JSON_OBJECT (SQL)
	$JUSTIFY (SQL)
	LAST_DAY (SQL)
	LAST_IDENTITY (SQL)
	LCASE (SQL)
	LEAST (SQL)
	LEFT (SQL)
	LEN (SQL)
	LENGTH (SQL)
	$LENGTH (SQL)
	$LIST (SQL)
	$LISTBUILD (SQL)
	$LISTDATA (SQL)
	$LISTFIND (SQL)
	$LISTFROMSTRING (SQL)
	$LISTGET (SQL)
	$LISTLENGTH (SQL)
	$LISTSAME (SQL)
	$LISTTOSTRING (SQL)
	LOG (SQL)
	LOG10 (SQL)
	LOWER (SQL)
	LPAD (SQL)
	LTRIM (SQL)
	%MINUS (SQL)
	MINUTE (SQL)
	MOD (SQL)
	MONTH (SQL)
	MONTHNAME (SQL)
	NOW (SQL)
	NULLIF (SQL)
	NVL (SQL)
	%OBJECT (SQL)
	%ODBCIN (SQL)
	%ODBCOUT (SQL)
	%OID (SQL)
	PI (SQL)
	$PIECE (SQL)
	%PLUS (SQL)
	POSITION (SQL)
	POWER (SQL)
	PREDICT (SQL)
	PROBABILITY (SQL)
	QUARTER (SQL)
	RADIANS (SQL)
	REPEAT (SQL)
	REPLACE (SQL)
	REPLICATE (SQL)
	REVERSE (SQL)
	RIGHT (SQL)
	ROUND (SQL)
	RPAD (SQL)
	RTRIM (SQL)
	SEARCH_INDEX (SQL)
	SECOND (SQL)
	SIGN (SQL)
	SIN (SQL)
	SPACE (SQL)
	%SQLSTRING (SQL)
	%SQLUPPER (SQL)
	SQRT (SQL)
	SQUARE (SQL)
	STR (SQL)
	STRING (SQL)
	STUFF (SQL)
	SUBSTR (SQL)
	SUBSTRING (SQL)
	SYSDATE (SQL)
	%SYSTEM_SQL.DefaultSchema()
	TAN (SQL)
	TIMESTAMPADD (SQL)
	TIMESTAMPDIFF (SQL)
	TO_CHAR (SQL)
	TO_DATE (SQL)
	TO_NUMBER (SQL)
	TO_POSIXTIME (SQL)
	TO_TIMESTAMP (SQL)
	$TRANSLATE (SQL)
	TRIM (SQL)
	TRUNCATE (SQL)
	%TRUNCATE (SQL)
	$TSQL_NEWID (SQL)
	UCASE (SQL)
	UNIX_TIMESTAMP (SQL)
	UPPER (SQL)
	USER (SQL)
	WEEK (SQL)
	XMLCONCAT (SQL)
	XMLELEMENT (SQL)
	XMLFOREST (SQL)
	YEAR (SQL)

	SQL Unary Operators
	- (Negative)
	+ (Positive)

	SQL Reference Material
	Data Types (SQL)
	Date and Time Constructs (SQL)
	Default user name and password (SQL)
	SQLCODE Error Codes
	Field constraint
	Reserved words (SQL)
	Special Variables
	String Manipulation (SQL)

	Index

